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Introduction.

Let A be a commutative algebra with identity over a subfield K. Let N
be a maximal ideal of A and let g be the natural K-homomorphism of A onto
A/N (K and gK identified). Denote A/N by F,. Then, consistent with the
usual meaning of the term coefficient field, we define a K-coefficient field as a
subfield F of A such that F2 K and gF =F,.

The existence of coefficient fields for complete local algebras is assured
by well known results [3, p. 106], but as simple examples show, the existence
of K-coefficient fields is not a consequence. In Theorem 1, we give a necessary
and sufficient condition for the stepwise extension of suitable subfields of A
to K-coefficient fields when K has characteristic p #0. These suitable subfields
are situated in A¥ = {a**|a € A}, e a positive integer, analogous to the way a
K-coefficient field would be situated in A. This result applies of course to
quasi-local algebras. In we note an extension to the case of ar-
bitrary characteristic of a result in which can also be obtained by a
modification of the proof of Corollary 2 in [4, p. 280], namely, the existence
of a K-coefficient field when A is quasi-local, N is nil and F, has a separating
transcendence basis over K. This theorem reduces the case of any quasi-local
algebra with N nil to the case to which Theorem 1 applies.

1. By a counterimage M S A of a set M,E F,, we mean a set M such
that gM = M, and g|M is one-one. Unless otherwise specified, ¢ always denotes
a fixed positive integer. Let M?*={m?"|m e M}, and similarly for other prime
powers of sets appearing hereafter. By the symbol E(M) we mean the set of
all polynomials in elements from M with coefficients from a field E.

LEMMA 1. Suppose there exists a field ES A with the same identity as A
such that gE=F%°. Then a counterimage M S A of a p-basis M, of F,, [3, p.
1077, is such that M** S E if and only if E(M)is a field. If such an M exists,
gE(M)=F,. '

PrROOF. Suppose M? S E. Well order M and put M;={m,|la <j} for
an ordinal j. Suppose E(M;) is a field for some ordinal ;. Now m; satisfies
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x7—d=0, de E(M;). If this polynomial is reducible over E(M,), then there
exists a finite subset B, & gM; of r elements say and a positive integer f such
that gm#%~ e F*(B,). But this contradicts the degree relation [ F3%(B,, gm;):
F@l=p**P. The case for m, is similar and since the union of an ascending
sequence of fields under inclusion is a field, it follows by transfinite induction
that E(M) is a field.

On the other hand, suppose E(M) is a field. For each m & M, there exist
be E, n& N such that m?*=b-+n. However, n=0 since E(M)\N = (0).

Finally, if M exists, gE(M)=F, since F,= F3°(M,). Q.E.D.

LEMMA 2. If there exists a field ES A?® with the same identity as A and
such that gE=F%°, then E can be extended to a field F such that gF =F,.

Proor. Clearly, N?*< A*® " N. Let a**< A?* \N. Then g(a)?*=0 which
implies g(a) =0 since F, is a field. Thus ¢ N and a** = N?*. Hence, A** \N
=N?°. Now, let M, be a p-basis of F, and M a counterimage of M,. Since,
by hypothesis and the preceding remark, A= E-FN?°, m?®=0b+n? for all
me M, where b= E. Thus, the subset {m—n}=M" of A is a counterimage
of M, such that M’ S E. The result now follows from Lemma 1. Q.E.D.

A similar result has already been noted by Bray [1]. Closely related
results for complete local rings can be found in [3, Ex., p. 112].

THEOREM 1. Suppose that for some positive integer i there exists a field
E such that FEENKS EZS A? and gE=F?. Then E can be extended to a
field E’ such that F¥'NK< E S A" and gE'=F%"" if and only if (i)
g(AP' NK)Y=F2" ~K and (ii) E(A*" N K) is a field.

PrROOF. Suppose (i) and (ii) hold. Choose a p-basis G,\J M, of F2" over
F2' so that F3(G,)) = F3(F5™" nK). ldentifying A?"™ with A and A?’ with
A?®, we have by Lemma 2 that there exist counterimages G and M of G, and
M, respectively in A?" such that E(G\U M) is a field and gFE(G\J M)=Fg™,
By (), g(A*"'~NK)=F2"~K, and thus G can be chosen so that FE(G)
C E(AP A K). 1t remains to be shown that For* AnKS E(GYM). Now
g induces an isomorphism of E(G) onto F3Y(G,)=F3(F3"™* ~nK). By (ii),
gl E(A*"" nK) is one-one. Thus E(G) and E(A*™*~K) are E-isomorphic.
Since E(A*' ~K) is pure inseparable over E, it is not E-isomorphic to a
proper subfield. Hence, E(G) = E(A**"™ ~ K). Therefore, F2"' n K< E(G\J M).

