Local theory in function analysis*

By Tamio Ono

(Received April 4, 1962)

§ 0. Introduction

The aim of this paper is, as a continuation of the previous papers [10], [11], to establish the local theory in algebro-topological systems over commutative AW^{*}-algebras.

This paper consists of two parts. In each part, we shall explain how to reduce properties of elements of algebro-topological systems over commutative B^{*}-algebras to those of elements of (classical) algebro-topological systems over the field of complex (or real) numbers by making use of the local theory. In §1, we shall establish a theorem concerning quasi-ordered linear spaces (Theorem A) and the extension theorem of H. Hahn and S. Banach Theorem B). In $\S 2$, we deal with a theorem of I. Gelfand (Theorem C) and a theorem of S. Mazur and I. Gelfand (Theorem D). These theorems will be discussed for the case of algebro-topological systems over commutative B^{*}-algebras (for example, quasi-ordered linear spaces over commutative B^{*}-algebras, linear spaces over commutative B^{*}-algebras, Banach algebras over commutative B^{*} algebras and B^{*}-algebras over commutative B^{*}-algebras). They are, however, essentially valid for the case of algebro-topological systems over commutative AW^{*}-algebras, which were originated by I. Kaplansky [6] and investigated by H. Widom [14] and M. Nakai [9]. Precisely speaking, we consider a compact Hausdorff space Ω and the commutative B^{*}-algebras $C(\Omega)$ (or $R(\Omega)$) of complex- (or real-) valued continuous functions defined on Ω. Suppose there is a theorem concerning an algebro-topological system over $C(\Omega)$ (or $R(\Omega)$). Then we shall say that this theorem is, for instance, of Stonian class if it is valid for the case that the underlying space Ω is Stonian and if further there exists without fail a counter example, that is, an example, for which the theorem does not hold, provided that Ω is not Stonian. In this sense, these theorems are exactly of Stonian class. (L. Nachbin [8], D. B. Goodner [2], J. L. Kelley [7], M. Nakai [9], and M. Hasumi [3] proved that the extension theorem of H. Hahn and S. Banach is exactly of Stonian class.)

I express my hearty thanks to Prof. O. Takenouchi for his various kind remarks.

[^0]
§ 1. N-Spaces Over \boldsymbol{N}_{0}

1. Definitions. Let Ω be a compact Hausdorff space. Denote by N_{0} the set of real-valued continuous functions on Ω. In the usual way, N_{0} constitutes a real normed ring and a semi-ordered linear space. Denote by $\left(N_{0}\right)_{+}$the set of non-negative functions in N_{0}.

We state some definitions and lemmas. The proofs of lemmas in this section are easy and will be omitted.

DEFINITION 1.1: A binary relation $a \leqq b$ between certain elements of a set E is called a quasi-ordering if it satisfies the following conditions: (a) $a \leqq a$ for a in E and (b) $a \leqq b, b \leqq c$ for a, b, c in E imply $a \leqq c$. The relation $a \leqq b$ is also denoted by $b \geqq a$.

Definition 1.2: A module E is called a linear space over N_{0} if it has N_{0} as an operator domain and the following are satisfied: $(\sigma \tau) a=\sigma(\tau \alpha),(\sigma+\tau) a$ $=\sigma a+\tau a$, and $1 \alpha=a$ for σ, τ in N_{0}, α in E, and where 1 is the function on Ω taking values identically equal to 1 .

Definition 1.3: A linear space E over N_{0} is called a quasi-ordered linear space over N_{0} if it has a quasi-ordering compatible with the linear operation, that is: (a) $a, b \geqq 0$ and a, b in E imply $a+b \geqq 0$, (b) $\sigma, a \geqq 0$ and σ in N_{0}, a in E imply $\sigma a \geqq 0$, and (c) $a \geqq b$ if $a-b \geqq 0$ for a, b in E.

Definition 1.4: A quasi-ordered linear space N over N_{0} is called an N space over N_{0} if it has an order unity e and if $0 \leqq \sigma e \leqq 0$ and σ in N_{0} imply $\sigma=0$, where the order unity e is a positive element in N such that $N=\left(a ; a \leqq \sigma e\right.$ for some σ in $\left.N_{0}\right)$.

Definition 1.5: 1) An N-space N_{1} over N_{0} is said to be homomorphic onto another N-space N_{2} over N_{0} if there exists a mapping f of N_{1} onto N_{2} satisfying the conditions: (a) $f(a+b)=f(a)+f(b)$ for a, b in N_{1}, (b) $f(\sigma a)=\sigma f(a)$ for σ in N_{0}, a in N_{1}, and (c) $a \leqq b$ for a, b in N_{1} implies $f(a) \leqq f(b)$.
2) An N-space N_{1} over N_{0} is said to be isomorphic onto another N-space N_{2} over N_{0} if there exists an one-to-one mapping f of N_{1} onto N_{2} satisfying the conditions (a), (b) in 1) and (c) $f(a) \leqq f(b)$ holds for a, b in N_{1}. when and only when $a \leqq b$.

Definition 1.6: 1) A submodule E_{1} of a linear space E over N_{0} is called an N_{0}-subspace of E if it is admissible with respect to the operator domain N_{0}, that is: $N_{0} E_{1} \subseteq E_{1}$.
2) An N_{0}-subspace I of an N-space N over N_{0} is called an ideal of N if a, b in I and $a \leqq c \leqq b(c$ in N) imply c in I.

Let N be an N-space over N_{0} with order unity e. Then $N_{0} e$ is an N-space over N_{0} with e as an order unity. The space N_{0} is also an N-space over N_{0} with the order unity 1.

Lemma 1.1: $N_{0} e$ is isomorphic onto N_{0}.
Let N be an N-space over N_{0} and I be its ideal. To mention the natural homomorphism of N onto the quotient space, we add a bar over the elements of N. In N / I, we give a quasi-ordering by defining $\bar{a} \leqq \bar{b}$ if there exists at least one element c in I such that $a+c \leqq b$. With this quasi-ordering we have-

Lemma 1.2: N / I constitutes a quasi-ordered linear space over N_{0}.
Definition 1.7: An ideal I of an N-space N over N_{0} is said to be proper if N / I constitutes an N-space over N_{0} with \bar{e} as its order unity.

Lemma 1.3: An ideal I of an N-space N over N_{0} is proper if and only if I does not contain σe for any non-zero element σ in N_{0}.

Definition 1.8: 1) An N-space over N_{0} is said to be simple if it has. no proper ideal except for the zero-ideal (0).
2) An ideal I of an N-space N over N_{0} is said to be properly maximal if it is proper and if N / I is simple.

Lemma 1.4: Given any proper ideal I of an N-space N over N_{0}, there exists at least one properly maximal ideal of N containing I.

Definition 1.9: 1) A linear mapping f of a linear space E over N_{0} into N_{0} is said to be N_{0}-linear if it satisfies the condition : $f(\sigma a)=\sigma f(a)$ for σ in N_{0} and a in E.
2) A linear mapping f of an N-space N over N_{0} into N_{0} is said to be positive if it satisfies the condition: $a \geqq 0$ and a in N imply $f(a) \geqq 0$.
3) A positive linear mapping f of an N-space N over N_{0} into N_{0} is called state of N if it satisfies the condition: $f(e)=1$.

Here we should like to notice that the simple use of "linear" without. " N_{0}-" never refers to the " N_{0}-linear" fixed in Definition 1.9, 1).

Definition 1.10: 1) A mapping p of a linear space E over N_{0} into N_{0} is. called a cap of E if it satisfies the following conditions: (a) $p(a+b) \leqq p(a)+p(b)$ c for a, b in E and (b) $p(\sigma a)=\sigma p(a)$ for σ in $\left(N_{0}\right)_{+}$and a in E. If E is an $N-$ space over N_{0}, we require further that (c) $p(\sigma e+a)=\sigma+p(a)$ for σ in N_{0} and a in E.
2) Let p be a cap of E. A linear mapping f of a linear space E over N_{0}; into N_{0} is said to be compatible with p if $f(a) \leqq p(a)$ for any a in E.

Definition 1.11: An element σ in N_{0} is called an (analytic) spectrum of an element a in an N-space N over N_{0} if the ideal of N generated by $a-\sigma e$ is proper.
2. Stonian Case. In this section, we assume that Ω is a Stonian space, that is to say, a compact Hausdorff space, in which every lower bounded set of functions in N_{0} has its GLB (the greatest lower bound) in N_{0}. Denote by E_{0} the set of projections in N_{0}. The family $\left(\left(\omega ; \omega\left(e_{0}\right)=1\right) ; e_{0} \in E_{0}\right)$ of open sets in Ω constitutes an open base in Ω, where we denote by $\omega(\sigma)$ the value
of a function σ in N_{0} at ω. For ω in Ω, we denote by $E_{0}(\omega)$ the set of projections $e_{0}(\omega)$ in E_{0} satisfying the condition: $\omega\left(e_{0}(\omega)\right)=1$. By "almost all points in Ω " we shall mean "points outside a certain first category set in Ω ".

Let N be an N-space over N_{0}. Then N constitutes also an N-space over the field of real numbers R. For a point ω in Ω, denote by (0) ${ }^{\omega}$ the set of elements a in N such that, given any positive number ε, there exists a projection $e_{0}(\omega)$ in $E_{0}(\omega)$ such that $-\varepsilon e_{0}(\omega) e \leqq e_{0}(\omega) a \leqq \varepsilon e_{0}(\omega) e$. It is easy to see that $(0)^{\omega}$ is an ideal of N as an N-space over R. Set $N_{\omega}=N /(0)^{\omega}$. Then N_{ω} constitutes an N-space over R. Denote by ω the natural homomorphism of N onto N_{ω}.

Lemma 1.5: It holds that $\omega(\sigma a)=\omega(\sigma) \omega(a)$ for σ in N_{0} and a in N.
Proof: We first prove that $\sigma a \in(0)^{\omega}$ holds for a non-negative function σ in N_{0} such that $\omega(\sigma)=0$ and for α in N. By the property of e we can find a natural number n such that $-n e \leqq a \leqq n e$. Since $\sigma \geqq 0$, we have - $\sigma n e \leqq \sigma a$ $\leqq \sigma n e$. Since $\omega(\sigma)=0$, for any natural number r, there exists a projection $e_{0}(\omega)$ in $E_{0}(\omega)$ such that $e_{0}(\omega) \sigma \leqq r^{-1} e_{0}(\omega)$. From this it follows that $r^{-1} e_{0}(\omega) n e$ $\leqq e_{0}(\omega) \sigma a \leqq r^{-1} e_{0}(\omega) n e$. This shows that $\sigma a \in(0)^{\omega}$. For a not necessarily nonnegative function σ in N_{0}, we can find the Jordan decomposition $\sigma=\sigma_{1}-\sigma_{2}$ $\left(\sigma_{1} \geqq 0, \sigma_{2} \geqq 0, \sigma_{1} \sigma_{2}=0\right)$. Since $\omega(\sigma)=0$, we have $\omega\left(\sigma_{1}\right)=\omega\left(\sigma_{2}\right)=0$. Hence $\sigma_{1} a$ and $\sigma_{2} a$ are in $(0)^{\omega}$. Hence σa is in $(0)^{\omega}$. Now, for a general element σ in N_{0}, we have $\omega(\sigma a)=\omega(\sigma) \omega(a)+\omega((\sigma-\omega(\sigma)) a)=\omega(\sigma) \omega(a)$, thus the proof is completed.

