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Introduction

By a hypersurface we here mean a (Zn—1)-dimensional real analytic sub-
manifold of the space of » complex variables, i.e. the #-dimensional complex
Cartesian space C"(#=2). A homeomorphism f of one hypersurface S onto
another hypersurface S’ is called a pseudo-conformal homeomorphism, if it
can be extended to a complex analytic homeomorphism of a neighborhood of
S onto a neighborhood of S’ (Definition 1l). In case such f exists, we say that
the two hypersurfaces S and S’ are mutually pseudo-conformally equivalent.

The main purpose of this paper is to study conditions for the pseudo-
conformal equivalence of two hypersurfaces. In case #=2, this problem was
first considered by H. Poincaré and was studied by B. Segre and E. Cartan.
In his paper [1], E. Cartan gives a complete solution of the problem by the
application of his own “method of the equivalence” [3] We want to genera-
lize his results to case n=2.

We introduce the notion of a non-degenerate hypersurface (Definition 2)
which is a slight generalization of the notion of a hypersurface satisfying
the so-called condition of Levi-Krzoska. Moreover, we introduce the notion
of a regular hypersurface (Definition 3). Roughly speaking, a non-degenerate
hypersurface is regular when it locally admits a non-trivial infinitesimal
pseudo-conformal transformation (Proposition 5). Now, the main theorem
Theorem 4) in this paper may be stated as follows: To every regular non-
degenerate hypersurface S there is associated, in an intrinsic manner, a prin-
cipal fiber bundle P over the base space S together with an infinitesimal
structure B in P, in terms of which the pseudo-conformal equivalence (of two
regular non-degenerate hypersurfaces) can be characterized. The infinitesimal
structure B stated above is a Cartan connection which we shall call the
normal pseudo-conformal connection associated to the hypersurface S, cf. [2]
One finds that the situation is just analogous to the case of the Riemannian
geometry of hypersurfaces. As an application of [Theorem 4] it is shown that
if a hypersurface S has a non-degenerate part, then the group G(S) of all the
pseudo-conformal transformations of S becomes a Lie group of dimension
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< n’+2n with respect to the natural topology (Theorem D). Another applica-
tion of is concerned with a quadric @ of C™: Let us identify C™
with an open set of the »n-dimensional complex projective space P%(C). We
prove that every pseudo-conformal homeomorphism f of a connected open set
U of @ with an open set U’ of @ can be necessarily extended to a (unique)
projective transformation ¢ of P*(C) (Theorem 6).

In Chapter I, we study conditions for the pseudo-conformal equivalence
from the point of view of the affine geometry of hypersurfaces. We establish
a theorem (Theorem 1)) indicating that our problem is a special case of E.
Cartan’s equivalence problem [3] In Chapter II, we give the definition of a
non-degenerate hypersurface and of a regular hypersurface. This last defini-
tion has been suggested by a theorem (Chapter I, 17, p. 30) in E. Cartan [1].
Chapter III is preliminary to the subsequent chapters and deals with a quadric
of C™ or rather an equivalent quadric of P*C). In Chapter IV, it is shown
that every regular non-degenerate hypersurface yields a family of Kdhlerian
metrics defined on open sets of the space of #—1 complex variables. The
family lies at the base of our construction of the normal pseudo-conformal
connection. Chapters V and VI are concerned with the construction of the
normal pseudo-conformal connection, which will be carried out following the
construction of the normal conformal connection given in N. Tanaka [5].
However, the former is much more complicated. Finally in Chapter VII, we
give some results (Theorems 4, 5 and 6) concerning pseudo-conformal trans-
formations.

I would like to express my sincere thanks to Dr. A. Morimoto who has
encouraged me with valuable advice.

Preliminary remarks

Throughout this paper, we always assume the differentiability of class
C®. Let M be a manifold. We shall denote by T,(J) the tangent space to
M at a point p of M and by df the differential of a mapping f of M into a
manifold M’. By a submanifold N of M we shall mean a manifold satisfying
the following conditions: 1) N is a subset of M; 2) The injection of N into
M is real analytic and regular; 3) For each p = N, we can find a system of
coordinates x,, ---, x, of M at p with coordinate neighborhood U such that the
intersection N\ U is defined by x,y, = - =x,=0 (r=dim N).

Let P be a principal fiber bundle over a manifod M with structure group
G. This principal fiber blundle will be symbolically denoted by P(M,G). (1)
R, will denote the right translation of P corresponding to an element ¢ of G.
(2) A* will denote the so-called fundamental vector field” on P corresponding

1) K. Nomizu, Lie groups and differential geometry, The Math. Soc. of Japan, 1956.
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to a left invariant vector field A on G. (3) Let f be a homomorphism of G
into G’ and let P/(M,G’) be a principal fiber bundle over the base space M
with structure group G’. A mapping f of P into P’ will be called a homo-
morphism of P}, G) into P/(M,G’) corresponding to the homomorphism f,
if f(x-0)=F)-f(0) for all xe P and 6 =G and if f induces the identity
transformation of M. (4) Let H be a subgroup of G. A principal fiber bundle
Q(M, H) will be called a subbundle of P(M, G) if Q is a submanifold of P and
if the injection of @ into P gives a homomorphism of Q(M, H) into P(M, G)
corresponding to the injection of H into G. (5) Let U be an open set of M.
We shall denote by P| U the restriction to U of the principal fiber bundle
PM, G).

Let G be a Lie transformation group on a connected manifold M. For
each tangent vector X to M and for each element ¢ in G, we shall denote by
o - X the tangent vector d/, - X, I, being the transformation of M induced by
o. Now take a fixed point o of M and denote by H the isotropy group of G
at o and by = the mapping 0 —o - 0 of G into M. Under the assumption that
G satisfies the second countability axiom and that G acts transitively on M,
G may be considered as a principal fiber bundle over the base space M with
structure group H with projection =. This fiber bundle will be denoted by
G(M, H).

Finally, let «a be a complex number. We shall denote by @ the conjugate
of « and by Ra(resp. Ja) the real part (resp. the imaginary part) of a.

I. Fundamental theorem

1. Let C" (# =2) be the n-dimensional complex Cartesian space and let
z, -+, 2, be the natural coordinates of it. We denote by x; (resp. y;) the real
(resp. imaginary) part of the i-th coordinate z;. Then the 2% functions x, -,
X V1, 0t , ¥, form a system of coordinates of C" as a Z2n-dimensional real
Cartesian space, i.e. C"=R? in this sense. By a hypersurface we shall
always mean a (2n—1)-dimensional submanifold of C™".

DEFINITION 1. A homeomorphism f of a hypersurface S with a hyper-
surface S’ is called a pseudo-conformal homeomorphism if it can be extended
to a complex analytic homeomorphism f of a neighborhood of S with a neigh-
borhood of S’.

REMARK. Let f be a homeomorphism of a hypersurface S with another
hypersurface. If f admits two complex analytic extensions 7 and /7, then we
have =7 on a sufficiently small neighborhood of S, cf. Lemma 2. We know
from this fact that the property for a homeomorphism of being pseudo-con-
formal is of local character.

2. For each tangent vector X to C* we denote by +/—1 - X the tangent
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vector to C” defined by (W—1 - X)z;=+v—1 - Xz, i.e. W —1 - X)x; = —X;
and (W—1 - X)y;= Xx;, 1<i<wn). Every tangent space T,(C™ becomes an #-
dimensional complex vector space with respect to this operation. We denote
by 9/0z® the vector field on C™ induced by the one parameter group of
transformations (zy, -+, 2,) — (21, =+, Z—1, 2s+F, Zig1, -+, 2») ON C". The n vectors
(0/0z1)p, -++ ,(0/02,), form a complex base of 7,(C") at each p=C". We set
e;=1(0/0z;), 1=i=wmn), o being the origin of C™.

An affine transformation of C” is a transformation (z;)—(z}) on C" such

that z;=~¢;+ _anlaijzj, where det (@;;) #0. The group A(n, C) of all the affine
o
transformations of C" may be represented as a subgroup of the general linear
group GL(n+1, C) of degree n+1 consisting of all the matrices o of the form
1 0 ..
< <
@2.1) ( :, az-]-) A=i j=n.
The linear isotropy group of A(n, C) at the origin o may be identified with
the general linear group GL(#n,C) of degree n. We denote by @ the projec-
tion of the fiber bundle A(xn, C) (C", GL(n, C)), i.e. @(o)=(&,, -+, &,) if o is ex-
pressed as Now let ¢ be an element of A(n, C) expressed as [2.I) and

let X= iXi - (0/9z;), be a tangent vector to C" at a point p. Setting g=oa-p,
i=1
then we have

o - X:.Z‘,laﬁXi -+ (0/0z;)q -

vJ=

The Maurer-Cartan form « of A(n, C) may be represented as a matrix of

the form
0 O ..
< i<
(a a, A=i, j=n).

The components «; and «;; are complex forms on A(n, C). The n forms ay, -,
a, will be called the basic forms of A(n,C). Let y(x) and y,;,(x) be the com-
ponents of a matrix x in A(n, C) and let (z;,(x)) be the inverse matrix of the

matrix (,;(x)). Considering »; y;; and z;;, as functions on A(n, C), we get an
explicit expression of a; and «y;:

a; —j~2 Zijdyj ’
(2.2)
aw :kglzzkdykj (1 = t, 7 é n)

3. We denote by m the (2n—1)-dimensional subspace of T, (C™ spanned

2) We have 8/dz;=2/0x; and v —1 »3/02z; = 9/dy; (1 <iZn).
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(over the field R of real numbers) by the 2z—1 vectors ey, -, en vV —1 - &;, -+
v =1 -e,,. Let ¢ be the Grassmann manifold consisting of all the (2n—1)-
dimensional contact elements to C® Then the group A(n, C) acts transitively
on ¢ through the mapping A, CO) X ¢ (x, E)—x- E= G We denote by H
the isotropy group of A(s, C) at the point me g The group H explicitly
consists of all the matrices ¢ € GL(n, C) of the form

bij

3.1) (G <) A<i, j=n-1),

where « is real. Since H acts effectively on m, it may be identified with a
subgroup of the general linear group GL(m) of the real vector space m.