On the other hand, suppose E can be extended to the field E/. (i) Since
E'2 F1' A K, it follows that AP NK=F2"~K. (A" NK is always in
F2"' ~K) (ii) Since E’'2 E(A* N\ K), the latter is a field and is in fact
isomorphic to FE(F?~' ~K). Q.E.D.

COROLLARY 1. Suppose there exists a field E such that AP "NK< E< A*®
and gE=F%. Then E can be extended to a K-coefficient field if AP K
= F?" ~K and, in addition, either one of the following conditions holds for
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i=1, -, e:

() the pair F2', F2™' AN K is linearly disjoint over FENK; or

(ii) there exists a subset Gy of a p-basis of F2™ over F2 such that
(FYNE) G =F5 " N K. _

ProoF. (i) Suppose E; is a field such that A» NK S E; S A? and gE,=F 2t
Since g E, (A" N K)=F3(F%™ ~K), it follows by application of the universal
mapping theorem for tensor products that g|E;(A? ~K) is one-one. Thus,
E(A? ~NK) is a field and from Theorem 1 it follows by induction that E
can be extended to a K-coefficient field.

(ii) Suppose there exists a field E; such that A” NK<S E; S A? and gE,
=F7?. Since (F2NK)Gyw)=F2 " NK, E{Go)=E (A" ~NK). Thus, E(A"™
NK) i1s a field. Q.E.D.

COROLLARY 2. Suppose there exists a field E such-that A "K < E< A?*
and gE=F%. Then E can be extended to a K-coefficient field if either one of
the following conditions holds:

() F, is separable over K; or

(i) A has no nilpotent elements.

PROOF. (i) Let a8’ & F2" ~ K for some positive integer i. Then a, € K since
F, has no pure inseparable elements over K. Thus, e’ K?' and a8' € A" N K.
Hence, K72 F2' ~ K and A” NK 2 F2' K. Thus, K?=F8' nK and A*"NK
= F#' ~K. Furthermore, F2"™* ~ K is pure inseparable over F% ~K and F¥%
is separable over F2' ~ K= K?. Hence the conditions in Corollary 1 (i) hold.

(ii) By Lemma 2, E can be extended to a field F° such that gF=F, If
K & F, then there exists k= K, k< F and a < F such that ga=£k, a—k+0 and
(a—k)**=0 (since F2 E 2 K?%, which is impossible by hypothesis. Q.E.D.

Let g,=g| AP (A"~ K) and let (N?) be the ideal in A?"(A*"' A~ K)
generated by N?.

REMARK 1. If A has a K-coefficient field F, then

(i) there exists a field E such that A NK < ES A? and gE=F%’;

(i) A” NK=F? K for all positive integers i;

(i) Ker g;=(N?% for all positive integers i.

ProoF. (i) Take E=F?° for any e.

(ii) Given a, € F, such that a8’ < K, there exists a € F such that ga=a,
and such that a**= K. Hence A" NK2F® K. (The inclusion A?” K
c F?' ~ K always holds.)

(i) FP(AP '~ K) and Fr(F?"'~K) are naturally isomorphic and thus
there exists a homomorphism #; of A?(A?*™ N\ K) onto F¥(A?" N\ K) such that
Ker h; =Ker g; and hij}afgikj: ;b,kj, where k; € A" N K, b;e F?* and h,a8’

= bj. Letc :2 a’}ikj e Ker hi. Then 0= h¢C = hl Z(b]—f—ni‘;’b)k‘i = h«,; Z bjkj :ijkj
where n%'e N?*. Thus, c=3n2'%k, = (N?). Hence Kerg, & (N?). Clearly,
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(N7 € Ker g;. Q.E.D.

If the pairs A?", AP ~ K are linearly disjoint over A% ~ K, and if Ker g;
—(N?", then the pairs F2!, F2"* ~K are linearly disjoint over F2' K by
application of elementary properties of tensor products. Thus, under these
conditions, A has a K-coefficient field by Corollary 1 (i) when the field E in
Corollary 1 exists.

