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Introduction

In the present paper we shall investigate some relations between almost
contact structures and complex structures. An odd dimensional differentiable
manifold is said to be an almost contact manifold if there exists a triple
$\Sigma=(\phi, \xi, \eta),$ $\phi$ being (l.l)-tensor field, $\xi$ a vector field and $\eta$ l-form on $M$

satisfying certain conditions. We shall introduce in \S 2 an almost complex
structure on the product manifold of two almost contact manifolds. We shall
call an almost contact structure on $1M$ to be integrable if the induced almost
complex structure on $M\times M$ is integrable ( $i$ . $e.$ , complex structure). In \S 2 we
shall prove that the induced almost complex structure on the product of two
almost contact manifolds is integrable if and only if both almost contact
structures are integrable. This result generalises a theorem of Calabi-Eckmann
which says that the product of two odd dimensional spheres admits a complex
structure [3]. This result says also that the notion of the integrable almost
contact structure coincides with that of the normal almost contact structure
defined by Sasaki-Hatakeyama [8].

In \S 3 we shall introduce the notion of isomorphism and automorphism
of almost contact structures and we shall prove that the automorphism group
of a compact almost contact manifold $M$ is a Lie transformation group of $M$

with respect to the compact-open topology, if the structure is integrable.
In \S 4 we shall show examples of compact normal almost contact manifolds

other than the odd dimensional spheres. In particular, we shall see that every
compact simply connected homogeneous contact manifold studied by Boothby-
Wang [2] has always a normal almost contact structure such that the auto-
morphism group operates transitively.

I $n$ the last section we shall treat the left invariant normal almost contact
structure on a Lie group and show that the problem can be reduced to a
purely algebraic one in Lie algebras, and we shall prove that every compact
Lie group of odd dimension admits a left invariant normal almost contact
structure.
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\S 1. Almost contact structures.

Let $M$ be a differentiable manifold. (” differentiable ” means always
”differentiable of class $C^{\infty}$ , and in this paper vector fields, real valued
functions and differential forms on $M$ mean always differentiable ones.) We
denote by $\mathfrak{V}(M)$ the Lie algebra of all vector fields on $M$, by $F(M)$ the R-
algebra of all real valued $C^{\infty}$ functions on $M,$ $R$ being the real number field.
As usual we use the following notations: for any $X\in \mathfrak{V}(M)$ and $ f\in F(M\rangle$

we mean $XJ\in F(M)$ and $ fX\in\backslash \iota$}$(M)$ as follows:

$(Xf)(p)=X_{p}f$ ,

$(fX)_{1)}=f(p)\cdot X_{p}$

for $p\in M$. For any l-form $\theta$ on $M$ and for any $X\in \mathfrak{V}(M)$ we mean $\theta(X)\in F(M\rangle$,

as follows:
$(\theta(X))(p)=\theta_{p}(X_{p})$ .

Let now $M$ be a differentiable manifold of dimension $2n+1(n\geqq 0)$ . An
almost contact structure on $M$ is, by definition, a triple $\Sigma=(\phi, \xi, \eta)$ , where $\phi$

is a tensor field of type (1.1) on $M,$ $\xi$ is a vector field of $M$ and $\eta$ is a dif-
ferential l-form on $M$ satisfying the following conditions:

(1.1) $\phi(\xi)=0$

(1.2) $\eta\circ\phi=0$

(1.3) $\eta(\xi)=1$

(1.4) $\phi\circ\phi=-1+\eta\cdot\xi$ ,

where (1.4) means
$\phi(\phi X)=-X+\eta(X)\cdot\xi$

for all $X\in \mathfrak{V}(M)$ .
A differentiable manifold of odd dimension with an almost contact struc-

ture is called an almost contact manifold.
It is to be noted that the conditions $(1.1)\sim(1.4)$ imply the following

(1.5) rank $\phi=2n$ on $M$ everywhere.

In fact, $\phi_{p}$ and $\eta_{p}$ being the values of $\phi$ and $\eta$ at $p\in M$, the linear map
$\phi_{p}$ leaves invariant the subspace $V_{p}=\eta_{p}^{-1}(0)$ of the tangent space of $M$ at $p$ .
Moreover, the restriction $\phi_{p}^{\prime}$ of $\phi_{p}$ to $V_{p}$ satisfies $\phi_{p}^{\prime}$ . ($b_{p}^{\prime}=-1$ . Hence, rank $\prime b_{p}^{\prime}$

$=2n$ . On the other hand, (1.1), (1.3) imply that rank $\phi_{p}\leqq 2n$ , whence rank $\phi_{p}$

$=2n$ .
It is also to be noted that we have the following
PROPOSITION 1. $(a)$ Let $(\phi, \xi, \eta)$ and $(\phi, \xi^{\prime}, \eta)$ be two almost contact structures

on the same $M$, then we have $\xi=\xi^{\prime}$ . $(b)$ Let $(\phi, \xi, \eta)$ and $(\phi, \xi, \eta^{\prime})$ be two almost
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contact structures on the same $M$, then we have $\eta=$ )$?^{\prime}$ .
The proof will be omitted.

\S 2. Product of almost contact manifolds.

Let $M$ and $\overline{M}$ be differentiable manifolds of dimension $2n+1$ and $2m+1$

and let $\Sigma=(\phi, \xi, \eta)$ and $\Sigma=-(\overline{\phi},\overline{\xi},\overline{\eta})$ be almost contact structures on $M$ and
$\overline{M}$, respectively.

We can now introduce an almost complex structure $J$ on the product
manifold $M\times\overline{M}$ as follows: For any $X_{p}\in T_{p}(M)$ and $\overline{X}_{q}\in T_{q}(\overline{M}),$ $T_{p}(M)$ being
the tangent space of $M$ at $p$ , we define

$J_{(p,q)}(X_{p},\overline{X}_{q})=(\phi(X_{p})-\overline{\eta}(\overline{X}_{q})\cdot\xi_{p},\overline{\phi}(\overline{X}_{q})+\eta(X_{p})\cdot\overline{\xi}_{q})$ .
Then it is easily seen that $I\circ I=-1,1$ being the identity map, which shows
that $J$ is an almost complex structure on $M\times\overline{M}$. We call $J$ the induced almost
complex structure on $M\times\overline{M}$ by $\Sigma$ and $\Sigma-$.

We state this elementary fact as
PROPOSITION 2. Let $M$ and $\overline{M}$ be almost contact manifolds. Then $M\times\overline{M}$

has an almost complex structure induced by the almost contact structures of $M$

and $\overline{M}$.
We shall now state the following
DEFINITION 1. Let $\Sigma=(\phi, \xi, \eta)$ be an almost contact structure on $M$. If

the induced almost complex structure on $M\times M$ by $\Sigma$ is integrable ( $i$ . $e$ . com-
plex structure), we call $\Sigma$ is integrable.

DEFINITION 2. Let $\Sigma=(\phi, \xi, \eta)$ be an almost contact structure on $M$. Let
$d$

$\overline{M}=R$ be the real number space and let $\Sigma-=(\overline{\phi},\overline{\xi},\overline{\eta})=(0, dt , dt),$ $t$ being the

coordinate in $R$ . If the induced almost complex structure on $M\times R$ by $\Sigma$ and
X is integrable, we call that $\Sigma$ is normal (cf. [8] and [9]).

We shall prove later that these two apparently different definitions coincide
with each other.