Let S be a hypersurface. We denote by P*(S, H) the induced principal
fiber bundle from the principal bundle A(n, CXg, H) by the mapping p— T,(S).
The point set of P* may be defined as the subset of A(x, C) consisting of all
the points x such that @) < S and x - m= T,(S), where p=®(x). In this
case, we have the following statements: (1) to (4). (1) P* is a submanifold
of A(n,C); (2) The action on P* of A is defined by the group multiplication
of A(n,C); (3) The mapping x— @(x) gives the projection of P* onto S; (4)
H being identified with a subgroup of GL(m), P*(S, H) may be regarded as a
subbundle of the bundle of frams=s of S.

The restriction @ to P* of the Maurer-Cartan form « of A(n, C) will be
called the Maurer-Cartan form of P*. The components w; and @;; of w, which
are complex valued forms on P¥, satisfy the following conditions:

B2) 1) R¥w)=o0""-(»y),
R¥w;))=0"1 - (wy) -0, cEH;
2) w(A*)=0,
wij(A*) = Aij A=4,75n)
for any element A=(A;;) in the Lie algebra of H;
3) d(‘)i—l’“j:?lwij Nw;=0,

doit Bounwy=0 (=i j<n);
4) w, is a real form and we have
d® - X=x- (ZodX)e)
for all x € P* and X € T (P%).
4) is clear from the equality: d® - X=x - (iﬁ; a(X)e) for all x= A(n, C) and

X & Ty(A(n, C)). From 4), it follows that the 2z—1 forms @,, -, @, @y, **+, @py
are linearly independent at each point of P* over the field C of complex
numbers. The » forms w,, -+, ®, will be called the basic forms of P¥*,

4. THEOREM 1. Let S (vesp. S') be a hypersurface and let. P*(S, H) (resp.
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'P¥S', H)) be the corresponding H-bundle (See 3). Let w; (resp. @) be the basic
forms of P* (resp. 'P¥). If f is a pseudo-conformal homeomorphism of S with
S’, theve corrvesponds to f a unique isomorphism ¢ of P*(S, H) with 'P*(S', H)
such that ¢ induces the given f and such that ¢*w;=w; 1=i=n). Conversely,
every isomorbhism @ of P*(S, H) with 'P*(S', H) satisfving this last condition in-
duces a pseudo-conformal homeomorphism f of S with S'.

Taking account of this theorem, we shall say that the principal fiber
bundle P*(S, H), defined in 3, is the pseudo-conformal H-bundle associated to the
hypersurface S.

5. In order to prove [Theorem 1, we need auxiliary lemmas. Set <V
=C" X C and consider the system of coordinates z,, -+, 2z, w of &/ which is
defined by the coordinates z,, -+, 2, of C" and the coordinate w of C. Let X
be the exterior differential system® on ¢V generated by the real part and
imaginary part of the (n+1)-form dz, A --- Adz, ANdw on <V, and let £ be the
system of independent variables on ¢V generated by the 2» Pfaffian forms
dx,, -+ ,dx,, dy,, -+ ,dy, on V. Then the pair (¥, 2) forms an exterior differ-
ential system on & with 2z independent variables.

LEMMA 1. Every 2n—1)-dimensional integral element of (2, 2) is regular,
and it is contained in a unique 2n-dimensional integral element of (X, 2).

The proof of Lemma 1, which is omitted, makes use of E. Cartan’s cri-
terion® for an exterior differential system to be in involution and it does not
require any difficulty.

Now let S be a hypersurface and let f be a function on S. If f can be
extended to a holomorphic function on a neighborhood of S, then it satisfies
clearly the condition: df A d(z, o ) A -+ A d(z, > ©)=0, ¢ being the injection of S
into C". Conversely, suppose that f satisfies this condition. Then the totality
Va1 of all the pairs (p,f(p)) with p= S, which is a (2rn—1)-dimensional
submanifold of <V, turns out to be a (2z—1)-dimensional integral of (X, £2).
Therefore by and E. Cartan’s existence theorem®, we can take a
“unique” 2un-dimensional integral V' of (X, 2) such that V*»1'cC V> It
follows easily that f can be extended to a “ unique” holomorphic function on
a neighborhood of S.

We have thereby proved

LEMMA 2. Let S be a hypersurface and let f be a function on S. Then, f
can be extended to a holomorphic function defined on a neighborhood of S if and

3) As for an exterior differential system, we adopt the definitions and notations
given in M. Kuranishi, On E. Cartan’s prolongation theorem of exterior differential
systems, Amer. J. Math., 1957, Vol. LXXIX, no. 1.

4) E. Cartan, Les systemes différentiels extérieurs et leurs applications géométri-
ques, Paris, 1945.
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only if it satisfies the condition: df Nd(z;° ON -+ Nd(z,°0)=0, ¢ being the in-
jection of S into C™ Furthermore, if f admits two holomorvphic extensions f and
7!, then we have f=F on a sufficiently small neighborhood of S.

6. PRrROOF OoF THEOREM 1. First, suppose that there is given a pseudo-
conformal homeomorphism f of Swith S’. Under this condition, we can find,
for each p =S, a unique element #(p) of A(n,C) such that df - X=u(p) - X
for all X T\ (S). It is easily seen that the mapping S=p— A(n, C) > u(p) is
real analytic. Now take a point x of P* and set ¢()=u(p) - x, where p
= @ (x). Then we have

o) - m=u(p) - (x - m)=u(p) - T,(S)
- df : Tp(S) - Tf(p)(S/) ’
meaning that ¢(x) is in “P*. The mapping x— ¢(x) clearly gives an isomor-
phism of P*(S, H) with 'P*(S’, H), and it satisfies the condition: @ c ¢ =f @

on P*. We must show that ¢*w;=w; 1 <i<#n). We have, for each x<= P*¥
and X e T(P%),

dif > ®) - X=df - (d® - X)=df - (& - Bo(X)e)

= o) - (Zo(Xe)
and we have
Afe®) - X=d® o) X=d®m - (dp - X)

= 0(x) - (BgoiX)e).

If follows immediately that ¢*w;=w; 1=i=#n). Now let us prove the u-
niqueness of ¢. Let ¢ be an arbitrary isomorphism of P*(S, H) with 'P*(S’, H)
such that fo®=® o on P* and ¢*ew,=w; (1=i=#n). From the above
consideration, we can deduce that ¢(x) - E=df - (x - &) for all x = P* and £ =m;
Hence ¢(x) can be written in the form #(p) - x with the mapping # defined
above, proving the uniqueness of ¢. Thus we have completed the proof of
the first half of Theorem 1.

Conversely, suppose that there is given an isomorphism ¢ of P*(S, H)
with 'P*(S’, H) such that ¢*0}=w; (1 =i{=n) and denote by f the homeomor-
phism of S with S’ induced by ¢. Let p be a point of S and let g be a local
cross-section of P*(S, H) defined over a neighborhood U of p in S. By using
the notations in 2, then we have

n
g¥*w; = g*a; = Z;(Zu 0og) - d(z;o0)
j=
and

(9 > @ wi=(p » @a,= 2z 9 2 2) - dlz;° 1),
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where ¢ denotes the injection of U into C". Since ¢*w}=w; it follows that
d(ZiQf)EO‘ mOdd<Z1°[)y"'Jd<Zn°£>'

p being arbitrary, this means that the » functions z, » f, ---, z, o f on S satisfies
the condition in Therefore we see from that each func-
tion z; o f can be extended to a holomorphic function defined on a neighbor-
hood of S; Hence f can be extended to a holomorphic mapping f of a neigh-
borhood of S into €™ In the same way, we get a holomorphic extension f~!
of the inverse f™* of f. We have fo 7 (p)=7""'° f(p)=p, provided p is in S
and hence provided p is in a sufficiently small neighborhood of S (Lemma 2).
This clearly means that 7 gives a homeomorphism of a neighborhood of S
with a neighborhood of S'. We have thereby proved that f is a pseudo-
conformal homeomorphism of S with .

7. PROPOSITION 1. FEwvery infinitesimal pseudo-conformal transformation X
on a hypersurface S can be extended to a holomorphic infinitesimal transforma-
tion X defined on a neighborhood of S.

PROOF. Let X be an infinitesimal pseudo-conformal transformation S and
let @, be the local one parameter group of local transformations on S which
is generated by X. If we denote by X, the function on S defined by X(p)

= X,z;, then we have X, = iXi(p) - (0/0z:)p and X(p) =38/0tgz; - D(p). Since

@, is a local pseudo-conformal homeomorphism on S, we see that the » func-
tions z,° @, -+, 2, o O, satisfy the condition in Lemma 2 and hence the #
functions X, ---, X, satisfy the same condition. Therefore by Lemma 2, each
function X, can be extended to a holomorphic function X, defined on a neigh-
borhood of S; Hence X can be extended to a holomorphic infinitesimal trans-

formation X (i. e. :ﬁ))?i - 0/0z;) defined on a neighborhood of S.
i=1

II. Non-degenerate hypersurfaces

8. LEMMA 3. Let Sbe a hypersurface. Let P*(S, H) be the pseudo-conformal
H-bundle associated to S and let w; and w;; be the components of the Maurer-
Cartan form of P*. Then, the n forms w,; 1=i<n—1) and @,,—d,, are
expressed as linear combinations of @y, -+, Wy, @y, =+, Wpey '

n—1 n-1
©n = 2 K04 25 Ljy@j+ M, l=i=n—1)
j=1 j=1

n—1 n-1
@ p— O pn = Z] Mw;— > M;w;+ Naw, .
i= i=1

The coefficients Kij, Li;, M; and N, which are complex valued functions on P¥,
satisfy the following relations: K=K, Lj=—L;; and N=—N.
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PrROOF. We have dw,+ i}la)ni AN ;=0 (3) of (3.2)). Since w, is a real form,
it follows that o

n-1 n-1
i= 1=

Lemma 3 is then an immediate consequence of this equality and the fact that
@y, -, W, o, -, 0, are linearly independent at each point of P*.

LEMMA 4. Consider the functions L;;in Lemma 3. Let x be a point of P*
and let o be an element of H expressed as (3.1). Setting L(x)=(L;{(x)) and b
=(b;;), then we have

Lx-o)=at'-'%-L&x)-b.

