
J. Math. Soc. Japan
Vol. 15, No. 3, 1963

On the field of moduli of an abelian variety
with complex multiplication

Dedicated to Professor Y. Akizuki on his sixtieth birthday

by Koji DOI

(Received Sept. 20, 1962)

The theory of complex multiplication of abelian varieties has been estab-
lished by A. Weil, G. Shimura, and Y. Taniyama ([3], to be referred as
[CM]). The main parts of them, $i$ . $e$ . the so-called construction of class-fields
are concerned with simple abelian varieties (primitive CM-type). Naturally
as the next step the extension of the theory to the case of composite
varieties should be considered.

Along this line we shall begin with a very simple case, assuming the
variety to be a direct product $B_{1}\times\cdots\times B_{h}$ of simple abelian varieties $B_{i}$ of
the same CM-type. The result of this note consists in Main Theorem of \S 4
and Corollary to it. Our result implies the

THEOREM. The field of moduli of the product $B_{1}\times\cdots\times B_{h}$ (with respect
to any polarization) is contained in the class-field obtained from the field of
moduli of the factor $B$ .

This means that we can not get any different class-field to that of primi-
tive CM-type from such product.

I would like to express my heartfelt gratitude to Prof. Shimura for his
kind guidance and criticism during the preparation of this note.

We shall use the same notations and terminologies as in [CM].

\S 1. Let $(K;\{\varphi_{i}\})$ be a primitive CM-type and $[K;Q]=2n$ . We shall con-
sider a couple $(A, \theta)$ formed by an abelian variety $A$ defined over $C$ and an
isomorphism $\theta$ of $K$ into $A_{0}(A)$ . Let $h$ be a positive integer. We say that
$(A, \theta)$ is of type $(K;\{\varphi_{i}\};h)$ if the following two conditions are satisfied.

(A1) $\dim A=nh$ .
(A 2) For any element $\alpha\in K$, the analytic representation of $\theta(\alpha)$ (cf.

[CM; \S 3.2.]) is equivalent to the diagonal matrix whose diagonal elements
are exactly $h$ times $\alpha^{\varphi_{1}}$ , $\cdot$ .. , $\alpha^{\varphi_{n}}$. If $(A, \theta)$ is of type $(K;\{\varphi_{i}\} ; 1)$ then $(A, \theta)$ is
of type $(K;\{\varphi_{i}\})$ in the sense of [CM, \S 5.2]. Therefore we put $(K;\{\varphi_{i}\} ; 1)$

$=(K;\{\varphi_{i}\})$ .
PROPOSITION 1. If $(A, \theta)$ is of type $(K;\{\varphi_{i}\};h)$ , then $A$ is isogenous to a



238 K. DOI

product $B\times\cdots\times B$ of $h$ copies of $B$ , where $B$ is a simple abelian variety of
type $(K;\{\varphi_{i}\})$, and there exists an isomorphism $\psi$ of $1\psi_{h}(K)(=t/\iota e$ total matric
algebra of degree $h$ over $K$) onto $d_{0}(A)$ such that $\psi(\alpha 1_{h})=\theta(\alpha)$ for every $\alpha\in K$,

where $1_{h}$ denotes the identity element of $M_{h}(K)$ .
PROOF. The first assertion can be proved in the same way as in [CM,

\S 5.1 and \S 6.1]. Recall that $B$ is simple and $\mathcal{A}_{0}(B)$ is isomorphic to $K$ if $B$ is
of type $(K;\{\varphi_{i}\})$, since $(K;\{\varphi_{i}\})$ is primitive. Then the second assertion fol-
lows easily from the first assertion.

Generally, let $A$ be an abelian variety defined over $C$. Then we can find
a complex torus $C^{n}/D$ and an analytic isomorphism $\tau$ of $A$ onto $C^{n}/D$ . We
call the pair $(C^{n}/D, \tau)$ an analytic coordinate system of $A$ (cf. [CM; \S 3.1]).
Let $(A, \theta)$ be of type $(K;\{\varphi_{i}\})$ . Put

$\mathfrak{r}=\theta^{-1}[A(A)\cap\theta(K_{\vee})]$ .
Take an analytic coordinate system $(C^{n}/D, \tau)$ of $A$ and denote by $S$ the ana-
lytic representation of $d_{0}(A)$ with respect to $\tau$ . Then, we have