We shall call this N-space N_{ω} over R the local N-space of N with respect to ω. For an ideal I of N, denote by I_{ω} the ideal of N_{ω} generated by $\omega(I)$ ($=(\omega(a) ; a \in I)$); namely $I_{\omega}=(\omega(c) ; \omega(a) \leqq \omega(c) \leqq \omega(b)$ for some a, b in $I)$.

Lemma 1.6: An ideal I of N is proper if and only if I_{ω} is proper in N_{ω} for almost all points ω in Ω.

Proof: Necessity: Suppose I_{ω} is not proper for some ω in Ω. Then there exist a, b in I such that $\omega(a) \leqq \omega(e) \leqq \omega(b)$. In other words, there exist a, b in I and a^{\prime}, b^{\prime} in $(0)^{\omega}$ such that $a^{\prime}+a \leqq e \leqq b+b^{\prime}$. Hence there exists $e_{0}(\omega)$ in $E_{0}(\omega)$ such that $e_{0}(\omega)\left(-2^{-1} e+a\right) \leqq e_{0}(\omega) e \leqq e_{0}(\omega)\left(2^{-1} e+b\right)$. From this it follows that $(2 / 3) e_{0}(\omega) a \leqq e_{0}(\omega) e \leqq 2 e_{0}(\omega) b$. This shows that I is not proper.

Sufficiency: Suppose I is not proper. Then there exist $\sigma(\neq 0)$ in N_{0} and a, b in I such that $a \leqq \sigma e \leqq b$. Since $\sigma \neq 0$, we can assume without loss of generality that there exists a projection $e_{0}(\neq 0)$ in E_{0} such that $\sigma e_{0} \geqq 2^{-1} e_{0}$. Hence σe_{0} has an inverse in $e_{0} N_{0}$. Denote it by τ. Then it holds that $\tau e_{0} a$ $\leqq e_{0} e \leqq \tau e_{0} b$, where τe_{0} is in N_{0}. This shows that I_{ω} is not proper for any point ω in $\left(\omega ; \omega\left(e_{0}\right)=1, \omega \in \Omega\right)$. Hence the set of points ω in Ω, for which I_{ω} is not proper, contains a non-empty open set and so it is not a first category set in Ω. Thus we see that if there exists any point ω in Ω such that I_{ω} is
not proper, then the set of ω 's for which I_{ω} is not proper is not a set of first category. Thus the statement of the lemma is legitimate by our convention on the use of the expression "almost all".

The same reasoning shows the following lemma.
Lemma 1.7: An element σ in N_{0} is a spectrum of an element a in N if and only if $\omega(\sigma)$ is a spectrum of $\omega(a)$ in N_{ω} for almost all points ω in Ω.

We associate $p(a)=\operatorname{GLB}\left(\sigma ; a \leqq \sigma e, \sigma \in N_{0}\right)$ with each element a in N. This GLB exists, for there is an element τ in N_{0} such that $\tau e \leqq a$ and so it holds that $\tau \leqq \sigma$ for those σ in N_{0} which satisfies the condition: $a \leqq \sigma e$. Thus we can define a mapping p of N onto N_{0}. The mapping p satisfies the conditions (a), (b), (c) in Definition 1.10 so that it defines a cap of N as mentioned in the following lemma. Similarly we set $p_{\omega}(\omega(\alpha))=\inf (\beta ; \omega(a) \leqq \beta \omega(e), \beta \in R)$ for ω in Ω and $\omega(a)$ in N_{ω}. We thus obtain a mapping p_{ω} of N_{ω} onto R. It is easy to see that p_{ω} also satisfies the conditions of a cap.

Lemma 1.8: p is a cap of N, and for each element a in N, (*) $\omega(p(a))$ $=p_{\omega}(\omega(a))$ for almost all points ω in Ω.

Proof: In order to prove the lemma, we need only to see that (*) holds. for non-negative element a in N, because p satisfies (c) in Definition 1.10 and p_{ω} is a cap of N_{ω}.

We first see that $\omega(p(a)) \leqq p_{\omega}(\omega(a))$ for all ω in Ω. For a positive number ε, we have $\omega(a) \leqq\left(p_{\omega}(\omega(a))+\varepsilon\right) \omega(e)$. Hence, given any positive number δ, there exists a projection $e_{0}(\omega)$ in $E_{0}(\omega)$ such that $e_{0}(\omega) a \leqq\left(p_{\omega}(\omega(a))+\varepsilon+\delta\right) e_{0}(\omega) e$. On the other hand, there exists a natural number n such that $a \leqq n e$. Set σ $=\left(p_{\omega}(\omega(a))+\varepsilon+\delta\right) e_{0}(\omega)+n\left(1-e_{0}(\omega)\right)$. Then $a \leqq \sigma e$ and so $p(a) \leqq \sigma$. Taking the values at ω, we get $\omega(p(a)) \leqq p_{\omega}(\omega(a))+\varepsilon+\delta$. By making $\delta \downarrow 0$ and then $\varepsilon \downarrow 0$, we reach the desired inequality.

Conversely, denote by Δ the set of those elements σ in N_{0} which satisfy the condition: $a \leqq \sigma e$. Given a natural number n, there exist an element σ in Δ and a projection e_{0} in N_{0} such that $e_{0} \sigma \leqq\left(p(a)+n^{-1}\right) e_{0}$. Hence, by exhaustion method, we can find an orthogonal set ($e_{0} ; \iota \in I$) of projections in N_{0}, whose LUB is equal to 1 , and a set $\left(\sigma_{\iota} ; \iota \in I\right)$ of elements in N_{0} such that $e_{0 c} \sigma_{\iota} \leqq\left(p(a)+n^{-1}\right) e_{0 c}$ for ι in I. Set $\Omega_{n}=\cup\left(\left(\omega ; \omega\left(e_{0 c}\right)=1\right) ; \iota \in I\right)$. Then, for each ω in Ω_{n}, there exists an index ι in I such that $\omega\left(e_{0}\right)=1$. Since $e_{0} a$ $\left(\leqq e_{01} \sigma_{\iota} e\right) \leqq\left(p(a)+n^{-1}\right) e_{0} \ell$, it holds that $\omega(a) \leqq\left(\omega(p(a))+n^{-1}\right) \omega(e)$, that is, $p_{\omega}(\omega(a))$ $\leqq \omega(p(a))+n^{-1}$. Set $\Omega_{0}=\cap\left(\Omega_{n} ; n \in J\right)$, where we denote by J the set of natural numbers. Then $p_{\omega}(\omega(a)) \leqq \omega(p(a))$ for ω in Ω_{0} and so $p_{\omega}(\omega(a))=\omega(p(a))$ for ω in Ω_{0}. Since LUB $\left(e_{0} ; \iota \in I\right)=1$, the closure of Ω_{n} is Ω. Moreover Ω_{n} is open. Hence Ω_{n}^{c} (the complement of Ω_{n} in Ω) is non-dense and $\Omega_{0}^{c}=\cup\left(\Omega_{n}^{c} ; n \in J\right)$ is a first category set in Ω. Thus we have shown that (*) holds, which was to be proved.

Lemma 1.9: $p(a)$ is a spectrum of the element a.
Proof: Local Proof: We show that $p_{\omega}(\omega(a))$ is a spectrum of $\omega(a)$ in N_{ω}. For this aim, it suffices to show that, when N is an N-space over R with e as order unity, and $a \in N, p(a)$ is a spectrum of a, because N_{ω} is such one as we are hitherto considering. Suppose the contrary. Then there exists a real number β such that $e \leqq \beta(p(a) e-a)$. From this it follows that $\beta \neq 0$. If $\beta>0$, we get $a \leqq\left(p(a)-\beta^{-1}\right)$ e. This contradicts the construction of $p(a)$. On the other hand, if $\beta<0$, we get ($\left.p(a)+\left(-\beta^{-1}\right)\right) e \leqq a$. This is also impossible because of the same reason. This implies that $p(a)$ is a spectrum of a for this case.

Global Proof: For almost all points ω in $\Omega, \omega(p(a))=p_{\omega}(\omega(a))$ and so, by the above local proof and Lemma 1.7, $p(a)$ is a spectrum of a. This completes the proof.

We are now in a position to prove the following
Theorem A: Every simple N-space over N_{0} is isomorphic onto N_{0}.
Proof: For each element a in $N, p(a)$ is a spectrum of a by Lemma 1.9. Hence the ideal of N generated by $a-p(a) e$ is proper and so it must be equal to (0). This implies that $a=p(a)$ e. Hence, by Lemma 1.1, we reach the assertion.

Combining Theorem A with Lemma 1.4 and Lemma 1.9, we get the following

Lemma 1.10: For any element a in an N-space N over N_{0}, there exists a state f of N such that $f(a)=p(a)$, where p is the cap of N defined in the paragraph before Lemma 1.8.

Lemma 1.11: If a cap p of an N-space N over N_{0} satisfies the following condition: (d) $a \leqq p(a)$ e for a in N, then

1) $p(a)=\operatorname{GLB}\left(\sigma ; a \leqq \sigma e, \sigma \in N_{0}\right)$ for a in N,
2) $\omega(p(a))=p_{\omega}(\omega(a))$ for ω in Ω and a in N, p_{ω} being the function defined in the paragraph before Lemma 1.8,
3) every linear mapping of N into N_{0} compatible with p is N_{0}-linear, and
4) a linear mapping f of N into N_{0} with $f(\sigma e)=\sigma$ for σ in N_{0} is positive if and only if it is compatible with p.

Proof: Proof of 1): Let p be a cap of N satisfying the condition (d). Suppose $a \leqq \sigma e$ for σ in N_{0} and a in N. Then, using (d), we have $0 \leqq \sigma e-a$ $\leqq p(\sigma e-a) e=(\sigma-p(a)) e$, or $p(a) \leqq \sigma$. Hence we get $p(a)=\operatorname{GLB}\left(\sigma ; a \leqq \sigma e, \sigma \in N_{0}\right)$. The other inequality is trivial because of (d). This shows 1).

Proof of 2): In the proof of Lemma 1.8 , we saw that $\omega(p(a)) \leqq p_{\omega}(\omega(a))$ for all ω in Ω, where p_{ω} is the local cap defined in the paragraph before Lemma 1.8. On the other hand, since $a \leqq p(a) e$, we have $\omega(a) \leqq \omega(p(a)) \omega(e)$. Namely, we have $p_{\omega}(\omega(a)) \leqq \omega(p(a))$. This shows 2).

Proof of 3): Suppose f is a linear mapping of N into N_{0} compatible with p. We first see that
(*) if $\omega(a)=0$ for an element a in N, then $\omega(f(a))=0$. Since $\omega(a)=0$, $p_{\omega}(\omega(a))=p_{\omega}(\omega(-a))=0$. Since f is compatible with $p,-p(-a) \leqq f(a) \leqq p(a)$ and so $-\omega(p(-a)) \leqq \omega(f(a)) \leqq \omega(p(a))$. Combining these equalities with 2), we get (*).