This follows easily from 1) of (3.2).

LEMMA 5. Let S (vesp. S') be a hypersurface. We use the motations in
Theovem 1. Let L;; (resp. Li;) be the functions on P* (resp. 'P¥) corvesponding
to S (resp. S') (See Lemma 3). If ¢ is an isomorphism of P*(S, H) with 'P*(S', H)
such that ¢*w;=w; (1=<i1<n), then we have Lj;c 9o=1L;; 1 =i, j<n—1).

Proor. We have dw,+ Zn)wm- A w; =0 and dw/, 4 iw{,i A w;=0. Since ¢*w}
i=1 i=1

=w; (1=7{=<n), it follows that Zn‘,(go*co,’?i—com) A ®;=0. This means that ¢*w},
i=1

—w,; are linear combinations of w,, -+, ®w,. On the other hand, we have
n-—-1 n-1
PO — Wy = El(ng o o—Kj)w;+ El(Léz o 9—Lj)a,
J= J=

+(M7% o o—M)w, A=isn—1).

Consequently we must have L}, e ¢o=L;; (1=1i, j=n—1).

By utilizing the above lemmas, we now define two pseudo-conformal in-
variants # and A, which are integer valued functions on any hypersurface S.
Let p be a point of Sand let x be a point of P* lying over the point p. From
Lemma 3, the matrix L(x) is skew-hermitian. Considering the hermitian
matrix v —1 - L(x), we define u(p) to be the multiplicity of the eigen-value
0 and A(p) to be the minimum of the number of the positive eigen-values and
the number of the negative ones. The integers u(p) and A(p) are well defined
by Lemma 3.

PROPOSITION 2. The functions p and A defined above arve pseudo-conformal
invariants : Move precisely, let f be a pseudo-conformal homeomorphism of a
hypersurface S with a hypersurface S’, and let 1 and A (vesp. p' and 1) be the
corresponding functions on S (vesp. S'). Then, we have p' o f=upn and X o f=2

This is clear from [Theorem 1 and [Lemma 9.

enables us to give the following
DEFINITION 2. Let S be a hypersurface and let p be a point of S. (1) S
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is called non-degenerate at p if w(p)=0. (2) S is called of index r at p if
Ap)=r.

9. Let p, be a fixed point of a hypersurface S. By replacing, if neces-
sary, the hypersurface S by the hypersurface ¢ - S with an affine transforma-
tion o, we can assume without loss of generality that p,=o0 and T,,(S)=m.
In this case, a sufficiently small neighborhood of o in S is defined by a local
equation of the form: y,=7(x, -+, Xne1; V1 *** » Yne1; ¥n), Where we assume that
the function f(xy, ==+, Xn—1; Vs "+ » ¥n-1 ;1) is defined on a neighborhood D of the
origin of C*1X R=R™ 1. For the sake of simplicity, we furthermore assume
that the hypersurface S is globally defined by the above equation; Hence,
the mapping (X, -, Xu1; Y1 = s Yne1 3 D=y, o, Xpe, £330 5 Yamry S(Kpy o0, Xy 5
Y., 5, Vo1 ;1)) maps D onto S homeomorphically. In this sense, x;, -+, X4—1, V1,

-, Ya—1, I may be considered as a system of coordinates of S.

Take a point p of S and define an element g(p) of A(n, C) as®

1 0 0
a 2
©.1) 2 +(&) )‘3“‘ 0
z‘+\/ 17 2v— 1(1+«/ | ) (1 VT )

Then, it can be shown that the mapping p—»g(p) gives a cross-section of
P*(S, H) and that®

— of = of of of
2,\/— Ln(g(p)) atz : 9z, . aZ] v —{—-\/ l) ,,,,,,,

82 5 "5z,
(G a0 (5 ) e

9.2

The proof of (9.2) makes use of the expressions (2.2) of «; and «;;. Now, set

F(xly" xn;ylx"':yn)——f<x1:" s Xn—13Y1 """ s Vo 1yxn> Vs Wthh iS a funCtion
defined on a neighborhood of S. Let p be a point of S and let &,---,&, be

n

arbitrary » complex numbers subject to the condition : Efaf?(p)éi —=0. Then
3

i=1

we get, from (9.2),

S Zm(g(f)))rf E=c- 2‘%%@)&5/’

i,j=1 i,5=1

5) and 6) 9;;=1 (i:j) =0 (i#j).
of 1 Wﬁw — Of
= = Y e A
0z; 2 axL ) az, 0%; + 0V
The functions of the right-hand 31de of (9.I) and of (9.2) should be evaluated at the
point of D with the coordinates: x;=x;(p), yi=23i(p) (1 =i<n—1) and t = x,(p).
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where ¢ is a suitable real number (= 0) depending only on p.

Recalling the definition™ of the condition of Levi-Krzoska, we have proved

PROPOSITION 3. Let S be a hypersurface and let p be a point of S. Then
S is non-degenerate and of index 0 at p if and only if it satisfies the condition
of Levi-Krzoska at p.

10. DerINITION 3. A hypersurface S is called regular at a point p of S,
if there exists an infinitesimal pseudo-conformal transfomation X defined on
a neighborhood of p in S such that v —1 - X, & T,(S), i.e. if X, does not
belong to the maximum complex subspace of T,(S).

PROPOSITION 4. If a hypersurface S is regulay at a point p of S, then we
can find a system of complex coordinates w,, - ,w, at p and a real valued func-
tion f(%y, ) Xnei V1 s Vuor) defined on an open set of C*'= R such that a
sufficiently small neighborhood of p in S is defined by the equation : v,=f(uy, -,
Upy ) V1y *  Uney), Where u; (vesp. v;) denotes the rveal (vesp. imaginary) part of
the i-th coordinate w;.

PROOF. S being regular at p, there exists an infinitesimal transformation
X defined on a neighborhood of p in S such that v —1 - X, & T,(S). By Prop-
osition 1, X can be extended to a holomorphic infinitesimal transformation
X defined on a neighborhood of p in C”. Since )?p:Xp:#O, we can find a
system of complex coordinates w,, ---,w, of C" at p such that X’:a/awn on
a neighborhood of p in C”. wu; and v, being as in Proposition 4, then we have
(0/0v,),=~ —1 -(8/0w,) =~ —1 - X, & T,(S). It follows that there exists a
real valued function f(x, -+, Xne1; Y1, s Y1 1) defined on an open set of
C" 1 x R= R such that a sufficiently small neighborhood of p in Sis defined
by the local equation v, = f (e, -+, thp—y ; 0y, *** , Vuey s #,). The infinitesimal trans-
formation 8/0w, = 8/0u, is tangent to S in a neighborhood of p, so that the
function f(xy, =+, X1 ;Y1 - » ¥n-1,;t) does not depend on the variable z. We
have thereby proved Proposition 4.

The set S* of all the regular points of a hypersurface S is obviously an
open set of S.

PROPOSITION 5. If a non-degenerate hypersurface S adwmits a non-trivial in-
Sfinitesimal pseudo-conformal tvansformation, then the subset S* is dense in S.

7) We say that a hypersurface S satisfies the condition of Levi-Krzoska at a point
p of S when we can find a regular local equation F'=0 of S at p which satisfies the

n 2
following condition : E aza,)]; (p)&:&€;> 0 for arbitrary » complex numbers £;, -+, &,
EYR
i,j=1 H
n
oF
such that (&g, -, &) # 0 and E oz (p)E;=0.

i=1
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is an immediate consequence of the following
LEMMA 6. Let S be a non-degenerate hypersurface and let X be an infini-

tesimal pseudo-conformal transformation on S. If the vector v —1 - X, is tagent
to S at each point p of S, then we have X =0.

PrOOF. We use the notations in Lemma 3. By Theorem 1, every infini-
tesimal pseudo-conformal transformation Z on Sinduces a unique infinitesimal
transformation Z* on P* satisfying the following conditions: 1) d® - Z} =2,
for each point x of P*, where p=®(x); 2) Z* is invariant under the right
translations on P*; 3) L,w;=0 (1<i=<#=). By Proposition 1, the symbol
+~/—1 - X also defines an infinitesimal pseudo-conformal transformation on S.
Now take a point p of S and a point x of P* lying over the point p. Then

we have Xp:x-(éwi(X;")ei) and vV —1-X,=x- (Sov—1X)¥e) @ of

(3.2), whence o, (v =1 - X)¥)=+~—1 - 0,(X¥). Since w, is a real form, we
get w,(X*)=0. Now we assert that 0, (X*)=0(1=i=n—1). We have Lxw,
=0 and hence, for all vector field Y on P*, L0, (Y)=X*0,(Y)—o, (X% Y])
=dw,(X* Y)+ Yo (X*)=0. But, we have from Lemma 3,

n-—1
da)n+_ZILﬁ@- Nw;+FB N w,=0,
nLI=
n—1
where f=w,,— X M; - w;. It follows immediately that
i=1

nol n-1
2 LA XH0lY)= 35 Lisof X, (V)
+ (X0 (Y)—w0 (XF)B(Y)— Yw (X*)=0.
Since w,(X*)=0 and since @, ---, ®,, @,, -, @,-, are linearly independent,
n—1
we have D L;w(X*)=0 (1=i=<n—1). Therefore we get w(X*)=0 (=i
j=1

<n—1), because (L;;) is non-degenerate, proving our assertion. We have
thereby proved that w(X*)=0 (1 <i=<#x) and hence X=0, proving Lemma 6.

III. Quadrics

11. Let P™%C) be the n-dimensional complex projective space and let z,
-+, z, be the system of homogeneous coordinates of it. If we identify a point
(21, ++-,2,) Of C™ with the point (1, z,, -+, z,) of P(C), we may identify C" with
an open submanifold of P"(C). A projective transformation of P™C) is a

n
transformation (2, -+ , 2,)— (24, *- , 25) on P*(C) such that z}= > a;;z; (0=i=mn),
j=v

8) Lzw; means the Lie derivative of w; with respect to the infinitesimal trans-
formation Z*
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where det (@;;)#0. The group P(n,C) of all the projective transformations
of P™C) may be represented as a factor group GL(n+1, C)/C*, where C¥ is
the center of GL(nz+1,C) identified with the multiplicative group of all the
non-zero complex numbers. The affine transformation group A(n, C) may be
identified with the subgroup of P(n, C) composed of all the projective trans-
formations leaving invariant the subset C".