DEFINITION 3. Let $\Sigma=(\phi, \xi, \eta)$ be an almost contact structure on $M$. We
define a tensor field $\Psi$ of type (1.2) and a differential 2-form $\theta$ on $M$ as follows.1)

(2.1) $\Psi(X, Y)=\phi[X, Y]-[\phi X, Y]-[X, \phi Y]-\phi[\phi X, \phi Y]$

$+\{(\phi X)\cdot(\eta(Y))-(\phi Y)\cdot(\eta(X))\}\cdot\xi$

(2.2) $\theta(X, Y)=\eta([X, Y])-X\cdot\eta(Y)+Y\cdot\eta(X)-\eta([\phi X, \phi Y])$

1) Notations being as those of Sasaki-Hatakeyama [8], the components $\Psi_{jk}^{i}$ of $\Psi$

satisfy the following equalities:
$\Psi_{jk}^{i}=\phi_{h}^{i}N_{jk}^{h}+\xi^{i}N_{jk}$ $(i, j, k=1,2, \cdots , 2n+1)$ .

However, we shall not use these equalities.
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for $X,$ $Y\in \mathfrak{V}(M)$ .
We now prove the following

PROPOSITION 3. Let $\Sigma=(\phi, \xi, \eta)$ and $\overline{\Sigma}=(\overline{\phi},\overline{\xi},\overline{\eta})$ be almost contact struc-
tures on $M$ and M. Then the induced almost complex structure on $M\times\overline{M}$ by $\Sigma$

and $\Sigma^{-}$ is integrable if and only if the following conditions are satisfied:
(2.3) $\Psi=0$ ,

(2.4) $\overline{\Psi}=0$ ,

where $\overline{\Psi}$ is the tensor fields of type (1.2) on $\overline{M}$ corresponding to $\Sigma-$ (cf. Def. 3).

PROOF. We first identify $X\in \mathfrak{V}(M)$ with $\tilde{X}\in \mathfrak{V}(M\times\overline{M})$ such as
$\tilde{X}_{(p,q)}=X_{p}+O_{q}$

for $(p, q)\in M\times\overline{M}$, where $O_{q}$ denotes the zero tangent vector of $\overline{M}$ at $q$ . Simi-
larly, we identify $\overline{X}\in \mathfrak{B}(\overline{M})$ with $\tilde{X}\in \mathfrak{V}(M\times\overline{M})$ such as

$\tilde{X}_{(p,q)}=O_{p}+\overline{X}_{q}$ .
We also consider a function on $M$ ( $\overline{M}$ resp.) as a function on $M\times\overline{M}$ as usual.
Then the integrability condition of the induced almost complex structure $J$

on $M\times\overline{M}$ is as follows:
$J[X+\overline{X}, Y+\overline{Y}]=[J(X+\overline{X}), Y+\overline{Y}]+[X+\overline{X}, ](Y+\overline{Y})]$

$+J[J(X+\overline{X}), J(Y+\overline{Y})]$

for all $X,$ $Y\in \mathfrak{V}(M)$ and $\overline{X}$, YG $\mathfrak{V}(M)$ (cf. [4] and [7]). By a direct calculation
we see the above condition is equivalent to the following two conditions:

(2.5) $\phi[X, Y]-\overline{\eta}([\overline{X},\overline{Y}])\cdot\xi$

$=[\phi X-\overline{\eta}(\overline{X})\xi, Y]+\overline{Y}(\overline{\eta}(\overline{X}))\cdot\xi+[X, \phi Y-\overline{\eta}(\overline{Y})\cdot\xi]$

$-\overline{X}(\overline{\eta}(\overline{Y}))\cdot\xi+\phi[\phi X-\overline{\eta}(\overline{X})\cdot\xi, \phi Y-\overline{\eta}(\overline{Y})\cdot\xi]$

$-\overline{\eta}([\eta(X)\overline{\xi}+\overline{\phi}(\overline{X}), \eta(Y)\overline{\xi}+\overline{\phi}(\overline{Y})])\cdot\xi+\overline{f}(X,\overline{X};Y,\overline{Y})\cdot\xi$ ,

(2.6) $\phi[\overline{X},\overline{Y}]+\eta([X, Y])\overline{\xi}$

$=[\overline{\phi}(\overline{X})+\eta(X)\cdot\overline{\xi},\overline{Y}]-Y(\eta(X))\cdot\overline{\xi}+[\overline{X},\overline{\phi}(\overline{Y})+\eta(Y)\overline{\xi}]$

$+X(\eta(Y))\cdot\overline{\xi}+\overline{\phi}[\overline{\phi}(\overline{X})+\eta(X)\overline{\xi},\overline{\phi}(\overline{Y})+\eta(Y)\overline{\xi}]$

$+\eta([\phi X-\overline{\eta}(\overline{X})\xi, \phi Y-\overline{\eta}(\overline{Y})\xi])\cdot\overline{\xi}+f(X,\overline{X};Y,\overline{Y})\overline{\xi}$ ,

where we define the functions $f$ and $f$ on $M\times\overline{M}$ as follows:
$f(X,\overline{X};Y,\overline{Y})=-\overline{\phi}(\overline{X})(\overline{\eta}(\overline{Y}))+\overline{\phi}(\overline{Y})(\overline{\eta}(\overline{X}))-\eta(X)\cdot\overline{\xi}(\overline{\eta}(\overline{Y}))+\eta(Y)\cdot\overline{\xi}(\overline{\eta}(\overline{X}))$ ,

$\overline{f}(X,\overline{X};Y,\overline{Y})=-\phi(X)\eta(Y)+\phi(Y)(\eta(X))+\overline{\eta}(\overline{X})\cdot\xi(\eta(Y))-\overline{\eta}(\overline{Y})\cdot\xi(\eta(X))$ .
Now, putting $\overline{X}=\overline{Y}=0;X=0,\overline{Y}=0;\overline{X}=0,$ $Y=0$ or $X=Y=0$ , we obtain
the following eight conditions equivalent to (2.5) and (2.6):
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(2.3) $\Psi(X, Y)=0$ ,

(2.7) $\theta(X, Y)=0$ ,

(2.4) $\overline{\Psi}(\overline{X},\overline{Y})=0$ ,

(2.8) $\overline{\theta(}\overline{X},\overline{Y}$ ) $=0$ ,

(2.9) $[X,\overline{\eta}(\overline{Y})\xi]+\phi[\phi X,\overline{\eta}(\overline{Y})\xi]+\overline{\eta}([\eta(X)\cdot\overline{\xi},\overline{\phi}(\overline{Y})])\xi$

$+\overline{\eta}(\overline{Y})\cdot\xi(\eta(X))\cdot\xi=0$ ,

(2.10) $[\overline{\eta}(\overline{X})\xi, Y]+\phi[\overline{\eta}(\overline{X})\cdot\xi, \phi Y]+\overline{\eta}([\overline{\phi}(\overline{X}), \eta(Y)\overline{\xi}])\cdot\xi$

$-\overline{\eta}(\overline{X})\cdot\xi(\eta(Y))\cdot\xi=0$ ,

(2.11) [X, $\eta(Y)\overline{\xi}$] $+\overline{\phi}[\overline{\phi}(\overline{X}), \eta(Y)\overline{\xi}]-\eta([\overline{\eta}(\overline{X})\xi, \phi Y])\cdot\overline{\xi}$

$+\eta(Y)\cdot\overline{\xi}(\overline{\eta}(\overline{X}))\cdot\overline{\xi}=0$ ,

(2.12) $[\eta(X)\overline{\xi},\overline{Y}]+\overline{\phi}[\eta(X)\overline{\xi},\overline{\phi}(\overline{Y})]-\eta([\phi X,\overline{\eta}(\overline{Y})\xi])\cdot\overline{\xi}$

$-\eta(X)\cdot\overline{\xi}(\overline{\eta}(\overline{Y}))\cdot\overline{\xi}=0$ ,

for all $X$, YE $\mathfrak{V}(M)$ and $\overline{X},\overline{Y}\in \mathfrak{V}(\overline{M})$ .
We shall now prove that the conditions (2.3) and (2.4) imply $(2.7)\sim(2.12)$ .

