Extension of certain subfields to coefficient fields in commutative algebras

By J. N. MORDESON and B. VINOGRADE*)

(Received June 22, 1964)

Introduction.

Let A be a commutative algebra with identity over a subfield K. Let N be a maximal ideal of A and let g be the natural K-homomorphism of A onto A/N (K and gK identified). Denote A/N by F_0 . Then, consistent with the usual meaning of the term coefficient field, we define a K-coefficient field as a subfield F of A such that $F \supseteq K$ and $gF = F_0$.

The existence of coefficient fields for complete local algebras is assured by well known results [3, p. 106], but as simple examples show, the existence of K-coefficient fields is not a consequence. In Theorem 1, we give a necessary and sufficient condition for the stepwise extension of suitable subfields of A to K-coefficient fields when K has characteristic $p \neq 0$. These suitable subfields are situated in $A^{pe} = \{a^{pe} | a \in A\}$, e a positive integer, analogous to the way a K-coefficient field would be situated in A. This result applies of course to quasi-local algebras. In Theorem 2, we note an extension to the case of arbitrary characteristic of a result in [2] which can also be obtained by a modification of the proof of Corollary 2 in [4, p. 280], namely, the existence of a K-coefficient field when K is quasi-local, K is nil and K0 has a separating transcendence basis over K. This theorem reduces the case of any quasi-local algebra with K1 nil to the case to which Theorem 1 applies.

1. By a counterimage $M \subseteq A$ of a set $M_0 \subseteq F_0$, we mean a set M such that $gM = M_0$ and $g \mid M$ is one-one. Unless otherwise specified, e always denotes a fixed positive integer. Let $M^{pe} = \{m^{pe} \mid m \in M\}$, and similarly for other prime powers of sets appearing hereafter. By the symbol E(M) we mean the set of all polynomials in elements from M with coefficients from a field E.

LEMMA 1. Suppose there exists a field $E \subseteq A$ with the same identity as A such that $gE = F_0^{pe}$. Then a counterimage $M \subseteq A$ of a p-basis M_0 of F_0 , [3, p. 107], is such that $M^{pe} \subseteq E$ if and only if E(M) is a field. If such an M exists, $gE(M) = F_0$.

PROOF. Suppose $M^{pe} \subseteq E$. Well order M and put $M_j = \{m_{\alpha} \mid \alpha < j\}$ for an ordinal j. Suppose $E(M_j)$ is a field for some ordinal j. Now m_j satisfies

^{*)} This paper was supported in part by NSF grant G-23418.

 $x^{pe}-d=0$, $d \in E(M_j)$. If this polynomial is reducible over $E(M_j)$, then there exists a finite subset $B_0 \subseteq gM_j$ of r elements say and a positive integer f such that $g m_j^{pe-f} \in F^{pe}(B_0)$. But this contradicts the degree relation $[F_0^{pe}(B_0, g m_j): F_0^{pe}] = p^{e(r+1)}$. The case for m_1 is similar and since the union of an ascending sequence of fields under inclusion is a field, it follows by transfinite induction that E(M) is a field.

On the other hand, suppose E(M) is a field. For each $m \in M$, there exist $b \in E$, $n \in N$ such that $m^{pe} = b + n$. However, n = 0 since $E(M) \cap N = (0)$.

Finally, if M exists, $gE(M) = F_0$ since $F_0 = F_0^{pe}(M_0)$. Q. E. D.

LEMMA 2. If there exists a field $E \subseteq A^{pe}$ with the same identity as A and such that $gE = F_0^{pe}$, then E can be extended to a field F such that $gF = F_0$.

PROOF. Clearly, $N^{pe} \subseteq A^{pe} \cap N$. Let $a^{pe} \in A^{pe} \cap N$. Then $g(a)^{pe} = 0$ which implies g(a) = 0 since F_0 is a field. Thus $a \in N$ and $a^{pe} \in N^{pe}$. Hence, $A^{pe} \cap N = N^{pe}$. Now, let M_0 be a p-basis of F_0 and M a counterimage of M_0 . Since, by hypothesis and the preceding remark, $A^{pe} = E + N^{pe}$, $m^{pe} = b + n^{pe}$ for all $m \in M$, where $b \in E$. Thus, the subset $\{m-n\} = M'$ of A is a counterimage of M_0 such that $M'^{pe} \subseteq E$. The result now follows from Lemma 1. Q. E. D.

