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Introduction

The present paper, first of all, introduces the notion of an [-system on
which our theory is based. An [-system L is defined to be a system of a real
semi-simple Lie algebra g and three subalgebras of g satisfying certain condi-
tions (Definition 1.I). To every [-system L we associate a homogeneous space
M;=G/G’ of a Lie group G over a closed subgroup G’ of G (see §1). It is
remarkable that the homogeneous space M,=G/G’ is a prolongation of a
compact Riemannian symmetric space in the following sense (cf.
3.2): A maximal compact subgroup K of G acts transitively on M, and the
homogeneous space M= K/K G’ is a compact Riemannian symmetric space.
A recent work of T. Nagano proves that, roughly speaking, any prolonga-
tion of a compact Riemannian symmetric space is locally isomorphic with a
homogeneous space of the form M,=G/G’.

Now let L be an [-system and let M;=G/G’ be the corresponding homo-
geneous space. G being considered as a transformation group on Mg, the
linear isotropy group G of G at the origin o of M, is a subgroup of the
general linear group GL(m) of the tangent vector space m to ML at 0. In this
way, to every [-system L there corresponds a representatlon (G m). Therefore
there can be defined the notion of a G-structure: A G-structure on a mani-
fold M is a principal fiber bundle P over the base space M with structure
group G which is a subbundle of the bundle of frames of M (Definition 5.1).

The main purpose of the present paper is, for a given [-system L, to
study conditions for the equivalence of two G-structures. Our main results
(Theorems 0.3, f0.1 and may be stated as follows: Under general
hypotheses on L, to every G-structure P there is associated a system, called
the normal connection of type (L), in such a way that the equivalence of two
G-structures can be characterized. The normal connection of type (L) is a
Cartan connection corresponding to the homogeneous space M, =G/G’ and is
found to be a generalization of the normal conformal connection. It should
be here noted that there also exists the notion of the normal connection of
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type (L) under a weaker hypothesis on L (Theorems B.I] and 9.2), which just
generalizes the notion of the normal projective connection.

In §1, we construct the homogeneous space M, =G/G’ and study the
fundamental properties of it. In §2, we define the notion of an irreducible
l-system (Definition 21). It is shown that an arbitrary l-system L is decom-
posed into a product of irreducible [-systems (Propositions BRI and and
that the set of all irreducible [-systems is devided into two classes called of
type (R) and of type (C) (Definition 2.2). §3 is devoted to the study of the
duality which lies among [-systems. This leads to the investigation of the
maximal compact subgroups of the group G. In §4, it is shown that the set
of all isomorphism classes of irreducible [-systems of type (C) is in a one to
one correspondence with the set of all isomorphism classes of compact irre-
ducible hermitian symmetric spaces. §5, §6 and §7 are preliminary to the
subsequent two sections. In §8, it is proved that to every G-structure P on a

manifold M there is associated a tensor field T of type (%) on M called the

torsion tensor field of £. This notion turns out to be a generalization of the
notion of the Nijenhuis tensor field of an almost complex structure.

§9 is concerned with the construction of the normal connection of type
(L), which will be carried out following the construction of the normal projec-
tive connection given in [9]. Hypotheses on L for the existence of the normal
connection of type (L) will be stated in terms of an endomorphism @; and an
integer 0(L) (as for the cohomological interpretations of these hypotheses, see
Appendix). The endomorphism @, has an intimate relationship to the quad-
ratic form which appears in the study of discrete subgroups of a Lie group,
for example, in [11]. The integer d(L) is the dimension of the first derived
space associated with the representation (5, m). Finally in §10, we study the
endomorphism @, and the integer d(L) by using the results in §2,83 and §4
and show that hypotheses on L for the existence of the normal connection of
type (L) are generally satisfied. Owing to the results in § 2, the problems
will be reduced to the case where L is an irreducible [-system of type (C).

Preliminary remark

Throughout this paper, we always assume the differentiability of class
C=, and by a manifold we shall mean a manifold satisfying the second counta-
bility axiom. R (resp. C) will denote the field of real numbers (resp. of com-
plex numbers).
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§1. The groups G, G’ and G

DEFINITION 1.1. Let g be a real semi-simple Lie algebra and let m, m* and
d be three subalgebras of g. The (ordered) system L = (g, m, m*, §) is called an
[-system if it satisfies the following conditions:

(I. 1) g=m+m*+§ (direct sum of vector sﬁaces);
(I. 2) Both m and m* are abelian;

(. 3) [, m]cm and [§, m*]Cwm*;

(. 4) [mm*]=4g.

Let L;=(g;, m;, m¥, §;) (t=1,2) be an [-system. An isomorphism f of the Lie
algebra g, onto the Lie algebra g, is called an isomorphism of L, onto L, if
Sm) =m,, f(mf) =m¥ (and hence f(§,) =G

Let g be a real Lie algebra, let n be a subspace of g and let § be a sub-
algebra of g. The system S=(g, n, §) will be called an infinitesimal (affine)
symmetric space or briefly an s-system if it satisfies the following conditions:

(s. 1) g=n-+{ (direct sum);
(s. 2 [§,n]cCn;
.3 [mnjcg.

We see from Def. 1.1 that®, for any I[-system L =(g, m, m¥ §), the system
S = (g, m-+m¥*, §) forms an s-system.

From now on, we shall consider a fixed [-system L =(g, m, m*, §) and de-
note by ¢ the Killing form of g.

We have easily

LEMMA 1.1.

@@m, m) = pm*, m*) = o(m-+w*, §) = {0}

We put

(&, w)=0p¢, o)
for all Eem and w =m*.

ProPOSITION 1.1. (1) The bilinear mapping mxm* = (&, w)—<(& w)e R
gives a duality between the two vector spaces m and m*, i.e., if £em (resp.
wem¥) and if (& m*>={0} (resp. {m, w>=A{0}), then £€=0 (resp. w=0). In
particular, dimm=dimm*. (2) The restriction of ¢ to § is non-degenerate.

This follows immediately from and the fact that ¢ is non-
degenerate. :

LEMMA 1.2. (1) If Eem (resp. wem*) and if [, m*]={0} (resp. [m, o]
={0}), then €=0 (resp. w=0). ) If A< and if [A, m]={0} or [A, m*]

1) Therefore, some of our results (in §1-§4) essentially follow from Berger [T]
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= {0}, then A=0.

PrROOF. (1) Suppose that a £ €m satisfies the condition [&, m*] = {0}. We
have <[§, §], m*) = ¢(@, [£, m*])= {0}, whence [§, §1=1{0} (Prop. 11, (1)). It
follows that £ is in the center of g (conditions ([. 1) and (l. 2)). Since g is
semi-simple, we have £€=0. The second assertion can be similarly proved.
(2) Suppose that an A< satisfies the condition [A, m]={0}. We have
<m, [A, m*¥]> =¢([A, m], m*)= {0}, whence [A, m*]={0}. Since §=7[m, m*]
(condition (. 4)), we get [A, §1={0}. If follows that A is in the center of g
and hence A=0. The second assertion can be similarly proved.

NOTATION. Let g be a Lie algebra and let §) be a subalgebra of g. N(§, @)
(resp. C(%, ¢)) will denote the normalizer (resp. the centralizer) of § in g.

By Lemma 1.2, we have easily

ProPOSITION 1.2. (1) N(m, @) =m-+§ and Nm*, Q) =m*+§. (2) Cm,g)=m
and C(w*, @) =m*, in other words, both m and m* are maximal abelian subalge-
bras of g.

We shall denote by A(g) the group of all automorphisms of the Lie alge-
bra g. g being semi-simple, the Lie algebra of A(p) may be identified with
the Lie algebra ¢ in such a way that adaX =aX for all a= A(g) and X =g.
We prefer the notation adaX to the one aX.

NOTATION. Let G be a Lie group and let g¢ be the Lie algebra of G.
Given a subalgebra § of ¢, N, G) (resp. C(h, G)) will denote the normalizer
(resp. the centralizer) of §) in G, which is, by definition, the subgroup of G
consisting of all the elements @ such that adaf=1Y (resp. adaX =X for all
Xeb. The Lie algebra of N5, G) (resp. C(§, G)) coincides with N(5, g) (resp.
CQ, a).

We shall denote by G the intersection of the normalizer of m in A(g) and
that of w* in A(g), i.e., GN:N(m, A@) N\ Na*, A(g). It follows from Prop. 1.2,
(1) that the Lie algebra of G is identical with the Lie algebra §. Note that
the group G may be characterized as the group of all automorphisms of L.
We now define a representation p of G on m by p(a)s =adaé for all act
and §m and denote by the same letter p the corresponding representation
of § on m; we have p(A)é=[A4,&] for all A3 and Eem.

In the same manner as in (2), we can prove

LEMMA 13. The representation p of G on m is Sfaithful.

By Prop. 1.1, (1), the vector space m* may be identified with the dual space
of m and, by the group G (resp. the Lie algebra §) may be identi-
fied with a subgroup (resp. a subalgebra) of the general linear group GL(m)
of m (resp. the Lie algebra gl(m) of all endomorphisms of m). Under these
identifications, we have the equalities:
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a.n adafé =a&, adaw="'¢"'w, adaB=aBa™,
[A, §1=A¢ [A 0]=—"Aw, [A, B]=AB—BA

for all aeé, tem, wewm®* and A, B={, where ‘A stands for the transpose
of an endomorphism A of m with respect to the duality between m and m*.
Let ¢ be the Killing form of §. Then a direct calculation gives
LEMMA 14,
¢(A, B)=¢(A, B)+2TrAB

for all A, B3, where TrC is the trace of an endomorphism C of m.

ProproSITION 1.3.

G = N@, GL(m)).

PrROOF. We have clearly 5CN(@, GL(m)). Take any a = N@, GL(m)) and
define an automorphism & of g (as a vector space) as follows: ¢£=aé&, dw="a""w
and dA=aAa™! for all £=m, wem®* and A=j§. We show that 4, thus ob-
tained, is an automorphism of the Lie algebra g. By (1.1), it suffices to verify
the equality: d[&, o]=1[4¢, dw] for all £=m and w em*. By Lemma 14, we
have ¢(dA, 4B)=¢(A, B) for all A, B3 Hence, we have ¢(@[§, o], ¢4)
=&, w], A)=<[A4, &), w) =<[dA, d&], dw) = ¢([d&, dw], dA) for all A=j. It
follows from Prop. 1.1, (2) that d[§, o] =[d&, dw], which proves our assertion.
We have clearly a=d = G.