In view of (*), a linear functional f_{ω} of N_{ω} can be defined by $f_{\omega}(\omega(a))$ $=\omega(f(a))$ for a in N. Using this functional, for any σ in N_{0}, we have $\omega(f(\sigma a))$ $=f_{\omega \prime}(\omega(\sigma a))=f_{\omega}(\omega(\sigma) \omega(a))=\omega(\sigma) f_{\omega}(\omega(\alpha))=\omega(\sigma) \omega(f(a))=\omega(\sigma f(a))$. This implies that $f(\sigma a)=\sigma f(a)$. Therefore f is N_{0}-linear. Thus we get 3).

Proof of 4): Let f be a linear mapping of N into N_{0} compatible with p. Suppose a is an element in N such that $a \geqq 0$. Then $-a \leqq 0$ and so, by $1),-f(a)=f(-a) \leqq p(-a) \leqq 0$, or $f(a) \geqq 0$. This shows that f is positive.

Conversely, suppose f is a positive linear mapping of N into N_{0} enjoying the condition: $f(\sigma e)=\sigma$ for σ in N_{0}. Since $a \leqq p(a) e$ for a in N, we have $f(a)$. $\leqq f(p(a) e)=p(a)$. This shows that f is compatible with p. Thus we get 4).

As an immediate consequence of Theorem A, we shall give an alternative proof of the following generalization of the extension theorem of H . Hahn and S. Banach due to M. Nakai [9, Theorem 1].

Theorem B: For any linear space E over N_{0}, for any N_{0}-subspace E_{1} of E, and for any cap p of E, every linear mapping of E_{1} into N_{0} compatible with p has a linear extension on the whole space E into N_{0} compatible with p.

Proof: Suppose f_{1} is a linear mapping of E_{1} into N_{0} compatible with p. Construct the direct sum N of N_{0} and E, and we shall consider N_{0} and E as subspaces of N. Then N will turn out to be an N-space over N_{0} with the order unity 1 when introduced a quasi-ordering as follows: $\sigma+a \leqq \tau+b$ for σ, τ in N_{0} and for a, b in E holds if and only if $p(a-b) \leqq \tau-\sigma$. Moreover N has a cap \tilde{p} defined by $\tilde{p}(\sigma+a)=\sigma+p(a)$ for σ in N_{0}, a in E. We notice that \tilde{p} satisfies the condition (d) in Lemma 1.11. Denote by N_{1} the N_{0}-subspace of N generated by N_{0} and E_{1}. Then f_{1} can be extended to a linear mapping \tilde{f}_{1} of N_{1} into N_{0} such that $\tilde{f}_{1}(\sigma+a)=\sigma+f(a)$ for σ in N_{0}, a in E_{1}. It is easy to see that \tilde{f}_{1} is compatible with \tilde{p}. Therefore, by Lemma $1.11, \tilde{f}_{1}$ satisfies the condition: $\tilde{f}_{1}(\sigma)=\sigma$ for σ in N_{0}. Hence \tilde{f}_{1} is positive by Lemma 1.11. Set $I=\left(a_{1} ; \tilde{f}_{1}\left(a_{1}\right)=0, a_{1} \in N_{1}\right)$. Then the ideal of N generated by I is proper. In fact, if $a_{1} \leqq \sigma \leqq b_{1}$ for σ in N_{0} and for a_{1}, b_{1} in I, then, because of the positivity of $\tilde{f}_{1}, 0=\tilde{f}_{1}\left(a_{1}\right) \leqq \tilde{f}_{1}(\sigma)=\sigma \leqq \tilde{f}_{1}\left(b_{1}\right)=0$, or $\sigma=0$. Hence, by Lemma 1.4, there exists a properly maximal ideal J of N containing (the ideal of N generated by) I. Since N / J is simple, there is an isomorphism of N / J onto N_{0}, say φ, by Theorem A. Denote by ψ the natural homomorphism of N onto N / J and set $g=\varphi \circ \psi$. Then g is positive, because it is the composition of
positive mappings. Also g satisfies the condition: $g(\sigma)=\sigma$ for σ in N_{0}. Hence g is compatible with \tilde{p} by Lemma 1.11 and so the restriction f of g on E is compatible with p. Moreover we have $g(a)=0$ for a in I. Since $a-\tilde{f}_{1}(a) \in I$ for a in E_{1}, therefore, we get $0=g\left(a-\tilde{f}_{1}(a)\right)=g(a)-f_{1}(a)=f(a)-f_{1}(a)$; namely $f(a)=f_{1}(a)$ for a in E_{1}. This means that f is an extension of f_{1}. This completes the proof.
3. Converse Theorems. In connection with Theorems A and B, we shall state and prove the following

Theorem A': Ω is Stonian if Theorem A holds for any simple N-space. over N_{0}.

Proof: Suppose ($\sigma_{\iota} ; \iota \in I$) be a bounded below family of elements in N_{0}. It must be shown that, under the validity of Theorem A, the GLB of this family exists in N_{0}. Denote by $B(\Omega)$ the set of real-valued bounded functions on Ω. Then $B(\Omega)$ can be considered in a natural way as an N-space over N_{0} with order unity 1. Let x be the GLB of $\sigma_{\iota}(\iota \in I)$ in $B(\Omega)$, and N be the $N_{0}-$ subspace of $B(\Omega)$ generated by N_{0} and x. Let J be a properly maximal ideal of N. Then N / J is simple, and so, by hypothesis, it is isomorphic with N_{0}. Since 1 is an order unity in N / J, it corresponds to a positive function σ_{0}. It will then be easy to see that, denoting by σ the image of x under the homomorphism $N \rightarrow(N / J \rightarrow) N_{0}, \sigma_{0}^{-1} \sigma$ is the GLB in question.

Theorem B': Ω is Stonian if Theorem B holds for any linear space over N_{0}.
Proof: Suppose ($\sigma_{\iota} ; \iota \in I$) is a bounded below family of elements in N_{0}. It must be shown that, under the validity of Theorem B, the GLB of this family exists in N_{0}. Denote by $B(\Omega)$ the set of real-valued bounded functions on Ω and by x the GLB of the family in $B(\Omega)$. Denote by ($\tau_{\kappa} ; \kappa \in K$) the subset ($\tau ; \tau \leqq x$) of N_{0}. Also, denote by E_{x} the N_{0}-subspace ($\sigma x ; \sigma \in N_{0}$) of $B(\Omega)$ and by E the restricted direct $\operatorname{sum} \Sigma(E(\iota, \kappa) ; \iota \in I, \kappa \in K)$ of linear spaces over N_{0}, whose members $E(\iota, \kappa)$ are all isomorphic to E_{x} as a linear space over N_{0}. For the sake of convenience, we assume that these summands are contained in E. Denote by $\varphi(\iota, \kappa)$ the isomorphism of E_{x} onto $E(\iota, \kappa)$., Any element a in E is written as $a=\sum_{i=1}^{n} \sigma_{i} \varphi\left(\iota_{i}, \kappa_{i}\right)(x)$ and we can define a cap p in E such that $p(a)=\sum_{i=1}^{n}\left(\left(\sigma_{i}\right)_{+} \sigma_{\iota_{i}}-\left(\sigma_{i}\right)_{\tau} \tau_{\kappa_{i}}\right)=\sum_{i=1}^{n}\left(\left(\sigma_{i}\right)_{++}\left(\sigma_{\iota_{i}}-\tau_{\kappa_{i}}\right)+\sigma_{i} \tau_{\kappa_{i}}\right)$, where $\sigma=(\sigma)_{+}-(\sigma)_{-}$is the Jordan decomposition of an element σ in N_{0}. Denote by E_{1} the N_{0}-subspace of E spanned by the set of all elements in the form ; $\varphi\left(\iota_{1}, \kappa_{1}\right)(x)-\varphi\left(\iota_{2}, \kappa_{2}\right)(x)$.

We then show that $p(a) \geqq 0$ for a in E_{1}. Suppose ω is a point in Ω. First, suppose $\omega(x) \neq 0$. Construct the restricted direct sum E_{ω} of linear spaces ($E_{\omega}(\iota, \kappa) ; \iota \in I, \kappa \in K$) over R, whose members are all isomorphic to $\omega\left(E_{x}\right)\left(=\left(\omega\left(a_{x}\right) ; a_{x} \in E_{x}\right)\right)$, where $\omega\left(a_{x}\right)$ is the value of a_{x} at ω. For the sake
of convenience, we assume that these summands are contained in E_{ω}. Denote by ω the natural homomorphism of E_{x} onto $\omega\left(E_{x}\right)$ and by $\varphi_{\omega}(\ell, \kappa)$ the isomorphism of $\omega\left(E_{x}\right)$ onto $E_{\omega}(\iota, \kappa)$. It is easy to see that there exists a homomorphism of E onto E_{ω} as a linear space over R, whose restriction on $E(\iota, \kappa)$ is equal to $\varphi_{\omega}(\iota, \kappa) \circ \omega \circ \varphi(\iota, \kappa)^{-1}$. Denote it again by ω. Then, if $\omega(a)=\omega(b)$ for a, b in E, we have $\omega(p(a))=\omega(p(b))$. In order to see this, we can assume without loss of generality that a and b are in the same $E(\iota, \kappa)$ for some ι in I, κ in K. Suppose $a=\sigma \varphi(\iota, \kappa)(x)$ and $b=\tau \varphi(\iota, \kappa)(x)$. Since $\omega(a)=\omega(b)$, we have $\omega(\sigma)=\omega(\tau)$. If $\omega(\sigma)=\omega(\tau) \geqq 0$, we have $\omega\left((\sigma)_{+}\right)=\omega\left((\tau)_{+}\right)$and so $\omega(p(\alpha))=\omega\left((\sigma)_{+} \sigma_{\iota}\right)$ $=\omega\left((\tau)_{+} \tau_{c}\right)=\omega(p(b))$. The case where $\omega(\sigma)=\omega(\tau)<0$ will be treated similarly. Thus we get $\omega(p(a))=\omega(p(b))$. Hence we can define a cap p_{ω} of E_{ω} such that $p_{\omega}(\omega(a))=\omega(p(a))$ for a in E. Define a linear functional f_{ω} of E_{ω} such that $f_{\omega}(\omega(a))=\sum_{i=1}^{n} \beta_{i} \omega(x)$, where $\omega(a)=\sum_{i=1}^{n} \beta_{i} \varphi_{\omega}\left(c_{i}, \kappa_{i}\right)(\omega(x))$. Then f_{ω} is compatible with p_{ω}. In order to see this, we can assume without loss of generality that $\omega(a)$ is contained in $E_{\omega}(\iota, \kappa)$ for some ι in I, κ in K. Suppose $\omega(\alpha)=\beta \varphi_{\omega}(\iota, \kappa)(\omega(x))$. If $\beta>0$, then $p_{\omega}(\omega(a))=\beta \omega\left(\sigma_{\iota}\right)$ and so $f_{\omega}(\omega(a))=\beta \omega(x) \leqq p_{\omega}(\omega(a))$. If $\beta=0$, then $p_{\omega}(\omega(\alpha))=f_{\omega}(\omega(a))=0$. If $\beta<0$, then $p_{\omega}(\omega(a))=-\beta \omega\left(\tau_{k}\right)$ and so $f_{\omega}(\omega(\alpha))=(-\beta)$ $(-\omega(x)) \leqq(-\beta)\left(-\omega\left(\tau_{\kappa}\right)\right)=p_{\omega}(\omega(a))$. Hence f_{ω} is compatible with p_{ω}. Since $f_{\omega}(\omega(a))=0$ for $\omega(a)$ in $\omega\left(E_{1}\right)$, we have $\omega(p(a))=p_{\omega}(\omega(a)) \geqq 0$ for a in E_{1} because of the compatibility of f_{ω} with p_{ω}. This is the case when $\omega(x) \neq 0$. If $\omega(x)$ $=0$, we see that $\omega\left(\sigma_{\imath}\right) \geqq 0 \geqq \omega\left(\tau_{\kappa}\right)$ and, for any $a=\sum_{i=1}^{n} \sigma_{i} \varphi\left(\iota_{i}, \kappa_{i}\right)(x) \in E$, we have $\omega(p(a))=\omega\left(\sum_{i=1}^{n}\left(\left(\sigma_{i}\right)_{+} \sigma_{\iota_{i}}-\left(\sigma_{i}\right)_{-} \tau_{\kappa_{i}}\right)\right) \geqq 0$. We have thus shown that $p(a) \geqq 0$ for all. a in E_{1}.