A similar result has already been noted by Bray [1]. Closely related results for complete local rings can be found in [3, Ex., p. 112].

THEOREM 1. Suppose that for some positive integer i there exists a field E such that $F_0^{p^i} \cap K \subseteq E \subseteq A^{p^i}$ and $gE = F_0^{p^i}$. Then E can be extended to a field E' such that $F_0^{p^{i-1}} \cap K \subseteq E' \subseteq A^{p^{i-1}}$ and $gE' = F_0^{p^{i-1}}$ if and only if (i) $g(A^{p^{i-1}} \cap K) = F_0^{p^{i-1}} \cap K$ and (ii) $E(A^{p^{i-1}} \cap K)$ is a field.

PROOF. Suppose (i) and (ii) hold. Choose a p-basis $G_0 \cup M_0$ of $F_0^{p^{i-1}}$ over $F_0^{p^i}$ so that $F_0^{p^i}(G_0) = F_0^{p^i}(F_0^{p^{i-1}} \cap K)$. Identifying $A^{p^{i-1}}$ with A and A^{p^i} with A^{p^e} , we have by Lemma 2 that there exist counterimages G and M of G_0 and M_0 respectively in $A^{p^{i-1}}$ such that $E(G \cup M)$ is a field and $gE(G \cup M) = F_0^{p^{i-1}}$. By (i), $g(A^{p^{i-1}} \cap K) = F_0^{p^{i-1}} \cap K$, and thus G can be chosen so that $E(G) \subseteq E(A^{p^{i-1}} \cap K)$. It remains to be shown that $F_0^{p^{i-1}} \cap K \subseteq E(G \cup M)$. Now g induces an isomorphism of E(G) onto $F_0^{p^i}(G_0) = F_0^{p^i}(F_0^{p^{i-1}} \cap K)$. By (ii), $g \mid E(A^{p^{i-1}} \cap K)$ is one-one. Thus E(G) and $E(A^{p^{i-1}} \cap K)$ are E-isomorphic. Since $E(A^{p^{i-1}} \cap K)$ is pure inseparable over E, it is not E-isomorphic to a proper subfield. Hence, $E(G) = E(A^{p^{i-1}} \cap K)$. Therefore, $F_0^{p^{i-1}} \cap K \subseteq E(G \cup M)$.

On the other hand, suppose E can be extended to the field E'. (i) Since $E' \supseteq F_0^{p^{i-1}} \cap K$, it follows that $A^{p^{i-1}} \cap K = F_0^{p^{i-1}} \cap K$. $(A^{p^{i-1}} \cap K)$ is always in $F_0^{p^{i-1}} \cap K$.) (ii) Since $E' \supseteq E(A^{p^{i-1}} \cap K)$, the latter is a field and is in fact isomorphic to $F_0^{p^i}(F_0^{p^{i-1}} \cap K)$. Q. E. D.

COROLLARY 1. Suppose there exists a field E such that $A^{pe} \cap K \subseteq E \subseteq A^{pe}$ and $gE = F_0^{pe}$. Then E can be extended to a K-coefficient field if $A^{pi} \cap K = F_0^{pi} \cap K$ and, in addition, either one of the following conditions holds for

 $i=1, \dots, e$:

- (i) the pair F_0^{pi} , $F_0^{pi-1} \cap K$ is linearly disjoint over $F_0^{pi} \cap K$; or
- (ii) there exists a subset G_{0i} of a p-basis of $F_0^{p^{i-1}}$ over $F_0^{p^i}$ such that $(F_0^{p^i} \cap K)(G_{0i}) = F_0^{p^{i-1}} \cap K$.
- PROOF. (i) Suppose E_i is a field such that $A^{p^i} \cap K \subseteq E_i \subseteq A^{p^i}$ and $gE_i = F_0^{p^i}$. Since $gE_i(A^{p^{i-1}} \cap K) = F_0^{p^i}(F_0^{p^{i-1}} \cap K)$, it follows by application of the universal mapping theorem for tensor products that $g|E_i(A^{p^{i-1}} \cap K)$ is one-one. Thus, $E_i(A^{p^{i-1}} \cap K)$ is a field and from Theorem 1 it follows by induction that E can be extended to a K-coefficient field.
- (ii) Suppose there exists a field E_i such that $A^{pi} \cap K \subseteq E_i \subseteq A^{pi}$ and $gE_i = F_0^{pi}$. Since $(F_0^{pi} \cap K)(G_{0i}) = F_0^{pi-1} \cap K$, $E_i(G_{0i}) = E_i(A^{pi-1} \cap K)$. Thus, $E_i(A^{pi-1} \cap K)$ is a field. Q. E. D.