COROLLARY. The identity transformation E; of m is in the center of §.

PROPOSITION 1.4.

(§, 0> =2Tr[§, o]

for all £em and w =m*.

Proor. By Lemma 14 and Cor. to Prop. 1.3, we have ¢(§, w], E.)
=2Trl¢, @]. We have ¢([§, o], Er) =<§, [o, EL ] =<§, 0).

We shall denote by G’ the normalizer of m* in A(y), i.e., G’ = Nan¥*, AQQ)).
By Prop. 1.2, (1), the Lie algebra of G’ is given by ¢’ =m*+§. We have clearly
G, exp m* C G’, where expm* denotes the abelian subgroup of A(g) generated
by m*.

LEMMA 1.5.

G’ =N, A@).

PrOOE. We have clearly G’ C N@/, A(g). Take any a in N/, A@@). We
have ¢(adam*, ¢') = @(m*, ¢’) = {0} (Lemma 1.1). Henceg, it follows from Lemma
1.1 and Prop. 1.1 that adam* Cm¥, i.e, acs G’

We have

g=m-+g’ (direct sum).
Taking account of Lemma 1.5, we now define a homomorphism [ of G’ into
GL(m) by '
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1.2) adaé = l(a)é mod ¢’

for all ae G’ and £=m. We shall denote by the same letter [ the correspond-
ing homomorphism of g’ into gi(m), i.e.,

[X, &]=1(X)& mod ¢’

for all Xeg’ and E=m. We see easily that /(X) coincides with the §-com-
ponent of X in the decomposition ¢’ =m*-+§. Now it is clear that the restric-
tion of [ (:G'—GL(m)) to G is the identity transformation of G. We have

ad(exp )6 =&-+Lw, €1+ Lo, [0, £1]

for all w ewm* and & €m, which implies that the group exp m* is contained in
the kernel of [.

ProprosITION 1.5

GH=G .

ProOOF. As we have seen above, the restriction of [ to G is the identity
transformation of G. Hence I(G)=G. Therefore we have only to prove that
GH c G. Take any a in G’. We have [adaA, &= adalA, ada™*§]
= ada(Al(a)~*&) = l(a) Al(a)~'& mod ¢’ for all Eemand A=g. Thisimplies that
[(@)Al(a)~* coincides with the §-component of adaA (in the decomposition
g’ =m*}-§) for all A=g. Therefore, Z(a)e@ by Prop. 1.3.

LEMMA 1.6. Let ae G’ bein the kernel of I. (1) adaw = for all @ & wm*.
) If we put w=adaE,—E;, then we have w € m* and

adaé—& =[w, £] mod m*
for all £ =em.

Proor. (1) By Lemma 1.1, we have (¢, adaw) =¢(ada &, w)=<{§, )
for all £ em, whence adaw=w. (2) It follows from the proof of Prop. 15
that adaA=A modm* for all A3 Hence wewm*. Since E; is in the
center of §, we get [E;, ada£]=¢& modm*. Therefore we have [o, &]
=adalE;, ada~'&]—& = ada&—& mod m*,

PrROPOSITION 1.6. The kernel of | is equal to exp m*.

PROOF. As we have seen above, the group expm* is contained in the
kernel of [. Take any e =G’ in the kernel of /. By Lemma 1.6, we can
find an. w em* such that adaé—E&=[w, £l modm* for all Eem. If we put
b= (exp(—w))a, then we have easily adbé=¢& modm* for all £=m. Let us
prove that adb&é=¢ for all £em. We set y(€)=adbé—E&, which is in m*.
We have adb[&, &1=[€, 7(ENI-[E&, 7(€)]=0. Hence we get <& 7))
=<&’, 7(6)> by Prop. 1.4. On the other hand, we have adb~'&’ =& —y(§’) by
Lemma 1.6, (1). Hence we have <&, 7)) =&, adb&é—E&)=@(&’, adbf)
=p(adb™&’, )= (&' —1(E"), &) = —<(&, r(§")>. Consequently, we have y =0, i.e,



Equivalence problems associated with homogeneous spaces 109

adbé =& for all Eem. By (1), we have adbw=w for all w e m*.
It follows that adbX =X for all Xeg, which means b=¢, i.e, a=¢expo,
where e is the identity element of A(g).

ProroOSITION 1.7. Every element of G’ is uniquely expressed in the form
aexp w, where ae G dand w < m*.

PrOOF. Take any ae G’. Since (G’)=G C G’ and since the restriction of
[ to G is the identity transformation of G, we see that [(@)~'a is in the kernel
of [, i.e., of the form exp w with an w &m* (Prop. 1.6). Hence a=I(a)exp w.
It remains to prove the uniqueness. Suppose that an a € G’ is expressed as
bexpw with a be G and an wem*. We have l{a)=1(b)=0b and hence
c=l(a)'a=expw. But we have adcé =&+[w, £l mod m* for all £=m. Since
m is a maximal abelian subalgebra of g (Prop. 1.2, (2)), this equality means
that w is uniquely determined by ¢ and hence by a.

Finally, let A(g)° be the connected component of the identity of A(g) that
is just the adjoint group of g. We set G = A(p)° - G, which is an open sub-
group of A(g). The homogeneous space M;=G/G’ will be called associated
with the [-system L. Since G/G’ = A(g)°/G’ N A(#)°, the space My, is connected.
By (1.2) and Prop. 1.5, we see that the group G may be identified with the
linear isotropy group of G/G’ and that the homomorphism ! may be identified
with the homomorphism of the isotropy group G’ of G/G’ onto the linear
isotropy group G. Later on, we shall see that M; is compact and the action
of G on M; is effective.

ExaMpPLE. Let P™(K) be the m-dimensional projective space over a field
K, where K=R or C. The group G of all projective transformations of P™(K)
acts transitively on P™(K) and hence the space P™(K) may be represented by
a homogeneous space G/G’, G’ being the isotropy group of G at a point o of
P™(K). Now, with the projective space P™(K) there is associated an [-system
L as follows: The Lie algebra g of G may be identified with the Lie algebra
8l(m+-1, K)». Therefore every element of ¢ is uniquely expressed as

1
—-771+—1T7’A w
ME, v, A)=
¢ A=y Tra

where

&
E:( : >, 0 =(wy, -, 0g), A=(AipDisi, j=m -
Em

Setting & = M(&, 0, 0), & = M, w, 0) and A= M, 0, A), we have M(, v, A)

2) For the classical groups and their Lie algebras, we use the notations given in
C. Chevalley, Theory of Lie groups L
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=E+a+A, (6 81=[a,01=0, [4 A1=[4 A, [4, =48, [4, 6]= —oA
and [§, &]:&‘;4_—(»/—5\. Let m (resp. m*, resp. §) be the subalgebra of g consist-
ing of all elements & (resp. @, resp. A). Then we see from the above con-
sideration that the system L =(g, m, m*, §) forms an [-system. An [-system
which is isomorphic with the [-system L, will be called of type P™K). One
notes that the homogeneous space P™K)= G/G’ may be regarded as the
homogeneous space associated with the [-system L.

§2. Decomposition of an [-system

LEMMA 2.1. Let L=(g, m, m*, §) be an [-system and let Y) be an ideal of g.
Then we have

b= nm)+OGAMH+-OND),

and the system (4, H\m, b \m*, N\ 3) forms an l-system.

Proor. Take any X Y and express it as £+w+A, where £ €em, v € m*
and A=§. We have [E;, X]=&§—wand [E;, [E;, X]]=&+w. Since [E;, 5],
[E., [E., h11CY, it follows that &, w =) and hence A=Y. The second half of
Lemma 2.1 can be easily proved by considering the complementary ideal of §
in g.

Let L;=(g; m;, m¥, §;) A1 =<1=s5s) be an [-system. If we set g=g, X --- X g,
m=m, X - X, m*¥=mF X --- Xm¥f and §=§, X --- X{§, then we see that the
system (g, m, m*, §) forms an [-system, which will be called the product of
L, -, Ly and denoted by L, X --- X L,.

By Lemma 2.1, we get

ProprOSITION 2.1. Let L=(y, m, m¥, §) be an [-system and let g=g,-}+ -+ 41,
be the decomposition of ¢ into simple ideals. We set m;=g; "\m, m¥ =g, \m*
and §;=9;\§. Then the systems L,=(g;, m,, m¥, §;) are [-systems and the given
[-system L is isomorphic with the product L, X -+ X L,

Given an [-system L =(g, m, m¥, §), we shall denote by (§, m) the (identity)
representation of § on m.

PrROPOSITION 2.2. Let L=(g, m,m* d) be an [-system. A necessary and
sufficient condition that the representation (§, m) is irreducible is that g is simple.

Proor. Necessity follows from Prop. 2.1. Sufficiency is proved as follows:
Take any §-stable subspace m’ of m and set ¢/ =m/+[[m’, m*], m*]+[m’, m*].
We see easily that ¢’ is an ideal of g. Therefore we have m’={0} or m
according as g¢’= {0} or g.

DEFINITION 2.1. An [-system L =(g, m, m*, §) is called irreducible if the
representation (§, m) is irreducible.

DEFINITION 2.2. An irreducible [-system L =(g, m, m*, §) is called of type
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(R) (resp. of type (C)) if the representation (§, m) is of first class (resp. of
second class).

In general, let (g, V) be a real representation, i.e., V is a real vector space
and g is a subalgebra of gli(V). V¢ denoting the complexification of V, g may
be regarded as a (real) subalgebra of the complex Lie algebra of all complex
endomorphisms of V¢ Assuming that the representation (g, V) is irreducible,
we say that (g, V) is of first class (resp. of second class) if the complex repre-
sentation (g, V) is irreducible (resp. reducible) [3].

Let L=(g, m, m*, §) be an [-system. We shall denote by C (resp. ?) the
center of the group G (resp. the Lie algebra §). By Prop. 1.3, we have
T=C@, gl(m)) and €= C@, GLm) = G.

This being said, we have

PROPOSITION 2.3. The notation being as above, we assume that L is irredu-
cible. (1) If L is of type (R), then T consists of all the elements AE;, where
A€ R. (2) If L is of type (C), then there is an element I, of T such that

3= —FE. and such that T consists of all the elements AE,+pl., where 2, t=eR.
Moreover, I, is unique up to the factor —1. (3) 5:C(§, GLm) =T\ GL(m).

We shall now show that an irreducible [-system of type (C) is really
“ complex .