First, it is easy to see that (2.9) and (2.10) are equivalent and also (2.11) and
(2.12) are equivalent. We now verify that (2.9) is implied by (2.3) and (2.4).
For this purpose we first remark that

(2.13) $\phi[X, \xi]=[\phi X, \xi]$

for all $X\in \mathfrak{V}(M)$ . In fact, putting $ Y=\xi$ in (2.3) we obtain (2.13) by virtue
of (1.1) and (1.3). Now the left hand side of (2.9) is equal to

$\overline{\eta}(\overline{Y})\cdot[X, \xi]+\overline{\eta}(\overline{Y})\phi[\phi X, \xi]+\eta(X)\cdot\overline{\eta}([\overline{\xi},\overline{\phi}(\overline{Y})])\cdot\xi+\overline{\eta}(\overline{Y})\cdot\xi(\eta(X))\cdot\xi$

$=\overline{\eta}(\overline{Y})\{[X, \xi]+[\phi^{2}X, \xi]+\xi(\eta(X))\cdot\xi\}+\eta(X)\cdot\overline{\eta}(\overline{\phi}[\overline{\xi},\overline{Y}])\cdot\xi$

$=\overline{\eta}(\overline{Y})\{[X, \xi]+[-X+\eta(X)\cdot\xi, \xi]+\xi(\eta(X))\cdot\xi\}=0$ .
In the same way (2.11) is implied by (2.3) and (2.4).

It is now sufficient to prove that (2.3) implies (2.7), since (2.8) is implied
by (2.4) in the same way. First, by operating $\phi$ on both hand sides of (2.3)

we have

(2.14) $\phi^{2}[X, Y]=\phi[\phi X, Y]+\phi[X, \phi Y]+\phi^{2}[\phi X, \phi Y]$ .
Again by (2.3) we can calculate the first term of the right hand side of (2.14)

as follows:
$\phi[\phi X, Y]=[\phi^{2}X, Y]+[\phi X, \phi Y]+\phi[\phi^{2}X, \phi Y]-\{(\phi^{2}X)(\eta(Y))-(\phi Y)\cdot(\eta(\phi X))\}\xi$

$=[-X+\eta(X)\cdot\xi, Y]+[\phi X, \phi Y]+\phi[-X+\eta(X)\xi, \phi Y]-(\phi^{2}X)(\eta(Y))\cdot\xi$ .
Inserting this into (2.14) we obtain
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$-[X, Y]+\eta([X, Y])\cdot\xi=[-X+\eta(X)\xi, Y]+[\phi X, \phi Y]+\phi[-X+\eta(X)\xi, \phi Y]$

$-(\phi^{2}X)(\eta(Y))\cdot\xi+\phi[X, \phi Y]-[\phi X, \phi Y]+\eta([\phi X, \phi Y])\cdot\xi$ .
Hence we have

$\eta([X, Y])\cdot\xi=[\eta(X)\xi, Y]+\phi[\eta(X)\xi, \phi Y]-(-X+\eta(X)\xi)(\eta(Y))\cdot\xi+\eta([\emptyset X, \phi Y])\cdot\xi$

$=\eta(X)[\xi, Y]-Y(\eta(X))\cdot\xi+\phi\{\eta(X)[\xi, \phi Y]-(\phi Y)(\eta(X))\cdot\xi\}$

$+X(\eta(Y))\xi-\eta(X)\xi(\eta(Y))\cdot\xi+\eta([\phi X, \phi Y])\cdot\xi$

$=\eta(X)[\xi, Y]-Y(\eta(X))\cdot\xi+\eta(X)[\xi, \phi^{2}Y]$

$+X(\eta(Y))\xi-\eta(X)\xi(\eta(Y))\cdot\xi+\eta([\phi X, \phi Y])\xi$

$=\{X(\eta(Y))-Y(\eta(X))+\eta([\phi X, \phi Y])\}\cdot\xi$ ,

where we have used (2.13). Thus we have proved (2.7) and Proposition 3 is
proved.

In the case $M=\overline{M}$ and $\Sigma=\Sigma-$ we have the following
THEOREM 1. Let $\Sigma=(\phi, \xi, \eta)$ be an almost contact structure on M. The x

$\Sigma$ is integrable if and only if the following condition is satisfied:
(2.3) $\Psi=0$ .

Combining Proposition 3 and Theorem 1 we obtain
THEOREM 2. Let $\Sigma=(\phi, \xi, \eta)$ and $\Sigma^{-}=(\overline{\phi},\overline{\xi},\overline{\eta})$ be almost contact structures

on $M$ and M. Then the induced almost complex structure on $M\times\overline{M}$ is integrable

if and only if $\Sigma$ and $\Sigma-$ are both integrable.

THEOREM 3. An almost contact structure $\Sigma=(\phi, \xi, \eta)$ is integrable if and
onlf if $\Sigma$ is normal. In particular, $\Sigma$ is normal if and only if the condition
(2.3) is satisfied.

In fact, taking $\overline{M}=R$ and $\Sigma^{-}=(\overline{\phi},\overline{\xi},\overline{\eta})=(0, \frac{d}{dt}, dt)$ , Theorem 3 follows
from Theorem 2.

Now it is known that spheres of odd dimension have normal almost
contact structures (cf. [8]), whence we can apply Theorem 2, and obtain the
following theorem due to Calabi-Eckmann [3].

$CoROLLARY$ . The direct product of two spheres of odd dimension has a
complex structure.

We shall find later many examples of normal almost contact manifolds
other than spheres of odd dimension.

\S 3. Automorphism groups of almost contact manifolds.

We now define the isomorphisms of almost contact structures as follows:
DEFINITION 4. Let $M$ and $M^{\prime}$ be differentiable manifolds having almost
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contact structures $\Sigma=(\phi, \xi, \eta)$ and $\Sigma^{\gamma}=(\phi^{\prime}, \xi^{\prime}, \eta^{\prime})$ , respectively. A diffeomor-
phism $f$ of $M$ onto $M^{\prime}$ is called an isomorphism of $M$ onto $M^{\prime}$ if the following
conditions are satisfied:

(3.1) $\phi^{\prime}\circ f=f\circ\phi$

(3.2) $f(\xi)=\xi^{\prime}$

where we denote the differential of $f$ by the same letter $f$. If, moreover,
$M=M^{\prime}$ and $\Sigma=\Sigma^{\prime},$ $f$ is called an automorphism of $M$. The set of all auto-
morphisms of $M$ forms a group of transformations of $M$. This group is
denoted by $A(M)=A_{\Sigma}(M)$ .

