Differential forms of the first and second kind on modular algebraic varieties

By Satoshi ARIMA

(Received Aug. 26, 1963) (Revised Nov. 27, 1963)

Let V be a complete non-singular variety. We denote the universal domain by K and its characteristic by p. All vector spaces and their dimensions will mean those with respect to K. Differential forms of the first kind of degree r on V are, as is well known, elements of $H^0(V, \Omega^r)$ where Ω^r is the sheaf of germs of holomorphic differential forms of degree r. The dimension of this space is denoted by $h^{r,0}$. We define the differential forms of the second kind on V after Picard and Rosenlicht [9] as follows. Let ω be a differential form of degree $r \ge 1$ on V; we call ω to be of the second kind at a point P of V if there exists a differential form θ_P of degree r-1 on V such that $\omega - d\theta_P$ is holomorphic at P; if ω is of the second kind at every point of V, we call ω to be of the second kind on V. We denote by $\mathcal{D}_{2}^{(r)}(V)$ the space of all closed differential forms of the second kind of degree r on V, and by $\mathcal{D}_{\epsilon}^{(r)}(V)$ that of all exact differential forms among them. The dimension of the factor space $\mathcal{D}_2^{(1)}(V)/\mathcal{D}_e^{(1)}(V)$ is known to be: (1) $2h^{1,0}$ or $h^{1,0}$ respectively, in case dim V=1, according as p=0 or >1 (Rosenlicht [9]), (2) $2h^{1,0}$ in case $K=\mathbb{C}$, dim V being arbitrary (Hodge-Ativah [5]).

Our purpose in § 1 is to show that the dimension of the factor space $\mathcal{Q}_{2}^{(1)}(V)/\mathcal{Q}_{e}^{(1)}(V)$ is $h^{1,0}$, whenever p>1, dim V being arbitrary. We shall prove this in making use of the operator C of Cartier; a proof of this fact in case dim V=1, making also use of C, has been given by Cartier (Tamagawa's lecture in Tokyo University 1960) and Barsotti [2, p. 63], but even in this case our proof is based on other property of C than that used by them. Theorem 2 generalizes Theorem 2 of [9]. In § 2, we shall give some results on closed semi-invariant differential forms on modular abelian varieties; in case of characteristic zero, the corresponding results are found in Barsotti [1]. In § 3 we shall prove the following result. It is known that the dimension Q of the Albanese variety of a variety V is $\leq h^{1,0}$ (Igusa [6]); there is a famous example of V due to Igusa [7] for which the strict inequality $Q < h^{1,0}$ holds. We shall prove that if V is defined over a field of prime characteristic P and if V has P-torsion divisors, then the inequality $Q < h^{1,0}$ holds.

NOTATIONS: K(U) denotes the field of all rational functions on a variety U. If W is a subvariety of U, then \mathfrak{o}_W and \mathfrak{p}_W denote respectively the local ring of W on U over K and the ideal of non-units of \mathfrak{o}_W . A prime divisor on U means a simple subvariety of U of codimension 1; a prime divisor W gives rise to a discrete valuation of rank 1 of the field K(U) over K which will be denoted by v_W .

§ 1. Differential forms of the second kind.

Let U be a variety defined over a field of prime characteristic p, and ω be a closed differential form of degree $r \ge 1$ on U. Let $\{x_1, \dots, x_m\}$ be a separating transcendence basis of K(U) over K. Then ω is known to be written uniquely in the form

$$\pmb{\omega}=d heta+\sum\limits_{i_1<\dots< i_r}z^p_{i_1\cdots i_r}x^{p-1}_{i_1}dx_{i_1}\wedge\,\cdots\,\wedge\,x^{p-1}_{i_r}dx_{i_r}$$
 , $\pmb{z}_{i_1\cdots i_r}\!\in K(U)$,

and the operator C is defined by the formula

(1)
$$C\omega = \sum_{i_1 < \cdots < i_r} z_{i_1 \cdots i_r} dx_{i_1} \wedge \cdots \wedge dx_{i_r},$$

which is independent of the choice of $\{x_1, \dots, x_m\}$. C is p^{-1} -semi-linear in the sense

$$C(\omega+\omega')=C\omega+C\omega'$$
, $C(z^p\omega)=zC\omega$ $(z\in K(U))$.

If ω is a closed differential form of degree 1, (1) is equivalent to the formula (2) $(C\omega(D))^p = \omega(D^p) - D^{p-1}(\omega(D)) ,$

and $C\omega = 0$ if and only if ω is exact, and $C\omega = \omega$ if and only if ω is of the form $\frac{df}{f}$ with $f \in K(U)$. (Cf. Cartier [4].)