We then see that the zero functional, say, f_{1} of E_{1} is compatible with p. According to the validity of Theorem B, f_{1} can be extended to a linear mapping, say, f of E into N_{0} compatible with p. Denote then by σ the image of $\varphi(\iota, \kappa)(x)$ due to f, which is independent of the choice of indices ι, κ. It is. easy to see that σ is the GLB in question. This completes the proof.
4. Connection between the Theorem of L. Nachbin-D. B. Goodner and Theorem of M. Nakai. We say that a normed linear space E_{0} has the extension property of L. Nachbin if, for any normed linear space E over R and for any subspace E_{1} of E, every linear functional f_{1} of E_{1} into E_{0}, whose norm is less than 1 , has a linear extension on the whole space E into E_{0}, whose norm is also less than 1 . We also say that the space N_{0} of real-valued continuous functions on a compact Hausdorff space has the extension property of M. Nakai if, for any linear space E over N_{0} with a cap p and for any N_{0}-subspace E_{1} of E, every linear mapping f_{1} of E_{1} into N_{0} compatible with p has a linear extension on the whole space E into N_{0} compatible with p.

We first prove the following

Proposition 1: Let Ω be a compact Hausdorff space and N_{0} be the space of real-valued continuous functions on Ω. If N_{0} has the extension property of L. Nachbin, considered as a normed linear space with the usual supremum norm, then it has the extension property of M. Nakai.

Proof: Let E be a linear space over N_{0} with a cap p and let E_{1} be its N_{0}-subspace. Suppose f_{1} is a linear mapping of E_{1} into N_{0} compatible with p. Consider the N-space constructed from the direct sum N of N_{0} and E as in the proof of Theorem B. The spaces E and N_{0} then can be regarded as parts of this N-space. As such, the mapping f_{1} can be extended as an N-linear mapping F_{1} from the N_{0}-subspace N_{1} of N generated by E_{1} and N_{0}, and it is compatible with the cap \tilde{p} of N defined by $\tilde{p}(\sigma+a)=\sigma+p(a)(a \in E)$ as is in the proof of Theorem B.

The norm of an element σ in N_{0} being noted as $\|\sigma\|$, write $\|a\|$ $=\operatorname{Max}(\|\tilde{p}(a)\|,\|\tilde{p}(-a)\|)$ for a in N. It is easy to see that $\|a\|$ has the properties of a pseudo-norm: (1) $\|a\| \geqq 0$ for a in N, (2) $\|\beta a\|=|\beta|\|a\|$ for β in R and a in N, and (3) $\|a+b\| \leqq\|a\|+\|b\|$ for a, b in N. Let M be the linear subspace over R of N consisting of the elements a such that $\|a\|=0$, and denote by \tilde{a} the image of the element a of N under the natural homomorphism of N onto the quotient space $\tilde{N}=N / M$. The space \tilde{N} is obviously a normed linear space. Let \tilde{N}_{1} be the subspace of \tilde{N}, image of N_{1} under the homomorphism $N \rightarrow \tilde{N}$.

Now, because F_{1} is compatible with p, we have $-\tilde{p}(-a) \leqq F_{1}(a) \leqq \tilde{p}(a)$ for a in N_{1}, so that $\left\|F_{1}(a)\right\| \leqq\|a\|$. This inequality permits us to define a mapping $\widetilde{F}_{1}(\widetilde{a})$ from \tilde{N}_{1} into N_{0} by setting $\widetilde{F}_{1}(\widetilde{a})=F_{1}(a)$ (naturally \widetilde{a} is the image of a), and this satisfies $\left\|\widetilde{F}_{1}(\widetilde{a})\right\| \leqq\|\widetilde{a}\|$. Now by the extension property of L. Nachbin, which we have assumed true for N_{0}, a linear mapping \widetilde{F} from \tilde{N} into N_{0} exists which extends \widetilde{F}_{1} and satisfies $\|\widetilde{F}(\widetilde{a})\| \leqq\|\tilde{a}\|$ for any \widetilde{a} in \tilde{N}.

Put then $f(a)=\tilde{F}(\widetilde{a})$ for a in E. It remains to show that $f(a) \leqq p(a)$ for any a in E. But, if we put $b=p(a)-a, b \geqq 0$ by the definition of the quasiordering in N, and $f(a) \leqq p(a)$ is equivalent to $\widetilde{F}(\tilde{b}) \geqq 0$ since $\tilde{F}(\tilde{b})=p(a)-f(a)$. Let $\alpha=2\|a\|$, then $\quad\|\alpha-\tilde{b}\|=\operatorname{Max}(\|\tilde{p}(a-p(a)+\alpha)\|,\|\tilde{p}(-a+p(a)-\alpha)\|)$ $\leqq \operatorname{Max}(\alpha,\|\alpha-(p(a)+p(-\alpha))\|) \leqq \alpha$, and so $\|\alpha-\widetilde{F}(\widetilde{b})\|=\|\widetilde{F}(\alpha-\tilde{b})\| \leqq\|\alpha-\tilde{b}\| \leqq \alpha$, which shows exactly that $\hat{F}(\tilde{B}) \geqq 0$.

As L. Nachbin [8] and D. B. Goodner [2] have shown, the Banach space of continuous functions on a Stonian space has the extension property of L . Nachbin, so the theorem of M. Nakai (our Theorem B) is a consequence of their results by the proposition just shown. We show conversely that the theorem of L. Nachbin and D. B. Goodner follows from the theorem of M. Nakai, so that these two theorems are completely equivalent.

Theorem (B) (L. Nachbin and D. B. Goodner): The space of real-valued
continuous functions on a Stonian space has the extension property of L. Nachbin.
Proof: Let Ω be a Stonian space and N_{0} be the set of real-valued continuous functions on Ω. Let E be a normed linear space over R and let E_{1} be its linear subspace. Suppose f_{1} is a linear mapping of E_{1} into N_{0} such that $\left\|f_{1}(a)\right\| \leqq\|a\|$ for a in E_{1}. It must be shown that f_{1} has a linear extension f of E into N_{0} such that $\|f(a)\| \leqq\|a\|$ for a in E. Denote by E_{Ω} the set of all symbols ($a_{\iota}, e_{0 \imath} ; \iota \in I$), where ($e_{0 \imath} ; \iota \in I$) is an orthogonal set of nonzero projections in N_{0}, whose LUB (the least upper bound) is 1 , and ($a_{\imath} ; \iota \in I$) is a uniformly bounded set of elements in E. We introduce an equivalence relation in E_{Ω} as follows: $a=\left(a_{\imath}, e_{0 \imath} ; \iota \in I\right)$ and $b=\left(b_{\kappa}, e_{0 \tau} ; \kappa \in K\right)$ are equivalent if $a_{\iota}=b_{\kappa}$ whenever $e_{0} e_{0 \kappa} \neq 0$. For simplicity, we do not introduce a new notation to show the equivalence class, but let it represent by one of the elements belonging to the class. We define the addition $a+b$ of a and b in E_{Ω}, scalar multiplication αa of a in E_{Ω} by α in R, and norm $\|a\|$ of a in E_{Ω} by $a+b=\left(a_{\imath}+b_{\kappa}, e_{0 \iota} e_{0 r} ; e_{0 \iota} e_{0 \kappa} \neq 0, \iota \in I, \kappa \in K\right), \alpha a=\left(\alpha a_{\iota}, e_{0 t} ; \iota \in I\right)$, and $\|a\|$ $=\sup \left(\left\|a_{\imath}\right\| ; \iota \in I\right)$, respectively, where $a=\left(a_{\iota}, e_{0 \imath} ; \iota \in I\right)$ and $b=\left(b_{\kappa}, e_{0 \kappa} ; \kappa \in K\right)$. It is easy to see that these are well defined and E_{Ω} constitutes a normed linear space over R. For a in $E,(a, 1)$ is an element of E_{Ω} and the mapping: $a \rightarrow(a, 1)$ gives an isometric isomorphism of E into E_{Ω}, and it will be convenient in what follows that we identify a with $(a, 1)$. Denote by $\overline{E_{\Omega}}$ the completion of E_{Ω}. If $\left\{a_{n}\right\}$ is a Cauchy sequence of elements in E_{Ω} and if e_{0} is a projection in N_{0}, then $\left\{e_{0} a_{n}\right\}$ is also a Cauchy sequence of elements in E_{Ω}, where, for a projection e_{0}, and for $a=\left(a_{1}, e_{0 c} ; \iota \in I\right)$, we define $e_{0} a$ as follows. Put $I_{1}=$ the set of indices ι in I such that $e_{0} e_{04} \neq 0$, and let, for such c, $e_{01}{ }^{\prime}=e_{0} e_{0 .}$. Put I_{1}^{0} the set I_{1} augmented by one index 0 , and let $a_{0}=0, e_{00}{ }^{\prime}$ $=1-e_{0}$. Then $e_{0} a=\left(a_{\iota}, e_{0}{ }^{\prime} ; \iota \in I_{1}^{0}\right)$. We define $e_{0}\left(\lim a_{n}\right)$ by $\lim e_{0} a_{n}$. Denote by ($e_{0, \alpha}(\sigma) ;-\infty<\alpha<\infty$) the resolution of identity associated with an element σ in N_{0}. Then, for σ in N_{0} and for a in $\overline{E_{\Omega}}$, we define σa by $\int_{-\infty}^{\infty} \alpha d\left(e_{0, \alpha}(\sigma) a\right)$. (This integral converges in norm.) It is easy to see that $\overline{E_{\Omega}}$ constitutes a linear space over N_{0}. Since $\left\|e_{0} a\right\| \leqq\|a\|$ for a projection e_{0} in N_{0} and for a in $\overline{E_{\Omega}}$, we can conclude that $\|\sigma a\| \leqq\|\sigma\|\|a\|$ for σ in N_{0} and a in $\overline{E_{\Omega}}$.