LEMMA. If $f\in A(M)$ , then

(3.3) $ f^{*}\eta=\eta$ .
PROOF. Put $\eta^{\prime}=f^{*}\eta$ , then $\Sigma^{\prime}=(\phi, \xi, \eta^{\prime})$ is an almost contact structure on

$M$, for since the conditions $(1.1)\sim(1.3)$ for $\Sigma^{\prime}$ is clear, it is sufficient to prove
that (1.4) holds. Take XE $\mathfrak{V}(M)$ , then we have

$\phi\circ\phi X=\phi\circ\phi(f^{-1}fX)=f^{-1}\phi^{2}(fX)=f^{-1}(-fX+\eta(fX)\cdot\xi)$

$=-X+(f^{*}\eta)(X)\cdot f^{-1}(\xi)=-X+\eta^{\prime}(X)\cdot\xi$ ,

which proves (1.4). Since $\Sigma^{\prime}$ is an almost contact structure we see that $\eta=\eta^{\prime}$

by Proposition 1, which proves the Lemma.
DEFINITION 5. Let $\tilde{M}$ be an almost complex manifold. We denote by $A(\tilde{M})$

the group of all diffeomorphisms $f$ of $M$ which leaves invariant the almost
complex structure of $\tilde{M}$ . Such diffeomorphism as $f$ is called an automorphism
of $\tilde{M}$.

DEFINITION 6. Let $M$ be a differentiable manifold. We denote by $D(M)$

the group of all diffeomorphisms of $M$ onto itself. For any manifolds $M$ and
$\overline{M}$, we can define a homomorphism $H$ of $D(M)\times D(\overline{M})$ into $D(M\times\overline{M})$ by

$H(f, g)=f\times g$

for $f\in D(M)$ and $g\in D(\overline{M}),$ $i$ . $e$ .
$(f\times g)(p, q)=(f(p), g(q))$

for $p\in M$ and $q\in\overline{M}$.
THEOREM 4. Let $M$ and $\overline{M}$ be almost contact manifolds. Then

$H(A(M)\times A(\overline{M}))\subset A(M\times\overline{M})$ ,

where $M\times\overline{M}$ is considered as an almost complex manifold with the induced
almost complex structure by $M$ and $\overline{M}$.

PROOF. For $(f, g)\in A(M)\chi A(\overline{M})$ , put $H=H(f, g)$ . Let $(\phi, \xi, \eta)$ and $(\overline{\phi},\overline{\xi},\overline{\eta})$

be the almost contact structures on $M$ and $\overline{M}$ respectively and let $J$ the
induced almost complex structure of $M\times\overline{M}$. Denoting the differential of
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diffeomorphisms by the same letter, we have, for any tangent vectors $X_{p}$

$\in T_{p}(M)$ and $\overline{X}_{q}\in T_{q}(\overline{M})$ ,

$JH(X_{p},\overline{X}_{q})=J_{(f(p)g(q))}(f(X_{p}), g(\overline{X}_{q}))$

$=(\phi f(X_{p})-\overline{\eta}(g(\overline{X}_{q}))\cdot\xi_{J^{(p)}},\overline{\phi}(g(\overline{X}_{q}))+\eta(f(X_{p}))\cdot\overline{\xi}_{g(p)})$

$=(f\phi(X_{p})-g^{*}\overline{\eta}(\overline{X}_{q})\cdot f(\xi_{p}), g\overline{\phi}(\overline{X}_{q})+f^{*}\eta(X_{p})\cdot g(\overline{\xi}_{q}))$

$=(f\phi(X_{p})-\overline{\eta}(\overline{X}_{q})\cdot f(\xi_{p}), g\overline{\phi}(\overline{X}_{q})+\eta(X_{p})\cdot g(\overline{\xi}_{q}))$

$=(f(\phi(X_{p})-\overline{\eta}(\overline{X}_{q})\cdot\xi_{p}), g(\overline{\phi}(\overline{X}_{q})+\eta(X_{p})\cdot\overline{\xi}_{q}))$

$=HJ(X_{p},\overline{X}_{q})$ .
Hence $J\circ H=H\circ J$, which proves that $H\in A(M\times\overline{M})$ .

COROLLARY 1. Let $M$ and $\overline{M}$ be almost contact manifolds. If $A(M)(A(\overline{M})$

resp.) operates transitively on $M$ ( $\overline{M}$ resp.), then $A(M\times\overline{M})$ operates transitively
on $M\times\overline{M}$.

In fact, $H(A(M)\times A(\overline{M}))$ , and hence $A(M\times\overline{M})$ operates transitively on
$M\times\overline{M}$.

COROLLARY 2. Let $M$ be a normal almost contact manifold. If $A(M)$

operates transitively on $M$, then $M\times M$ is a homogeneous complex manifold.
In fact, this is an immediate consequence of Corollary 1 and Theorem 2.
THEOREM 5. Let $M$ be a compact, normal almost contact manifold. Then

$A(M)$ is a Lie transformation group of $M$ with respect to the compact-open
topology.

PROOF. First, we may suppose that $M$ is connected. For any compact
subset $K$ ( $\tilde{K}$ resp.) and an open set $U$ ( $\tilde{U}$ resp.) containing $K$ ( $\tilde{K}$ resp.) of $M$

($M\times M$ resp.) we denote by $W(K, U)(\tilde{W}(\tilde{K},\tilde{U})$ resp.) the set of all automor-
phisms $f$ ( $f$ resp.) of $M$ (of $M\times M$ resp.) such that $f(K)\subset U$, and $f^{-1}(K)\subset U$

\langle $f(\tilde{K})\subset\tilde{U},$ $f^{-1}(\tilde{K})\subset\tilde{U}$ resp.). Now it is known (cf. [1]) that the automorphism
group of a compact complex manifold is a Lie transformation group with
respect to the compact-open topology. Hence we can find a finite number
of compact sets $\tilde{K}_{i}$ and open sets $\tilde{U}_{i}\supset\tilde{K}_{i}$ such that the neighborhood $\tilde{W}$

$=\bigcap_{i=1}^{N}\tilde{W}(\tilde{K}_{i},\tilde{U}_{i})$ of the identity in $A(M\times M)$ is relatively compact in $A(M\times M)$ .
We see readily that $\tilde{K}_{i}$ and $\tilde{U}_{i}$ may be chosen such as $\tilde{K}_{i}=K_{i}\times L_{i},\tilde{U}_{i}=U_{i}\times V_{i}$ ,

where $K_{\ell},$ $L_{i}$ are compact sets in $M$ and $U_{i},$ $V_{i}$ are open in $M$ and $K_{i}\subset U_{i}$ ,

$L_{i}\subset V_{i}$ for $i=1,2,$ $\cdots$ , $N$. Now put $W=\bigcap_{i=1}^{N}W(K_{i}, U_{i})_{\cap}\bigcap_{i=1}^{N}W(L_{i}, V_{i})$ . Then $W$

is a neighborhood of the identity in $A(M)$ .
We shall prov $e$ that $W$ is relatively compact in $A(M)$ . For this purpose

take a sequence $\{f_{\nu}\}_{\nu=1}^{\infty}$ in $W$. Consider the image $H_{\nu}=H(f_{\nu}, f_{\nu})$ in $A(M\times M)$

by the homomorphism $H$. Then $H_{\nu}$ is clearly contained in $\tilde{W}$. Since $\tilde{W}$ is
relatively compact in $A(M\times M)$ , we can suppose that $H_{\nu}$ converges to an
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element $H_{0}$ in $A(M\times M)$ . Now for any point $p\in M,$ $H_{0}(p, p)=(q, q)$ , since
$H_{0}(p, p)=\lim H_{\nu}(p, p)=\lim(f_{\nu}(p), f_{\nu}(p))$ . Put $q=f(p)$ , then $f$ is clearly a dif-
ferentiable map of $M$ into itself. We shall see that $f$ is a diffeomorphism of
$M$. In fact, the convergence of $H_{\nu}$ to $H_{0}$ being uniform convergence (since