LEmMA 2.2, Let L={(g, m,m*, §) be an [-system. Then we have

A [§ o]=[[A4, &), o]=—[§ [A o]]

for all A=t fem and w = m*.

ProOF. We have A.[§, o] =[A, [[§ 0], §1]=[A4, [§ [o, &111=[LA4,
&l [w, &11=1[A4, &), ®]-& forall & em. Hence A.[§ w]=[[A4, &)}, »]. The
second equality is clear.

By Lemma 2.2, we have

PROPOSITION 2.4. Let L=1(g, m, m¥ q) be an irreducible [-system of type (C).
Q) I,-3=4d () g tis given a complex structure as follows: v —1&=[I, &,
V=Tlw=—[I;,0w] and v—1A=1I,-A for alléem wvem* and A<jg. Q) g
is a complex Lie algebra with respect to this complex structure, so that m, m*
and § are complex subalgebras of g.

Finally, let L=(g, m, m* §) be an [-system and let g% m’ m*¢ and ¢ be
the complexifications of g, m, m* and § respectively. If we consider g% mC, m*c
and (¢ as real Lie algebras, we find that the system (y°% m¢ m*’, §¢) forms an
[-system, which will be called the complexification of L and denoted by LC.

By Prop. 2.3, we have

ProOPOSITION 2.5. If L is an irreducible [-system of type (R), then the
complexification LC of L is irreducible of type (C).
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§3. The duality

The following lemma is a generalization of Prop. 1.3. The proof (which
is omitted) is analogous to that of Prop. 1.3.

LEMMA 3.1. Let L;=(g;, my m¥, §) G=1, 2) be an l-system. Let f' be an
isomorphism of §, onto 3, and let f” be an isomorphism of m, onto m, If
J'TA, E1=[fA, f7&] for all Acq,, and & € m,, there exists a unique isomor-
phism f of L, onto L, such that fA=f"A and fE=f"€ for all Acg, and E=m,.

Hereafter we shall study a fixed [-system L =(g, m, m*, §) and use the
notations in the previous sections. We shall say that the /[-system L*=(g, m*¥,
m, §) is the dual of L and that an isomorphism @ of L onto L* is involutive
if @ is an involutive automorphism of g. Moreover an involutive isomorphism
6 of L onto L* will be called a x-isomorphism if # is the involutive automor-
phism of g associated with a certain Cartan decomposition of g, or equivalently
if the quadratic form ¢ X—¢(X, 0X) = R is negative definite.

PROPOSITION 3.1. There exists at least one =-isomorphism 0 of L onto L*.

ProOF. By Prop. 2.1, we may assume without loss of generality that L
is irreducible. The representation (§, m) being irreducible, the Lie algebra §
is reductive : § =7T+[4§, §] (direct sum) and the Lie algebra [§, ] is semi-simple.
By Prop. 2.3 and the theorem of E. Cartan, Mostow and Iwasawa [8], we can
find an involutive automorphism 6’ of § and a negative definite inner pro-
duct (,) on m which satisfy the following conditions: The quadratic form
2 A—¢(A, 0’A) = R is negative semi-definite and

(ChY) (Ag, N+, 0'A-£)=0

for all A=g and & & em. It follows from Lemma 14 that the quadratic
form §=2 A—¢(A, 0’A) e R is negative definite. We now define an isomor-
phism 67 of m onto m* by <&, 67&'>=(§, &) for all £ & em. From (3.1), we
get 07[A, E1=[0'A, 67&] for all A=g and £€=m. Therefore by Lemma 3.1,
there is a unique isomorphism & of L onto L* such that A=6'A and
0&=0"& for all A= and Ecm. Since we have 0'A=60'A and 07&=0"¢
for all A=§ and €em, it follows from Lemma 3.1 that 6 is involutive. It
remains to prove that # is a =-isomorphism. Every X &g can be uniquely
expressed as £-60&--A, where & & em and A<§ We have ¢(X, 6X)
= (&, 6)+(&, EN+p(A, 0 A). Since both the inner product (,) and the quadratic
form § > A— (A, 6A) are negative definite, this equality means that the quad-
ratic form g= X—¢(X, 0X) = R is also negative definite.

Let @ be an involutive isomorphism of L onto L*. We shall denote by g
the eigen space of the involutive automorphism # of ¢ corresponding to the
eigen value 1. gp is, as usual, a subalgebra of g and, putting s =3 gp and
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mp = (m+m*) N ge, we find that the system (gg, mp, 5) forms an s-system and
that dim my=dimm. Noting that & is an element of A(g), we have adbG =G
and adfG=G, where adfa=0af~* for all a< A(s). We shall denote by Gy
the subgroup of G consisting of all fixed points (€ G) of adf. The Lie algebra
of Gy is given by gs. We put CN;(;:GM\& Then we have easily CN;g:GgmG’
and

PROPOSITION 3.2. (1) The homogeneous space Gg/@g is an affine symmetric
homogeneous space, and is naturally an open submanifold of G/G’. (2) If 6 is
a x-isomorphism, Gg/@g is a compact Riemannian symmetric homogeneous space,
and Go/Go=G/G’.

Proor. (1) Let a be the involutive automorphism of g associated with
the s-system (g, m-+m¥ §), a being an element of A(s). We have adaG =G
and adaG=G. Since fa = af, it follows that adaGy=Gy. Let H be the sub-
group of Gy consisting of all fixed points (€ Gy) of ada. Then we have
GoC H and we see that the Lie algebra of H coincides with that of Go, i.e.,
ds. Hence Ga/ég is an affine symmetric homogeneous space with respect to
the involution: Gy a—adaacs Gy. We have dim Gg/ég =dimmy=dimm
and 5,9:GgmG’, which indicates that Gg/CN;o is naturally an open submanifold
of G/G’. (2) Since the quadratic form g X—¢(X, 0X)= R is negative de-
finite, we know that Gy is compact. Therefore G,g/@,g is a compact Riemannian
symmetric homogeneous space. Since Gg/CN;o is an open and closed submani-
fold of G/G’ and since G/G’ is connected, we get Gg/@g:G/G’.

REMARK 1. If L is an irreducible [-system of type (C) and if @ is a

%x-isomorphism, then Gg/(N;g can be proved to be a compact hermitian symmetric
homogeneous space and G to be the group of all complex automorphisms of
Go/G, cf. §4.
"~ REMARK 2. Let 6 be an involutive isomorphism of L onto L*. We define
the dual 6* of 6, being again an involutive isomorphism of L onto L*, as fol-
lows: 0*X=—0X if Xem+m* and *X=0X if X3 We have myt+mgy
(direct sum)=m-+m* and 65:55*. Under the hypothesis that ¢ is a *-isomor-
phism, Gﬁ*/ég may be regarded as the non-compact form of Go/Gos.

Finally we shall prove the uniqueness of x-isomorphisms. Hereafter, the
symbol G° will denote the connected component of the identity of a Lie group
G. If 6 is a =*-isomorphism of L onto L* we know that G§ is a maximal
compact subgroup of the adjoint group A(g)°=G° of g.

LEMMA 3.2. Let 0 be a =-isomorphism of L onto L*. Then (N};; is a
maximal compact subgroup of Ge.

ProOOF. Let (,) be the positive definite inner product on m defined by
& &)=—(§& 0¢&) for all & & =m and denote by ‘a the transpose of an endo-
morphism a of m with respect to this inner product. Then we have ‘a™
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=adfac G for all aeG, and 50 consists of all elements ¢ =G such that
a="'a"'. Lemma 3.2 follows from these and the fact that G = N, GL(m)) is
an algebraic subgroup of GL(m), cf. [6].

PROPOSITION 3.3. Let 0; (i=1, 2) be a x-isomorphism of L onto L*. Then
there exists an a < G° such that af,a=* =0,

Proor. By Prop. 2.1, we may assume without loss of generality that L
is irreducible. By Lemma 3.2, é?}z is a maximal compact subgroup of Ge.
Hence we can find an ¢ = G° such that ada@él :CN?%Z or equivalently adafs,
=g, Since af,a~' is again a =-isomorphism of L onto L* and since 4,41
= adafy,, we may assume that §s, =§p,. It follows from Prop. 1.1 that 6,A
=¢,A for all A=3. We now put u=467f,, which is an element of G 10,(ud
=0,£ for all Eem. We see easily that u is in the center C of G. Therefore
by Prop. 2.3, (3), u is of the form 2E, (A=x0) or AE,+pl; (4, p) % 0) according
as L is of type (R) or of type (C). But we have <&, 6;§) <0 for all §m
(x0), and if L is of type (C), 0; is an anti-automorphism of g (see Prop. 4.1).
It follows that u is of the form AE, with a 4> 0 in either case. Finally we

set b:712:~EL, which is an element of C°. Then we have b8,b=1(&) =6,& for

all £ =m and consequently b0,b~1=4,.

§4. Classification of irreducible l-systems of type (C)

PROPOSITION 4.1. Let L=(g, m, m*, §) be an irreducible l-system of type (C)
and let 0 be a x-1somorphism of L onto L*. The notation being as in §3, we
have: (1) g9 is a simple compact real form of g, where g should be regarded
as a complex Lie algebra as in Prop. 2.4; (@) @5 is a real form of §; 3) I,
is tn the center of Qp; W* my is a real form of m-+wm*, more precisely, m
(resp. w*) consists of all elements X—~/—1[I;, X] (resp. X+~ —1[I;, X1,
where X € my.

Proor. (1) Since the quadratic form ¢=> X—¢(X, /X)<= R is negative
definite, ¢ is an anti-automorphism of g and hence gy is a compact real form
of g. By Prop. 2.2, g is a simple Lie algebra. (2) is clear, because 6§ =4.
@) We have 0E,= —E; and I,=+~—1 E,. Since # is an anti-automorphism,
we get I, =1, i.e, [, =8p. I is clearly in the center of §s. (4) Take any
Ec=m and set X=£+0& (emy). We have [[;, X]1=+v —1 E—+/—1 0&, whence
&= 3 (X—VTI[l, XD and 0¢ =5 (X+v' =1 [I,, XD. Since dimgm =

dimzm, we get (4).
We shall say that an s-system S=(g,, m,, §,) is simple (resp. compact) if g,

3) and 4) By Prop. 2.4, m, m* and J are complex subalgebras of g.
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is simple (resp. compact). A simple compact s-system S=(g,, m,, §,) will be
called hermitian if the center of §, is not trivial. The notation being as in
Prop. 4.1, we find from Prop. 4.1 that the system S= (g4, m¢, §s) is a simple
compact hermitian s-system.