$S(\theta(\alpha))D\subset D$ ,

for every element $\alpha$ in $\mathfrak{r}$ . Hence $D$ is considered as an r-module.
We shall use the following well-known property in the theory of algebraic

number fields.
LEMMA. Let $F$ be an algebraic number field and $\mathfrak{o}$ be the ring of integers

in F. Let $\mathfrak{M}$ be a finitely generated o-module without torsion. Then

$\mathfrak{M}\cong \mathfrak{a}_{1}\oplus\cdots\oplus \mathfrak{a}_{n}\cong \mathfrak{o}\oplus\cdots\oplus 0\oplus \mathfrak{a}_{1}\cdots 0_{n}$

where $\mathfrak{a}_{i}$ are ideals of $0$ . Moreover, in these representations of $\mathfrak{M}$, the number
$n$ and the ideal class of an ideal $\mathfrak{a}_{1}\cdots \mathfrak{a}_{n}$ are uniquely determined by M.

For the proof of this lemma, we refer to a more general treatment [1 ;
Theorem 2].

By the constructive proof of [CM; Theorem 2 of \S 6.1 and Theorem 3
of \S 6.2] and the above lemma, we can get the following proposition imme-
diately, applying Theorem 2 with the $\mathfrak{M}$ of that theorem taken as each of
the above direct summands of our $\mathfrak{M}$ in turn.

PROPOSITION 2. Let the notations and assumptions be the same as in Prop-
osition 1. If $\theta^{-1}[\theta(K)\cap^{d(A)]}$ coincides with the ring of integers in $K,$ $A$ is
isomorphic to a product $B_{1}\times\cdots\times B_{h}$ , where the $B_{i}$ are simple abelian varieties
of the same type $(K;\{\varphi_{i}\})$ . Moreover, we can take the $B_{i}$ in such a way that
the $B_{i}$ for $1\leqq i\leqq h-1$ are isomorphic to each other.

REMARK. We remark that the abelian varieties $B_{1},$ $B_{h}$ in Proposition 2 are
principal [cf. CM; \S 7.2 and \S 7.4]. Hence, by [CM; Proposition 17 of \S 7.4],
there are exactly $h_{0}$ (the number of ideal classes in $K$) abelian varieties such



The field of moduli of an abelian variety 239

as $A$ in Proposition 2, which are not isomorphic to each other.
\S 2. In view of [CM; Proposition 26 of \S 12.4], we assume that abelian

varieties which we shall consider in the following treatment, are defined over
an algebraic number field.

PROPOSITION 3. Let $(K^{*} ; \{\psi_{\alpha}\})$ be the dual of a primitive CM-type $(K;\{\varphi_{i}\})$

and $(B, f)$ be a simpte abelian variety of type $(K;\{\varphi_{i}\})$ . Let $C$ be a polarization

of $B$ and $k_{0}$ be the field of moduli of $(B, C)$ . Then we have

$k_{0}K^{*}=the$ field of moduli of $(B, C, \iota)$ .
PROOF. Let $k$ be an algebraic number field of finite degree satisfying

the following conditions [CM; \S 15]:
i) $k$ is normal over $K^{*};$

ii) $B$ is defined over $k$ ;
iii) for every automorphism $\sigma$ of $k$ over $K^{*}$ , all the elements of $\ovalbox{\tt\small REJECT}(B, B^{\sigma})$

are defined over $k$ ;
iv) $C$ contains a basic polar divisor $Y$ rational over $k$ . Then the field $k$

contains the field of moduli of $(B, C, f)$ and also $k\supset k_{0}K^{*}$ . Let $\tau$ be an isomor-
phism of $k$ onto a field $k^{\prime}$ , which leaves invariant the elements of the field
of moduli of $(B, C, \ell)$ . Then, by [2; Proposition 5], $(B, C, f)$ is isomorphic to
$(B^{\tau}, C^{\tau}, f^{\prime}),$ $i$ . $e$ . there exists an isomorphism $\eta$ of $B$ onto $B^{\tau}$ such that

$\eta^{-1}(Y^{\tau})\in C$

and
$\eta\circ f(a)=\ell^{\tau}(a)\circ\eta$

for every element $a\in \mathfrak{r}$ , where $\mathfrak{r}=f^{-1}(\subset\Lambda(B))$ . Remarking that $K=Qr$ , we
know that $\tau$ fixes every element of $K^{*}$ and also of $k_{0}$ by an essential prop-
erty of fields of definition of $(B, c)$ [cf. CM; Proposition 31 of \S 8.5].