THEOREM 1. Let V be a complete non-singular variety which is defined over a field of prime characteristic p. Then $\omega \to C\omega$ induces a p^{-1} -semilinear bijective homomorphism $\mathcal{D}_2^{(1)}(V)/\mathcal{D}_e^{(1)}(V) \to H^0(V, \Omega^1)$; especially we have $\dim \mathcal{D}_2^{(1)}(V)/\mathcal{D}_e^{(1)}(V) = h^{1,0}$.

We first prove the following

LEMMA 1. Let V be as in Theorem 1, and let ω be a closed differential form of degree $r \ge 1$ on V. If $C\omega$ is holomorphic at $P \in V$, then ω is of the second kind at P. Especially if $C\omega$ is of the first kind on V, then ω is of the second kind on V.

PROOF. Let $\{x_1, \cdots, x_m\}$ be a set of uniformizing coordinates of P on V. Then if ω is of the form $\omega = d\theta + \sum\limits_{i_1 < \cdots < i_r} z_{i_1 \cdots i_r}^p x_{i_1}^{p-1} dx_{i_1} \wedge \cdots \wedge x_{i_r}^{p-1} dx_{i_r}$, we have $C\omega = \sum\limits_{i_1 < \cdots < i_r} z_{i_1 \cdots i_r} dx_{i_1} \wedge \cdots \wedge dx_{i_r}$. If $C\omega$ is holomorphic at P, then we have $z_{i_1 \cdots i_r} \in \mathfrak{o}_P$ and so $z_{i_1 \cdots i_r}^p x_{i_1}^{p-1} \cdots x_{i_r}^{p-1} \in \mathfrak{o}_P$, which implies that $\omega - d\theta$ is holomorphic

104 S. Arima

at P. This completes the proof.

LEMMA 2. Let V be as in Theorem 1, and let ω be a closed differential form of degree 1 on V. If ω is of the second kind at $P \in V$, then $C\omega$ is holomorphic at P. Especially if ω is of the second kind on V, then $C\omega$ is of the first kind on V.

PROOF. Let $\theta = \omega - df$ be holomorphic at P. Take any derivation D of K(V) over K with $D\mathfrak{o}_P \subseteq \mathfrak{o}_P$; then we have $\theta(D) \in \mathfrak{o}_P$, $D^{p-1}\theta(D) \in \mathfrak{o}_P$ and $\theta(D^p) \in \mathfrak{o}_P$, since θ is holomorphic at P. It follows from this and the formula (2) that $(C\theta(D))^p \in \mathfrak{o}_P$. Since the local ring \mathfrak{o}_P of a simple point P is integrally closed in K(V) and since $C\theta(D) \in K(V)$, we must have $C\theta(D) \in \mathfrak{o}_P$. Thus $C\omega = C\theta$ is holomorphic at P.

Theorem 1 is now an immediate consequence of Lemma 1, Lemma 2 and the fact that C maps the set of all closed differential forms on V onto that of all differential forms.

As a corollary to Lemma 1 and Lemma 2, we have

COROLLARY. Let V be as in Theorem 1. If a closed differential form ω of degree 1 on V is of the second kind at every prime divisor of V, then ω is of the second kind on V.

PROOF. It follows from the assumption and Lemma 2 that $C\omega$ is holomorphic at each prime divisor of V. $C\omega$ is then of the first kind on V (cf. Zariski [11, p. 26, Proposition 8.7]). ω is therefore of the second kind on V by Lemma 1.

THEOREM 2. Let U be a variety defined over a field of prime characteristic p. Let ω be a closed differential form of degree 1 on U. If ω can be approximated arbitrarily closely at a prime divisor W on U (i. e. for each natural number n, there exists $f_n \in K(U)$ such that $v_W(\omega - df_n) \ge n$), then ω is exact.