Hereafter we shall always consider a fixed integer » with 0 =< [ﬁf—l— .

2
Let S, be the quadric of C™ defined by

(11.1) — Nzt ilziéizl.

i=1 T=7+
The closure S, of S, in P*C), being again a quadric of P™C), is projectively
equivalent to the quadric @, of P*C) defined by

e _ T n-1
(11.2) —V =1 2,2,V =1 2,5,— D z:Z+ > lzizi =0.
i=1 ;

i=7+
One remarks that “projectively equivalent” implies * pseudo-conformally
equivalent 7.

We shall now explain the notations and identifications which are needed
for our later considerations.

We denote by G the subgroup of P(n, C) composed of all the projective
transformations leaving invariant the quadric @,. Define hermitian matrices
I and 7T of degree n—1 and n-+1 respectively by

& 0 0 v—1
I= and = 0o I 0
En—1 -/ =1 0 0
where ¢,=—1 if 1<i<# and =1 otherwise, and denote by G; the subgroup

of GL(n-+1, C) consisting of all the matrices ¢ such that ‘6-I-o=¢-] with
an ¢e=+1. Then the group G may be represented as a factor group G,/U(1).
It follows in particular that the Lie algebra g of G may be defined as follows:
As a vector space, g is identical with the vector space of all the matrices A
of degree n+1 of the form

—u —~—1 &iv; w,
(11.3) &; Vi w; A=, 7=n-1),

E. V=1 6;{3]- u
where %9 - [+1-v=0 (v=(v;)) and w, &, w, are real; The bracket operation
of g is defined by the formula: [4,B]=A - B—B+ A—c -+ I, for all A=(a;y),
B=(b;,)=g, where I,., is the unit matrix of degree n+1 and c=+v—1
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: J(E}(aokbko_ bokalco))-

As is easily seen, the group G operates effectively and transitively on @, ;
Hence it may be considered as a transitive transformation group on Q..
Remarking that the origin o of C” belongs to @,, we denote by G’ the iso-
tropy group of G at o. Since G is represented as G,/U(1), the group G’ may
be identified with a subgroup of G,: More precisely, G’ is a subgroup of G,
consisting of all the matrices ¢ of the form:

(11.4) o=t7-expA,

where exp denotes the usual exponential mapping, and z and A are re-
spectively given by

at 0 0 O —’\/;T ejc']- Cp
0 bij 0 and O 0 C; <1§7, jén'-l),
0 0 ea 0 0 0

where b - I -b=c¢-1, &=1, a>0 and ¢, is real. The notation being as in
the Lie algebra ¢’ of G’ consists of all the matrices A such that ;=0
A=i=n).

For each element £ =73 &:e; of m, we define an element £ of g as

i1

0 0 0
(11.5) &; 0 0
En '\/;Tejéj 0

The totality i of all the elements ¢ with & €m forms a subalgebra of g. We
have g=1M-+g¢’.

Let = be the projection of G onto the homogeneous space G/G'=Q,. We
have dr - é,= & for all £ =m, where e is the identity element of G and where
Z should be considered as a left invariant vector field on G. If follows that
the tangent space 7,(Q,) coincides with the subspace m of T,(C™).

Let o be an element of G/, i.e. 6 =G and o - 0=0. As a complex analytic
transformation on P™(C), ¢ induces a complex automorphism &—o¢ - £ of T,(C™).
Hence, there exists a unique element /(o) of GL(n, C) such that /(o) - &E=0- &
for all £ e T,C™. Since T,Q,) =m, [(o) is contained in the group H intro-
duced in 3. A second characterization of /(o) is given by Ado - é= Z(ESE mod ¢’
for all £ em, from which we get an explicit expression of /(¢): If o is ex-

pressed as then
o ab¢~ 0 61 C;
(11.6) 1(0)_( o )( 7T

eq?

It is clear that the mapping ¢—/(¢s) gives a homomorphism of G’ into H.
We denote by G the image of G’ by the homomorphism /, which is nothing
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but the linear isotropy group of G at o.
We denote by G, the subgroup of G composed of all the matrices ¢ of
the form
bz’j O
(11.7) (% 0)
where % - I -b=¢-7I and &2=1. Let us now define an injective homomor-

phism % of G, into G’ as follows: If ¢ is an element of G, expressed as [(11.7)
then 7%(c) is defined as

1 0 0
0 b; O
0 o =«

We have clearly /- #(6) =0 for all 6 €G,. Finally to each element o of G
expressed as we associate the element s(o) of G, expressed as
Thus we get a homomorphism s of G onto G..

12. We set QF =@, C", which turns out to be the hypersurface (hyper-
conic) defined by

1 nl 2 9
Y=o 2 edxityi) .
i=1

From (9.2), we see that the hypersurface Q¥ is non-degenerate®” and of index
r. Moreover, it is obviously regular. Denote by P(QF, G') the restriction to
Q¥ of the principal fiber bundle G(Q,,G’). Take an element z of P and set
p=mn(z). As before, z induces a complex isomorphism £ —z - & of T,(C" with
T,(C™. Therefore we can find a unique element [(z) of A(n,C) such that
I(z)- E=2z- & for all £ T(C"). Since z - m=T,Q¥), i(z) is in the subset P*,
the pseudo-conformal H-bundle associated to QF. Now let ¢ be an element of
G’. Then we have easily [(z - ) =1i(2) - {(0), which implies that the mapping
z—1(z) defines a homomorphism of P(Q¥ G’) into P*Q¥, H) corresponding to
the homomorphism / of G’ onto GCH

The Maurer-Cartan form @ of G may be represented as a matrix of the
form

—Q * *

02' * %k
012 '\/:f Ejﬁ—j [0
We shall denote by the same symbols «, 8;, 6, the restrictions to P of the
components «, 0;, , respectively. ‘
PROPOSITION 6. We use the above notations. Let w; be the basic forms of

9) A hypersurface S is called non-degenerate (resp. of index 7, resp. regular) if it
is non-degenerate (resp. of index 7, resp. regular) everywhere.
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P* and let Li; be the functions on P* defined in [Lemma 3. Then, we have 0;
=lFw, (1 <i<n), and the image of P by the homomorphism i consists of all the
points x of P* such that Li{x)=~—1¢8; 1=i, j<n—1).

PROOF. We have dr - £,— ¢ — z”:sieﬁz"lei(ée)ei for all £em. It follows
i=1 7=1
in general that, for all zeP and XeT(P), dr-X=z- (ﬁ‘,l(?i(X)ei)
=1(z) - (éﬁi(X)eq;). On the other hand, we have dr-X=d®w-[l -X
i=1

=d® -dl - X=12) - (ﬁ)wi(dl' - X)e;). Therefore we must have 6,=*w,
A<i=n). o

Now denote by P, the totality of all the matrices ¢ of the form: exp ¢ - z,
where £em and = G,. P, becomes a subgroup at the same time of A(n, C)
and G’. As for the group, we have the following statements: (1) to 3). (1)
P, acts transitively on @}F. It follows that P, is a principal fiber bundle over
the base space @F with structure group G,, which is a subbundle of P*Q}, H);
(2) The injection & of P, into P* defines a homomorphism of P,(Q¥, G,) into
P(Q¥,G’) corresponding to the homomorphism % of G, into G’. We have
clearly /- i(x)=ux for all x< P,; (3) The Lie algebra of the group P, consists
of all the matrices A of the form

0 0 0
&; Vij 0,
En '\/:TAejéj O

where %9 - [+1 - v=0and &, is real. Let us now complete the proof of Proposi-
tion 6. From (3), we see that w,; =+~ —1¢;-@; on P, (1<i<n—1), implying
that L;;=+~ —1¢&0;; on P, 1<i, j=n—1). But by (2) and (3), we have i(P)
=[P, -G)=P,-G. Therefore we conclude from and that
I(P) consists of all the points x of P* such that Lifx)=~—18,;(1=i, j<n—1).
PROPOSITION 7. The notations being as above, we have:
1) If o is an element of G' expressed as (11.4), then

. n-t
Ria=a—ea*R(V—-1 3 €:0:;¢,0:)+ea*c0, ;
i,j=1
- n=-1 _
PrOOF. 1) follows from the equalities: Rfwo =Ad o™ - w for all 6 = G/, and

2) from the equality : da)+~%» [w,w]=0.

IV. Pseudo-conformal G-bundles

13. In the following, by a non-degenerate hypersurface we always mean
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that of index 7, for the rest, we use the notations in the previous chapters.

Let S be a non-degenerate hypersurface. We denote by P the subset of
P* consisting of all the points x such that L(x)=+~—1 - I. We see from
and that the mapping x— @(x) maps P onto S and
from and [I1.6) that if x< P and ¢ € H, then the condition x - o & P
is equivalent to the condition o =G. Therefore P becomes a principal fiber
bundle over the base space S with G as structure group, which is a sub-
bundle of P*(S, H). The restrictions §; to P of the basic forms @, of P* will
be called the basic forms of P(S, 5).

PROPOSITION 8. Let S (vesp. S') be a non-degenerate hypersurface, and let
ﬁ(S, 5) (resp. Pus, 5)) be the corresponding G-bundle. Let 8, (resp. 8)) be the
basic forms of P (resp. P). If fis a pseudo-conformal homeomorphism of S
with S', there corvesponds to f a unique isomorphism ¢ of ﬁ(S, é) with }N)’(S’, C~?)
such that ¢ induces the given f and such that go*ﬁgzﬁi A=Zi£n). Conversely,
every isomorvphism ¢ of ﬁ(S, 6) with IN”(S’, é) satisfying this last condition induces
a pseudo-conformal homeomorphism f of S with S'.

This is clear from [[heorem Iland Lemma 5 Taking account of Proposi-
tion 8, we shall say that the principal fiber bundle ﬁ(S, 6) defined above is
the pseudo-conformal G-bundle associated to the hypersurface S.

14. Now let us identify the general linear group GL(n—1, C) with a sub-
group of A and set G} =G, \GL(#n—1,C). The Lie algebra of G¥ coincides
with the Lie algebra g, of G,.