For ω in Ω, set $\|a\|_{\omega}=\inf \left(\left\|e_{0} a\right\| ; e_{0} \in E_{0}(\omega)\right)$. It is easy to see that the function: $\omega \rightarrow\|a\|_{\omega}$ is semi-continuous. Hence, by a theorem of Baire and Hausdorff, we can find a continuous function on Ω, which is almost equal to this semi-continuous function. Denote it by $p(a)$. It is not hard to see that p is a cap of $\overline{E_{\Omega}}$. Moreover, we notice that $p(a)=\|a\|$ for a in E.

Let $\left(E_{1}\right)_{\Omega}$ be the set of elements $a=\left(a_{\imath}, e_{0 c} ; \iota \in I\right)$ in E_{Ω} such that $a_{\iota} \in E_{1}$ for any $\iota \in I$. If we define $f_{1}(a)$ for $a=\left(a_{\imath}, e_{0} ; \iota \in I\right)$ in $\left(E_{1}\right)_{\Omega}$ by $f_{1}(a)$
$=\oplus\left(f_{1}\left(a_{\imath}\right) e_{0 c} ; \iota \in I\right)$ where the right side denotes the element in N_{0} uniquely defined to be equal to $f_{1}\left(a_{\imath}\right)$ in ($\omega ; \omega\left(e_{0 c}\right)=1, \omega \in \Omega$) for any ι, we have $\left\|f_{1}(a)\right\|$ $\leqq\|a\|$, and f_{1} can be extended as a linear functional on the closure $\overline{\left(E_{1}\right)_{\Omega}}$. As wehave considered at the end of the last paragraph, we can introduce a N_{0} linear structure in $\overline{\left(E_{1}\right) \Omega}$ and it will be easy to observe that f_{1} is actually a N_{0}-linear functional. The relation $\left\|f_{1}(a)\right\| \leqq\|a\|$ which is true for any a in $\overline{\left(E_{1}\right) \Omega}$ implies $\left\|\omega\left(f_{1}(a)\right)\right\| \leqq\|a\|_{\omega}$ for any ω in Ω, thus we see that $\left\|f_{1}(a)\right\| \leqq p(a)$. Theorem B now asserts that there exists a linear extension f of $\overline{E_{\Omega}}$ into N_{o} compatible with p. Then the restriction of f on E will be the linear extension in question as is easily seen. This completes the proof.

§ 2. Banach Algebras Over \boldsymbol{R}_{0}.

1. Definitions. Let Ω be a compact Hausdorff space. Denote by R_{0} the set of complex-valued continuous functions on Ω. In a usual way R_{0} constitutes a commutative Banach algebra over the field of complex numbers C.

We introduce some definitions and state some lemmas.
Definition 2.1: A normed algebra A over C is called a normed algebra over R_{0} if it has R_{0} as an operator domain and the following are satisfied: $(\sigma \tau) a=\sigma(\tau a),(\sigma+\tau) a=\sigma a+\tau a, \sigma(a b)=(\sigma a) b=a(\sigma b), 1 a=a,\|\sigma a\| \leqq\|\sigma\|\|a\|$ for σ, τ in R_{0}, a, b in A, where 1 is the function on Ω taking values identically equal to 1 .

Definition 2.2: An element e in a normed algebra over R_{0} is called an R_{0}-unit if it is a unit and if it satisfies the condition: $\|\sigma e\|=\|\sigma\|\|e\|$ for σ in R_{0}.

It is easy to see that any normed algebra over R_{0} can be extended to a normed algebra over R_{0} with an R_{0}-unit. From now on throughout this section, however, we are concerned only with normed algebras over R_{0} with an R_{0}-unit and denote it by e.

Definition 2.3: A normed algebra over R_{0} is called a Banach algebra over R_{0} if it is complete.

It is easy to see that the completion of a normed algebra over R_{0} becomes. a Banach algebra over R_{0}.

Let A be a Banach algebra over R_{0}. Denote by N_{0} the set of real-valued continuous functions on Ω and by E_{0} the set of those functions e_{0} in N_{0}. which satisfies the condition: (a) $0 \leqq e_{0} \leqq 1$ and (b) the set $\gamma\left(e_{0}\right)$ of inner points of ($\omega ; \omega\left(e_{0}\right)=1, \omega \in \Omega$) is non-empty.

Definition 2.4: A left (right) ideal I of a Banach algebra A over R_{0} is said to be proper if $\sigma e \in I$ for some σ in R_{0} implies $\sigma=0$.

Lemma 2.1: The closure of a proper left ideal I of a Banach algebra A
over R_{0} is also proper.
Proof: Suppose the contrary. Then there exist a non-zero element σ in R_{0} and an element a in I such that $\|\sigma e-a\|<1 / 2$. We can assume without loss of generality that σ is in N_{0} and $\|\sigma\|=1$. Then there exists an element e_{0} in E_{0} such that $\left\|(\sigma-1) e_{0} e\right\|<1 / 2$. From these inequalities it follows that $\left\|e_{0}(e-a)\right\|<1$. Hence $e-e_{0}(e-a)$ has an inverse in A. Denote it by b. Moreover we can find an element $e_{0}{ }^{\prime}$ in E_{0} such that $e_{0}{ }^{\prime} e_{0}=e_{0}{ }^{\prime}$. Then we get $\left(e_{0}{ }^{\prime} e_{0} b\right) e_{0} a=e_{0}{ }^{\prime} b\left(e-e_{0}(e-a)-\left(1-e_{0}\right) e\right)=e_{0}{ }^{\prime} e$. This means that $e_{0}{ }^{\prime} e$ is contained in I. This contradicts the assumption that I is proper. Hence the closure of I must be proper. This completes the proof.

For ω in Ω, denote by $E_{0}(\omega)$ the set of elements $e_{0}(\omega)$ in E_{0} such that the set $\gamma\left(e_{0}(\omega)\right)$ of inner points of $\left(\rho ; \rho\left(e_{0}(\omega)\right)=1, \rho \in \Omega\right)$ contains ω. Set $\|a\|_{\omega}$ $=\inf \left(\left\|e_{0}(\omega) a\right\| ; e_{0}(\omega) \in E_{0}(\omega)\right)$ for a in A and $(0)^{\omega}=\left(a ;\|a\|_{\omega}=0, a \in A\right)$. Then $(0)^{\omega}$ constitutes a closed ideal of A. Denote by the same ω the natural homomorphism of A onto $A /(0)^{\omega}$. Then $A /(0)^{\omega}$ constitutes a Banach algebra over C with norm defined by $\|\omega(a)\|=\|a\|_{\omega}$ for a in A. Denote it by A_{ω} and call it the local Banach algebra of A with respect to ω.

Lemma 2.2: It holds that $\|\omega(\sigma a)\|=|\omega(\sigma)|\|\omega(a)\|$ for σ in R_{0} and a in A.
Proof: It is easy to see that $(\sigma-\omega(\sigma)) a \in(0)^{\omega}$. Hence we get $\|\omega(\sigma a)\|$ $=\|\omega(\omega(\sigma) a)\|=\|\omega(\sigma) \omega(a)\|=|\omega(\sigma)|\|\omega(a)\|$. This completes the proof.

Lemma 2.3: A left ideal I of a Banach algebra A over R_{0} is proper if and only if $\omega(I)$ is proper in A_{ω} for almost all points ω in Ω.

Proof: Necessity: Suppose $\omega(I)$ is not proper in A_{ω} for some point ω in Ω. Then there exists an element a in I such that $\omega(\alpha)=\omega(e)$, that is, $\left\|e_{0}(e-a)\right\|<1$ for some element e_{0} in $E_{0}(\omega)$. Hence we can find an element b in A such that $b\left(e-e_{0}(e-a)\right)=e$ and an element $e_{0}{ }^{\prime}$ in E_{0} such that $e_{0}{ }^{\prime} e_{0}=e_{0}{ }^{\prime}$. Then we get $e_{0}{ }^{\prime} b a=e_{0}{ }^{\prime} e$ as in the proof of Lemma 2.1. This means that I is not proper. Thus we have proved that, if I is proper, then $\omega(I)$ is proper in A_{ω} for any point ω in Ω. This result contains the assertion.

Sufficiency: Suppose I is not proper. Then there exists a non-zero element σ in R_{0} such that $\sigma e \in I$. Since $\sigma \neq 0$, we can find an element e_{0} in E_{0} such that $\omega(\sigma) \neq 0$ for ω in $\gamma\left(e_{0}\right)$. Since $\sigma e \in I$, we get $\omega(\sigma) \omega(e)=\omega(\sigma e) \in \omega(I)$ and so $\omega(e) \in \omega(I)$. This means that $\omega(I)$ is not proper in A_{ω} for ω in $\gamma\left(e_{0}\right)$. Hence the set of points ω, for which $\omega(I)$ is not proper in A_{ω}, is not of first category. This completes the proof.

Definition 2.5: An element σ in R_{0} is called a left (right) R_{0}-spectrum of an element a in a Banach algebra A over R_{0} if the left (right) ideal of A generated by $a-\sigma e$ is proper.

Combining Definition 2.5 with Lemma 2.3 we have the following
Lemma 2.4: An element σ in R_{0} is a left R_{0}-spectrum of an element a in
a Banach algebra A over R_{0} if and only if $\left.\omega^{\prime} \sigma\right)$ is a left spectrum of $\omega(a)$ in A_{ω} for almost all points ω in Ω.

Definition 2.6: A left (right) ideal I of a Banach algebra A over R_{0} is said to be properly maximal if it is proper and if there is no proper left (right) ideal of A containing I except for I itself.

The proof of the following lemma is easy and will be omitted.
Lemma 2.5: Given any proper left ideal I of a Banach algebra A over R_{0}, there exists at least one properly maximal left ideal of A containing I.

Definition 2.7: A Banach algebra A over R_{0} is said to be left-sidedly (right-sidedly) simple if it has no left (right) proper ideal of A except for the zero ideal (0). A Banach algebra over R_{0} is said to be one-sidedly simple if it is left-sidedly simple or right-sidedly simple.

As an immediate consequence of Lemma 2.4, we have the following
Lemma 2.6: Let σ be a left R_{0}-spectrum of an element a in a Banach algebra A over R_{0} and let $P(t)=\sigma_{0}+\sigma_{1} t+\cdots+\sigma_{n} t^{n}$ be a polynomial of t with $\sigma_{i} \in R_{0}(0 \leqq i \leqq n)$. We set $P(\sigma)=\sigma_{0}+\sigma_{1} \sigma+\cdots+\sigma_{n} \sigma^{n}$ for σ in R_{0} and $P(\alpha)=\sigma_{0} e$ $+\sigma_{1} a+\cdots+\sigma_{n} a^{n}$ for a in A. Then

1) $\|\sigma\| \leqq\|a\|$ and
2) $P(\sigma)$ is a left R_{0}-spectrum of $P(a)$.

Definition 2.8: An element σ in R_{0} is called a mixed R_{0}-spectrum of an element a in a Banach algebra A over R_{0} if $\omega(\sigma)$ is a left or right spectrum of $\omega(a)$ in A_{ω} for almost all points ω in Ω.