Conversely, let $\sigma$ be an isomorphism of $k$ which leaves invariant the ele-
ments of $k_{0}K^{*}$ . Then we can easily see that $(B, C, \ell)$ is isomorphic to $(B^{\sigma}, C^{\sigma}, \ell^{\sigma})$

by the definition of $k_{0}$ and [CM; Proposition 1 of \S 14.1]. Hence $\sigma$ fixes every
element of the field of moduli of $(B, C, f)$ . This completes the proof.

\S 3. Let $(B_{1}, f_{1})$ and $(B_{2}, c_{2})$ be two abelian varieties which are principal
and of the same primitive CM-type $(K;\{\varphi_{i}\})$ . Then, by [CM; Proposition 16
of \S 7.4.], there exists an isogeny $\mu$ of $B_{1}$ onto $B_{2}$ such that $(B_{2’ 2}f ; \mu)$ is an
a-transform of $(B_{1}, f_{1})$ for an integral ideal $\mathfrak{a}$ of $K$. Let $\lambda$ be a homomorphism
of $B_{2}$ onto $B_{1}$ such that

$\lambda\circ\mu=a\circ\delta_{B_{1}}$ ,

where $a$ is a positive integer. Let $C_{1}$ be a polarization of $B_{1}$ and $X$ be a
divisor in $C_{1}$ . Put $C_{2}=C(\lambda^{-1}(X))$ . Put

$\mathscr{L}_{1}=(B_{1}, C_{1}, \ell_{1})$, $9_{2}=(B_{2}, C_{2’ 2}f)$ .
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Then it is easy to see that $\mu$ is a homomorphism of $9_{1}^{)}$ onto $9_{2}$ and $\lambda$ is a
homomorphism of $9_{2}^{)}$ onto $q_{1}^{)}$ . Let $k_{0}$ be the field of moduli of $(B_{1}, C_{1})$ and
$(K^{*} ; \{\psi_{\alpha}\})$ be the dual of $(K;\{\varphi_{i}\})$ .

PROPOSITION 4. Notations being as above, if $\sigma$ is an automorphism of the
algebraic closure of $Q$ , which is the identity on $k_{0}K^{*}$ , then there exists an iso-
morphism of $\mathscr{Z}_{1}$ onto $\Psi_{1}$ . Moreover, for every isomorphism $\eta_{1}$ of $9_{1}$ onto $\Psi_{1}$ ,

there exists an isomorphism $\eta_{2}$ of $9_{2}$ onto $9_{2}^{\sigma}$ such that

$\eta_{1}\circ\lambda=\lambda^{\sigma}\circ\eta_{2}$ , $\eta_{2}\circ\mu=\mu^{\sigma}\circ\eta_{1}$ .
PROOF. By the same proof of [CM; Proposition 14 of \S 17.1], we can

easily verify the existence of isomorphism $\eta_{2}$ .
\S 4. Now we shall apply these preliminaries to our abelian variety

$A=B_{1}\times\cdots\times B_{h}$ (as in Proposition 2), where each simple abelian variety
$(B_{i}, \ell_{i})$ is principal and of the same primitive CM-type $(K;\{\varphi_{i}\})$ . Let $\rho_{i}$ be
the projection of $A$ onto the i-th factor $B_{i}$ and $\rho\int$ the injection of $B_{i}$ into $A$ .
For every element $\beta$ of $d_{0}(A)$ , put $\beta_{ij}=\rho_{i}\circ\beta\circ\rho_{j}^{\prime}$ . Then $\beta_{rj}\in\ovalbox{\tt\small REJECT}_{0}(B_{j}, B_{i})$ and
$\beta$ is uniquely determined by the $\beta_{ij}$ . Therefore we write

$\beta=(\beta_{ij})=\left(\begin{array}{lll}\beta_{11} & \cdots & \beta_{1h}\\\cdots & \cdots & \cdots\\\beta & \cdots & \beta\end{array}\right)$ .

Now we can find easily (cf. CM \S 14.1 Proposition 1 to construct $\lambda_{ij}$ satisfy-
ing i)-iii)) a system $\{\lambda_{ij} ; 1\leqq i\leqq h, 1\leqq j\leqq h\}$ with the following properties:

i) for every $i$ and $j,$ $\lambda_{ij}$ is an element of $\ovalbox{\tt\small REJECT}_{0}(B_{j}, B_{i})$ .
ii) $\lambda_{ij}\circ\ell_{j}(\alpha)=\iota_{i}(\alpha)\circ\lambda_{ij}$ for every $\alpha\in K$ ;
iii) $\lambda_{ij}\circ\lambda_{jk}=\lambda_{ik}$ .