PROPOSITION 4.2. Let S={(gy, my, ;) be a simple compact hermitian s-system
and set ¢=qf and §=743§. There are complex subalgebras m and m* of g satis-
Jying the following conditions: (1) If we consider g, m, m* and § as real alge-
bras, then the system L={(g, m, m*, §) forms an irreducible [-system of type (C);
(2) The conjugation 6 of ¢ with respect to g, gives a *-isomorphism of L onto
L* such that S=/gg, my, Jp).

For a proof of Prop. 4.2, see Helgason [2].

To each irreducible [-system of type (C), L = (g, m, m*, §), we now associate
a fixed #-isomorphism ¢ of L onto L*, and we set S=1(gy, myp, d) which is a
simple compact hermitian s-system. In virtue of Props. 3.3, 4.1 and 4.2, we
arrive at the following conclusion: The assignment L—S gives a one-to-one
correspondence between the set of all isomorphism classes of irreducible
I-system of type (C) and the set of all isomorphism classes of simple compact
hermitian s-systems.

Here is the list of classification of simple compact hermitian s-systems
and hence of irreducible [-systems of type (C).

Type of S (or L) go 3o

Iy e (m=m’ = 1) au(m-+m’) gu(m) X su(m’ )X R
I, (m=3) gn(2 m, R) u(m)

I, (mn=2) 8p(m) u(m)

1V, (m=3) ao(m—+2, R) go(m, R)x&0(2, R)
14 2 én(10, R)xé&o(2, R)
VI e e X 80(2, R)

One notes that an irreducible [-system of type I, ; means an [-system of
type P™C).

PRrOPOSITION 4.3. Let L be an irreducible [-system of type (R). Then L is
of type P™R) if and only if L° is of type I, .

Proor. This follows easily from Lemma 3.1.
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§5. G-structures

Throughout this and subsequent four sections, we shall study a fixed
l-system L = (g, m, m*, §) and use the notations and identifications given in §1.
We set n=dimm.

Let M be a manifold of dimension n. The bundle of frames of M, F, is
a principal fiber bundle over the base space M with the general linear group
GL(n, R) of degree n as structure group. If we identify the two groups
GL(n, R) and GL(m) with respect to a fixed base of m, the principal fiber
bundle F may be defined as follows: The point-set of F' is the totality of all
isomorphisms of m onto T,(M), where p runs over M; the action of GL(m)
on F is given by FXGL(m)>(x,a)—xa=xca< F; the projection np of F
onto M is defined by 7m(x)=p if x maps m onto T,(M).

Considering the (identity) representation of G onm, we give the following
definition.

DEFINITION 5.1. Let M be an n-dimmensional manifold. A G-structure
on M is a principal fiber bundle P over the base space M with structure
group G which is a subbundle of the bundle of frames of M, F.

Let P be a G-structure on a manifold M and let # be the projection of P
onto M, # being the restriction of 7, to P. The basic form § of P is, by
definition, the m-valued 1-form on P defined by §(X)=x"'%X for all xe P and
X e TLP).

NOTATION. Let P be a principal fiber® bundle over a manifold M with a
Lie group G as structure group. R, (resp. A*) will denote the right transla-
tion (resp. the vertical vector field) on P corresponding to an a = G (resp. an
A eg), g being the Lie algebra of G.

PROPOSITION 5.1. (1) Let X be a tangent vector to P at xeP. §(X)=0
if and only if X is vertical, i.e., of the form A¥ with a (unique) Aej. (2)
R0 =a"d for all =xe’

DEFINITION 5.2. Let B, (1=1,2) be a G-structure on a manifold M, and
let 4, be the basic form of P,. An isomorphism of B, onto ﬁz is a bundle
isomorphism ¢ of P, onto P, such that ¢*d,=§,. A homeomorphism f of M,
onto M, is called a 5-homeomorphism of M, onto M, if it is covered by an
isomorphism ¢ of P, onto B2,

PROPOSITION 5.2. The notation being as in Def. 5.2, every é-homeomorphism
f of M, onto M, is covered by a unique isomorphism ¢ of B, onto P,

Assuming that a G-structure is given on a manifold M, let us define the
notion of a tensor field on M in terms of the G-structure.

5) As for a principal fiber bundle, we use the notations and terminologies given

in [5].
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NoOTATION. g7(m) will denote the vector space of all tensors of type (Z)

on m, i.e, I7m)=(@m)xX(Qm¥). Given vector spaces V, -, V, and
V, LV, -, V,; V) will denote the vector space of all multi-linear mappings of
Vix -+ XV, into V. We may naturally identify (¥, ---, m*, m, ---, m; I5(m))
(with m* p times and m ¢ times) with I5/?(m); for example, .L(m; m) = gl(m)
=m@m* and L, m; R)= L ; m*)=m*R@m*. The group GL(m) linearly acts
on g7(m) through the mapping GLm)XIi;(m) > (a, X)— X?® < I5(m), where
Q- Q&ERPD,Q - Q)= (a)R - ¥(@) R (e w)Q -+ Q(a™'w;) for all
g, -, & emand w, -, v, Em*,

DEFINITION 5.3. Let P be a G-structure on a manifold M. A tensor field

of type (D on M is a mapping @ of P into g7 (m) satisfying the equality

@xa - (@.70)0'—1
for all xe P and a=G.
As is clear, this definition of a tensor field on M is equivalent to the usual
one.

ExaMpPLES. (1) A tensor field of type (é) (a vector field) on M is a map-
ping X of P into m such that X,,=a"'X,. (2) A tensor field of type ((1)) (a
1-form) on M is a mapping E of P into m* such that E,, = ‘aE,. (3) A tensor
field of type (]

1
(3) We define a mapping ¥, of m@m* into §Cgl(m) by ¥.(§ w)=[&, w] for

) on M is a mapping U of P into gi(m) such that U,,=a~U,a.

all £ em and w € m¥, which is a tensor of type (g) on m. We have ¥¢=V,

for all ae G, i. e.,

a-[a7§ aw] - e =[§, ]
for all £€m and w € m*. This means that the constant mapping P x—¥,
= I¥m) is a tensor field of type (g) on M. It can be shown that® G consists

of all elements a € GL(m) leaving ¥, invariant.
In what follows, we shall consider a fixed G-structure P on a manifold M.
DEFINITION 5.4. An affine connection in P is a linear mapping B of m
into the vector space 1’(15) of all vector fields on P satisfying the conditions:
(B. 1) G(BE)=¢ for all £=m, § being the basic form of 7 ;
(B. 2) R,B(E)=B(a&) for all ac G and Eem.
By condition (B.1) and Prop. 5.1, 1, we get
LEMMA 5.1. Let B be an affine connection in P. Every tangent vector X

6) Therefore, we see that a G-structure P on a manifold M is a tensor structure

on M defined by a suitable tensor field of type (3) on M.
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to P at xeP is uniquely written in the form B(E),+ A%, where Eem and A<,

Let B be an affine connection in £. By Lemma 5.1, we can find, for each
xe P and & & =m, a unique pair (T(&, &), R (& &) of elements of m and §
respectively as follows:

[B(&), B(E)]e= B(Tu(§, Nt R(E EF .

The elements T.(& &) and R,(& &) are bilinear and anti-symmetric with re-
spect to the two variables £ and &. By condition (B. 2), the mappings
T:-Pox—T,c L, m;m) and R: P> x—R,e L£(m, m;{) are tensor fields of

type (é) and of type (é) on M respectively, i.e., Tuu(& &)=a"'T,(a&, a&’)

and R,.(& &) =a 'R (a&, af)a. The tensor field T and R are called the tor-
sion and curvature tensor fields of B respectively. The Ricci tensor field of

B is, by definition, the tensor field R*: P = x— R¥ e £(m; m*) of type (g) on

M defined by <{&’, R¥(§)) = the trace of the endomorphism »— R, (%, £)&’ of m.
We have R} (&)= 2 [R.(&, e, '] for all & €m, where (e;) is a base of m and

(®%) is the dual base of (¢). We now define the covariant derivative of a

tensor field @ of type (7;) on M. At each xe P, let @, be the linear map-

ping of m into 9% (m) defined by 7.®@,= B(£).P. By condition (B.2), we have
Ve@xa - (Vag@x)’rl .

This indicates that the mapping V@ : P = x—V®, = L(m; gr(m))=97,,(m) is a

tensor field of type (5;0 on M, which is called the covariant derivative of @.

The following proposition will be usefull in our later arguments.
ProPOSITION 5.3. (1) Let B, =1, 2) be an affine connection in P and let
T; be the torsion tensor field of B;. Then there is a unique tensor field

U:Posx—U,s.£(m;Qd) of type (%) on M such that

(5.1 By(£)e = Bi(£)o+Uu(8)F

for all xe P and Eem. In this case, we have

Ty, §)=Ty§ EN+UEE —UENE
for all €, & em. (2) If B, is an affine connection in P and if U is a tensor
field of type (3) on M, then the linear mapping B, of minto %(P) defined by

(5.1) is an affine connection in P.
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§ 6. G’-bundles

DEFINITION 6.1. Let P be a G-structure on a manifold M. We say that
a system (P, ) is a G’-bundle associated to the G-structure P, if P is a prin-
cipal fiber bundle over the base space M with structure group G’ and if [ is.
a base preserving bundle homomorphism of P onto P corresponding to the
homomorphism ! of G’ onto G.

Let P be a G-structure on a manifold M and let (P, ]) be a G’-bundle as-
sociated to P. The m-valued 1-form 6 =@ will be called the basic form of
(P, 1), 6 being the basic form of P.

By Prop. 5.1, we have

PROPOSITION 6.1. (1) Let X be a tangent vector to P at ze P. (X)=0
if and only if X is vertical, i.e., of the form A¥ with a (unique) Asg’. (2)
R¥0=1(a)710 for all ac=G'.

We show that to each G-structure P on a manifold M there is associated
at least one G’-bundle, say (P, D). Indeed, the G-structure P and the injection
of G into G’ give rise to a principal fiber bundle P over the base space M
with structure group G’ in such a way that P is a subbundle of P. Further-
more, there is a unique homomorphism [ of P onto P subject to the condition
i(x)=x at each x=P.

DEFINITION 6.2. Let ﬁi (i=12) bea G-structure on a manifold M;, let
(P;, I) be a G’-bundle associated to P, and let 8; be the basic form of (P, I,).
An isomorphism of (P, [,) onto (P,, [,) is a bundle isomorphism ¢ of P, onto
P, such that ¢*0,=42,.