Definition 2.9: For an element a in a Banach algebra A over R_{0}, we set $\|a\|_{\infty}=\lim \left\|a^{n}\right\|^{1 / n}$ and $\|a\|_{0}=\sup \left(\|\sigma\| ; \sigma\right.$ being a mixed R_{0}-spectrum of $\left.a\right)$. (If there is no mixed R_{0}-spectrum of a, we set $\|a\|_{0}=0$. We shall see in Corollary 2 of Theorem C that there exists at least one mixed R_{0}-spectrum for any element in a Banach algebra over R_{0} if Ω is Stonian.)

It is known that $\lim \left\|a^{n}\right\|^{1 / n}$ exists, but we shall give an alternative proof of this fact in the next section (Theorem C).

Definition 2.10: A Banach algebra A over R_{0} is called a B^{*}-algebra over R_{0} if it is a B^{*}-algebra in complex scalar case and if it satisfies the condition: $(\sigma a)^{*}=\sigma^{*} a^{*}$ for σ in R_{0} and for a in A, where σ^{*} is the function in R_{0} whose value at $\omega \in \Omega$ is the complex conjugate $\omega(\sigma)$ of $\omega(\sigma)$.

Suppose A is a B^{*}-algebra over R_{0}. Since (0) ${ }^{\omega}$ for ω in Ω turns out a closed two-sided ideal, it is self-adjoint, and so the local Banach algebra A_{ω} of A with respect to ω constitutes a B^{*}-algebra over C by using a result of I. Kaplansky [6, Theorem 7.3]. We call it the local B^{*}-algebra of A with respect to ω.

Definition 2.11: A Banach algebra A over R_{0} is said to be regular if $\omega(a)=0$ for almost all points ω in Ω implies $a=0$.
2. Stonian Case. In this section, we assume that Ω is a Stonian space. Denote by E_{0} the set of projections in N_{0} and by $E_{0}(\omega)$ for ω in the set Ω of those projections $e_{0}(\omega)$ in E_{0} which satisfies the condition: $\omega\left(e_{0}(\omega)\right)=1$ (as in $2, \S 1$). Then one sees easily that we may replace the E_{0} used in Section 1 in defining (0$)^{\omega},\|a\|_{\omega}$, and A_{ω} by the E_{0} here mentioned.

Let A be a Banach algebra over R_{0}. Since the function: $\omega \rightarrow\|a\|_{\omega}$ of Ω into $B(\Omega)$ (the space of real-valued bounded functions on Ω) is upper semicontinuous, it is equal to a uniquely determined continuous function on Ω outside a certain first category set in Ω by a theorem of Baire and Hausdorff. Denote it by $|a|$. Then the mapping $|\cdot|$ of A into $\left(N_{0}\right)_{+}$satisfies the following conditions: (a) $|a| \geqq 0$ for a in A, $(b)|\sigma a|=|\sigma||a|$ for σ in R_{0} and a in $A,(c)|a+b| \leqq|a|+|b|$ for a, b in A, and (d) $\omega(|a|)=\|\omega(a)\|$ for almost all ω in Ω, where we denote by $|\sigma|$ the continuous function on Ω, whose value at ω is equal to $|\omega(\sigma)|$ for ω in Ω. The mapping $|\cdot|$ having the properties (a)-(d) is uniquely determined. We shall call it the pseudo R_{0}-norm of A. Moreover, a pseudo R_{0}-norm is called an R_{0}-norm if it satisfies the further condition: ($\left.a^{\prime}\right)|a|=0$ for a in A implies $a=0$. If A is a B^{*}-algebra over R_{0}, the pseudo R_{0}-norm satisfies the condition: (e) $\left|a^{*} a\right|=|a|^{2}$ for a in A. In fact, if A is a B^{*}-algebra over R_{0}, A_{ω} is a B^{*}-algebra for any ω in Ω, and so $\left\|\omega\left(a^{*} a\right)\right\|=\|\omega(a)\|^{2}$ for ω in Ω and a in A. This implies that $\left|a^{*} a\right|=|a|^{2}$ for all a in A.

Definition 2.12: For an element a of a Banach algebra A over R_{0}, we set $|a|_{\infty}=$ order-lim $\left|a^{n}\right|^{1 / n}$ and $|a|_{0}=\operatorname{LUB}\left(|\sigma|\right.$; being a mixed R_{0}-spectrum of a), where by LUB we mean the least upper bound.

We show that order-lim $\left|a^{n}\right|^{1 / n}$ exists. In fact, for almost all ω in Ω,
 $\left.\overline{\lim }\left|a^{n}\right|^{1 / n}\right)=\overline{\lim }\left\|\omega\left(a^{n}\right)\right\|^{1 / n}$. Since $\lim \left\|\omega\left(a^{n}\right)\right\|^{1 / n}=\overline{\lim }\left\|\omega\left(a^{n}\right)\right\|^{1 / n}$ for all ω in Ω, we get ω (order-lim $\left.\left|a^{n}\right|^{1 / n}\right)=\omega\left(\right.$ order- $\left.\overline{\lim }\left|a^{n}\right|^{1 / n}\right)$ for almost all ω in Ω. This implies that order-lim $\left|a^{n}\right|^{1 / n}=$ order-lim $\left|a^{n}\right|^{1 / n}$. Hence we can conclude that order-lim $\left|a^{n}\right|^{1 / n}$ exists.

The proof of the following lemma goes through like in Lemma 2.1 and will be omitted.

Lemma 2.7: Suppose A is a Banach algebra over R_{0}. If a scalar t_{0} is not a left spectrum of $\omega(\alpha)(\alpha \in A)$ in A_{ω} for some ω in Ω, then there exist a neighbourhood U at t_{0} in the complex plane and a projection e_{0} in $E_{0}(\omega)$ such that $e_{0}(t e-a)$ has a left inverse in $e_{0} A$ for any t in U.

Let A be a regular Banach algebra over R_{0}. It is easy to see that the pseudo R_{0}-norm of A becomes an R_{0}-norm.

Lemma 2.8: An element a in a regular Banach algebra A over R_{0} is contained in $R_{0} e$ if and only if $\omega(a)$ is contained in $\omega\left(R_{0} e\right)$ for any ω in Ω.

Proof: The necessity is obvious, so we need only to see the sufficiency. Since $\omega(a)$ is in $\omega\left(R_{0} e\right)$ for ω in Ω, we can find a complex number β_{ω} such that $\omega(a)=\beta_{\omega} \omega(e)$. Hence, given a natural number n, there exists a projection $e_{0}(\omega)$ in $E_{0}(\omega)$ such that $\left|e_{0}(\omega)\left(a-\beta_{\omega} e\right)\right|<1 / n$, i. e. $\left|e_{0}(\omega)\left(\alpha-\beta_{\omega} e\right)\right| \leqq(1 / n) e_{0}(\omega)$. Associate $e_{0}(\omega)$ and β_{ω} with ω in Ω. Since Ω is Stonian, it is compact and so it contains a finite number of points $\omega_{1}, \cdots, \omega_{m}$ such that $\Omega=\cup\left(\gamma\left(e_{0}\left(\omega_{i}\right)\right)\right.$; $1 \leqq i \leqq m$). Moreover, we can find an orthogonal set of projections $e_{0}^{(1)}, \cdots$, $e_{0}^{(m)}$ in E_{0} such that $e_{0}^{(i)} \leqq e_{0}\left(\omega_{i}\right)(1 \leqq i \leqq m)$ and such that $\oplus\left(e_{0}^{(i)} ; 1 \leqq i \leqq m\right)$ $=1$. Since $e_{0}^{(i)} \leqq e_{0}\left(\omega_{i}\right)(1 \leqq i \leqq m)$, we have $\left|e_{0}^{(i)}\left(a-\beta_{\omega_{i}} e\right)\right| \leqq(1 / n) e_{0}^{(i)}(1 \leqq i \leqq m)$. Summing up these inequalities, we get $\left|a-\tau_{n} e\right| \leqq 1 / n$, where $\tau_{n}=\sum_{i=1}^{n} \beta_{\omega_{i}} e_{0}^{(i)}$. Hence $\left\{\tau_{n}\right\}$ is a uniform Cauchy sequence of elements in R_{0} and so there is a uniform limit, say, τ in R_{0}. Hence there exists a natural number $n_{0}(\geqq n)$ such that $\left|\tau e-\tau_{n 0} e\right| \leqq 1 / n$ and so $|a-\tau e| \leqq 2 / n$. By making $n \rightarrow \infty$, we get $|a-\tau e|=0$. Since A is regular, this implies that $a=\tau e$. This completes the proof.

We are now in a position to prove the following generalization of the spectral radius theorem of I. Gelfand [1, Satz 8'].

Theorem C: It holds that $\|a\|_{\infty}=\|a\|_{0}$ for any element a in a Banach algebra A over R_{0}.

Remark: The local interpretation of the theorems C, D corresponds to the theorem of I. Gelfand and the theorem of M. Mazur and I. Gelfand, and their proofs given below are the translation of those which the author gave earlier in Japanese [12]. C. E. Rickart [13] has obtained a similar proof independently.

Proof of Theorem C: Local Proof: We first give an alternative proof of the theorem of I. Gelfand by making no use of the theory of function of a complex variable as a frame work of S. Kametani [4]. Suppose A is a Banach algebra over the field C of complex numbers with an identity e. We know that, if an element a in A has a left inverse and right inverse, then they are unique and equal to each other. Hence a complex number is a (left or right) spectrum of a if and only if it is a spectrum of a in a closed, commutative subalgebra of A containing a. Therefore, we can assume without loss of generality that A is commutative.

First, we see that $\|a\|_{0} \leqq \underline{\lim \left\|a^{n}\right\|^{1 / n} \text {. Indeed, if } \underline{\lim \|}\left\|a^{n}\right\|^{1 / n}<|t|^{-1} \text { for a }{ }^{\text {a }} \text {. }}$ scalar t, then there exists a natural number n such that $\left\|a^{n}\right\|^{1 / n}<|t|^{-1}$. Hence the series $t \sum_{m=0}^{\infty}(t a)^{m}=t\left(\sum_{m=0}^{n-1}(t a)^{m}\right)\left(\sum_{k=0}^{\infty}(t a)^{n k}\right)$ is convergent and its limit is equal to the inverse of $t^{-1} e-a$. This shows that t is never a spectrum of a and the assertion follows.