It is easy to see that $\lambda_{ii}$ is the identity element of $d_{0}(B_{i})$ . Fix such a system
$\{\lambda_{ij}\}$ and define a mapping $\theta_{0}$ of the total matric ring $M_{h}(K)$ of degree $h$ over
$K$ to $d_{0}(A)$ by

$\theta_{0}((\alpha_{ij}))=(\lambda_{ij}\circ\ell_{j}(\alpha_{ij}))$

for every $(\alpha_{ij})\in M_{h}(K)$ . We can easily verify that $\theta_{0}$ is an isomorphism of
$M_{h}(K)$ onto $d_{0}(A)$ by the proof of [CM \S 14.1 Proposition 1]. Further, if we
denote by $\theta$ the restriction of $\theta_{0}$ to $K$, then $(A, \theta)$ is of type $(K;\{\varphi_{i}\} ; h)$ .

MAIN THEOREM. Let $(K^{*} ; \{\psi_{\alpha}\})$ be the dual of a primitive CM-type
$(K;\{\varphi_{i}\})$ . Let $(A, \theta_{1})$ be of type $(K;\{\varphi_{i}\};h)$ and 9 a polarization of A. Sup-
pose that $\theta_{1}^{-1}[\theta_{1}(K)\cap Lfl(A)]$ is the ring of all integers in K. Let $\theta$ be an iso-
morphism of $M_{h}(K)$ onto $d_{0}(A)$ whose restriction to $K$ coincides with $\theta_{1}$ (cf.
Proposition 1). Let further $(B, t)$ be a simple abelian variety of type $(K;\{\varphi_{i}\})$

and $C$ be a polarization of B. Denote by $k_{0}$ the field of moduli of $(B, C)$ . Then
we have
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$k_{0}K^{*}=the$ field of moduli of $(A, \mathscr{D}, \theta)$ .
PROOF. We first prove that the field of moduli of $(A, 9, \theta)$ is independent

of the choice of a polarization 9 of $A$ . Let 9, $\mathscr{D}^{\prime}$ be two polarizations of $A$

and $X,$ $X^{\prime}$ be non-degenerate divisors in 9 and 9’, respectively. Let $\sigma$ be an
automorphism of the algebraic closure of $Q$ , which is the identity on the field
of moduli of $(A, 9, \theta)$ . Then, there exists an isomorphism $\eta$ of $(A, 9, \theta)$ onto
$(A^{\sigma}, 9^{\sigma}, \theta^{\sigma})$ . We shall show that $\eta$ is also an isomorphism of $(A, 9^{\prime}, \theta)$ onto
$(A^{\sigma}, 9^{J\sigma}, \theta^{\sigma})$ . Now define, as usual, the isogeny $\varphi_{X}$ of $A$ onto $\hat{A}(=the$ Picard
variety of $A$) by the relation $\varphi_{X}(u)=Cl(X_{u}-X)$, for $u\in A$ . As $\varphi_{X}^{-1}\circ\varphi_{X^{l}}\in d_{0}(A)$,

there exists an element $\alpha\in M_{h}(K)$ such that

$\varphi_{X}^{-1}\circ\varphi_{X^{\prime}}=\theta(\alpha)$ .
Then we have $\varphi_{X^{\prime}}=\varphi_{X^{O}}\theta(\alpha)$ and $\varphi_{X}^{\sigma},$ $=\varphi_{X}^{\sigma}\circ\theta^{\sigma}(\alpha)$ . As $\eta^{-1}(X^{\sigma})\in 9$ , there exist
positive integers $m$ and $n$ such that $m\cdot{}^{t}\eta\circ\varphi_{x^{\sigma}}\circ\eta=n\varphi_{X}$ . Multiplying this by
$\theta(\alpha)$, we get, on account of the relation $\eta\circ\theta(\alpha)=\theta^{\sigma}(\alpha)\circ\eta,$ $m\cdot{}^{t}\eta\circ\varphi_{X^{J}}^{\sigma}\circ\eta=n\varphi_{X^{\prime}}$ .
Hence we have

$\eta^{-1}(X^{\gamma_{\sigma}})\in 9^{\prime}$ .
This implies that $\sigma$ is the identity on the field of moduli of $(A, 9^{\prime}, \theta)$ . Re-
peating the same arguments to the field of moduli of $(A, 9^{\prime}, \theta)$ , we see that
the field of moduli of $(A, 9‘, \theta)$ is equal to that of $(A, 9, \theta)$ .