Let S be a non-degenerate hypersurface and let Z be an infinitesimal
pseudo-conformal transformation on S such that v/ —1 - Z,& T,(S) at each
point p of S. Denote by P,(Z) the subset of P consisting of all the points x
such that x-e,=¢-Z, with an e= +1. We assert that P,(Z) is a principal fiber
bundle over the base space S with structure group G,, which is a subbundle
of BP(S, CN}). Indeed let p be a point of Sand let x be a point of P lying over
the point p. Since v —1 - Z, & TS), x™* - Z, does not belong to the maximum
complex subspace of m, i.e. the complex subspace of T,(C") spanned by the

n—1

n—1 vectors ey, -+, e,, ; Hence x7' - Z, can be written in the form: (X a-w;-¢e;
i=1

+a? - e;), where @ >0 and e€=1. Therefore we can find an element ¢ of G
such that x - 0 € P(Z), showing that the mapping x— & (x) maps P Z) onto
S. Moreover, it is easy to see that if x = P,(Z) and o G, then the condition
x - o< P(Z) is equivalent to the condition ¢ € G,, proving our assertion.

THEOREM 2. Let S be a non-degenevate hypersurface and let Z be an in-
finitesimal psendo-conformal transformation on S such that v —1 - Zp & T)(S) at
each point p of S. Then, the subbundle PZ)XS, G.) of IB(S,»(N})‘ satisfies the fol-
lowing conditions :
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~ —_— n-1 = ~
i=1
2) There exists a comnection (xi;) in PZ) satisfying the condition :
~ n-1 ~
db;+ lei_j NO;=0A=i=n—1) on P2).
iz

Proor. First we deal with the special case where Z=0/0z, on S and
where S is globally defined by an equation of the form:

Yn :f<x1y ty Xp—15 V1 0 7y7l—1) .

We assume that the function f is defined on an open set D’ of C* 1. Regard-
ing f as a function on D=D’ X R, we now apply the argument in 9 to the
hypersurface S. Consider the cross-section g of P*(S,H). In this case, (9.1)
(i.e. the matrix g(p)) reduces to the form:

1 0 0
14.1) Z; 0ij 01
tv/—T5 2v/—1 22 1

62;
and (9.2) to the equalities:

Lite)=2v—1 ;07 .

Denote by @ the matrix of degree z—1 whose (i, j)-component is given by

0°f

Bads Since S is non-degenerate, we see that the matrix @ is non-degenerate
7 %

at each point of D’ and hence it defines a (definite or indefinite) Kéhlerian
metric on D’.

As auxiliary tools, we shall introduce two principal fiber bundles
'P¥D’, GE) and P%(S, G¥).

Fiber bundle 'P%(D’, G¥). Let 'P%* be the subset of the affine transforma-
tion group A(n—1,C) of degree n—1 consisting of all the matrices x of the

form:
(2 b))

where 2/ =(z,, -, zp-)E D’ and 2 -t - ®(z’) - b=1. As usual, 'P% becomes a
principal fiber bundle over the base space D’ with structure group G%, which
is a subbundle of A(x—1,C)|D’. The principal fiber bundle ‘P¥D’, G¥) is
nothing but the hermitian bundle associated to the Kdhlerian metric @ on D’.
As is well known, there exists a connection (x;;) in ‘P% whose torsion is zero,
the so-called Kédhlerian connection associated to the Kidhlerian metric @. If
we denote by wj the restrictions to ‘P¥ of the basic forms of A(x—1, C), then
we have
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(14.2) dwg#fj: dAG=0  (1=i<n—1),
p

which means that the connection has no torsion.

Fiber bundle P¥*(S,G%). Let P* be the subset of P* of all the elements
x of the form: g(p)-b, where pe S, be GL(n—1,C) and 2 -t - O(o(p)) - b=1T
(o(p) = (D), -+, za-1(P)). Exactly as in the case of 'P¥D, G¥), P%* becomes
a principal fiber bundle over the base space S with G¥ as structure group,
which is a subbundle of P*(S,H). Now let us study the properties of the
principal fiber bundle P¥(S,G¥). (1) By we have L=+~'—1 -1 on
P% and by we have x - e, = (8/92,), = Z, for each point x of P% (p= @ (¥)).
It follows that P¥(S, G¥) is a subbundle of P(Z)S, G,). (2) By using
and (2.2), we can easily verify that ,,=0 and M;=0 (1=<i=x—1) on P%*

S n—-1 n--1
But we have dw,++v —1 - ) ?:,‘ILJ-L-@ N @+ (@ — Z)lei) A®,=0 and therefore
we get '

_ mn—-1
(14.3) dw,+~—1 - e Ao;=0 on Pi.

(3) To each element x=g(p) - b of P% we associate a matrix G(x) of the form

( Zzép) b(z')j ) '

Thus we get a mapping 6 of P% onto’P%. We have clearly g(x - 0)=4(x) - ¢
for all x= P} and o € G¥; Furthermore, ¢ induces the mapping p— o(p) of S
onto D’. Setting y;;=p*x{;, we see that the matrix (y;;) defines a connection
in P¥S,G%. (4) Finally we have %0} =w; on P¥ and hence we get, from

n—1
(14.4) dwi"‘i—j_zlxij/\(l)jzo (1=i=n—1) on P%.

We are now in a position to prove in our special case. As
we have already seen, P%(S, G}¥) is a subbundle of P,(ZXS,G,). First, we see
from and 1) and 2) of (3.2) that P,Z) satisfies the condition 1) in
Next, the connection (y;;) gives rise to a connection, denoted by
the same symbol (y;;), in P(Z). That the connection (y;;) in P,(Z) satisfies
the condition 2) in follows easily from (14.4) and 1) and 2) of (3.2).

Now let us return to the general case. Let p be a point of S. There
exists a system of complex coordinates w,, -, w, of C" at p such that
Z=0/0w, on a neighborhood of p in S. From the proof of [Proposition 4, we
see that a sufficiently small neighborhood S” of p in S is defined by an equa-
tion of the form v, =f(uy, =+, Uno1; V1, ==+, Unr). Let S be the hypersurface
defined by v, =1y, =+, Xu—1; Y1, =+ s ¥n-1), Which is clearly a hypersurface of
the type considered above. There is a pseudo-conformal homeomorphism @ of
S” with S” such that d® - (0/0z,),=(@/0w)ew = Zo at each g€ S”. Therefore
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we know from and the above argument that the restriction
P(Z)|S to S’ of P(Z) satisfies the conditions in However as in
the case of the Riemannian connection, a connection (y;;) in P,(Z)|S which

n-~1
satisfles the condition “dw;+ X yi; A@w;=0 on P,(Z)|S " is uniquely deter-
j=t

mined. It follows that the whole principal fiber bundle P/(Z)(S, G.) satisfies
the conditions in We have thereby completed the proof of
[Theorem 2

The following proposition is a converse of [Theorem 2.

PROPOSITION 9. Let S be a non-degenerate hypersurface and let P¥(S, G¥)
be a subbundle of P(S, G) satisfying the conditions in Theovem 2 (where PyZ)
should be replaced by P%). Then theve exists an infinitesimal pseudo-conformal
transformation Z on S such that ~—1 - Z, & T,(S) at each point p of S and
such that the given P¥(S,GY) is a subbundle of P,Z)S, G,).

PROOF. Define an infinitesimal transformation Z* on P% by (2% =0
A<i<n—-1), §,(Z%=1and 2, (Z8=01<1i j=n—1) for each point x of P3.
As is easily seen, the vector field Z* is invariant under the right translations
on P%  Denoting by #} the restriction to P% of §, we assert that L£,0;=0
(1<i<#). Indeed, let Y be any vector field on P¥*. Then we have, from 1)
in Theorem 2, L£,0Y)=dby(Z* V)+Y0,(Z*=0. Analogously we have,
from 2) in Theorem 2, £,.0/(Y)=0, proving our assertion. Now let Z be the
infinitesimal transformation on S induced by Z*. From Theorem 1, we see
that Z is a pseudo-conformal transformation on S. Finally take a point x of

P% and set p=1w(x). Wehave Z,=d® - Z5=x -(ﬁ)ﬁi(Zj)ei):x- e, meaning
that x is in P,Z) and hence P%(S,G¥) is a subbunldle of PZXS, Gy).
15. Apart from the hypersurfaces, we now give the following
DEFINITION 4. Let P be a principal fiber bundle over a base space M
with structure group G. We shall say that P, 5) is a pseudo-conformal

G-bundle, if dim M=2r—1 and if it is a subbundle of the bundle of frames
of M.

Let PN’(M, é) be a pseudo-conformal G-bundle and let # be the projection
of P onto M. Since P(M, 5) is a subbundle of the bundle of frames of M,
every element x of P yields an isomorphism, denoted by & —x - & of m with
T, (M) where p=7(x). By making use of these isomorphisms, we now define
n complex valued forms g, -,0, on P, called the basic forms of P, by the

formula: 30(X)e;=x~ - d% - X for all xe B and Xe T,(P). It is clear that
i=1

~

ﬁn is a real form and the 2z—1 forms 0~1, ,9n, 0, - ,H:n_l are linearly inde-
pendent at each point of P.
DEFINITION 5. Let ﬁ(M G) be a pseudo-conformal G-bundle and let 8, be
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the basic forms of P. We shall say that P, é) satisfies condition (C), if
there exists a subbundle P, (M, G,) of ﬁ(M 5) satisfying the conditions in
(where P,Z) should be replaced by P,). Furthermore, we shall
say that P(M, GN) satisfies condition (LC), if, for each point p of M, there exists
a neighborhood U of p such that the restriction to U of P, @) satisfies
condition (C).

Definitions 3 and 5 and Theorem 2 lead us to the following proposition.

PrROPOSITION 10. Let S be a regular non-degenevate hypersurface. Then,
the pseudo-conformal G-bundle associated to S satisfies condition (LC).

V. Pseudo-confoermal G’/-bundles

16. Let P()V/, é) be a pseudo-conformal G-bundles satisfying condition (C)
and let ; be the basic forms of P(}M, (N?). Let P, (M, G,) be a subbundle of
P, 5) satisfying the conditions in Theorem 2.