the topology of $A(M\times M)$ is the compact-open topology), $\{f_{\nu}\}$ converges uni-
formly to $f$ on $M$. For the sequence $\{H_{\nu}^{-1}\}$ we can apply the same argument
and we find a differentiable map $g$ of $M$ into itself such that $f_{\nu}^{-1}$ converges
uniformly to $g$ on $M$. Then $f\circ g=g\circ f=id$ . on $M$. This proves that $f$ is a
diffeomorphism of $M$. On the other hand, again by the uniform convergence
of $H_{\nu}$ to $H_{0}$ , the differential $H_{\nu}^{\prime}$ of $H_{\nu}$ converges uniformly to the differential
$H_{0^{\prime}}$ of $H_{0}$ since $H_{\nu}$ are holomorphic maps of the complex manifold $M\times M$.
Hence we see that $f_{\nu}^{\prime}$ also converges uniformly to $f^{\prime}$ on $M$. Then since $f_{\nu}^{\prime}$

leaves invariant the almost contact structure of $M,$ $f^{\prime}$ also leaves invariant
the almost contact structure of $M$. Hence $f\in A(M)$ , and so $f_{\nu}$ converges to
$f$ in $A(M)$ , which proves that $W$ is relatively compact in $A(M)$ , for $A(M)$

satisfies the second axiom of countability.
Next we prove that an element $f$ of $A(M)$ which leaves fixed any point

of a non empty open set $U$ in $M$ is necessarily the identity map of $M$. In
fact, in this case the holomorphic map $H_{1}=H(f, f)$ leaves fixed any point of
$U\times U$ and so $H_{1}$ is the identity map of $M\times M$ and hence $f$ is also the identity
map of $M$. Thus we have proved that the group $A(M)$ is locally compact
and that any element of $A(M)$ leaving fixed non-empty open set in $M$ is the
identity map of $lII$. Hence by a theorem of Bochner-Montgomery [1], $A(M)$

is a Lie transformation group of $M$. Thus Theorem 5 is proved.
We may conjecture that in the case where $(\phi, \xi, \eta)$ is not necessarily

normal Theorem 5 will also be true, but we have not succeeded to prove it.2)

Let again $\Sigma=(\phi, \xi, \eta)$ and $\overline{\Sigma}=(\overline{\phi},\overline{\xi},\overline{\eta})$ be almost contact structures on $M$

and $\overline{M}$. Then $M\times\overline{M}$ has an almost complex structure $J$ induced by $\Sigma$ and $\overline{\Sigma}$ .
We denote by $\mathfrak{a}(M\times\overline{M})$ the Lie algebra of all infinitesimal automorphism of
$M\times\overline{M}$. The homomorphism $H$ induces a homomorphism of $\mathfrak{V}(M)\times \mathfrak{V}(\overline{M})$ into
$\mathfrak{V}(M\times\overline{M})i$ . $e$ .

$H(X,\overline{X})=X+\overline{X}$

for $X\in \mathfrak{V}(M)$ and $\overline{X}\in \mathfrak{V}(\overline{M})$ , where we have identified $X$ ( $\overline{X}$ resp.) with $\tilde{X}$

defined in the proof of Proposition 3. We now want to determine the inverse
image of $\mathfrak{a}(M\times\overline{M})$ by the homomorphism $H$.

2) By using a recent result of Boothby-Kobayashi-Wang (Ann. of Math., 77 (1963))
we can prove, in the same way as the proof of Theorem 5, that $A_{\Sigma}(M)$ is always a Lie
transformation group with respect to a somewhat stronger topology than the compact-
open one, if $M$ is compact.
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PROPOSITION 4. Notations being as above, $X+\overline{X}$ is contained in a(Mx $\overline{M}$ )

if and only if the following conditions are satisfied:
(3.4) $\phi[X, Y]=[X, \phi Y]$

(3.5) $\overline{\phi}[\overline{X},\overline{Y}]=[\overline{X},\overline{\phi}\overline{Y}]$

(3.6) $\eta([X, \xi])=\overline{\eta}([\overline{X},\overline{\xi}])=const$.
for all $Y\in \mathfrak{V}(M)$ and $\overline{Y}\in \mathfrak{V}(\overline{M})$ .

PROOF. Suppose that $X+\overline{X}\in \mathfrak{a}(M\times\overline{M})$ . Then by definition of $\mathfrak{a}(M\times\overline{M})$

the following conditions are satisfied:

(3.7) $[X+\overline{X}, J(Y+\overline{Y})]=J[X+\overline{X}, Y+\overline{Y}]$

for all $Y\in \mathfrak{V}(M)$ and $\overline{Y}\in \mathfrak{V}(\overline{M})$ . By the definition of $J$, the left hand side of
(3.7) is equal to

(3.8) $[X, \phi Y]+[\overline{X},\overline{\phi}\overline{Y}]-\overline{\eta}(\overline{Y})[X, \xi]+\eta(Y)[\overline{X},\overline{\xi}]+X(\eta(Y))\cdot\overline{\xi}-\overline{X}(\overline{\eta}(\overline{Y}))\cdot\xi$ .
The right hand side of (3.7) is equal to

(3.9) $\phi[X, Y]-\overline{\eta}([\overline{X},\overline{Y}])\cdot\xi+\overline{\phi}[\overline{X},\overline{Y}]+\eta([X, Y])\cdot\overline{\xi}$ .
Comparing (3.8) with (3.9) we obtain the following four conditions equivalent
to (3.7):

(3.4) $\phi[X, Y]=[X, \phi Y]$ ,

\langle 3.5) $\overline{\phi}[\overline{X},\overline{Y}]=[\overline{X},\overline{\phi}\overline{Y}]$ ,

(3.10) $\overline{\eta}([\overline{X},\overline{Y}])\cdot\xi=\overline{\eta}(\overline{Y})[X, \xi]+\overline{X}(\overline{\eta}(\overline{Y}))\cdot\xi$ ,

\langle 3.11) $\eta([X, Y])\cdot\overline{\xi}=\eta(Y)[\overline{X},\overline{\xi}]+X(\eta(Y))\cdot\overline{\xi}$ ,

for all $Y\in \mathfrak{V}(M)$ and $\overline{Y}\in \mathfrak{V}(\overline{M})$ .
Putting $\overline{Y}=\overline{\xi}$ in (3.10) we have $\overline{\eta}([\overline{X},\overline{\xi}])\cdot\xi=[X, \xi]$ , hence $\overline{\eta}([\overline{X},\overline{\xi}])$

$=\eta([X, \xi])$ , which shows that $\eta([X, \xi])$ and $\overline{\eta}([\overline{X},\overline{\xi}])$ are both constant func-
tions and proves (3.6).