Now by Proposition 2, $A$ is expressed in the form

$A=B_{1}\times\cdots\times B_{h}$

and we can find an isomorphism $c_{j}$ of $K$ onto $d_{0}(B_{j})$ such that $(B_{j}, \ell_{j})$ is of
type $(Kj\{\varphi_{i}\})$ for each $j$ . Further, the $(B_{j}, c_{j})$ are principal. Define an iso-
morphism $\theta_{0}$ of $M_{h}(K)$ onto $d_{0}(A)$ using these $(B_{j}, \ell_{j})$ and a system $\{\lambda_{ij}\}$ as
above. We see easily that $\theta^{-1}\circ\theta_{0}$ gives an automorphism of $M_{h}(K)$ onto
itself. Restricting this to $K$, we get an automorphism $\gamma$ of $K$. Then we
have $\theta_{0}(\alpha)=\theta(\alpha^{\gamma})$ for every $\alpha\in K$. As both $(A, \theta)$ and $(A, \theta_{0})$ belong to
$(K;\{\varphi_{i}\};h),$ $\{\gamma\varphi_{1}, \cdots, \gamma\varphi_{n}\}$ must coincide with $\{\varphi_{1}, \cdots, \varphi_{n}\}$ as a whole. Then $\gamma$

must be the identity mapping of $K$, since $(K;\{\varphi_{i}\})$ is primitive [CM; \S 8.2,
Proposition 26]. It follows that $\theta^{-1}\circ\theta_{0}(\alpha)=\alpha$ for every $\alpha\in K$. Therefore
$\theta^{-1}\circ\theta_{0}$ is an inner automorphism of $M_{h}(K)$ . Namely, there exists an element
$\xi$ of $M_{h}(K)$ such that $\theta(\alpha)=\theta_{0}(\xi\alpha\xi^{-1})$ for every $\alpha\in M_{h}(K)$ . Using this fact,
we can easily verify that the fields of moduli of $(A, 9, \theta)$ and $(A, 9, \theta_{0})$ are
the same. Therefore, it is sufficient to show that

$k_{0}K^{*}=the$ field of moduli of $(A, 9, \theta_{0})$

for a certain polarization 9 of $A$ . For every $i$ and $j$ take a positive integer
$a_{ij}$ such that $a_{ij}\circ\lambda_{ij}\in\ovalbox{\tt\small REJECT}(B_{j}, B_{i})$ . Put then $f1_{ij}=a_{ij}\circ\lambda_{ij}$ . Let $c_{1}$ be a polari-
zation of $B_{1}$ and $X_{1}$ be a divisor in $C_{1}$ . For every $i>1$ , call $C_{i}$ the polariza-
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tion of $B_{i}$ containing $\mu_{1i}^{-1}(X_{1})$ . Then it is easy to see that $\mu_{ij}$ is a homomor-
phism of $(B_{j}, C_{j’ j}f)$ onto $(B_{i}, C_{i}, \ell_{i})$ . By Proposition 3, $k_{0}K^{*}$ is the field of
moduli of $(B_{i}, C_{i}, \ell_{i})$ for every $i$ . Let $\sigma$ be an automorphism of the algebraic
closure of $Q$ which is the identity on $k_{0}K^{*}$ . Then there exists an isomor-
phism $\eta_{1}$ of $(B_{1}, C_{1}, \ell_{1})$ onto $(B_{1}^{\sigma}, C_{1}^{\sigma}, \ell_{1}^{\sigma})$ . By Proposition 4, for each $i>1$ , we
get an isomorphism $\eta_{i}$ of $(B_{i}, C_{i}, c_{i})$ onto $(B_{i}^{\sigma}, C_{i}^{\sigma}, \ell_{i}^{\sigma})$ such that $\eta_{i}\circ l\ell_{i1}=g\ell_{i1}^{\sigma}\circ\eta_{1}$ .
Then, by the properties $\lambda_{ij}\circ\lambda_{jk}=\lambda_{ik}$ and $\lambda_{ij}=a_{ij}^{-1}\mu_{ij}$ , we see that $\eta_{i}\circ\lambda_{ij}=\lambda_{ij}^{\sigma}\circ\eta_{j}$