By making use of P, (M, G,), we now construct a principal fiber bundle
and three bundle homomorphisms. First, we define a homomorphism 3 of
P(M,G) onto PJM,G,) corresponding to the homomorphism s of G onto Gu
by the requirement that 3(x)=x for all x= P,. Next, the principal fiber
bundle P,(M,G,) and the injective homomorphism % of G, into G’ give rise
to a principal fiber bundle P(M,G’) and an injective homomorphism # of
P.M, G, into P(M,G’). Finally, we define a homomorphism [ of P(M,G’")
onto P, é) corresponding to the homomorphism / of G’ onto G in such a
way that /- h(x)=x for all ¥ € P,.

Since, for each point z of P, z and % - 5 - [(2) lie in the same fiber of P,
we can take a unique mapping % of P into G’ satisfying the condition

16.1) z=h o350 (2) - k)
for all z= P. We have s o [(k(2))=e¢; Hence &(z) can be written in the form:
#(2) - exp w(z), where #(z) and @W(z) are respectively given by

vz 0 0 0 —vV—1¢cw;z) wy(2)
0 6“‘ 0 and 0 0 wi(z)
0 0 o2 0 0 0

LEMMA 7. Set 0,=[%0;, 1 =i=n). Then, we have
1) R¥0)=Uo)"-(0), 0€G;
2) 0,A"=0(0=i=n), Acsyg.
LEMMA 8. Set 7;=G - )*0; A <i<n). Then, we have
7 =00;+wh,) 1=i=n—1)
Nn=00n
dra V=T - Seii A =0.
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follows immediately from the analogous equalities for 6;: 1)
R¥@)=0"1- () for all 6 G ; 2) H(A%)=0 (1<i=<n) for any element A of
the Lie algebra of G. is a consequence of [Lemma 7] and the condi-
tion 1) in

LEMMA 9. Let z be an element of P and let o be an element of G’ expressed
as v or exp A in (11.4).

) If o=r,

v(z + 0)=av(2)

iz o= D" 0 Vawin
2y If o=expA,
v(z - 0)=0v(2);
wi(z - 0) =w{2)+c; A=is=n—1);

w0,z + Y= eyt R =T - S edan(a)

ProrOSITION 11. Lez ﬁ(M, 5) be a pseudo-conformal G-bundle satisfying
condition (C) and let 8; be the basic forms of B. Then, there exists a collection
(P, 1, @) satisfving the following conditions: P is a principal fibev bundle over the
base space M with structure group G'; [ is a homomorphism of P(M,G’) onto
ﬁ(M, 5) corresponding to the homomorphism ! of G’ onto G; ais a real valued
1-form on P having the following properties: We set 0,=*0;, 1 <i=<n).

1) If o is an element of G’ expressed as (11.4), then

n—1 -
R;‘a = a—é'd_lﬂ(\/—‘l . E eibijc‘jﬁi)—}—ea“zcnﬁn;
i,j=1
2) If A is an element of o' expressed as (11.3), then a(A*¥)—=uwu;
3) dh, V=T - S el Abi2a A6, =0.
Q=1

Proor. Construct P, [, i, 5 and % as above. We define a by
n—1
04 :v—ldv_’g{('\/—l . Eezwzﬂz)—}*wnﬁn .
i=1

That « satisfies the conditions in Proposition 11 can be easily verified by
using Lemmas 7, 8 and 9.

PROPOSITION 12. Let P(M, é) (resp. P(M, 5)) be a pseudo-conformal G-
bundle satisfying condition (C) and let 0, (resp. 8;) be the basic forms of P (resp.
P, Let (P1, @) (resp. (P, 1, a’)) be a collection which satisfies the conditions
in Proposition 11 for P(M, é) (resp. B'(M ; CN;)). If & is an isomorphism of P(M, G)
with P/, G) such that #%6,=0, (L <i=<n), there corresponds to ¢ a unique
isomorphism ¢ of P(M,G") with P'(M’',G") satisfyving the following conditions:
D0Vep=0¢ol, 2) *0;=0, A1<i<n) and 3) ¢*a’ =«a. Conversely, if ¢ is an
isomorphism of P(M, G") with P'(M’,G’) satisfying the condition 2) above, then
there exists a umnique isomorphism of ﬁ(M, é) with P(M, é) satisfying the con-
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dition 1) above.

PROOF. Let ¢ be an isomorphism of P}, 5) with P/, 5) such that
¢*0;=0, A <i=n).

We first prove the uniqueness of ¢. Suppose that there are given two
isomorphisms ¢, and ¢, satisfying the conditions in Proposition 12. Since,
for each z= P, ¢,(z) and ¢,(2) lie in the same fiber of P, we can take a unique
mapping & of P into G’ such that ¢,(2)=¢.(2) - k(z) for all z= P. We have
I(k(2))=e; Hence k(z) may be expressed as

1 0 wk)
(16.3) 0 o6; O
00 1

By the equalities 1) and 2) for «/, it follows that ¢fa’ = ¢fa’+w ¢f6;. How-
ever, we have ¢fa’ =¢Fa’ =« and ¢, =0, and hence w=0. This means
that ¢;=¢,.

Now we shall prove the existence of ¢. By the uniqueness of ¢, we may
assume without loss of generality that both P(M, G’) and P'(M’, G") are trivial.
This being said, we can find an isomorphism ¢, of P(M,G’) with P'(M’,G")
such that /o ¢, =@ -], We have ¢¥f; =8, (1 <i<n) and hence the equalities
3) for  and a’ yield the equality: (¢fa’—a) A\ 6,=0; Therefore there is a
unique function w on P such that ¢ =¢¥a’+w - 8,. Using the function w0,
we now define a mapping & of P into G’ by (16.3). As is easily seen, k& satis-
fies the condition: A(z)-o=0-k(z-0) for all z€ P and c=G’. Setting
o(z)=¢,(2) - k(z), it follows that the mapping z— ¢(z) gives an isomorphism
of P(M,G") with P'(M’,G’), which will be the desired isomorphism. In fact,
we have [/ o @ =1["o @, =& o[ and hence

@0} =0, 1<i<n).

Exactly as above, we get ¢*a’ = ofa’+w - ¢¥0/, whence ¢*a’ = ¢¥a’4+w - 0, = «.
We have thereby proved the first assertion in Proposition 12. The converse
is almost evident.

Considering, in Proposition 12, the case where P(M, 5):15’(M’, 5) and
where ¢ is the identity trasformation of P, we know the following fact: To
each pseudo-conformal G-bundle ﬁ(M é) satisfying condition (C), there cor-
responds a “unique” collection (P,I, «) satisfying the conditions in Proposi-
tion 11. Furthermore, we see from the uniqueness that this last statement
is the case, even if condition (C) is replaced by condition (LC). We mention
that Proposition 12 remains true under the replaced condition.

DEFINITION 6. Let P(M, CN;) be a pseudo-conformal G-bundle satisfying
condition (LC) and let (P, i, @) be the collection satisfying the conditions in



420 N. TaNAKA

Proposition 11. We shall say that P(M, G’) together with [ and « is the pseudo-
conformal G’-bundle associated to the pseudo-conformal G-bundle ﬁ([V[, @).
The »n forms 4, ---, 8, in[Proposition 11| will be called the basic forms of P.

V1. Normal pseudo-conformal connection

17. We denote by my the maximum complex subspace of m, i.e. the
complex subspace of T,(C") spanned by the n—1 vectors e, -,e,_;. Let

E= i)fiei and & = ﬁlfgei be vectors inm. We denote by <&, &> (resp. p(&, &)
n _ . n-1 .

the real part of X e&8; (resp. 2/ —1 - 2,689, The symbol <, > defines a
=1 i=1

(definite or indefinite) inner product of m; We have (v —1-&+—1-¢&)
=&, & and (bE, bE'Yy=¢ - (& &) for all £ & emy and 0 =G,, wWhere o is as-
sumed to be expressed as We have [&,£/]=p(¢ &), for all £ & em.
For all 0 €G’ and £ €m, we denote by D(g, ) the ¢’-component of Ados - ¢ in
the decomposition: g=fi+g¢’. We have D(o,)=Ado - é—l(a)f\-/f (See 11).

Let B, é) be a pseudo-conformal G-bundle satisfying condition (C) and
let 4, be the basic forms of P. There is a subbundle PJM,G,) of ﬁ(M, 5)
satisfying the conditions in [Theorem 2. Consider the connection (y;;) in P,.
For all E:;V‘_‘léieiem, we define a vector field Bu(&) on P, by G(B.&))=¢&;
and x;{B.(&)=0 (1 =i, j=n—1). As for the vector fields B,(§), we know the
following facts;

1) The mapping &— B(E) is linear;

2) dR; B &)=B,(c7'- &) for all E=m and o= G,;

3) Every tangent vector X to P, can be uniquely written in the form:

B(&)+A¥, where E =m and A< g, and where x is the origin of X.

By the conditions 1) and 2) in and by 3) just above, we can find,
for all £, €m and x<= P,, a unique element R,(&, &) of g, such that

—[BuUE), BLEN]:= —p(&, ENBulen)s+Ru(E, &5 -
Exactly as in the Riemannian connection, then we have (R &, &)y, 0>
=R (7, n")E, &> for all & &,7,7” =mand x< P,. In particular, it follows that
R e)=0and R (v —1 &~ =1+ E)=Ry & &) for all & & €my. Now let us
define, for all x< P,, an endomorphism R, of my by (R,(&), &> =the trace'?
of the endomorphism n — R(&, 7)é’ of my, where &, £’ =my. We have ﬁx(x/:T- &)
=+—1. ﬁx(f) for all £ =my We denote by R* the trace of the endomorphism
B, of my. Finally let £ be a mapping of P, into a finite dimensional vector

10) By the trace we always mean the real one.
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space V. We denote by F.f(x) the vector in ¥V which is defined by F.f(x)
= Z?)lBu(E)xfi -, if = erfi - v;, Where {v,,---,v,} is a base of V.
i= i=1

18. DerINITION 7. Let P(0M, @) be a pseudo-conformal G-bundle satisfy-
ing condition (LC), and let P(M,G’) together [ and « be the corresponding
pseudo-conformal G’-bundle. A linear mapping B of m into the vector space
X(P) of all the vector fields on P is called a pseudo-conformal connection in
P, if it satisfies the following conditions;

1) dRs;- B&)=B{(o)™ - E)+D(@™ &% Eem, oG,

2) Let 0; be the basic forms of P. Then, we have 0(BE)=& (1Zi<n)

for all &= i}l&ei em;

3 aBEN=0, {em

The notation being as in Definition 7, suppose that there is given a pseudo-
conformal connection. We shall investigate the fundamental properties of this
connection.