PROOF. Let $x=x_1$ be a uniformizing parameter of W on U i. e. $\mathfrak{p}_W=\mathfrak{o}_W x$ (which we shall denote by \mathfrak{p} below), and $\{x_1, x_2, \cdots, x_m\}$ be a set of uniformizing coordinates of W on U. Put $\partial_i = \frac{\partial}{\partial x_i}$ $(1 \leq i \leq m)$ and $\theta_n = \omega - df_n = z_1 dx_1 + \cdots + z_m dx_m$, $z_i \in K(U)$. Denoting $v=v_W$, we have $v(\theta_n) = \min_{1 \leq i \leq m} \{v(z_i)\} \geq n$. Since $\partial_i^p = 0$, we have $(C\theta_n(\partial_i))^p = -\partial_i^{p-1}(\theta_n(\partial_i))$ by the formula (2). Since $\theta_n(\partial_i) = z_i \in \mathfrak{p}^{v(z_i)} \subseteq \mathfrak{p}^n = \mathfrak{o}_W x^n$, z_i is of the form $z_i = x^n u_i$ with $u_i \in \mathfrak{o}_W$, so that we have $\partial_i(\theta_n(\partial_i)) = \partial_i(x^n u_i) = nx^{n-1} \cdot \partial_i x \cdot u_i + x^n \cdot \partial_i u_i \in \mathfrak{p}^{n-1}$, $\partial_i^2(\theta_n(\partial_i)) \in \mathfrak{p}^{n-2}$, \cdots , $\partial_i^{p-1}(\theta_n(\partial_i)) \in \mathfrak{p}^{n-(p-1)}$ ($n \geq p-1$). We have therefore $(C\theta_n(\partial_i))^p \in \mathfrak{p}^{n-(p-1)}$. Putting $a_i = C\omega(\partial_i) = C\theta_n(\partial_i) \in K(U)$ (which is independent of n), we have $a_i^p \in \bigcap_{n=p-1}^\infty \mathfrak{p}^{n-(p-1)} = \{0\}$, $a_i^p = 0$ and $a_i = 0$ ($1 \leq i \leq m$). Thus we have $C\omega = a_1 dx_1 + \cdots + a_m dx_m = 0$, and that $\omega = df$ with some $f \in K(U)$, which completes the proof.

§ 2. Invariant and semi-invariant differential forms on abelian varieties.

Let A be an abelian variety. A differential form ω of degree $r \ge 1$ on A is said to be *invariant* if $\omega \circ T_a - \omega = 0$ for any $a \in A$, where T_a denotes the translation by a; ω is said to be *semi-invariant* if for any $a \in A$ $\omega \circ T_a - \omega$ is exact. (Cf. Barsotti [1].) The space of all closed semi-invariant differential forms of degree r on A will be denoted by $\mathcal{D}_s^{(r)}(A)$. Clearly we have $\mathcal{D}_e^{(r)}(A)$ $\subseteq \mathcal{D}_s^{(r)}(A)$.

PROPOSITION 1. Let ω be a closed differential form of degree ≥ 1 on an abelian variety A which is defined over a field of prime characteristic p. Then ω is semi-invariant if and only if $C\omega$ is invariant.

PROOF. For a given $a \in A$, $\omega \circ T_a - \omega$ is exact if and only if $C(\omega \circ T_a) = C\omega$; and this is so if and only if $(C\omega) \circ T_a = C\omega$, since $(C\omega) \circ T_a = C(\omega \circ T_a)$. Proposition 1 is an immediate consequence of this and the definition of "semi-invariant".

Proposition 1 may be stated also as follows.

COROLLARY 1. Let A be as in Proposition 1. $\omega \to C\omega$ induces a p^{-1} -semilinear bijective homomorphism $\mathcal{D}_s^{(r)}(A)/\mathcal{D}_e^{(r)}(A) \to H^0(A, \Omega^r)$; especially we have $\dim \mathcal{D}_s^{(r)}(A)/\mathcal{D}_e^{(r)}(A) = h^{r,0}$ $(1 \le r \le \dim A)$.

COROLLARY 2. Let A and ω be as in Proposition 1. (1): If ω is semi-invariant, then ω is of the second kind on A. (2): If ω is of degree 1 then ω is semi-invariant if and only if ω is of the second kind on A.

PROOF. Note that a differential form ω of degree $r \ge 1$ on A is invariant if and only if it is of the first kind on A. (1) follows immediately from Proposition 1 and Lemma 1. (2) follows from Lemma 2 and Proposition 1.

§ 3. p-torsions and the inequality $q < h^{1,0}$.

Let V be a complete non-singular variety defined over a field of prime characteristic p, and $V \stackrel{\varphi}{\to} A$ be the Albanese variety of V. Pic (V) and Pic (A) denote the group of all divisor classes (with respect to the linear equivalence) on V and A respectively; Pic $(V)_p$ and Pic $(A)_p$ denote respectively the subgroup of the elements in Pic (V) and Pic (A) whose orders divide p. We shall denote the algebraic and linear equivalence relations between divisors by \equiv and \sim respectively. If \mathfrak{a} is a divisor on A with $\mathfrak{a} \sim 0$, then $\varphi^{-1}(\mathfrak{a}) \sim 0$ on V (if it is defined); $\mathfrak{a} \to \varphi^{-1}(\mathfrak{a})$ induces a homomorphism $\varphi^* \colon \operatorname{Pic}(A) \to \operatorname{Pic}(V)$ and $\operatorname{Pic}(A)_p \to \operatorname{Pic}(V)_p$ (Lang [8, p. 236, p. 65]). A divisor X on V is said to be p-torsion if $X \not\equiv 0$ but $pX \equiv 0$. $\omega \to \omega \circ \varphi$ induces the homomorphism $\delta \varphi$ of the space $H^0(A, \Omega^1)$ into the subspace of closed differential forms in $H^0(V, \Omega^1)$, and which is known to be injective (Igusa [6]). $\mathcal{L}(V)$ denotes the additive

¹⁾ We owe to D. Mumford the formulation which follows.