for every $i$ and $j$ . Let 9 be the polarization of $A$ containing the divisor

$\sum_{i=1}^{h}B_{1}\times\cdots\times B_{i-1}\times X_{i}\times B_{i+1}\times\cdots\times B_{h}$ ,

where $X_{i}$ is a divisor in $c_{i}$ for each $i$ . Let $\eta=$ $(\eta_{1}$ , $\cdot$ .. $\eta_{h})$ be an isomorphism
of $A$ onto $A$ whose restriction to $B_{i}$ is $\eta_{i}$ for every $i$ . Then, by the definition
of $\theta_{0}$ and 9, we can easily see that $\eta$ is an isomorphism of $(A, 9, \theta_{0})$ onto
$(A^{\sigma}, 9^{\sigma}, \theta_{0}^{\sigma})$ . Hence $\sigma$ is the identity on the field of moduli of $(A, 9, \theta_{0})$ .

Conversely, let $\sigma$ be an automorphism of the algebraic closure of $Q$ which
is the identity on the field of moduli of $(A, 9, \theta_{0})$ . Then there exists an iso-
morphism $\eta$ of $(A, 9, \theta_{0})$ onto $(A^{\sigma}, 9^{\sigma}, \theta_{0}^{\sigma})$ . Put

$\eta=\left(\begin{array}{lll}\eta_{11}, & \cdots & \eta_{1h}\\\cdots & \cdots & \cdots\\\eta_{h1} & \cdots & \eta_{hh}\end{array}\right)$ ,

where $\eta_{ij}$ is a homomorphism of $B_{j}$ to $B_{i}$ . By the definition, $\eta$ satisfies the
relation

$\eta\circ\theta_{0}(a)=\theta_{0}^{\sigma}(a)\circ\eta$

for any $\theta_{0}(a)\in \mathcal{A}(A)$ . Let $(x)=(x_{1}$ , $\cdot$ .. , $x_{h})$ be a generic point of $A$ , then

$\eta(x)=(\eta_{11}(x_{1})+ +\eta_{1h}(x_{h}), \cdots, \eta_{h1}(x_{1})+ +\eta_{hh}(x_{h}))$ .
As a special case, if we take

$\theta_{0}(a)=\left(\begin{array}{lll}0, & \cdots & \nu_{1h}\\0, & \cdots & 0\\\cdots & \cdots & \cdots\\ 0, & \cdots & 0\end{array}\right)$ ,

where $\nu_{1h}$ is an isogeny of $B_{h}$ to $B_{1}$ , we have
$\eta\circ\theta_{0}(a)(x)=(\eta_{11}\circ\nu_{1h}(x_{h}), \cdots, \eta_{h1}\circ\nu_{1h}(x_{h}))$ .

On the other hand,

$\theta_{0}^{\sigma}(a)\circ\eta(x)=(\nu_{1h}^{\sigma}[\eta_{h1}(x_{1})+ +\eta_{hh}(x_{h})], 0, \cdots, 0)$ .

Hence, it follows that
$\eta_{21}=\eta_{31}=\cdots=\eta_{h1}=0$ .
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If we take another set of special endomorphisms such as the above $\theta_{0}(a)$, we
see that

$\eta_{ij}=0$ , for $i\neq j$ .
It follows that $\eta_{ii}$ is an isomorphism of $B_{i}$ onto $B_{i}^{\sigma}$ for each $i$ such that

$\eta_{ii}\circ c_{i}=\ell_{i}^{\sigma}\circ\eta_{ii}$ ,

for $i=1,$ $\cdots$ , $h$ . By the choice of the polarization 9 of $A$ and the result

$\eta=(_{0\eta_{hh}}^{\eta_{ii}.....0})$ ,

we can easily see that $\eta_{ii}$ is an isomorphism of $(B_{i}, C_{i}, \iota_{i})$ onto $(B_{i}^{\sigma}, C_{i}^{\sigma}, t_{i}^{\sigma})$ . This
proves our main theorem.

$CoROLLARY$ . Notations being as above, $k_{0}K^{*}$ contains the field of moduli
of $(A, 9)$ .

PROOF. This is a direct consequence of the general theory [2; Proposi-
tion 8].

Osaka University
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