PropPOSITION 6.2. The notation being asin Def. 6.2, let ¢ be a bundle iso-
morphism of P, onto P,. Then ¢ is an isomorphism of (P, 1) onto (P, 1) if
and only if there is a (unique) isomorphism ¢ of B, onto P, such that & -1,
=1l,00.

ProoF. First suppose that ¢ is an isomorphism of (P, [,) onto (P, I,).
There is a unique bundle isomorphism ¢ of P, onto P, such that ¢ol,=1l,00.
Since ¢*0,=6,, we have [}§,=[¥(@*0,). Hence §,=¢*F,. The converse is
easy.

PrOPOSITION 6.3. The notation being as in Def. 6.2, let ¢ be an isomor-
phism of P, onto P,. Then there is at least one isomorphism ¢ of (P, 1)) onto
(P,, I,) such that l,op=@ol,.

Proor. By Prop. 1.7 the homogeneous space G’/é is homeomorphic with
the vector space m*. Therefore we can find at least one bundle homomor-
phism A, of P, into P, (corresponding to the injection of G into G) such that
[;oh;=1 (the identity transformation of ﬁi). Hence there is a unique bundle
isomorphism ¢ of P, onto P, such that ¢ oh,=h,o¢. We have clearly o
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Let P be a G-structure on a manifold M and let (P, ) be a G’-bunale as-
sociated to P. We shall say that a bundle homomorphism % of P into P (corres-
ponding to the injection of G into G’) is admissible if it satisfies the condition
loh=1. By the proof of Prop. 6.3, there is at least one admissible homomor-
phism of P into P.

PROPOSITION 6.4. (1) The notation being as above, let h; (i=1, 2) be an
admissible homomorphism of P into P. Then there exists a unique 1-form
F:B—w* on M such that

(6.1) hy(x) = hy(x) - exp F,

at each xe P. (2) If h, is an ddmissible homomorphism of P into P and iy
F:P—w* is a 1-form on M, then the mapping h, of P into P defined by (6.1)
is an admissible homomorphlsm of P into P.

PrROOF. (1) At each x & P, h(x) and h,(x) lie in the same fiber of P. Hence
there is a unique 7 € G’ such that h,(x)=h,(x)z. Since [oh,=loh,=1, we
have x=ux . (), i.e, l(r)=e. By Prop. 1.6, ¢ is of the form exp F, with a
unique F,<=m¥*. We must prove that the mapping F:Posx—F,em* is a
1-form on M. We have exp F,,=a~'(exp F)a=exp (ada~'F,) for all xe P
and a e G, whence F,.="'aF,. (2) can be analogously proved.

We here state a lemma concerning a tensor field on a manifold with a G-
structure.

LEMMA 6.1. Let P be a G-structure on a manifold M and let (P, ) be a

G'-bundle associated to P. If 5:]3—>El'§(m) is a tensor field of type (7;) on M,
then the mapping @ =@ o[: P—Tr(m) satisfies the equality:

6.2) Do = (D)
Sfor all ze P and a=G’. Conversely, every mapping @ :P—I7(m) satisfying

(6.2) induces a unique tensor field 5:13—%?;(111) of type (Z) on M such that
=00l

enables us to define a tensor field of type <§) on M to be a
mapping @ : P— J7(m) satisfying (6.2).

Example (the prototype of G’-bundles). Let us consider the homogeneous
space M;=G/G’. As usual, G may be considered as a principal fiber bundle
over the base space M, with structure group G’: The action of G’ on G is
given by the mapping G X G’ = (z, a)— za = G, where za stands for the product
of z and a in the group G, and the projection 7 of G onto M, is defined by
7(2) = zo, 0 being the origin of M;, i.e., the coset G’ of G/G’. The group G
acts on the bundle of frames F of M, as follows: (zx)¢é = z(x&) for all z = G,
xe F and £ em, where z in the right side should be confounded with the
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transformation on M, induced by z. Now we have g=m-g’ (direct sum).
This being said, we define an isomorphism x, of m onto T, (M) by x,&=ré&,
for all £ =m, where &, means the value at ¢ taken by the left invariant vector
field £ on G. Note that we are identifying g with the Lie algebra of all left
invariant vector fields on G. x, being a point of F, let /[ be the mapping of
G into F defined by i(z) = zx, for all z=G.

LEMMA 6.2. The mapping [ is a base preserving bundle homomorphism of
G into I corresponding to the homomorphism [ of G’ into GL(m).

Proor. We first show that ax,=x,(a) for all a= G’. In fact, we have
(axy)é = a(n&,) = n((ada&))=r((l(a)E).)=(x,l(a))& for all £ =m, whence ax,=x,/(a).
It follows that I(za)=i(2)l(a) for all z G and a< G’. Moreover we have
7(I(2)) = wp(zx,) = 7(2) for all z< G, 7, being the projection of F onto M;.

Lemma 6.2 indicates that the image 13L of G by [ is a G-structure on M
and that the system (G, ) is a G’-bundle associated to ﬁL.

PROPOSITION 6.5. Let 6 be the basic form of (G,1). Then we have 6(€) =€
for all £E=m.

ProOF. Let # be the projection of P, onto M, and let § be the basic
form of P,. Since =74, we have i(2)0(&,)=I(2)dU(E.) =#(IE,) =&, =z(nE&,)
= (2x,)E = ()¢ for all ze G and & &m, whence 0(£,) =E.

§7. Connections of type (L)

For all a = G’ and &£ =m, we shall denote by D(aq, §) the g’-component of
ada& in the decomposition: g=m-+g’. We have adaE:l(a){UrD(d, &).

DEFINITION 7.1. Let P be a G-structure on a manifold M and let (P, )
be a G’-bundle associated to P. A connection of type (L) in (P, ) is a linear
mapping C of m into the vector space X(P) of all vector fields on P satisfying
the following conditions :

(C. 1) 6(C&)=E¢ for all £=m, 6 being the basic form of (P, );

(C. 2) R,C(&)=C{(a)'&)+D(a, &* for all a= G’ and £=m.

ExXAMPLE (the prototype of connections of type (L)). Let us consider the
G-structure P, on the hemogeneous space M;=G/G’ and the G’-bundle (G, i)
associated to P,. We define a linear mapping C;, of m into %(G) by Cr(&)=¢
for all & em. By Prop. 6.5, C;, satisfies condition (C. 1). We have R,&=ada™'§,
showing that C, satisfies condition (C.2). Hence C, is a connection of type
(L) in (G, D).

The notation being as in Def. 7.1, we study the fundamental properties of
a connection of type (L).

[. From condition (C.1) and Prop. 6.1, (1), we get

LEMMA 7.1. Every tangent vector X to P al z<= P is uniquely written in
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the form: C(€),+A¥, where Ecm and Asyg’.
For each X &g, we define a vector field X* on P by X*=C(§)+A* if

X=¢t+A, eemand Aegq’. The mapping § > X— X* e X(P) is linear and we
have

ProrosiTION 7.1.

(1) The mapping X — X¥ gives an isomorphism of g onto T,P) at each
zeP;

2) 0 X*=Xmodg for all Xeg;

(3) R, X*=(ada*X)* for all Xeg and ac G’;

@) [A* X*¥)1=[A, XT* for all Xegqg and Acsyg’.

This is easy from conditions (C.1), (C.2) and Lemma 7.1l

By Lemma 7.1, we can find, for each z< P and &, £ €m, a unique pair

(S,(& &), K, (&, &) of elements of m and g’ respectively as follows:
LC(&), C(EN]. = C(S,(E, M+ K&, §)F

or equivalently
[E*: El*]z - (Sz(gi E’)+Kz(5: 5,));k .

The elements S,(§, &) and K, (&, &) are bilinear and anti-symmetric with respect
to the two variables & and &'.

LEMMA 7.2. Let ac G, & & em and z= P. Then we have
S:al€s EN+Ku(é, €)= ada™'S,(I(@)§, Ua)é)+ada™ K (I(a)€, (a)E) .
Proor. We have
Ry - [E%, §7 )0 = [R -i&*, R &), =[(adab)¥, (ada&’)*],
= [U(a)&)*+D(a, &*, Ua)é)*+D(a, )],
= (S((@¢, (DE)+ K, ()¢, (a)§)+[D(a, §), (a)¢"]

+L(@§&, D(a, &)]+LD(a, &), D(a, ENDF.
We have

adal§, §']="[ada§, adad’] =[Ua)é+D(a, &), (a)§'+D(a, §)]
=[D(a, &), (n)§"J+[U@E, D(a, §)1+1D(a, &), D(a, §]
=0.
Hence we get
7.1 R, -y - [§%, &% )a = (S,(U@)E, {D)EN+ K (I(a)E, UD)EN) .
On the other hand, we get
(7.2) R,y - [6%, §%]),0 = (adaS,q(§, £)+adak o (E, EDF .

follows immediately from (7.1) and (7.2).
We define, at each ze P, a linear mapping S¥ of m into § by S¥(&)
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= 2 [S,(§, ep), 0] for all £ =m, where (¢;) is a base of m and («*) is the dual

base of (e;). Moreover, we denote by W,(&, &) the §-component of K (&, &) in
the decomposition: ¢’ =m*-+§, and define, at each z<= P, a linear mapping of
m into m* by W& = I [W,E, e), o] for all £ em, (¢;) and (»’) being just

as above. It is clear that S} and W* are well defined.
PROPOSITION 7.2. Let a= G, & & cm and z< P.

ey S:a(&, §)=Ua)'SUa)§, ()& ;
(2) Assume that S,=0 at each we P. Then,
W.a(€, §)=Ua) W ((a)§, (a)§N(a);
(38) Assume that S¥=0 at each we P. Then,
W& ="UaWFUa)$) .

PrOOF. There is a unique element w of m* such that a=1[(a)-exp @ (Prop.
1.6). Then we have, from Lemma 7.2,

Sea(€, ENFWoul(§, §) = U ) Sl (a)é”)
—Lo, (&S (@), (a)§)]+ ) W ((a)§, (a)é)i(a) mod m* .
(1) and (2) are immediate from this equality. We have
W.u&, 8= —Lo, (S, (DEN]+Ua)y W ((a)§, Ka)§)Hl(a),
and hence it follows that |
W) =— 2 [[o, @) S((a)¢, a)e)], @']
+ X @™ W@, Ka)enl(a), ']
= —Lo, adla)™ 2[S,((a)E, Ua)ey), Ua) ']
+adl(@)™ X W), (a)e), Ua)y o],
Since (l(a)e;) forms a base of m and (*/(a)'w") is the dual basz of (l(a)e;), we
get
W& = —[o, ad(@'SFUDOI+H DO W (@) = ‘l(a)W;k(l(a)S) .