COROLLARY 2. Suppose there exists a field E such that $A^{pe} \cap K \subseteq E \subseteq A^{pe}$ and $gE = F_0^{pe}$. Then E can be extended to a K-coefficient field if either one of the following conditions holds:

- (i) F_0 is separable over K; or
- (ii) A has no nilpotent elements.
- PROOF. (i) Let $a_0^{p^i} \in F_0^{p^i} \cap K$ for some positive integer i. Then $a_0 \in K$ since F_0 has no pure inseparable elements over K. Thus, $a_0^{p^i} \in K^{p^i}$ and $a_0^{p^i} \in A^{p^i} \cap K$. Hence, $K^{p^i} \supseteq F_0^{p^i} \cap K$ and $A^{p^i} \cap K \supseteq F_0^{p^i} \cap K$. Thus, $K^{p^i} = F_0^{p^i} \cap K$ and $A^{p^i} \cap K \supseteq F_0^{p^i} \cap K$. Furthermore, $F_0^{p^{i-1}} \cap K$ is pure inseparable over $F_0^{p^i} \cap K$ and $F_0^{p^i}$ is separable over $F_0^{p^i} \cap K = K^{p^i}$. Hence the conditions in Corollary 1 (i) hold.
- (ii) By Lemma 2, E can be extended to a field F such that $gF = F_0$. If $K \subseteq F$, then there exists $k \in K$, $k \in F$ and $a \in F$ such that ga = k, $a k \neq 0$ and $(a-k)^{p^e} = 0$ (since $F \supseteq E \supseteq K^{p^e}$), which is impossible by hypothesis. Q. E. D.

Let $g_i = g \mid A^{p^i}(A^{p^{i-1}} \cap K)$ and let (N^{p^i}) be the ideal in $A^{p^i}(A^{p^{i-1}} \cap K)$ generated by N^{p^i} .

REMARK 1. If A has a K-coefficient field F, then

- (i) there exists a field E such that $A^{pe} \cap K \subseteq E \subseteq A^{pe}$ and $gE = F_0^{pe}$;
- (ii) $A^{pi} \cap K = F_0^{pi} \cap K$ for all positive integers i;
- (iii) Ker $g_i = (N^{pi})$ for all positive integers i.

PROOF. (i) Take $E = F^{pe}$ for any e.

- (ii) Given $a_0 \in F_0$ such that $a_0^{p^i} \in K$, there exists $a \in F$ such that $ga = a_0$ and such that $a^{p^i} \in K$. Hence $A^{p^i} \cap K \supseteq F_0^{p^i} \cap K$. (The inclusion $A^{p^i} \cap K \subseteq F_0^{p^i} \cap K$ always holds.)
- (iii) $F^{pi}(A^{pi-1} \cap K)$ and $F^{pi}_0(F^{pi-1} \cap K)$ are naturally isomorphic and thus there exists a homomorphism h_i of $A^{pi}(A^{pi-1} \cap K)$ onto $F^{pi}(A^{pi} \cap K)$ such that $\operatorname{Ker} h_i = \operatorname{Ker} g_i$ and $h_i \sum_j a^{pi}_j k_j = \sum_j b_j k_j$, where $k_j \in A^{pi-1} \cap K$, $b_j \in F^{pi}$ and $h_i a^{pi}_j = b_j$. Let $c = \sum_j a^{pi}_j k_j \in \operatorname{Ker} h_i$. Then $0 = h_i c = h_i \sum_j (b_j + n^{pi}_j) k_j = h_i \sum_j b_j k_j = \sum_j b_j k_j$ where $n^{pi}_i \in N^{pi}$. Thus, $c = \sum_j n^{pi}_j k_j \in (N^{pi})$. Hence $\operatorname{Ker} g_i \subseteq (N^{pi})$. Clearly,

 $(N^{pi}) \subseteq \operatorname{Ker} g_i$. Q. E. D.