306 S. Arima

group of differential forms in $H^0(V, \Omega^1)$ which are invariant by C; $\mathcal{L}(A)$ denotes the similar group on A. $\delta \varphi$ induces an injective homomorphism of $\mathcal{L}(A)$ into $\mathcal{L}(V)$, since $C(\omega \circ \varphi) = (C\omega) \circ \varphi$ for $\omega \in \mathcal{L}(A)$.

We use the following result of Cartier [3, Theorem 5].

(3) Notations being as above, the group $Pic(V)_p$ is canonically isomorphic to $\mathcal{L}(V)$.

The proof of this fact is not published. However, a proof of this fact in case $\dim V=1$ is given in Serre [10, p. 28, Proposition 10], and it can be applied to the case of $\dim V \geq 1$. In fact, note that a differential form on V is of the first kind on V if and only if it is holomorphic at every prime divisor of V (cf. [11, p. 26, Proposition 8.7]). Then, as in the proof of [10 Proposition 10], it can be seen that $Cl(X)^{2)} \rightarrow \frac{df}{f}$ with pX=(f) gives an injective homomorphism $\theta: \operatorname{Pic}(V)_p \rightarrow \mathcal{L}(V)$. In order to see that θ is surjective, we have only to show that, if a differential form $\frac{df}{f}(f \in K(V))$ is holomorphic at a prime divisor W on V, then $v_W(f) \equiv 0 \pmod{p}$. Let t be a uniformizing parameter of W on V, and let $f=t^eu$ with a unit u in \mathfrak{o}_W and $e=v_W(f)$. We have $\frac{df}{f}=e\frac{dt}{t}+\frac{du}{u}$. The differential form $\frac{dt}{t}$ is not holomorphic at W, since the derivation $D=\frac{\partial}{\partial t}$ of K(V)/K is holomorphic at W and $\frac{dt}{t}(D)=\frac{1}{t}\oplus\mathfrak{o}_W$; this implies $e\equiv 0\pmod{p}$ since $e\frac{dt}{t}=\frac{df}{f}-\frac{du}{u}$ is holomorphic at W. Thus we see that θ is bijective.

PROPOSITION 2. Notations being as above, φ^* : $Pic(A)_p \to Pic(V)_p$ is surjective if and only if V has no p-torsion divisor.

PROOF. \hat{V} denotes the subgroup of Pic(V) of classes which are represented by divisors algebraically equivalent to zero (i. e. the Picard variety of V); \hat{A} denotes the similar group on A. If D is a Poincaré divisor for A, then $D \circ \varphi$ is a Poincaré divisor for V; φ^* gives therefore a canonical bijective homomorphism $\hat{A} \to \hat{V}$. (Cf. Lang [8, p. 148, Proposition 1 and Theorem 17.)

If V has no p-torsion divisor, then $Pic(V)_p$ is a subgroup of \hat{V} ; φ^* maps therefore $Pic(A)_p$ onto $Pic(V)_p$ isomorphically, since the abelian variety A has no p-torsion divisor.

Conversely, if V has a divisor X such that $X \not\equiv 0$ but $pX \equiv 0$, then we can find a divisor Y on V such that $Y \equiv X$ and $pY \sim 0$ (Lang [8, p. 101, Corollary 4 to Theorem 4]). Then $y = Cl(Y) \in \operatorname{Pic}(V)_p$ can not be an image from $\operatorname{Pic}(A)_p$, which shows that $\varphi^* \colon \operatorname{Pic}(A)_p \to \operatorname{Pic}(V)_p$ is not surjective. Proposition 2 is thereby proved.

²⁾ Cl(X) denotes the linear equivalence class containing the divisor X.

 θ denotes the canonical isomorphism $\operatorname{Pic}(V)_p \to \mathcal{L}(V)$ in (3).