Conversely, suppose that (X, $\overline{X}$ ) $\in \mathfrak{V}(M)\times \mathfrak{V}(\overline{M})$ satisfies $(3.4)\sim(3.6)$ . Putting
$\overline{Y}=\overline{\xi}$ in (3.5) we have $\overline{\phi}[\overline{X},\overline{\xi}]=0$ , hence [X, $\overline{\xi}$] $=-\overline{\phi}^{2}[\overline{X},\overline{\xi}]+\overline{\eta}([\overline{X},\overline{\xi}])\cdot\overline{\xi}$

$=\eta([X, \xi])\cdot\overline{\xi}$ . Therefore to prove (3.11) it is now sufficient to verify

\langle 3.12) $\eta([X, Y])=X(\eta(Y))+\eta(Y)\eta([X, \xi])$

for all $Y\in \mathfrak{V}(M)$ . Now (3.12) is clear for $ Y=\xi$ . Take $Y\in \mathfrak{V}(M)$ satisfying
$\eta(Y)=0$ . Then $Y=-\phi^{2}(Y)$ . Hence

$\eta([X, Y])=\eta([X, -\phi^{2}Y])=\eta(\phi[X, -\phi Y])=0$ ,

where we have used (3.4). Therefore, (3.12) is true for $Y$ such that $\eta(Y)=0$ .
For an arbitrary $Y,$ $Y$ can be written as $ Y=Y-\eta(Y)\xi+\eta(Y)\xi=Y_{1}+\eta(Y)\cdot\xi$ ,

where $\eta(Y_{1})=0$ . This shows that (3.12) is also true for all $Y\in \mathfrak{V}(M)$ . The
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condition (3.10) is verified in the same way. Thus $X+\overline{X}$ is contained in
$\mathfrak{a}(M\times\overline{M})$ , which proves Proposition 4.

It may be an interesting problem to investigate the case when $\mathfrak{a}(M\times\overline{M})$

is spanned by $X+\overline{X}$ satisfying $(3.4)\sim(3.6)$ .

\S 4. Homogeneous contact manifolds.

In this section we shall prove that the bundle space of a principal circle
bundle over a complex manifold satisfying certain conditions admit a normal
almost contact structure and prove that any simply connected compact homo-
geneous contact manifold $M$ (in the sense of Boothby-Wang [2]) has a normal
almost contact structure such that $A(M)$ operates transitively on $M$. This
will show the existence of many examples of compact normal almost contact
manifolds other than spheres of odd dimension as stated in \S 2.

We shall show another kind of normal almost contact manifolds in the
next section.

THEOREM 6. Let $\tilde{M}$ be the bundle space of a principal circle bundle over a
complex manifold $M$ of complex dimension $n(i$ . $e.$ , the structure group is the
multiplicative group $U(1)$ of complex numbers of absolute value 1). The Lie
algebra of $U(1)$ may be identified with the real number space R. Let there exist
a connection (form) $\eta$ on $\tilde{M}$ such that $ d\eta=\pi^{*}\Omega$ . Here $\pi$ is the projection of $\tilde{M}$

onto $M$ and $f2$ is a 2-form on $M$ satisfying the following condition:

$\Omega(JX, JY)=J2(X, Y)$

for $X,$ $Y\in \mathfrak{V}(M),$ $J$ being the complex structure of $M$.
Then we can find $a(1.1)$ -tensor field $\phi$ on $\tilde{M}$ and a vector field $\xi$ on $\tilde{M}$ such

that $(\phi, \xi, \eta)$ is a normal almost contact structure on $\tilde{M}$.
PROOF. For any tangent vector $\tilde{X}$ of $\tilde{M}$ at $\tilde{p}$ we write $\tilde{X}=h\tilde{X}+v\tilde{X}$, where

$h\tilde{X}$ ( $v\tilde{X}$ resp.) is the horizontal (vertical resp.) component of $\tilde{X}$ with respect
to the connection $\eta$ . And for any tangent vector $X$ of $M$ at $p(\pi(\tilde{p})=p)$ , we
denote by $X_{\tilde{p^{*}}}$ the lift of $X$ at $\tilde{p}$ with respect to the connection $\eta$ (for these
terminologies see [7]). We now define the endomorphism $\phi_{\tilde{p}}$ of the tangent
space $T_{\overline{p}}(\tilde{M})$ of $\tilde{M}$ at $\tilde{p}$ as follows:

(4.1) $\phi_{\tilde{p}}(\tilde{X})=(J\pi^{\prime}h\tilde{X})_{\tilde{p}}^{*}$ ,

$\pi^{\prime}$ being the differential of $\pi$ . By the identification of the Lie algebra $u$ of
$U(1)$ with $R$ , we find an element $A$ of $\iota\downarrow$ such that $\eta(A^{*})=1$ , where $A^{*}$ is the
fundamental vector field corresponding to $A$ (cf. [7]). Put $\xi=A^{*}$ .

We shall verify the conditions $(1.1)\sim(1.4)$ for $(\phi, \xi, \eta)$ . First, $\phi(\xi)=0$ , since
$\xi$ is vertical. $\eta\circ\phi(\tilde{X})=0$ , since $\phi(\tilde{X})$ is horizontal. Next $\phi^{2}=-1+\eta\cdot\xi$ . In
fact, since $ v\tilde{X}=\eta(\tilde{X})\cdot\xi$ for all $\tilde{X}\in T_{\overline{p}}(\tilde{M})$ we see that
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$\phi_{\tilde{p}}(\phi_{\tilde{p}}(\tilde{X}))=\phi_{\overline{p}}((J\pi^{\prime}h\tilde{X})_{\overline{p}}^{*})=(J\pi^{f}(J\pi^{\prime}h\tilde{X})_{\tilde{p}}^{*})_{\tilde{p}}^{*}$

$=(J(J\pi^{\prime}h\tilde{X}))_{\tilde{p}}^{*}=-(\pi^{\prime}h\tilde{X})_{\tilde{p}}^{*}=-h\tilde{X}$

$=-\tilde{X}+v\tilde{X}=-\tilde{X}+\eta(\tilde{X})\cdot\xi$ .
Hence $(\phi, \xi, \eta)$ is an almost contact structure on $\tilde{M}$.

To prove that $(\phi, \xi, \eta)$ is normal it is sufficient to prove the condition
(2.3). First, we have by the definition of $\phi$ the following equality

(4.2) $\phi(X^{*})=(JX)^{*}$

tor all $X\in \mathfrak{V}(M)$ , where $X^{*}$ means the lift of $X$ with respect to the connection
$\eta$ . Secondly, we know the following equality

(4.3) $h[X^{*}, Y^{*}]=[X, Y]^{*}$

for all $X,$ $Y\in \mathfrak{V}(M)$ (cf. [7]). Using (4.2) and (4.3) and the fact that the
almost complex structure $J$ of $M$ is integrable we can now calculate $\phi[X^{*}, Y^{*}]$

for $X,$ $Y\in \mathfrak{V}(M)$ as follows:
(4.4) $\phi[X^{*}, Y^{*}]=(J\pi h[X^{*}, Y^{*}])^{*}=(J\pi[X, Y]^{*})^{*}=(J[X, Y])^{*}$

$=([JX, Y]+[X, JY]+J[JX, JY])^{*}$

$=[JX, Y]^{*}+[X, JY]^{*}+(J[JX, JY])^{*}$

$=h[(JX)^{*}, Y^{*}]+h[X^{*}, (JY)^{*}]+\phi[JX, JY]^{*}$

$=h[\phi X^{*}, Y^{*}]+h[X^{*}, \phi Y^{*}]+\phi(h[(JX)^{*}, (JY)^{*}])$

$=[\phi X^{*}, Y^{*}]-\eta([\phi X^{*}, Y^{*}])\cdot\xi$

$+[X^{*}, \phi Y^{*}]-\eta([X^{*}, \phi Y^{*}])\xi+\phi[\phi X^{*}, \phi Y^{*}]$ .
On the other hand, we have

(4.5) $\eta([\phi X^{*}, Y^{*}])=\phi X^{*}(\eta(Y^{*}))-Y^{*}\cdot(\eta(\phi X^{*}))-d\eta(\phi X^{*}, Y^{*})$