If the pairs A^{p^i} , $A^{p^{i-1}} \cap K$ are linearly disjoint over $A^{p^i} \cap K$, and if $\operatorname{Ker} g_i = (N^{p^i})$, then the pairs $F_0^{p^i}$, $F_0^{p^{i-1}} \cap K$ are linearly disjoint over $F_0^{p^i} \cap K$ by application of elementary properties of tensor products. Thus, under these conditions, A has a K-coefficient field by Corollary 1 (i) when the field E in Corollary 1 exists.

REMARK 2. If (i) $N^{p^e} = (0)$, or (ii) $F_0^{p^e} \subseteq K$ and $A^{p^e} \cap K = F_0^{p^e} \cap K$, or (iii) $N^{p^e} = N^{p^{e+1}}$, $A^{p^e} \cap K$ is a field and F_0 is pure inseparable over K, or (iv) the ideal R of all nilpotent elements of A is such that $R^{p^e} = (0)$, $A^{p^i} \cap K = F_0^{p^i} \cap K$ for all positive integers i, and F_0 is pure inseparable over K, then there exists a field E such that $A^{p^e} \cap K \subseteq E \subseteq A^{p^e}$ and $gE = F_0^{p^e}$. (Here we allow e = 0.)

PROOF. (i) $N^{pe} = (0)$ implies A is quasi-local which then implies A^{pe} is a field.

- (ii) Since $F_0^{pe} \subseteq K$ and $A^{pe} \cap K = F_0^{pe} \cap K$ we can take $E = A^{pe} \cap K$.
- (iii) By Zorn's lemma there exists a maximal field E in A^{pe} and containing $A^{pe} \cap K$. If $gE \subset F_0^{pe}$ (strict inclusion), then there exists $a_0 \in F_0^{pe}$, $a_0 \notin gE$, $a \in A^{pe}$, $a \notin E$ such that $ga = a_0$. Since F_0 is pure inseparable over K, there exists a smallest positive integer f such that $a_0^{pf} \in gE$. Thus, $a^{pf} = b + n^{pe}$ where $b \in E$ and $n^{pe} \in N^{pe}$. Since $N^{pe} = N^{pe+1}$, there exists $n_1 \in N$ such that $n_1^{pe+f} = n^{pe}$. Thus, $E(a n_1^{pe})$ is a field which contradicts the maximality of E.
- (iv) Let E be a maximal field such that $A^{pe} \cap K \subseteq E \subseteq A^{pe}$. If $gE \subset F_0^{pe}$, then there exists $a_0 \in F_0^{pe}$, $a_0 \notin gE$, $a \in A^{pe}$, $a \notin E$ such that $ga = a_0$. Since F_0 is pure inseparable over K, there exists a smallest positive integer f and a positive integer h such that $a_0^{pf} \in gE$ and $a_0^{pf+h} \in K$. Thus, $a^{pf} = b + n^{pe}$ where $b \in E$ and $n^{pe} \in N^{pe}$. By hypothesis, a can be chosen so that $a^{pf+h} \in K$. Thus, $a^{pf+h} = b^{ph} + n^{pe+h}$ and since $b^{ph} \in K$, $n^{pe+h} = 0$. Since $R^{pe} = (0)$, A^{pe} has no nilpotent elements. Hence, $n^{pe} = 0$. Therefore, E(a) is a field which contradicts the maximality of E.

In particular, when e=0 in (iii) and (iv), then E is a K-coefficient field in A. The conditions in (iv) with e=0 contrast with those of Theorem 2 below.

2. Let A be quasi-local with unique maximal ideal N and let the characteristic of F_0 be arbitrary.

Theorem 2. If N is nil and F_0 has a separating transcendence basis over K, then A has a K-coefficient field.