PROPOSITION 3. Notations being as above, the following diagram is commutative.

$$\operatorname{Pic}(V)_{p} \stackrel{\varphi^{*}}{\longleftarrow} \operatorname{Pic}(A)_{p}$$

$$\operatorname{ll} \theta \qquad \operatorname{ll} \theta$$

$$\operatorname{L}(V) \stackrel{\delta \varphi}{\longleftarrow} \operatorname{L}(A)$$

PROOF. Let $a=Cl(\mathfrak{a})\in \operatorname{Pic}(A)_p$ with $p\mathfrak{a}=(\alpha)$, $\alpha\in K(A)$. Then we have $\theta(a)=\frac{d\alpha}{\alpha}\in \mathcal{L}(A)$ and $\varphi^*(a)=Cl(\varphi^{-1}(\mathfrak{a}))\in \operatorname{Pic}(V)_p$. It will not be difficult to see here that $\alpha\circ\varphi$ is defined and is not constant 0. This being so, we have $p\varphi^*(a)=Cl(p\varphi^{-1}(\mathfrak{a}))=Cl(\varphi^{-1}(\alpha))=Cl((\alpha\circ\varphi))$. It follows from this that $\theta(\varphi^*(a))=\frac{d(\alpha\circ\varphi)}{\alpha\circ\varphi}=\delta\varphi(\theta(a))$, which implies the commutativity of the diagram.

In view of the commutative diagram in Proposition 3, Proposition 2 is equivalent to the following.

THEOREM 3. Let V be a complete non-singular variety which is defined over a field of prime characteristic p, and $V \xrightarrow{\varphi} A$ be its Albanese variety. Denote by $\mathcal{L}(V)$ the additive group of differential forms $\omega \in H^0(V, \Omega^1)$ such that $C\omega = \omega$, and by $\mathcal{L}(A)$ the similar group on A. Then $\delta \varphi \colon \mathcal{L}(A) \to \mathcal{L}(V)$ is surjective if and only if V has no p-torsion divisor.

COROLLARY. Let V, p and A be as in Theorem 3, and q the dimension of A. If V has a p-torsion divisor, then we have $q < h^{1,0}$.

PROOF. If V has a p-torsion divisor, then we may find by Theorem 3 a differential form $\frac{df}{f} \in \mathcal{L}(V)$ which is not an image from $\mathcal{L}(A)$. Assume for a moment that $\frac{df}{f} = \omega \circ \varphi$ for some differential form ω of the first kind on A. We have $C(\omega \circ \varphi) = (C\omega) \circ \varphi$, since ω is closed. (Cf. [1, p. 93, 2.1].) Since $(C\omega - \omega) \circ \varphi = C(\omega \circ \varphi) - \omega \circ \varphi = C(\frac{df}{f}) - \frac{df}{f} = 0$, and since $C\omega - \omega$ is of the first kind by Lemma 2, we would have $C\omega - \omega = 0$ because of the injectivity of $\delta \varphi$. ω would be therefore of the form $\omega = \frac{d\alpha}{\alpha}$ with $\alpha \in K(A)$. This would imply that $\frac{df}{f} = \omega \circ \varphi$ is an image from $\mathcal{L}(A)$, which is a contradiction.

Musashi Institute of Technology, Tokyo

References

- [1] I. Barsotti, Factor sets and differentials on abelian varieties, Trans. Amer. Math. Soc., 84 (1957), 85-108.
- [2] I. Barsotti, Repartitions on abelian varieties, Illinois J. Math., 2 (1958), 43-70.
- [3] P. Cartier, Une nouveller opération sur les formes différentielles, C.R. Acad. Sci., 244 (1957), 426-428.
- [4] P. Cartier, Questions de rationalité des diviseurs en géométrie algébrique, Bull. Soc. Math. France, 86 (1958), 177-251.
- [5] V. W. D. Hodge and M. F. Atiyah, Integrals of the second kind on an algebraic variety, Ann. of Math., 62 (1955), 56-91.
- [6] J. Igusa, A fundamental inequality in the theory of Picard varieties, Proc. Nat. Acad. Sci. U.S. A., 41 (1955), 317-320.
- [7] J. Igusa, On some problems in abstract algebraic geometry, Proc. Nat. Acad. Sci. U.S. A., 41 (1955), 964-967.
- [8] S. Lang, Abelian varieties, New York, Interscience Publishers, 1958.
- [9] M. Rosenlicht, Differentials of the second kind for algebraic function fields of one variable, Ann. of Math., 57 (1953), 517-523.
- [10] J.-P. Serre, Sur la topologie des variétés algébriques en caractéristique p, Symposium of Algebraic Topology, Mexico, 1956.
- [11] O. Zariski, An introduction to the theory of algebraic surfaces, lecture notes, Harvard University, 1957-1958.