Prop. 7.2, (1) shows that the mapping S: P2 2z—S,e L(m, m; m) is a tensor
field of type G) on M (see Lemma 6;1), which will be called the torsion ten-
sor field of C. 1t follows that the mapping S*: P2 z—SFfe L£(m;{J) is a ten-
sor field of type (%) on M. Similarly, Prop. 7.2, (2) (resp. (3)) means that the
mapping W:Poz—->W,e L(m, m;§) (resp. W*: P=sz—-Wke L(m;m*)) is a
tensor field of type (é) (resp. of type ((2)) on M under the condition that S=0
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(resp. S*=0).
II. Let us fix an admissible homomorphism / of P into P.
PROPOSITION 7.3. There exists a unique pair (B, J) of an affine connection

B in P and a tensor field J: P x—], = LG m*) of Lype ((2)) on M such that

7.3 h- B(§)r= C(8).+ ]
for all xe P and £ =m, where z = h(x).

Proor. First we make a general remark: Let X be a tangent vector to
P at ze P. Then, [IX=0 if and only if X is of the form w} with a unique
w = m*. Uniqueness: By (7.3), we have [oh . B(&),=1-C(&),+I-J(&)Ff =i C(),.
Since [oh=1, this means that B and hence J are uniquely determined by C.
Existence: First we define a linear mapping B of m into x(ﬁ) by B(€),
=1.C(&), for all x= P and & € m, where z=A(x). By condition (C.1), we have
J(B(&),) = 0(C&),) = &, showing that B satisfies condition (B.1). By condition
(C.2), we get Ry BE),=Raol-C€),=[oRy-C&),=1-C(a71€),,= B(a™),, for
all aeG. Hence B satisfies condition (B.2). Thus B is an affine connection
in . Next we have [-(h-B(£),—C(&),)= B(),—B(),=0. Hence, h-B(&),
—C(8), is of the form J,(&)F with a unique J,(&) € m*. It is clear that J(&) is
linear with respect to the variable §. We must prove that the mapping

J:Pox—],e £(m;m*) is a tensor field of type (g) on M. Forall aeG, we

have Ra, oh- B(E)x =ho Ra . B(E)x =h. B(aalé)xa = C(a—-l‘f)za +]xa(a~ 15)2'; and
Ryoh-B(&)s=Ra-CE). AR, J(O)F = Cla) .o+ (ada™ T (6))%. It follows that
Jwa(a™2E) = ada™'],(§) ="'a/, (&), which proves that / is a tensor field of type

(g) on M.

The affine connection B and the-tensor field J in Prop. 7.3 will be called
induced from C by h.

Let z be a point of P and set x=1[(z). Since z and A(x) lie in the same
fiber of P, there is a unique a € G’ such that z=/(x)a. Since x=i(z) =x - l(a),
we have l(a)=e, i.e., a is of the form exp w with a unique w € m*.

In what follows, B (resp. /) will denote the affine connection (resp. the
tensor field) induced from C by h.

PROPOSITION 7.4. The notation being as above, we have

(74) C&):=Rao h- B(&)o—(Ju(O)+D(a™, E)F

for all z€ P and & em.

PrROOF. We put y=h(x). By (7.3), we have R,oh.B(£),=R,-C(€),
+Ro - J(E)F = C6).+D(a™, E)F+(ada~'J(ENF = C(E).+(J(£)+D(a™?, ENF.

As for the affine connection B, we shall use the notations in §5.

LEMMA 7.3. Let x= P, & & em and set z=h(x). We have
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To(§, EN+TATo(&, EN+RAE, §)

=S/, &)+ K(E, ENALTE), E1+LE, JolEN1HVe AN —FeJE) -

Proor. For all Sém, we define a vector field H(§) on P by H(&)w
=(+J, &)k at each we P, where y={(w). Since [oh=1, (7.3) means that
H(&) is h-related to B(E), i.e., h-B(&),=H(&), at each xe& P, where z=h(x).
It follows that [H(E), H(E")] is also h-related to [B(§), B(€")], i.e.,

(7.5) h-[B(&), B(§")1.=[H(&), HEN, .
First we have
(7.6) h-[B(&), BN a=h-B(Tx(&, ENath - RAE, %

= H(To(§, §NA-Ra(§, €)F
= (T, ENHTLTE, EN+HRAE, ENF .
Let f be any function defined on a neighborhood U of z. We have
HENHw) = &'+, (ENwSf
at each w e U, where y={(w). Since {. H(),= B(&),, it follows easily that
H(E).HENS = Wl LENFS +E+TLENFUE +TLEN*S) -
From this and an analogous equality, we get
@D LH(E), H(E)]: = eJo(E)— Ve o EF
HLEHTAE*, € +TLE*].
=(SA&, &N+ KAE, EN+LE, Ju(6))]
+LJ2(8), &' 1+VeSo(E)—FeJ (D) .

Lemma 7.3 follows from (7.5), (7.6) and (7.7).
PROPOSITION 7.5. The notation being as in Lemma 6.1, we have
¢)) S=r1;
(2) Assume that S=0. Then,
W, &)=R(, &)1, &1+1JE), £1;

3) Assume that S*=0. Then,
(W)@ = R*O)——5-KO+ SLNed, £, '],

where (e;) is a base of m and (@) is the dual base of (e,).

ProoOF. First note that W (resp. W¥*) is a tensor field on M under the
condition that S=0 (resp. S¥*=0). (1) and (2) are immediate from Lemma
7.3. Let us prove (3). From 7.3, we get (W*)(E)zR*(é)—Zi [LA®), e], ]

+3 [([J(ed, €], ®*]. But, for all & em, we have (&, ) [[J8), e], o'
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=X (L&, &), Lew o'])= 2L ) es, w'>=Trl&, J(&)]. Since Tr[&, J(&)]

.—_—%@/, J(&)) (Prop.1.4), we get ZQ[U &), e, wiJZ—%—f(E).

III. PROPOSITION 7.6. Let h; (i=1, 2) be an admissible homomorphism of
P into P and let B; be the affine connection in P induced from C by h,. Let
F be the 1-form on M defined by (6.1). Then we have

for all xe P and Eem.
ProoOF. Let x be a point of P. If we set z=hy(x) and a=exp F,, then
we have x=1I(z) and z="h,(x)-a. Hence from Prop. 7.4, we get

7.8 C(€), =Ry o hy - B(&)—((E)+D(a™, &)F,
J being the tensor field on M induced from C by h,. We have
[oR,oh, =1, (D(a, &) =—[F, &] and By(&)y=1[-C(),.

Therefore by applying [ to the both sides of [7.8), we obtain the desired
equality.

We shall denote by A(C) the family of affine connections in P which are
induced from C by all admissible homomorphisms of P into P.

PrROPOSITION 7.7. Each affine connection in W) is induced from C by a
unique admissible homomorphism of P into P.

PrROOF. Suppose that an affine connection B in P is induced from C by
two admissible homomorphisms, say 4, and h,, of P into P. Let F be the 1-form
on M defined by (6.1). Then by Prop. 7.6, we have [F,, £]=0 for all xe P
and £ =m. Therefore we get F=0 (Prop. 1.2, (2)).

§8. The torsion tensor field of a G-structure
Let P be a G-structure on a manifold M. Given a tensor field T:P—

L(m, m;m) of type (é) on M, we define a new tensor field T%:P-—rL(m;§)

of type (%) on M by T?Z(E):ZJ [T, e), o] for all £cm and x € P, where

(e;) 1s a base of m and (%) is the dual base of (e,).
THEOREM 8.1. Let P be a G-structure on a manifold M. Then there exists

a unique tensor field T:ﬁ—»I(m, m:m) of type (%) on M satisfying the fol-
lowing conditions:
ey T*=0;

(2) There exists at least one affine connection B in P whose torsion tensor
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field is equal to T.
DEFINITION 8.1. Let P be a G-structure on a manifold M. The tensor

field T :ﬁ~>.,£(m, m;m) of type (%) on M whose unique existence is assured

by Th. 8.1, is called the torsion tensor field of the G-structure P.

The proof of Th. 8.1 is preceeded by several lemmas. Let 4 be the sub-
space of .L(m, m; m) consisting of all elements T such that T(§, &)= —T(¢’, &)
for all §, & em. We set £=_L(m; ) and define a linear mapping 4 of € into
T by AU)E, &)=UE)& —U(ENE for all U=¢€ and &, & em. Furthermore we
define a linear mapping 4* of I into & by A*(T)(E):ZL_) [T(, e;), o] for all
Ted and & em, where (¢, is a base of m and (@% is the dual base of (¢;). &
(resp. €) is clearly a G-stable subspace of £(m, m;m) (resp. -L(m; gl(m))).

We have easily

LEMMA 81. Let Ted, Ucé and a<G.

) AU =AWU)*;

2 A¥(T) = A¥(T)".

Let 6 be a fixed x-isomorphism of L onto L*. We define positive definite
inner products (,) on m, & and & respectively as follows: (&, &)= —<§, 0&')
for all § & m; (T, T)= 3 5 (Tew e, T'Ces, ) for all T, T' =, where (20

is an orthonormal base with respect to the inner product (,) on m; (U, U")
=—=2¢(U(ey), 0U'(ey)) for all U, U’ ¢, (e;) being just as above.

LEMMA 8.2.

(T, AU N =T, U)
Jor all Te g and U e<é.
Proor.

T,

> o(Te;, e, [0U(ey), Oe,1—L0U(ey), Oe;])

%

(T, UM =~ 5 (T(es ¢, 04U Xew )
71‘
2

= 123 o(LT(es, ej), 091‘]; 0U(ey)
= ; o(d*¥(T)(ey), 0U(ey)

=dXT), U).

We put @ =4*%o 4. Then we have easily, from
LEMMA 8.3.

@ OE) = 4%2);
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) 6-10) = 4-(0);
3) E=0"Y0)+6E) (direct sum).