PROOF. Let B_0 be a separating transcendence basis of F_0 over K and $B \subseteq A$ a counterimage of B_0 . Then $K[B] \cap N = (0)$, otherwise the algebraic independence of B_0 over K is contradicted. Since A is quasi-local, $K(B) \subseteq A$. Let F be a maximal field $\supseteq K(B)$. If $gF \subset F_0$ then F_0 is algebraic over gF and there exists $a_0 \in F_0$, $a_0 \notin gF$, $a \in A$, $a \notin F$ such that $ga = a_0$. Since N is nil, A is algebraic over F and it follows that F(a) is quasi-local with unique

maximal ideal $F(a) \cap N$. Since $\operatorname{Ker} g | F(a) = F(a) \cap N = \operatorname{radical}$ of F(a) and F(a) is finite dimensional over F and $gF(a_0)$ is separable over gF, it follows that there exists a field $F^* \supset F$ such that $gF^* = gF(a_0)$ by Wedderburn's Principal Theorem. This contradicts the maximality of F. Hence $gF = F_0$.

We also see that if F_0 is arbitrary over K, there exists a field F, $K \subseteq F \subseteq A$, such that F_0 is pure inseparable over gF.

Appendix

The following is an example of a quasi-local algebra which is such that $A^{p^i} \cap K = F_0^{p^i} \cap K$ for all positive integers i and yet A does not have a K-coefficient field.

Let $K = J_p(s, t, u, v)(s^{1/p}, t^{1/p})$ where $J_p = GF[p]$ and s, t, u, v are independent indeterminates over J_p . Let

Then
$$F_0=J_p(s^{1/p},\,t^{1/p},\,u^{1/p},\,v^{1/p})(u^{1/p^2},\,v^{1/p^2})(s^{1/p^2}u^{1/p^2}+t^{1/p^2}v^{1/p^2})\;.$$
 and
$$F_0^p=J_p(s,\,t,\,u,\,v)(u^{1/p},\,v^{1/p})(s^{1/p}u^{1/p}+t^{1/p}v^{1/p})$$

$$F_0^p\cap K=J_p(s,\,t,\,u,\,v)\;.$$

Let $K_0 = F_0^p \cap K$ and consider the tensor product $A = F_0 \times K$ over K_0 . Let g be the homomorphism of $F_0 \times K$ onto F_0 such that $gF_0 \times 1 = F_0$ and $g1 \times K = K$. Identify $1 \times K$ and K and let $N = \operatorname{Ker} g$.

For any positive integer i, $A^{p^i} \cap K \supseteq A^{p^i} \cap (F^p_0 \cap K)$ and since A has a K_0 -coefficient field, namely $F_0 \times 1$, $A^{p^i} \cap (F^p_0 \cap K) = F^{p^i}_0 \cap (F^p_0 \cap K)$ by Remark 1 following Corollary 1. Thus, $A^{p^i} \cap K \supseteq F^{p^i}_0 \cap (F^p_0 \cap K) = F^{p^i}_0 \cap K$. Hence, $A^{p^i} \cap K = F^{p^i}_0 \cap K$.

Since $K^p \subseteq K_0$, $N^p = (0)$ and thus $(N^p) \subseteq A^p(K)$ is the zero ideal. Now $A^p(K) = (F^p_0 \times 1)(K) = F^p_0 \times K$ and since F^p_0 , K are not linearly disjoint over K_0 , $Ker \ g \mid A^p(K) \neq (0)$. Hence, $Ker \ g \mid A^p(K) \neq (N^p)$ and thus, by Remark 1, A cannot have a K-coefficient field.

Creighton University Iowa State University

References

- [1] H. Bray, Embedding subfields of quasi-local rings in residue fields, unpublished Ph. D. thesis. Ames, Iowa, Library, Iowa State Univ., 1962.
- [2] S. J. Bryant and J. L. Zemmer, A note on completely primary rings, Proc. Amer. Math. Soc., 8 (1957), 140-141.
- [3] M. Nagata, Local rings, Interscience Pub., Vol. 13, 1962.
- [4] O. Zariski and P. Samuel, Commutative algebra, vol. 2, D. Van Nostrand, Princeton, N. J., 1960.