$=-\pi^{*}\Omega(\phi X^{*}, Y^{*})$

$=-\pi^{*}l2((JX)^{*}, Y^{*})$

$=-l2(JX, Y)$ .
In the same way, we have

(4.6) $\eta([X^{*}, \phi Y^{*}])=-\Omega(X, JY)$

Hence by the assumption for $\Omega$ , we obtain from $(4.4)\sim(4.6)$

$\phi[X^{*}, Y^{*}]=[\phi X^{*}, Y^{*}]+[X^{*}, \phi Y^{*}]+\phi[\phi X^{*}, \phi Y^{*}]$ .
From this we easily see that

$\Psi(X^{*}, Y^{*})=0$ .
Now it is clear that $[X^{*}, \xi]=0$ for all $X\in \mathfrak{V}(M)$ since $X^{*}$ is right

invariant vector field on $\tilde{M}$. We see also $[\phi X^{*}, \xi]=[(JX)^{*}, \xi]=0$ . Hence we
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easily verify that
$\Psi(X^{*}, \xi)=0$ .

We have thus proved that (2.3) holds good for the lifts of vector fields on
$M$ or the vertical vector fields. Since $\Psi$ is a tensor field, (2.3) holds good
identically, Thus Theorem 6 is proved.

COROLLARY. Let $M$ be a compact simply connected homogeneous contact
manifold (in the sense of Boothby-Wang [2]) then $M$ has a normal almost
contact structure such that $A(M)$ operates transitively on $M$.

PROOF. By a theorem of Boothby-Wang [2], $M$ has a bundle structure
having the properties stated in Theorem 6 and there exists a compact tran-
sitive Lie transformation group $K$ of $M$ which is fibre-preserving and leaves
$\eta$ and $\xi$ invariant and moreover any element of $K$ induces a holomorphic
transformation of the base space of $M$. From these facts we see that any
element of $K$ leaves $\phi$ invariant. This proves that $K$ is a subgroup of $A(M)$ .
Since $K$ operates transitively on $M,$ $A(M)$ is also transitive on $M$, which proves
Corollary.

\S 5. Almost contact group manifold.

Let $G$ be a connected Lie group. For any element $a\in G$ , we denote by
$L_{a}$ the left translation of $G$ defined by

$L_{a}(x)=a\cdot x$

for $x\in G$ . An almost contact structure $\Sigma=(\phi, \xi, \eta)$ on $G$ will be called left
invariant if $L_{a}\in A_{\Sigma}(G)$ for all $a\in G$ .

In this section we shall show that the problem to find a left invariant
normal almost contact structure on a group manifold is reduced to a purely
algebraic problem in the Lie algebra.

DEFINITION 7. Let $\mathfrak{g}$ be a real Lie algebra, and let $\phi_{0}$ be a linear map of
$\mathfrak{g}$ into itself, $\xi_{0}$ be an element of $\mathfrak{g}$ and $\eta_{0}$ be a linear function on $\mathfrak{g}$ . The
triple $\Sigma_{0}=(\phi_{0}, \xi_{0}, \eta_{0})$ is called a contact structure on $\mathfrak{g}$ if the following condi-
tions are satisfied:

(5.1) $\phi_{0}(\xi_{0})=0$ , $\eta_{0}\circ\phi_{0}=0$ , $\eta_{0}(\xi_{0})=1$ , $\phi_{0}^{2}=-1+\eta_{0}\cdot\xi_{0}$

\langle 5.2) $\phi_{0}[X, Y]=[\phi_{0}X, Y]+[X, \phi_{0}Y]+\phi_{0}[\phi_{0}X, \phi_{0}Y]$ ,

for $X,$ $Y\in \mathfrak{g}$ .
REMARK. If $\mathfrak{g}$ is a Lie algebra having a contact structure $(\phi_{0}, \xi_{0}, \eta_{0})$

satisfying (5.1) and (5.2), then the following condition is automatically satisfied:

(5.3) $\eta_{0}([X, Y])=\eta_{0}([\phi_{0}X, \phi_{0}Y])$

for $X,$ $Y\in \mathfrak{g}$ .
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In fact, (5.3) is implied by (5.1) and (5.2) in the same way as the implication
of (2.7) from (2.3) in the proof of Proposition 3. We shall not repeat the proof
in detail.

We shall call a Lie algebra with a contact structure a contact Lie algebra.
THEOREM 7. Let $G$ be a connected Lie group of odd dimension. Then $G$

admits a left invariant normal almost contact structure if and only if the Lie
algebra $\mathfrak{g}$ of the left invariant vector fields on $G$ is a contact Lie algebra.

PROOF. Suppose that $G$ admits a left invariant normal almost contact
structure $\Sigma=(\phi, \xi, \eta)$ . $ForanyX\in \mathfrak{g},$ $wehave\phi X\in \mathfrak{g},$ $sinceL_{a}\phi X=\phi L_{a}X=\phi X$

for any $a\in G$ . Hence the restriction $\phi_{0}$ of $\phi$ to $\mathfrak{g}$ maps $\mathfrak{g}$ into $\mathfrak{g}$ . Take $X\in \mathfrak{g}$ ,

then $\eta(X)$ is a constant on $G$ , since $\eta$ and $X$ are left invariant. Hence the
restriction $\eta_{0}$ of $\eta$ to $\mathfrak{g}$ is a linear function on $\mathfrak{g}$ . On the other hand, it is
clear that $\xi\in \mathfrak{g}$ . Hence by putting $\xi_{0}=\xi,$ $\Sigma_{0}=(\phi_{0}, \xi_{0}, \eta_{0})$ satisfies (5.1). Now
we can readily see that (2.3) implies (5.2), since $\eta(X)$ is constant for $X\in \mathfrak{g}$ ,
which proves that $\mathfrak{g}$ is a contact Lie algebra.

Conversely, suppose that $\mathfrak{g}$ has a contact structure $\Sigma_{0}=(\phi_{0}, \xi_{0}, \eta_{0})$ satisfying
(5.1), (5.2). Let $X_{1},$ $X_{2}$ , $\cdot$ .. , $X_{2n+1}$ be a basis of $\mathfrak{g}$ over $R$ . Then for any $X\in \mathfrak{V}(G)$ ,

we can find $2n+1$ functions $\alpha_{1},$ $\alpha_{2}$ , , $\alpha_{2n+1}$ on $G$ such that $X$ can be written
uniquely

$X=\sum_{i=1}^{2n+1}\alpha_{i}X_{i}$ .
Now define $\Sigma=(\phi, \xi, \eta)$ as follows:

$\phi(X)=\sum_{i=1}^{2n+1}\alpha_{i}\phi_{0}(X_{i})$ ,

$\eta(X)=\sum_{i=1}^{2n+1}\alpha_{i}\eta_{0}(X_{i})$ ,

and $\xi=\xi_{0}$ . Then clearly $\Sigma$ satisfies $(1.1)\sim(1.4)$ , hence $\Sigma$ is an almost contact
structure on $G$ . On the other hand, by (5.2) we have

$\Psi(X_{i}, X_{j})=0$ ,

for $i,$ $j=1,2$ , – , $2n+1$ . Since $\Psi$ is a tensor field on $G,$ $\Psi$ vanishes identically,
which proves that $\Sigma$ is normal. Thus Theorem 7 is proved.