Proor OF THEOREM 81. We first prove uniqueness. Let B (resp. B’) be an
affine connection in £ and let T (resp. T7) be the torsion tensor field of B (resp.
B’). Assuming that T*=T"*=0, we must prove T=7T". By Prop. 5.3, we can

find a tensor field U: P—¢& of type (%) on M such that 77/ =T+44(U). Since

A¥T)=T*=4%T")=T*=0, we have @U)=0. Therefore by Lemma 8.3,
(2), we get 4(U)=0, whence T="T". Let us now. prove existence. We see
from the proof of Lemma 3.2 that the group G, is a (maximal) compact sub-
group of G and that the homogeneous space @/(N}g is homeomorphic with a
euclidean space. Hence there is at least one affine connection, say B’, in P,
cf. [5]. Denoting by 7" the torsion tensor field of B/, we can find, at each
xe P, a unique element U, of O such that 4*¥T,)=6(U,) (Lemma 8.3).
For all xe P and ac G, we have 4%(T},) =0O(Us) = OWE™) and U™ < O©)
(Lemma 8.1), whence U,, = U%". This means that the mapping U:Psx—

U, 0() is a tensor field of type (%) on M. Therefore by Prop. 5.3, there

is an affine connection B in P whose torsion tensor field is given by T'=T'—
A(U). We have T*=4%T)=4¥(T")—O(U)=0, completing the proof of Th.
8.1.

REMARK. The notion of the torsion tensor field of a G-structure gener-
alizes the notion of the Nijenhuis tensor field of an almost complex structure.
In fact, let L be an irreducible /-system of type I, ,, i.e., of type P™(C). In
this case, the associated representation (6, m) is equivalent to the representa-
tion (GL(m, C),C™), and it can be proved that the torsion tensor field of a
G-structure coincides with the Nijenhuis tensor field of the corresponding
almost complex structure.

§9. Normal connections of type (L)

Let P be a G-structure on a manifold M. We introduce an equivalence
relation in the set of all affine connections in P as follows: Let B, t=172)
be an affine connection in P. B,~ B, if and only if there is a 1-form F:P—m*
on M such that

for all xe P and £=m. One notes that the 1-form F in (9.1) is uniquely
determined by B, and B, (cf. Prop. 7.7) and that, given an affine connection
B, in P and a 1-form F on M, the linear mapping B, of m into i{’(ﬁ) defined
by (9.1) is an affine connection in P (Prop. 5.3). Moreover since [[o, &1, &1



Equivalence problems associated with homogeneous spaces 129

=[[w, €7, ] for all & & m and wew¥, it follows from Prop. 5.3 that if
B, ~ B,, then the torsion tensor fields of the two connections coincide.

DEFINITION 9.1. We say that two affine connections B, and B, in P are
mutually L-equivalent if B;~ B, Let % be a class of mutually L-equivalent
affine connections in P. The torsion tensor field 7 of U is defined to be the
torsion tensor field of some affine connection in . The class A is called ad-
missible if 7% =0 or equivalently if T coincides with the torsion tensor field
of P.

From Props. 6.4, 7.5 and 7.6, we get

PROPOSITION 9.1. Let (P, 1) be a G’-bundle associated to P and let C be a
connection of type (L) in (P,D). The family A(C) of affine connections in P
induced from C forms a class of mutually L-equivalent affine connections in
P. The class () is admissible if and only if S¥=0.

DEFINITION 9.2. Let ﬁi (i=1,2) be a G-structure on a manifold M; and
let %A; be a class of mutually L-equivalent affine connections in ﬁi. An isomor-
phism ¢ of P, onto P, is called an isomorphism of (£, 9,) onto (P, A,) if
éA, =9A,. A homeomorphism f of M, onto M, is called a homeomorphism of
(M,, ;) onto (M,, N,) if there is a (unique) isomorphism & of (P, A onto
(IN’Q, A,) which covers f.

Now let us define an endomorphism @, of L£(m; m*) by

QO =T [[few), £], o]

for all J& L(m; m*) and & &m, where (¢;) is a base of m and (w*) is the dual
base of (e;).
LEMMA 9.1. ‘
QL(]“) - QL(])“
for all Je L(m; m*) and a < G.
Furthermore we define an endomorphism @; of £(m; m¥) to be

@)= 5T~ QulD)

for all Je £(m; m*).

From now on (Th. 9.1-Prop. 9.4), we assume that the endomorphism @,
is an automorphism.

THEOREM 9.1. Let P be a G-structure on a manifold M, let % be an ad-
missible class of mutually L-equivalent affine connections in P and let (P, 1) be
a G'-bundle associated to P. The notation being as in §7, there exists a con-
nection C of type (L) in (P, ) satisfying the condition:

0.2 AC)=A, S*=0 and W*=0.

Proor. We fix an affine connection B in % and an admissible homomor-
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phism 4 of P into P. Since @, is assumed to be an automorphism, we can
find, at each x= P, a unique linear mapping J, of m into m* such that

9.3) R¥=9.(J.),

where R* is the Ricci tensor field of B. It follows from that the

mapping J: P x—J, & L£(m;m*) is a tensor field of type ((2)) on M. Using

h, B and J thus obtained, we define a linear mapping C of m into X(P) by
K7.4). From Prop. 6.1 and conditions (B.1) and (B.2), we infer that C satisfies
conditions (C.1) and (C.2), i.e., C is a connection of type (L) in (P,0). It is
clear that B (resp. J) coincides with the affine connection (resp. the tensor
field), induced from C by h. Hence A(C)=%A. Since A is admissible, we see
from Prop. 7.5, (1) that S*=0. Finally from and Prop. 7.5, (3), we get
W*=0.

DEFINITION 9.3. Let P be a G-structure on a manifold M and let %A be an
admissible class of mutually L-equivalent affine connections in B. We say
that a system (P, [, C) is a normal connection of type (L) associated to %, if
(P, ) is a G’-bundle associated to P and if C is a connection of type (L) in
(P, ) satisfying condition (9.2).

DEFINITION 94. Let P; (i=1,2) be a G-structure on a manifold M, and
let (P;, I;, C;) be a normal connection of type (L) associated to a certain admis-
sible class of mutually L-equivalent affine connections in P,. An isomorphism
¢ of (P, 1) onto (P, I,) is called an isomorphism of (P, [, C,) onto (P, I, C;)
if oC,=0C,.

THEOREM 9.27. Let P, i=1,2) be a G-structure on a manifold M, let W,
be an admissible class of mutually L-equivalent affine connections in ﬁi and
let (P;, I;, C) be a normal connection of type (L) associated to W;. If ¢ is an
isomorphism of (151, N,) onto (ﬁz, W,), taere corresponds to ¢ a unique isomor-
phism ¢ of (P, Iy, Cy) onto (Py, by, C,) which induces ¢ i.e., oo =¢o/l,. Con-
versely every isomorphism ¢ of (P, 1, C) onto (P, 1, C,) induces a unique
1somorphism ¢ of (151, €,) onto (P,, Wy).

ProoF. First suppose that there is given an isomorphism ¢ of (}N’l, A,
onto (P, %,). We take a fixed affine connection B, in A, and set B, = ¢B,.
Since ¢, =N,, B, belongs to A,. Since A, =U(C;), it follows from Prop. 7.7
that the affine connection B; is induced from C; by a unique admissible homo-
morphism h; of P, into P,. By the proof of Prop. 6.3, there is a unique bundle
isomorphism ¢ of P, onto P, such that ¢ o h,=h,o$. We have ,oo=¢ o],
and hence ¢ is an isomorphism of (P, [,) onto (P, ;). Let J, be the tensor

7) This allows us to speak of “the” normal connection of type (L) associated to
a G-structure P.
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field on M; induced from C; by h;. Since B,= @B, and since @, is an auto-
morphism, we have (J,)aw = (J)» at each x & P, (Prop. 7.5, 3)). Therefore, it
follows from Prop. 7.4 that ¢C,=C,, which shows that ¢ is an isomorphism
of (P, 1, C)) onto (P, I,, C,). Let us now prove the uniqueness of ¢. Let ¢’
be a second isomorphism of (P, [;, C,) onto (P,, I, Cy) such that [,o @’ =¢ol,.
We put hj=¢’ o hyo ¢!, being an admissible homomorphism of P, into P,.
Therl we have By(£),=¢ - By(&),=@ o l,-Cy(&),= Lo Cy&),=1I,- Cy&), at each
y € P,, where x=¢ (), z=hy(x) and w=~hy(y). This means that the affine
connection B, is induced from C, by h). Hence we have hj=h, by Prop. 7.7.
Since ¢’ o hy=h,o $=¢ o h;,, we get ¢’ =¢. Now suppose that there is given
an isomorphism ¢ of (P, I, C;) onto (P, I,, C). By Prop. 6.2, ¢ induces a
unique isomorphism ¢ of P, onto 132. We take any affine connection B; in %,
and denote by &, the corresponding admissible homomorphism of P, into P..
If we put h,=¢ o hy o ¢, being an admissible homomorphism of P, into P,
then we Nhave (¢B(E)y=¢-By(§)r=¢o Z1 -C(6),= Zz 0op-Cyé),= l-z - Cy(8), at
each yc P,, where x=0¢"%(y), z=h,(x) and w="h,y). This means that the
affine connection ¢B, in P, is induced from C, by hA,. Thus ¢B,=W,. There-
fore ¢W, A, and hence @A, =A,.

Let P be a G-structure on a manifold M and let % be a class of mutually
L-equivalent affine connections in P. We denote by G(M, ) the group of all
transformations of (M, %0).

PrROPOSITION 9.2. The notation being as above, we assume that M is con-
nected and that the class W is admissible. Then the group G(M,N) is a Lie
group of dimension < dimg with respect to the natural topology.

Proor. By Th. 9.1, there is associated to % a normal connection (P, i, C)
of type (L). By Th. 9.2 and Prop. 5.2, G(M, %) may be identified with the
group of all automorphisms of (P, ], C); the notation being as in §7, G(M, N)
consists of all transformations ¢ of P satisfying the equalities: @X*= X%,
Roop=¢oR, for all X=g and a=G’. Therefore by Prop. 7.1, (1) and a
theorem of S. Kobayashi [4], G(M,A) becomes a Lie group of dimension
=dimg in such a way that it is a Lie transformation group on P and hence
on M.

Let us now consider the G-structure ﬁL on the homogeneous space
M, =G/G’, the G’-bundle (G, i) associated to P, and the connection C, of type
(L) in (G, ) which have been observed in §6 and §7. We have [C(&), Cr(€")]
=[& &71=0 for all & & em. Hence the system (G,I, G;) forms a normal
connection of type (L) associated to the admissible class Ay =N(Cy).

PROPOSITION 9.3. We have naturally G=G(Mg, A).