In order to see that $\overline{\lim \left\|a^{n}\right\|^{1 / n} \leqq\|a\|_{0} \text {, suppose the contrary. Set } \psi(t), ~(t)}$
$=(e-t a)^{-1}$. This function is defined and continuous on $\left(t ;\|a\|_{0}<|t|^{-1}\right)$. We then use the following Lagrange's formula:

$$
\begin{equation*}
(1 / n) \sum_{i=1}^{n}\left(t \zeta_{i}\right)^{-k} \psi\left(t \zeta_{i}\right)=a^{k}\left(e-t^{n} a^{n}\right)^{-1} \tag{1}
\end{equation*}
$$

for $0 \leqq k \leqq n$ and $\|a\|_{0}<|t|^{-1}$, where ζ_{i} 's $(1 \leqq i \leqq n)$ are the n-th roots of 1 . From the elementary theory of the Riemann integral of continuous functions it follows that the left-hand side of the above formula (1) has a limit as $n \rightarrow \infty$ and hence

$$
\begin{equation*}
(1 / 2 \pi) \int_{0}^{2 \pi}(t \zeta)^{-k} \psi(t \zeta) d \theta=a^{k} c(t), \tag{2}
\end{equation*}
$$

where $\zeta=e^{\sqrt{-1}}, 0 \leqq \theta \leqq 2 \pi$ and $c(t)=\lim \left(e-t^{n} a^{n}\right)^{-1}$. By making $k=0$, we can see the existence of $c(t)$. Since $\psi(t)$ is continuous with respect to the complex variable $t, c(t)$ is continuous on ($t ;\|a\|_{0}<|t|^{-1}$) with respect to the real variable t. Moreover, one sees easily that

$$
\begin{equation*}
c(t)=e \quad \text { if } \quad \underline{\lim }\left\|a^{n}\right\|^{1 / n}<|t|^{-1} . \tag{3}
\end{equation*}
$$

Therefore, we can select two numbers t, t_{1} such that $\|a\|_{0}<|t|^{-1}<\left|t_{1}\right|^{-1}$ $<\varlimsup$ im $\left\|a^{n}\right\|^{1 / n}$ and that $c(t)$ has an inverse. Multiplying t_{1}^{k} to both sides in (2), we get

$$
\begin{equation*}
(1 / 2 \pi) \int_{0}^{2 \pi} t_{1}^{k}(t \zeta)^{-k} \psi(t \zeta) d \theta=t_{1}^{k} a^{k} c(t) \tag{4}
\end{equation*}
$$

Since $\left(t_{1} t^{-1}\right)^{k} \rightarrow 0$ as $k \rightarrow \infty$, we have $\left(t_{1} a\right)^{k} c(t) \rightarrow 0$ as $k \rightarrow \infty$, and, by multiplying $c(t)^{-1}$, we get $\left(t_{1} a\right)^{k} \rightarrow 0$ as $k \rightarrow \infty$. This implies that $\lim \left\|a^{n}\right\|^{1 / n} \leqq\left|t_{1}\right|^{-1}$, which is a contradiction. Hence we must have $\overline{\lim }\left\|a^{n}\right\|^{1 / n} \leqq\|a\|_{0}$, which shows, combining with the other inequality already obtained, the validity of the assertion.

Global Proof: Return now to the general case. Let A be a Banach algebra over R_{0} and a an arbitrary (but fixed) element in A. We can assume without loss of generality that A is commutative by the same reason as in the local proof.

First we see that

$$
\begin{equation*}
\omega\left(|a|_{\infty}\right)=\|\omega(a)\|_{\infty} \text { for } \omega \text { in } \Omega . \tag{5}
\end{equation*}
$$

In defining $|a|_{\infty}$ we used the fact that $\lim \left\|\omega\left(a^{n}\right)\right\|^{1 / n}$ exists. As this now has been established, the use of $|a|_{\infty}$ is legitimate. Suppose for a point ω in Ω, we have $\omega\left(|a|_{\infty}\right)<\|\omega(a)\|_{\infty}$. Take a complex number t such that $\omega\left(|a|_{\infty}\right)$ $<|t|<\|\omega(a)\|_{\infty}$. Then there exists a projection e_{0} in $E_{0}(\omega)$ such that $\left|e_{0} a\right|_{\infty}$ $=e_{0}|a|_{\infty}<|t|$. Hence a natural number n and a projection e_{0}^{\prime} in $E_{0}(\omega)$ can be found such that $\left|\left(e_{0}^{\prime} a\right)^{n}\right|^{1 / n}<|t|$, which implies that, for $|t|<\left|t^{\prime}\right|, e_{0}{ }^{\prime}\left(t^{\prime-1} e-a\right)$ has an inverse in $e_{0}^{\prime} A$ by a similar argument as in the proof of the fact that
$\|a\|_{0} \leqq \lim \left\|a^{n}\right\|^{1 / n}$ in the local proof. From this it follows that, for $|t|<\left|t^{\prime}\right|$, $\omega\left(t^{\prime-1} e-a\right)$ has an inverse in A_{ω}, and we have $\|\omega(a)\|_{\infty} \leqq|t|$. This contradicts the choice of t. Thus we get $\|\omega(a)\|_{\infty} \leqq \omega\left(|a|_{\infty}\right)$.

On the contrary, suppose $\|\omega(a)\|_{\infty}<\omega\left(|a|_{\infty}\right)$. Take a real number t such that $\|\omega(a)\|_{\infty}<t<\omega\left(|a|_{\infty}\right)$. Then there exists a natural number n such that $\left\|\omega\left(a^{n}\right)\right\|^{1 / n}<t$ and so we can take a projection e_{0} in $E_{0}(\omega)$ such that $\left|\left(e_{0} a\right)^{n}\right|^{1 / n}$ $<t$, i. e. $\left|\left(t^{-1} e_{0} a\right)^{n}\right|<1$. Hence $\left|\left(t^{-1} e_{0} a\right)^{n k}\right|<1$ for all natural number k and so $\left|\left(t^{-1} e_{0} a\right)^{n k}\right|^{1 /(n k)}<1$. By making $k \rightarrow \infty$, we get $\left|e_{0} a\right|_{\infty} \leqq t$, that is, $\omega\left(|a|_{\infty}\right) \leqq t$. This is a contradiction. Thus we get $\|\omega(a)\|_{\infty}=\omega\left(|a|_{\infty}\right)$.

Further we have

$$
\begin{equation*}
\|a\|_{\infty}=\left\||a|_{\infty}\right\| . \tag{6}
\end{equation*}
$$

In fact, for a projection e_{0} in $E_{0}(\omega)$, we have $\left\|e_{0} a\right\| \leqq\|a\|$ and so $\|\omega(a)\| \leqq\|a\|$. for (an arbitrary) a in A and ω in Ω. Hence we get $\|\omega(a)\|_{\infty} \leqq\|a\|_{\infty}$; namely, $\left\||a|_{\infty}\right\| \leqq\|a\|_{\infty}$ by (5). On the other hand, any character of A, that is to say, a homomorphism of A onto C, is naturally considered as a character of A_{ω} for some ω in Ω and therefore, by making use of a theorem of S. Mazur and I. Gelfand [1, Satz 3] or the local part of Theorem D (which follows from the local part of Theorem C and the latter was shown to hold), we get $\|a\|_{\infty} \leqq \sup \left(\|\omega(a)\|_{\infty} ; \omega \in \Omega\right)=\left\||a|_{\infty}\right\|$. This completes the proof of (6).

Moreover, we have

$$
\begin{equation*}
\|a\|_{0}=\left\||a|_{0}\right\| . \tag{7}
\end{equation*}
$$

In fact, for an R_{0}-spectrum σ of $a,\|\sigma\| \leqq\|a\|_{0}$ and so $|\sigma| \leqq\|a\|_{0}$; namely, $\left\||a|_{0}\right\| \leqq\|a\|_{0}$. On the other hand, $|\sigma| \leqq|a|_{0}$ and so $\|\sigma\| \leqq\left\||a|_{0}\right\|$; namely, $\|a\|_{0}=\left\||a|_{0}\right\|$. Thus we get (7).

In view of (6) and (7), in order to show Theorem C, it remains only to see that

$$
\begin{equation*}
|a|_{0}=|a|_{\infty} . \tag{8}
\end{equation*}
$$

It is not hard to see that

$$
\begin{equation*}
|a|_{0} \leqq|a|_{\infty} . \tag{9}
\end{equation*}
$$

In fact, due to Lemma 2.4, for an R_{0}-spectrum σ of $a, \omega(\sigma)$ is a spectrum of $\omega(a)$ in A_{ω} for almost all points ω in Ω and so we have from (5) $|\omega(\sigma)| \leqq \omega\left(|a|_{\infty}\right)$ for almost all ω in Ω; namely, $|\sigma| \leqq|a|_{\infty}$. This implies that $|a|_{0} \leqq|a|_{\infty}$.

We see that
(10) if A is a commutative B^{*}-algebra over R_{0}, then (8) holds.

Suppose A is a commutative B^{*}-algebra over R_{0}. Since $\left|a^{*} a\right|=|a|^{2}$, we have $|a|_{\infty}=|a|$. The element $\left|a^{*} a\right|$ in R_{0} is an R_{0}-spectrum of $a^{*} a$, because $\omega\left(\left|a^{*} a\right|\right)\left(=\left\|\omega\left(a^{*} a\right)\right\|_{\infty}\right)$ is a spectrum of $\omega\left(a^{*} a\right)$ for any point ω in Ω. Hence,
in view of (9), we have $\left|a^{*} a\right|_{0}=\left|a^{*} a\right|$. In order to see (10), it remains only to see that $\left|a^{*} a\right|_{0}=|a|_{0}^{2}$.

Take an arbitrary R_{0}-spectrum σ of $a^{*} a$. By Lemma 2.5, there exists a properly maximal ideal (say, J) of A containing $a^{*} a-\sigma e$. Since J is closed by Lemma 2 $1, J$ is self-adjoint. Hence A / J constitutes a simple B^{*}-algebra over R_{0}. Denote by - the natural homomorphism of A onto A / J. For a nonnegative hermitian element \bar{h} in $A / J,|\bar{h}|$ is an R_{0}-spectrum of h. Since A / J is simple, we get $\bar{h}=|\bar{h}| \bar{e}$. Any element in A / J is expressed as a linear combination of non-negative hermitian elements in A / J and therefore, it is contained in $R_{0} \bar{e}$; especially $\bar{a}=\tau \bar{e}$, say. Then $\bar{a}^{*} \bar{a}=\tau^{*} \tau \bar{e}$ and so $\sigma=\tau^{*} \tau$. Since $a-\tau e \in J, \tau$ is an R_{0}-spectrum of a in A. Hence we get $|\sigma|=\tau^{*} \tau \leqq|a|_{0}^{2}$. By making $|\sigma| \uparrow\left|a^{*} a\right|_{0}$, we get $\left|a^{*} a\right|_{0} \leqq|a|_{0}^{2}$. A similar argument shows the other inequality and we reach the assertion (10).