REMARK. Every connected Lie group $G$ of odd dimension admits a left
invariant almost contact structure. In fact, the proof of Theorem 7 shows
that the existence of $(\phi_{0}, \xi_{0}, \eta_{0})$ satisfying (5.1) for the Lie algebra $\mathfrak{g}$ of $G$

implies the existence of a left invariant almost contact structure on G. (The

existence of such $(\phi_{0}, \xi_{0}, \eta_{0})$ is evident, since the condition (5.1) has a concern
with $\mathfrak{g}$ only as a real vector space of odd dimension.)

THEOREM 8. Let $\Sigma=(\phi, \xi, \eta)$ be a contact structure on a Lie algebra $\mathfrak{g}$ . Let
$t!\sim=\mathfrak{g}\oplus a$ be the direct sum of $\mathfrak{g}$ and l-dimensional Lie algebra $\mathfrak{a}$ . Define the
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linear map $J$ of or into itself by

$J(X, a)=(\phi X-a\xi, \eta(X))$

for $X\in \mathfrak{g}$ and $a\in \mathfrak{a}$ . Then $J$ satisfies the following conditions:

(5.4) $J^{8}=-1$ ,

(5.5) $J[\tilde{X},\tilde{Y}]=[J\tilde{X},\tilde{Y}]+[\tilde{X}, J\tilde{Y}]+J[J\tilde{X}, J\tilde{Y}]$ ,

for all $\tilde{X},\tilde{Y}\in\sim \mathfrak{g}$ .
PROOF. Let $\tilde{X}=(X, a)\in\sim \mathfrak{g}$ . Then we have

$J^{2}(\tilde{X})=J(\phi X-a\cdot\xi, \eta(X))=(\phi^{2}X-\eta(X)\cdot\xi, -a)$

$=(-X, -a)=-\tilde{X}$ .
Hence $J^{2}=-1$ . For $\tilde{X}=(X, a)$ and $\tilde{Y}=(Y, b)\in(,$ we have

$J[\tilde{X},\tilde{Y}]=J([X, Y], O)=(\phi[X, Y], \eta([X, Y]))$

$=([\phi X, Y]+[X, \phi Y]+\phi[\phi X, \phi Y], \eta([X, Y]))$ .
On the other hand, we have

(5.6) $[J\tilde{X},\tilde{Y}]=[(\phi X-a\cdot\xi, \eta(X)), (Y, b)]$

$=([\phi X-a\cdot\xi, Y], 0)$ ,

(5.7) [X, $J\tilde{Y}$ ] $=([X, \phi Y-b\cdot\xi], 0)$ ,

and $J[J\tilde{X}, J\tilde{Y}]=J[(\emptyset X-a\xi, \eta(X)), (\phi Y-b\xi, \eta(Y))]$

$=J([\phi X-a\xi, \phi l^{7}-b\xi], 0)$

$=(\phi[\phi X-a\xi, \phi Y-b\xi], \eta([\phi X-a\xi, \phi Y-b\xi]))$ .
Here we shall use the equality

$[\phi X, \xi]=\phi[X, \xi]$

which is implied by (5.2) by putting $ Y=\xi$ . Then we have

(5.8) $J[J\tilde{X}, J\tilde{Y}]=(\phi[\phi X, \phi Y]-\phi^{2}[X, b\xi]-\phi^{2}[a\xi, Y], \eta([X, Y]))$

$=(\phi[\phi X, \phi Y]+[X, b\xi]-\eta([X, b\xi])\cdot\xi$

$+[a\xi, Y]-\eta([a\xi, Y])\xi,$ $\eta([X, Y]))$ .
Now from (5.3) we obtain $\eta([X, \xi])=0$ by putting $ Y=\xi$ . Adding $(5.6)\sim(5.8)$ ,

we obtain (5.5), which proves Theorem 8.
Conversely, we have the following
THEOREM 9. Let $\tilde{\mathfrak{g}}=\mathfrak{g}\oplus \mathfrak{a}$ be the direct sum of a Lie algebra $\mathfrak{g}$ and l-dimen-

sional Lie algebra $a$ . Let $J$ be a linear map of $\tilde{\mathfrak{g}}$ into itself satisfying (5.4) and
(5.5). Suppose that there exist an element $\xi\in \mathfrak{g}$ and a subspace $\mathfrak{n}\iota$ of $\mathfrak{g}$ such that
$\mathfrak{g}=\mathfrak{m}\oplus\{\xi\}$ (direct sum of vector spaces), $J(\xi)\in a$ and $J(\mathfrak{m})\subset \mathfrak{m}$ .

Then there exist a linear map $\phi$ of $\mathfrak{g}$ into itself and a linear function $\eta$ on
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$\mathfrak{g}$ such lhat $\Sigma=(\phi, \xi, \eta)$ is a contact structure on $\mathfrak{g}$ .
PROOF. We see first that we can suppose $ J(\xi)=1\in$ {). Now any element

$X\in \mathfrak{g}$ can be written uniquely in the form
$ X=X_{1}+a\cdot\xi$ ,

where $X_{1}\in \mathfrak{m}$ and $a\in R$ . Define $\phi$ and $\eta$ as follows
$\phi(X)=J(X_{1})$ and $\eta(X)=a$ .

Now we shall verify that $\Sigma=(\phi, \xi, \eta)$ satisfies (5.1) and (5.2). First, we shall
verify (5.1): the conditions $\eta\circ\phi=0,$ $\eta(\xi)=1$ and $\phi(\xi)=0$ are clearly satisfied.
For $X=X_{1}+a\cdot\xi\in \mathfrak{g},$ $X_{1}\in \mathfrak{m}$ , $a\in R$ , we have

$\phi^{2}(X)=\phi(J(X_{1}))=J^{2}(X_{1})=-X_{1}=-(X_{1}+a\cdot\xi)+a\cdot\xi$

$=-X+\eta(X)\cdot\xi$ ,

which proves (5.1). Concerning (5.2) (and (5.3)), we first remark that

(5.9) $J(X, \lambda)=(\phi X-\lambda\cdot\xi, \eta(X))$

is satisfied for $X\in \mathfrak{g}$ and $\lambda\in a$ . For, both hand sides of (5.9) are equal to
$(JX_{1}-\lambda\cdot\xi, a)$ . Now we calculate both hand sides of

$J([X, Y])=[JX, Y]+[X, JY]+J[JX, JY]$

for $X,$ $Y\in \mathfrak{g}$ . Using (5.9) we obtain the following

$(\phi([X, Y]), \eta([X, Y]))=([\phi X, Y]+[X, \phi Y]+\phi[\phi X, \phi Y], \eta([\phi X, \phi Y]))$ .
Therefore, we have proved (5.2). Thus Theorem 9 is proved.

COROLLARY 1. Let $G$ be a reductive Lie group of odd dimension ( $i$ . $e.$ , the
Lie algebra of $G$ be the direct sum of a semi-simple Lie algebra and an abelian
Lie algebra). Then $G$ admits a left invariant normal almost contact structure.

In fact, the Lie algebra $\mathfrak{g}=\mathfrak{g}\sim\oplus \mathfrak{a}$ ( $\mathfrak{a}$ is l-dimensional Lie algebra) has a
structure stated in Theorem 9 (for this fact see [5]). Then by Theorem 9
and 7, we conclude that $G$ admits a left invariant normal almost contact
structure.

COROLLARY 2. Every compact connected Lie group $G$ of odd dimension has
a left invariant normal almost contact structure.

In fact, since the Lie algebra of $G$ is reductive, we can apply Corollary 1.
Q. E. D.

Nagoya University
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