REMARK 2. If (i) N?*=(0), or (ii) F S K and A*” "K=F3% K, or (iii)
N?*= NP A? ~N K is a field and F, is pure inseparable over K, or (iv) the
ideal R of all nilpotent elements of A is such that R”*=(0), A NK=F2 K
for all positive integers i, and F, is pure inseparable over K, then there exists
a field E such that A "K S E< A? and gE=F?®. (Here we allow ¢=0.)

ProOOF. (i) N?*=(0) implies A is quasi-local which then implies A?° is a
field. :

(i) Since F2* S K and A "K=F% K we can take E= A* K.

(iii) By Zorn’s lemma there exists a maximal field £ in A?° and containing
A" NK. If gECF% (strict inclusion), then there exists a,< F2°, a,< gE,
ac A?, a& E such that ga=ua, Since F, is pure inseparable over K, there
exists a smallest positive integer f such that a% = gE. Thus, a? =b+4-n?°
where b € E and n? = N?. Since NP°= N?*', there exists n, & N such that
n#7 =n?*, Thus, E(a—n2% is a field which contradicts the maximality of E.

(iv) Let E be a maximal field such that A "\K S E< A, If gEC F¥%°,
then there exists a, = F%°, a, ¢ gE, a = A?®, a & E such that ga=a, Since F,
is pure inseparable over K, there exists a smallest positive integer f and a
positive integer & such that a%’  gE and a?*" <= K. Thus, a?’ =b+n?® where
be E and n?®= N*°. By hypothesis, a can be chosen so that a”**< K. Thus,
a??* = pP* 17" and since b*" e K, n**™=0. Since R**=(0), A”® has no nil-
potent elements. Hence, n?®*=0. Therefore, E(a) is a field which contradicts
the maximality of E. Q.E.D.

In particular, when e¢=0 in (iii) and (iv), then E is a K-coefficient field in
A. The conditions in (iv) with e¢=0 contrast with those of Theorem 2 below.

2. Let A be quasi-local with unique maximal ideal N and let the charac-
teristic of F, be arbitrary.

THEOREM 2. If N is nil and F, has a separating transcendence basis over
K, then A has a K-coefficient field.

PrRoOOF. Let B, be a separating transcendence basis of F, over K and
B<S A a counterimage of B,. Then K[B]N=(0), otherwise the algebraic
independence of B, over K is contradicted. Since A is quasi-local, K(B) < A.
Let F be a maximal field 2 K(B). If gFC F, then F, is algebraic over gF
and there exists a, € F,, a, & gF, a= A, a&¢ F such that ga=a, Since N is
nil, A is algebraic over F and it follows that F(a) is quasi-local with unique
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maximal ideal F(a)\N. Since Ker g|F(a)= F(a) N=radical of F(a) and

F(a) is finite dimensional over F and gF'(a,) is separable over gF, it follows

that there exists a field F* DF such that gF*=gF(a,) by Wedderburn’s

Principal Theorem. This contradicts the maximality of F. Hence gF=F,.

Q.E.D.

We also see that if F, is arbitrary over K, there exists a field F, K F< A,
such that F, is pure inseparable over gF.

Appendix

The following is an example of a quasi-local algebra which is such that
A" " K=F2" ~K for all positive integers i and yet A does not have a K-
coefficient field.
Let K =J,(s, t, u, v)(s?, t?) where J,=GF[ p] and s, ¢, u, v are independent
indeterminates over J, Let
F,= ]’p(sl/p, tl/p, uvp, Ul/p)(ullzﬂ, vl/pZ)(sl/p2u1/p2+t1/p2vl/p2) .

Then _
FR=Jy(s, t, u, v)(u», vVP)(s"Pyt/P -t Vryl/p)

FosnK=],(s,t, u,v).

Let K,=F%n K and consider the tensor product A= F,xK over K,. Let g
be the homomorphism of FyX K onto F, such that gFyx1=F, and glxK =K.
Identify 1x K and K and let N=Ker g.

For any positive integer i, A” "K 2 A”" "(F3\K) and since A has a
K,-coefficient field, namely F,x1, A?” ~\(F3~\K)= F2 ~(F3~K) by Remark 1
following Corollary 1. Thus, A” "K2 F#' n(F3\K)=F2" ~nK. Hence, A*
NK=F? K.

Since K?S K,, N*=(0) and thus (N?)< AP’(K) is the zero ideal. Now
APYK) =(FEX1)(K)= F%x K and since F3, K are not linearly disjoint over K,
Ker g| A”(K) + (0). Hence, Ker g| A?(K)+ (N?) and thus, by Remark 1, A
cannot have a K-coefficient field.
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