(D By the condition 2) in Definition 7, every tangent vector X to P can
be uniquely written in the form: B(&),+ A¥, where £ emand A ¢’ and where
z is the origin of X. It follows that, for all £, &’ «m and z< P, we can find
a unique element 7,(¢, &) of m and a unique element A,¢&, &) of ¢’ such that

18.1) —LB&), BE")]. = B(TAE, EN+ALE, £)F

We notice that by 3) in Proposition 11, we must necessarily have T,(¢&, &)
= —p(&, e, modmy for all £,/ =m and z€ P.
LemMMA 10. Let z€ P, c € G’ and &, €m be arbitrary. Then, we have

—

Ado™ - TUE EVFAd 07 - AE, €)= Toollo) &, KoY &)

A, U0)E, KoY &) —Ad o~ - [£, E1+[Lo)E, (o) E'].

PrROOF. Let A=E&+U be any element of g, where £ em and Ucg’. We
denote by A* the vector field B()+U* on P. Then we have dR,- A*
=(Ado7'A)* and [U* A*]=[U, AJ* for all A=g, U=g¢’ and 6 =G’. More-
over, we have clearly

—[E¥, E), = (Tu(E, ENHALE, €
for all &, & em and z € P, from which it follows that
(18.2) —[(Ad o™t - &%, (Ad o™ - £)¥],.,

—(Ado™ - T(E, EN+Ad o™ - ALEENE,

for all ¢ € G’. But, the left-hand side of this equality is computed as follows:
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(18.3) —[KoY &%+ D(6™, €)%, Koy "%+ D(o™, &Y<,
= —[Ko) &%, (o) £,
— (KoY €, D(™, £t [ D0, £), KoY Ju
+[D(a™, &), Dia™, €]
= (T llo) &, [GY N+ Au o) 8, KoY )

~ o~ ——
—Ado™ - [§, 8]+ [Uo) &, o) Dis-
now follows from [(18.2) and [(18.3)

(II) As an element of ¢/, A&, &) may be represented as a matrix of the
form:

=V E) —V-1-KEEN T =
(18.4) 0 W&, &) K&, &)
0 0 VAE &)

By we have easily
LEMMA 11. Let &, & m and z< P be arbitrary and let ¢ be any element
of G’ expressed as (11.4).
D) T,.&E)=Ko)™ - TKo)E, Uo)E)+p(U0)E, Ko)E ) o)™ - en—p(E, ENen;
2) Assume that T= —p - e,.
W& EN=0b"1 W), I(0)E) - b
Vo€, €)= V(i o), l(0)E")
K. (&, EN)=¢-a b7 K(0)¢, (o))
+b71 - WU0)E, I(0)E") - b - c— V (U(0)E, I(6)E) - c.
(IID) For all z= P, we define linear mappings W, and K, of m into ms and
R respectively as follows: Let £ €m and & €my be arbitrary. <(Wi(&), &)
=the trace of the endomorphism 7 — W, (&, 7)&’ of my; I?Z(f) =the trace of the
endomorphism 7 — K,(&, 7) of my. For later uses, we further define W¥ to be
the trace of the endomorphism 7— W.() of my.
LEMMA 12. Let z= P and o =G’ be arbitrary.
D If T,=—p-ey then T,s=—p - e,;
2) Assume that T=—p -e,. If V,=0, then V,s,=0;
If W,=0, then W,s=0;
3) Assume that T=—p - e, V=0 and W=0. If K,=0, then K,,=0.
This is easy from Lemma 11l
(IV) Now, suppose that P}, G) satisfies condition (C) and use the nota-
tions in 17. As is seen from the proof of [Proposition 11, there is an injective
homomorphism % of P,(M,G,) into P(M,G’) such that [ A(x)=x for all x= P,
and A*a=0. Denote by k& the mapping of P into G’ defined by i.e.
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z2=ho50i(2) k(z) for all z& P.
We have A*0,=§; on P,. Hence we can find, for all x P, and £€m, a
unique element E. (&) of ¢’ satisfying the condition:

(18.5) dh - Bu(&)s = BErw+ELEnw -
We have easily
LEMMA 13. Let z= P and & =m be arbitrary.

(18.6) B(&),=dR, - (dh - BL0)E)a— El0)E Vi) —D(o™, o)ENs

where 0 =k(2) and x=3 - I(2).
LEMMA 14. Let x= P, and &, &' =m be arbitrary.

o€, e nt+0(E, ENEr(en)—dh - RLE, &)
= — Tial&, E)— A&, ENFLELE), E1+[E, E€))
+LELE), ELENIHVELE ) Ve E(E).

Proor. For all £ €m, we define a vector field C(¢) on P by C(&),= B(€),
FEsi(E)F for all ze P. It is clear that C(€) is A-related to Bu(&), i.e. C(hw
=dh - B,(£), at each x € P, ; Hence [C(£), C(¢')] is also h-related to [B.(&), Bu.(£")]
for all & & em. Take a point x of P, and set z=A(x). Then we have
(18.7) [C(&), C(EN1. = B(&), BENL+LELEN*, BE].

+LBE), ELE)* 1, +LELE),, ELE)],
+PeELE)—Fe EL(E) .
On the other hand, we have
(13.8) dh - LBu(&), BAEN = p(€, €") - dli - Bilen)s
—dh - R&, &N}
= (&, &) - Blen),+0(&, &) - Efen)f
—(dh - R&, €D .
Lemma 14 is then an immediate consequence of (18.7) and (18.8).

(V) Since h*a=0, E,(£) may be represented as a matrix of the form

0 V=171 J«&
(18.9) 0 U&) J(&)

0 0 0
for all x= P, and £=m.

From Lemma 14, we get
LEMMA 15. Let &, & =my be arbitrary.

THE, EN— U +UENE+0p(E, ENen=0;
Tﬁ(‘f: en)'—](f)_l_ U<en) - E=0.
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LEMMA 16. T= —p - ey, if and only if UE)=0 and Ule,) - £ =J(&) for all
& = my.

This is easy from [Lemma I5 and 1) of Lemma 12

We denote by I,_, the unit matrix of degree #—1. By Lemmas L6,
we have easily

LEMMA 17. Let &,& my be arbitravy. Under the assumption that T
= —p e, we have the followings :

V=1 - Wi&, &)=~ —1 - R ENVHIE) - & - I—J(E) - € T
+E @) - I—E - Y(E) - TH2ELJE) - I,
+2vV—=1<E, V=1 &YUle)=0;
V=1 WiE, en)—Jen) - ‘& - I—E - Tley) + I—<&,J(ea)> nmy
—v =1 V:Ule,)=0;
Vil&, EN=0;
Vi€, en)+HT"(E)—<V =1 - J(ew), £ =0;
Ki(&, ENHTNE) - E—JNE) « E—VeJ(EN AV J(E)
+2¢E, V=1 & ](e,)=0;
K&, e)—T"(en) - E-+TUE)—FeJ(en)+Ve,J(&) = 0.
(VD) LEMMA 18. Let &, &' = my be arbitrary.
1) Assume that T=—p - e,.

W)~ Wi - 4200t OV =T - O~ B+ [ R* - £=0;

Wite)+@n—1) - ¥'=1 - J(e)
— S JTe) i VT L) =0
Vi €)=0;
Vi€, e+ @)=V =1 - Jlea), &) =0.
2) Assume that T=—p - e,, W=0 and V=0.
Ki(&)=0;
Rien)+2n—1) - e =2 3 JU(e)), Ie:>

+ S (PeaTlen, Tey+Pu=repllen), V=1 Ie) =0.

We shall prove the first equality of 1) in Lemma 18 The others can be
similarly dealt with. Before proceeding to the proof, we remark the following
points: (1) By we have J(&)= Ule,) - € for all £ =my and hence
JE),EY=—(EJEY and V=1 - J(O)=J(V—1 - &) for all & emy. (2). We
have <e;, Ie;y =<~ —1 e, V=1 Ie;y =0;; and vV —1 e;, Ie;y = —<e;, ¥ —1 Ie;» =0
(1=i j=n—1). Let X be a vector in my and let A be a (real) endomorphism

of my. Then it follows that X:E«X, Iepei <X,V —1 Ied>v—1 e;) and T.(A)
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:ti(@élei, Ie>+HCA - V=1 ey, ¥V —1 Ie).
From the first equality of we get the following two equalities:

Let &, 7 =my be arbitrary.

SCWHE, e, Tey— X CRE, e, Te>+ X Un)iJ(E), vV —1 Ies»

HCE D TV =T - Je), Tey+(n—1XV =1 J(&), )

+234V =1 - J(&), V=T e)<n, vV =1 Iesy— S J(@), ey —1 &, Ies)

=3V =1 - J(n), e<E, Teiy—2 3KV —1 &, e)<J(n), Iesy =0;

SAWE, V=T ey, vV —1 ey —5(RE ~V —1 ey, v/ —1 Ies)

—SINTE), vV =1 Te;y+<&, 1) KV =1 J(ey), Tesd

+—1V =1 - JE), 1y +2 - TV =1 - J(), e)<n, Tesy

+ ST, eV =1 - & Tesy+2V =1 - [(), e)<E, Tey

— 23V =1 &,V —T1 e){J), v —1 Ie;> = 0.
Adding the above two equalities term by term and setting ¢ = 33V —1 - J(e)), I,
we find

W&, 1y —(BE), 1y +2 - ¢ - & my+2n+1XV =1 - J@&),m> =0,
namely
W& —R&)+2 - ¢ - £+2n+1) - V=1 - J(€)=0.
We have clearly
R SR T S
¢ T 8n Wi+ 8n R

and hence we get the first equality of 1) in
LEMMA 19.