We return again to the case that A is a commutative Banach algebra over R_{0}. Denote by Γ the set of characters of A considered as an algebra over C. Then Γ constitutes a compact Hausdorff space with the usual Stone topology. The algebra A is homomorphic into the B^{*}-algebra $C(\Gamma)$ of com-plex-valued continuous functions on Γ. Denote the homomorphism by ϕ. Since $R_{0} e$ is isomorphic onto R_{0}, any character γ of $R_{0} e$ satisfies the condition: $\gamma\left(\sigma^{*} e\right)=\overline{\gamma(\sigma e)}$ for σ in R_{0}. Hence we have $\gamma\left(\sigma^{*} e\right)=\overline{r(\sigma e)}$ for σ in R_{0} and γ in Γ, and so $\phi\left(\sigma^{*} e\right)=\phi(\sigma e)^{*}$ for σ in R_{0}. We set $\sigma x=\phi(\sigma e) x$ for σ in R_{0} and x in $C(\Gamma)$. Then we have $(\sigma x)^{*}=(\phi(\sigma e) x)^{*}=\phi(\sigma e)^{*} x^{*}=\phi\left(\sigma^{*} e\right) x^{*}=\sigma^{*} x^{*}$ for σ in R_{0}. and x in $C(\Gamma)$, where x^{*} is the function in $C(\Gamma)$ such that $r\left(x^{*}\right)=\overline{\gamma(x)}$ for γ in Γ. Hence, with this scalar multiplication, $C(\Gamma)$ constitutes a B^{*}-algebra over R_{0}. We have from the remark (10)

$$
\begin{equation*}
|\phi(a)|_{0}=|\phi(a)|_{\infty} . \tag{11}
\end{equation*}
$$

Since the set of characters of A_{ω} for ω in Ω coincides with the set of characters of $\omega(\phi(A))$ as a subset of Γ, we have $\|\omega(a)\|_{\infty}=\|\omega(\phi(\alpha))\|_{\infty}$. In view of (5), thus, we get

$$
\begin{equation*}
|a|_{\infty}=|\phi(a)|_{\infty} . \tag{12}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
|a|_{0} \geqq|\phi(a)|_{0} . \tag{13}
\end{equation*}
$$

In fact, an R_{0}-spectrum σ of $\phi(a)$ in $C(\Gamma)$ is also an R_{0}-spectrum of a in A and so $|\phi(a)|_{0} \leqq|a|_{0}$.

In view of (9) and (11)-(13), we can conclude that $|a|_{0}=|a|_{\infty}$. This shows. (9) and completes the proof.

Corollary 1: It holds that $|a|_{0}=|a|_{\infty}$ for any element a in a Banach algebra over R_{0}.

Corollary 2: There exists at least one mixed R_{0}-spectrum of an element in a Banach algebra over R_{0}.

Proof: Local Proof: Let A be a Banach algebra over C and a be an element in A. If $\|a\|_{\infty} \neq 0$, we have from Theorem $\mathrm{C}\|a\|_{0}=\|a\|_{\infty} \neq 0$. This means that there exists a non-zero mixed spectrum of a. Suppose next $\|a\|_{\infty}$ $=0$. Then 0 is the only possible mixed spectrum of a. If 0 is not a mixed spectrum of a, then a has an inverse b in A such that $a b=b a=e$. Since b commutes with a, we must have $1=\|e\|_{\infty} \leqq\|a\|_{\infty}\|b\|_{\infty}=0$. This is a contradiction. Hence 0 is a mixed spectrum of a if $\|a\|_{\infty}=0$.

Global Proof: Let A is a Banach algebra over R_{0} and a be an element in A. By the same reason as in the local proof, a has a non-zero mixed R_{0} spectrum if $\|a\|_{\infty} \neq 0$. Hence we assume that $\|a\|_{\infty}=0$. Then $\|\omega(a)\|_{\infty}=0$ for almost all ω in Ω. We have seen that 0 is a mixed spectrum of $\omega(a)$ if $\|\omega(a)\|_{\infty}=0$. Hence, by the definition of mixed R_{0}-spectrum, 0 is a mixed R_{0}-spectrum of a for this case. This completes the proof.

As a consequence of Theorem C , we shall prove the following generalization of a theorem of S. Mazur and I. Gelfand [1, Satz 3].

Theorem D: Every one-sidedly simple Banach algebra over R_{0} is isomorphic onto R_{0}.

Proof: Let A be a left-sidedly simple Banach algebra over R_{0} and a be an element in A. It must be shown that $a \in R_{0} e$. By Corollary 2 of Theorem C , there exists a mixed R_{0}-spectrum σ of a. By taking a - σe instead of a, we can assume that a has 0 as one of its mixed R_{0}-spectrums.

If there exists no non-zero projection e_{0} in E_{0} such that $e_{0} a$ has a left inverse in $e_{0} A$, Lemma 2.7 shows that $\omega(0)$ is a left spectrum of $\omega(a)$ for all ω in Ω, and so 0 is a left R_{0}-spectrum of a. Hence the left ideal I of A generated by a is proper. Since A is left-sidedly simple, we must have $I=0$ and so $a=0$.

In the rest of the proof, we shall show that there exists actually no nonzero projection e_{0} in E_{0} such that $e_{0} a$ has a left inverse in $e_{0} A$. Suppose the contrary. Then there exists a non-zero projection e_{0} in E_{0} such that $e_{0} a$ has a left inverse b in $e_{0} A$. Since 0 is a mixed R_{0}-spectrum of $e_{0} a$, and since $e_{0} a$ has a left inverse in $e_{0} A, 0$ is a right R_{0}-spectrum of $e_{0} a$, and so 0 is a right R_{0}-spectrum of $e_{0}{ }^{\prime} a$ for any projection $e_{0}{ }^{\prime}$ in $e_{0} A$. On the other hand, since $b e_{0} a=e_{0}$, we have ($\left.e_{0} a b\right) a=e_{0} a \neq 0$, and so $e_{0} a b \neq 0$. Hence, by the left-sided simplicity of A, we can conclude that there exists at least one point ω in Ω such that $\omega\left(e_{0} a b\right)$ has a left inverse in A_{ω}. Therefore, by Lemma 2.7, there exists a non-zero projection $e_{0}{ }^{\prime}$ in $e_{0} A$ such that $e_{0}{ }^{\prime} a b$ has a left inverse c in $e_{0}{ }^{\prime} A$. Since $\left(e_{0}{ }^{\prime} a b\right)^{2}=e_{0}{ }^{\prime} a b$, multiplying c from the left, we get $e_{0}{ }^{\prime} a b=e_{0}{ }^{\prime}$. This implies that 0 is not a R_{0}-spectrum of $e_{0}^{\prime} a$. This is a contradiction. Hence
such a case does not occur. This completes the proof.
3. Converse Theorems. In connection with Theorem C and D , we shall state and prove the following

Theorem $C^{\prime}: \Omega$ is Stonian if Theorem C holds for any Banach algebra over R_{0}.

Proof: Suppose ($\sigma_{\iota} ; \iota \in I$) be a bounded below family of elements in N_{0}. It must be shown that under the validity of Theorem C, the GLB of this family exists in N_{0}. Denote by $D(\Omega)(B(\Omega))$ the set of complex-valued (realvalued) bounded functions on Ω. Then $D(\Omega)$ constitutes a commutative B^{*-} algebra over R_{0}. Denote by x the GLB of the family in $B(\Omega)$ and by A the closed subalgebra of $D(\Omega)$ generated by x and R_{0}. Then A constitutes a $B^{*}-$ algebra over R_{0}. Since A is a commutative B^{*}-algebra over R_{0}, it holds that $\|x\|_{\infty}=\|x\|$. Hence there exists an R_{0}-spectrum, say, σ of x in A due to the hypothesis that Theorem C holds.

We shall see that σ is the GLB in question. In fact, for each c in I, being $x \leqq \sigma_{\iota}$, we have $\left\|\sigma_{\iota}-x-\right\| \sigma_{\iota}-x\| \| \leqq\left\|\sigma_{\iota}-x\right\|$. Combining this with Lemma 2.6, we get $\left\|\sigma_{\imath}-\sigma-\right\| \sigma_{\iota}-x\| \| \leqq\left\|\sigma_{\iota}-x\right\|$. This implies that $\sigma_{\imath}-\sigma \geqq 0$, that is, $\sigma \leqq \sigma_{\iota}$. On the other hand, for τ in R_{0} with $\tau \leqq \sigma_{\iota}$ for each ι in I, we have $\tau \leqq x$ and the above method can be applied for this case to get $\tau \leqq \sigma$. This shows that σ is the GLB of the family in question. This completes the proof.

Theorem $\mathrm{D}^{\prime}: \Omega$ is Stonian if Theorem D holds for any one-sidedly simple Banach algebra over R_{0}.

Proof: We use the same notations ($\sigma_{\imath} ; \iota \in I$), $D(\Omega), x$, and A as in the proof of Theorem C^{\prime}. It must be shown that, under the validity of Theorem D, the GLB of ($\sigma_{i} ; \iota \in I$) exists in N_{0}. In view of Lemm 2.5 , there exists a properly maximal ideal J of A. Since J is closed, it is self-adjoint and so A / J constitutes a simple B^{*}-algebra over R_{0}. By use of the validity of Theorem $\mathrm{D}, A / J$ is isomorphic onto R_{0}. Denote by φ the homomorphism of A onto R_{0} via A / J and by σ the image of x according to φ.

We shall see that σ is the GLB in question. In fact, for c in I, being $x \leqq \sigma_{\imath}$, it holds that $\left\|\sigma_{\iota}-x-\right\| \sigma_{\imath}-x\| \| \leqq\left\|\sigma_{\imath}-x\right\|$. Applying φ to the inequality, we get $\left\|\sigma_{\imath}-\sigma-\right\| \sigma_{\imath}-x\| \| \leqq\left\|\sigma_{\iota}-x\right\|$. This implies that $\sigma_{\imath}-\sigma \geqq 0$, that is, $\sigma \leqq \sigma_{\iota}$. The same argument leads us to show that, if τ satisfies $\tau \leqq \sigma_{\iota}$ for all ι in I, or $\tau \leqq x$, it holds that $\tau \leqq \sigma$. This shows that σ is the GLB in question. This completes the proof.

Department of Engineering Mathematics
Nagoya University

References

[1] I. Gelfand, Normierte Ringe, Mat. Sbornik, 9 (1941), 3-24.
[2] D. B. Goodner, Projections in normed linear spaces, Trans. Amer. Math. Soc., 69 (1950), 89-108.
[3] M. Hasumi, The extension property of complex Banach spaces, Tôhoku Math. J., 10 (1958), 135-142.
[4] S. Kametani, An elementary proof of the fundamental theorem of normed fields, J. Math. Soc. Japan, 4 (1952), 96-99.
[5] I. Kaplansky, Modules over operator algebras, Amer. Math. J., 6 (1953), 839-858.
[6] I. Kaplansky, Normed algebras, Duke Math. J., 16 (1949), 399-418.
[7] J. L. Kelley, Banach spaces with the extension property, Trans. Amer. Math. Soc., 72 (1952), 323-326.
[8] L. Nachbin, A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc., 68 (1950), 28-46.
[9] M. Nakai, Some expectations in AW*-algebras, Proc. Japan Acad., 34 (1958), 411-416.
[10] T. Ono, Local theory of rings of operators I, J. Math. Soc. Japan, 10 (1958), 184-216.
[11] T. Ono, Local theory of rings of operators II, J. Math. Soc. Japan, 10 (1958), 438-458.
[12] T. Ono, An elementary proof of the fundamental theorem of normed rings, Sugaku, 9 (1958), p. 236 (Japanese).
[13] C. E. Rickart, An elementary proof of a fundamental theorem in the theory of Banach algebras, Mich. Math. J., 5 (1958), 75-78.
[14] H. Widom, Embedding in algebras of type I, Duke Math. J., 22 (1956), 309-324.

[^0]: * This is the author's thesis at the University of California, Berkeley.