1) Assume that T= —p - e,
) W=0, if and only if

(18.10) J(E) = %1;5—_117 (4—174 - R¥. 5—ﬁ<f>) , € & my,
(18.11) J(e,) = % - E(Vei](fei)—i—VJZTeif(\/ —11ey).

(2

iy V=0, if and only if
(18.12) JE =<V =1 Jew, &, Eemy.

2) Assume that T=—p - e,, W=0 and V=0.
l?:O, if and only if

1813)  Je=gpr 1y @+ T, fe

S Te, Ted+ Pt esle N =T Te)).
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This is clear from Lemmas I2 and

19. THEOREM 3. Let P(M, CNQ) be a pseudo-conformal G-bundle satisfying
the condition (LC) and let P(M,G") together with | and « be the corresponding
pseudo-conformal G’-bundle. The notation being as in 18, there exists a unique
pseudo-conformal connection B in P satisfying the following conditions: T
=—p- e, V=0, W=0 and K=0.

ProOOF. It is sufficient to make the proof in the case where P(M, é)
satisfies condition (C). Take a fixed subbundle P.(M,G,) of P(M,G) satis-
fying the conditions in Theorem 2 and use the notations in (IV) of 18.

Uniqueness. Suppose that there is given a pseudo-conformal connection
B in P satisfying the conditions in Theorem 3. We see from Lemmas 16 and
19 that the linear mappings J,, /% and U, are uniquely determined and there-
fore so is also the linear mapping £,. Hence B is uniquely determined by

Lemma 13.
Existence. Let x be any point of P,. (1) We define a linear mapping /,

of m into my by (18.10) and (18.11). (2) Using J,, we define a linear mapping
Jo of m into R by (18.12) and (18.13). (3) We have J.(vV—1 - &)=~ —17¢)
and {J(€), ED+<E, JLE)> =0 for all & & =my. This being said, we define a
linear mapping U, of minto g, by U, &) =0 if & €my and U,le,) - 7 =J.(n) for
all p =mg. (4) Using J,, J& and U,, we define a linear mapping £, of m into
g’ by (18.9). (5) Using E,, we finally define a linear mapping B of m into
2(P) by (18.6). Then the linear mapping B will be the desired connection.
First of all, we have J,.{6)=¢-b"'-J, (0 &), JrklE)=¢ -Jo - &) and U,.&)
=p1. U o &b and hence
Erod&)=Ad o)™ - E(0 - &)

for all x P,, ¢ =m and ¢ « G,, where ¢ is assumed to be expressed as (11.7).
That B satisfies the condition 1) in Definition 7 follows easily from this last
equality. Next as for the conditions 2) and 3) in Definition 7, we use Lemma
7 and the equalities 1) and 2) in Proposition 11. We have thereby seen that
B defines a pseudo-conformal connection in P. Finally we have B(&)jw
=dh - Bu(f)x—Ex(E);E,m for all x= P, and € em. Therefore we see from Lemmas
16 and 19 that B satisfies the conditions in Theorem 3.

DEeFINITION 8. The notation being as in Theorem 3, we shall say that
the pseudo-conformal connection B in P whose existence and uniqueness are
assured by Theorem 3 is the normal pseudo-conformal connection associated
to the pseudo-conformal G-bundle P(M, G).

PROPOSITION 13. Let P(M, 6) (resp. P(Mr, 5)) be a pseudo-conformal G-
bundle satisfying condition (LC). Let P(M,G’) (resp. P'(M, G")) together with |
and a (vesp. I/ and a') be the corresponding pseudo-conformal G'-bundle and let
B (resp. B’) be the corresponding normal pseudo-conformal connection in P (vesp.
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P). If ¢ is an isomorphism of P(M,G") with P(M’,G"), a necessary and suf-
ficient condition that ¢*0; =0, (1 <i=n) and ¢*a’ = « is that dp - B(E) = B'(€) for
all & em, where 0; (vesp. 07) are the basic forms of P (resp. P').

PrROOF. We first prove the sufficiency. Take a tangent vector X to P
and express it as B(¢),+A¥, where ze P, £cm and A=g¢’. Then we have
P*05(X) = ¢*01(B(E),) + 9*0;(AF) = 01(B'(E)ecy) + 03(A¥) = & = 0(B(E),) + 0.LAD)
=604X), whénce ¢*§;=0,;. Analogously we have ¢*a’=a«a. Let us prove the
necessity. Set B¥(&)=de™' - B'(¢) for all £ em. Since ¢*0;=40; and ¢*a’ =a,
we see easily that the assignment &— B*(¢) defines a pseudo-conformal con-
nection in P. Since B’ satisfies the condition in Theorem 3, so does the con-
nection B*. Consequently we have B*= B by Theorem 3, i.e. d¢ - B(¢)=B'(£)
for all £=m.

VII. Pseudo-conformal transformations

20. Let S be a regular non-degenerate hypersurface. As we have already
observed in [Proposition 10, the corresponding pseudo-conformal G-bundle
Bs, @) satisfies condition (LC). Therefore to such a hypersurface there are
associated the pseudo-conformal G’-bundle P(S,G’) (together with [ and «)
and the normal pseudo-conformal connection B in P. We have dim P=dim G
=n?+2n; If we take a base A,,---, A, of g/, we see that the #n®*+2un vector
fields Ble,), -+, Bley), B(W' —1e), -+, B(VN'—1 e,_,), A¥, -+, A¥ are linearly inde-
pendent at each point of P.

In virtue of Propositions 8, 12 and 13, we now arrive at the main theorem
in this paper.

THEOREM 4. Let S (vesp. S') be a vegular non-degenerate hypersurface. Let
P(S,G") (resp. P'(S',G")) be the corresponding pseudo-conformal G’-bundle and
let B (vesp. B') be the corresponding normal pseudo-conformal connection in P
(resp. P). If f is a pseudo-conformal homeomorphism of S with S, theve corre-
sponds to f a unique isomorphism ¢ of P(S,G’") with P(S',G’) such that ¢ in-
duces the given f and such that do + B(€)= B'(¢) for all £ =m. Conversely, every
isomorphism ¢ of P(S,G") with P'(S',G’) satisfying this last condition induces a
pseudo-conformal homeomorphism of S with S'.

The pseudo-group I'(S) of all the local pseudo-conformal homeomorphisms
of a hypersurface S is in general a continuous infinite pseudo-group of trans-
formations. This fact can be easily verified by using Theorem 1. Theorem
4 and E. Cartan [3] indicate that I'(S) is of finite type and of dimension
=< n?+2xn in the case where S is regular and non-degenerate.

21. We denote by G(S) the group of all the pseudo-conformal transfor-
mations of a hypersurface S and by ¢(S) the Lie algebra of ail the infinitesimal
pseudo-conformal transformations on S.
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PROPOSITION 14. If a connected hypersurface S is non-degenerate at a point
of S, then the Lie algebra §(S) is of finite dimensional and dim §(S) = n?+2n.

PrOOF. In the case where S is regular and non-degenerate, Proposition 14
is an immediate consequence!® of Theorem 4. In the general case, assume
that g(S)#0. Let S* be the set of all the points p of S at which S is non-
degenerate. We see easily that S* is open and dense in S and that the func-
tion A introduced in 8 is constant on each connected component of S*. Take
a connected component ‘S* of S* and assume that it is of index ». Now let
’S**¥ be the set of all the points p of 'S* at which S is regular. Since g(S) 0,
we know from Proposition 5 that ‘S** is open and dense in ’S¥*. Let us again
take a connected component “S** of /‘S**, By considering the restrictions to
7S of the vector fields in g(S), we may identify g(S) with a subspace of
a("S*%).  But, ¢(”S*¥) is of finite dimensional and dim g(”S**) < »*+2#n, because
7S¥*% is regular and non-degenerate. Therefore the same holds for g(S), prov-
ing Proposition 14.

R.S. Palais [4] and Proposition 14 lead us to the following

THEOREM 5. If a connected hypersurface S is non-degenevate at a point of
S, then the group G(S) is a Lie group of dimension = n*--2n with respect to the
natural topology.

As an immediate corollary to we get

COROLLARY. If S is a compact connected hypersurface, then the group G(S)
is a Lie group of dimension = n>-+2n.

ProoF. Under the condition, there exists a point of Sat which S satisfies
the condition of Levi-Krzoska; Hence S is non-degenerate at this point by

22. Now let us take up the hypersurface @F which has been already
observed in 12. There we have seen that Q¥ is non-degenerate, of index
and regular. Let P(Q¥ G’), [, 6; and « be as in 12. Then Propositions 6 and
7 mean that P(Q*, G’) together with [ and « is the pseudo-conformal G’-bundle
associated to the hypersurface @* and that 8; are the basic forms of P. For
all £ em, we denote by B(¢) the restriction to P of the left invariant vector
field £ on G. Then the assignment & — B(£) clearly gives the normal pseudo-
conformal connection in P.

We continue to identify C™ with an open submanifold of P™C).

THEOREM 6. Let S, be the quadric of C" defined by (11.1). If f is a pseudo-
conformal homeomorphism of a connected open set of S, with an open set of S,,
then f can be extended to a projective transformation of P™(C).

11) For a proof of this fact, see S. Kobayashi, Theory of connections, Annali. di,
Math., 43 (1957), 119-194.
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Proor. In 11, we have remarked that the closure S, of S, in P™C) is
projectively equivalent to the quadric @, of P™(C) (which is also the closure
of QF in P™C)). Therefore to prove Theorem 6, it is sufficient to prove the
statement (of Theorem 6) in which S, is everywhere replaced by QF. Let f
be a pseudo-conformal homeomorphism of an open set U of Q¥ with an open
set U’ of QF. By Theorem 4, f yields an isomorphism ¢ of P|U with P| U’
such that ¢ induces the given f and such that d¢ - B(&),= B(&)ew, i. €. dp - &,
=&y for all Ecm and z& P|U. Moreover ¢ being a bundle isomorphism,
we have do - Af= A}, i.e. dp- A,= Ay, for all Aeg and ze€P|U. It
follows that do - X, = X, for all Xeg and z€ P|U. Therefore we can find
a unique element ¢ of G such that ¢(z)=0 - z for all ze P| U and hence we
get f(p)=o-p for all p= U. We have thereby completed the proof of
Theorem 6.
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