Proor. For all a= G, we denote by L, (resp. T,) the left translation on
G (resp. the transformation of A;) induced by a. Now let a be any element
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of G. We have L, X=X for all X<g. Hence we see that L, is an automor-
phism of (G, I, C;). Since L, induces the transformation T, of M,, it follows
from Th. 9.2 that T, is a transformation of (Mg, ), i.e., TqE G(My, NAp).
Since T, is covered by a unique automorphism of (G,I, C;), we deduce that
the homomorphism G = a— T, G(M, N,) isinjective. Thus we have proved
GC G(Mz, N.). Conversely we shall prove G(M;, A)CG. We take any ele-
ment f of G(Mz, %z). By Th. 9.2, f is induced by a unique isomorphism ¢ of
(G,1,Cy). We have ¢X*= X* for all X=gq. Since X*= X, there is a unique
element a of G such that ¢ =1,. Consequently we get f=T,, which proves
our assertion.

PROPOSITION 94. Let U; (1=1,2) be a connected open set of M. Every
homeomorphism f of (U,, z) onto (U,, N;) is extended to a unique transforma-
tion of My of the form Tu(a < G).

The proof of Prop. 9.4 is entirely similar to that of Prop. 9.3 and there-
fore it is omitted.

REMARK. Prop. 9.3 implies that the action of G on the homogeneous space
M, =G/G’ is effective under the hypothesis that @, is an automorphism.
However this hypothesis is unnecessary, as is seen from the proof of Th. 9.2.

The following discussions will be concerned with the equivalence problems
associated with G-structures.

The notation being as in §8, we put

3(L) = dim 4-10).

For each w e m*, let @ be the element of & defined by &(&) =[w, &] for all
fem. Since [[w, &, &1=[[w, &7, &] for all & & m, it follows from Prop.
1.2, (2) that the assignment w— & gives an injective linear mapping of m*
into 4-(0). Hence we have

LEMMA 9.2. d()y=n=dimm, and the equality holds good if and only if
the mapping w— & gives an isomorphism of m* onto 4-(0).

From Prop. 5.3 and we get

ProOPOSITION 9.5. Assume that 0(L)=n. Every G-structure P on a mani-
Sfold M admits a unique admissible class, say {P), of mutually L-equivalent
affine connections.

Hereafter we assume that @, is an automorphism and that 6(L)=n.

DEFINITION 95. Let P be a G-structure on a manifold M. We say that
a system (P, [, C) is a normal connection of type (L) associated to P if it is
a normal connection of type (L) associated to the unique class {P).

THEOREM 9.3. To every G-structure P on a manifold M there is associated
at least one normal connection (P, 1, C) of type (L).

THEOREM 9.4. Let P, (=1, 2) be a G-structure on a manifold M; and let
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(P, I;, Cy) be a normal connection of type (L) associated to P, If ¢ is an iso-
morphism of P, onto P, there corresponds to ¢ a unique isomorphism o of
(Py, 1y, Cy) onto (Py, I,, C;) which induces ¢. Conversely, every isomorphism ¢ of
(P, L, C,) onto (P, I, C,) induces a unique isomorphism ¢ of P, onto P,

Ths. 9.3 and 9.4 follow from Ths. 9.1 and 9.2 respectively.

Given a é-structure P on a manifold M, we shall denote by G(M) the
group of all G-transformations of M.

Prop. 9.2 yields

PROPOSITION 9.6. The notation being as above, we assume that M is con-
nected. Then the group G(M) is a Lie group of dimension < dimg with respect
to the natural topology.

Props. 9.3 and 94 yield

PROPOSITION 9.7. G =G(My).

PROPOSITION 9.8. Let U; 1 =1, 2) be a connected open set of My. Every
5-h'omeo‘m0rphism f of U, onto U, is extended to a unique transformation of
My of the form Ty(a < G).

ExAaMPLES. (1) Let L be an [-system of type P™(R). If m =2, the endo-
morphism @, is an automorphism (Th. 10.1). The normal connection of type
(L) is nothing but the normal projective connection of degree m. (2) The m-
dimensional Md&bius space gives rise to an [-system L such that the complexi-
fication L¢ of L is irreducible of type IV, [10]. If m =3, the endomorphism
@, is an automorphism and ¢(L)=n (Ths. 10.1 and 10.2). The normal con-
nection of type (L) is nothing but the normal conformal connection of degree
m.

§10. The endomorphism @, and the integer d(L)

THEOREM 10.1. Let L be an l-system and let L =L, X - X L; be a decom-
position of L into irreducible l-systems. Then @ is an automorphism if and
only if none of L; is of type PYR) or P{C).

In general, let L=(g, m, m*, §) be an [-system. We identify £(m;m*) and
m*@m* as follows: (wQRQw)é =& wdw for all w, w €w* and E=m. The
duality (> between m and m* yields a duality {,) between m@m and m*Q m¥,
and the endomorphism @, is then defined by

(ERE, Quo® o) =¢(§, w], [§, 0]

for all & & em and w, 0’ € m*.

LEMMA 10.1. Let L; 1 =i=<s) be an [-system and let L be the product of
Ly, -+, Le. Then @, is injective if and only if each @, is injective.

Proor. We set L;=(g;, my;, m¥, §;) and L=(g, m, m*, §) and identify g; with
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an ideal of g. We have m*@m*= > m*Q@m¥ (direct sum). fol-
o

lows from the following facts: (1) Q(m¥Q@mf)CmfRmF and Q (mfRQm¥)
={0} G#7); (2) Qp, is identical with the restriction of @, to mf@m¥.
LEMMA 10.2. Let L be an [-system and let L° be the complexification of
L. Then @, is injective if and only if @;c is injective.
PROOF. Setting L = (g, m, m*, §), we have L= (g¢ mC, m*¢, §¢). We identify
m*o(?m*o with a subspace of m*"(%)m*a as follows:

ORw = -%- (0@ —(v =1 @ Q=T o)

for all w, € m*¢. Furthermore we define an injective linear mapping p of
m* @ m* into m* @m*¢ by p(wRQw)=0wR«’. We have m*¢Qm*¢ = p(m* Qm*)
c C C

++4/ —1 p(m* @ m*) (direct sum). Now Lemma 10.2 is an immediate consequence
from the followings: (1) Qre(M**@mM*)C m*Xm*’; (2) Q¢ restricted to
C

m*‘f’éé{)m*c is complex linear; (3) Qrop=poQ;.

Let L =(g, m, m*, §) be an irreducible [-system of type (C). By Prop. 24,

g becomes a complex Lie algebra in such a way that m, m* and § are complex

subalgebras of g. Let us identify m*®m* with a subspace of m* @ m*as above.
C

Then we have easily Q,(m*Q@m*)Cm*@m*. Now take a x-isomorphism 6 of
c

L onto L* and let S=(gy, me, §s) be the corresponding simple compact hermitian
s-system. We have g=¢§, =309 and m+m*=m§ (Prop. 4.1). Let ¢y be the
Killing form of gy and let {,D be the positive definite inner product on mp
defined by (X, YYp= —¢s(X, Y) for all X, Y emy; the inner product {,)s
on Mm; gives rise to a positive definite inner product {,)s on mg&@@my. This
being said, we define an endomorphism P?® of my&my by

(XQX', PYQRY"Ds=s((X, Y], [X, YD

for all X, X", Y,Y emy, cf. [11]. It is shown that P is self-adjoint with

respect to the inner product {,);. Now the endomorphism P is naturally ex-

tended to a complex endomorphism P¢ of (my@mp)’=m§Q@m§. Then we can
C

8) Let X,.-+,X, be an orthonormal base of my with respect to the inner product
<,>p. Set
[[Xn X3l X1 = %_.: RijnieXs o

Then R;;,; may be considered as the components of the curvature tensor field of the
(compact irreducible hermition) symmetric space My =Gg/Gp. If f= Y fi; X QX we
i,

get
P(f) =iZj] (hZ;; Rinjufan) X @ X .
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prove that P leaves m*@m* stable and that Q, and P¢ coincide on m*® m*.
C C

LEMMA 103. Let L be an irreducible [-system of type (C). Then @, is
injective except the case when L is of type I,,.

Proor. We first remark that L is of type I,, if and only if dimgs=3.
Let P* be the restriction of P¢ to m*%bm*. Then we see from the above

argument that @, is injective if and only if ,%_ is not an eigen value of P*,
If dimgy=3, we have easily @, =0. If dimgy=3, we infer from [11] that
the maximal eigen value of P and hence of P* is smaller than —%—, from which

follows that @, is injective.

Theorem 10.1 follows from Lemmas 10.1, 10.2, 10.3 and Props. 2.1, 2.2, 2.5,
4.3.

Now we give our attention to the integer d6(L).

Given an [-system L = (g, m, m*, §), n(L) will denote the dimension of m.

THEOREM 10.2. Let L be an [-system and let L =L, X --- X L; be a decom-
position of L into irreducible l-systems. We assume that each L; is of classical
type. Then o(LY=n(L) if and only if none of L; is of type P™(R) or P™C)
(m=2).

LEmMMA 104. Let L; A1 <1<s) be an I-system and let L be the product of
L, -, L. Then o(LYy=n(L) if and only if 6(L;)=n(L;) for each 1.

PrOOF. &(L)= ; o(Ly), n(L) = ; n(L;) and o(L;) =n(L,).

LEMMA 10.5. Let L be an I-system and let L° be the complexification of
L. Then 6(L)=n(L) if and only if 6(L% = n(LC).

PROOF. 0(L% =20(L) and n(L°) = 2n(L).

A direct calculation gives

LEMMA 10.6. Let L be an irreducible [-system of type (C). Assuming that
L is of classical type, we have o(L)=n(L) except the case when L is of type
I., (m=2) or I,

Since IIl;=1,,, Th. 10.2 follows from Lemmas 10,5 00.6 and Props.
21, 2.2, 25, 4.3.

REMARK. Let L=(g, m, m* §) be an [-system. Set & =_L(m;m*) and
denote by g7 the subspace of £(m, m;{§) consisting of all elements W such
that W(, &)= —W(&’, & for all & & m. Define linear mappings 4’ of &
into 97 and 4’% of g7 into &’ respectively as follows: 4'(J)(&, &)=[JKE), &']
—[J(EN,E] for all Je& and &, & em; A/*(W)(E):Zi)[W({-‘, e,), '] for all

Weg’ and & =m, where (¢;) is a base of m and (") is the dual base of (e,).
Then we have

O,=d*%c 4.
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Now take a x-isomorphism & of L onto L* and define positive definite inner
products (,) in & and g’ respectively as follows: (/,J)=—><0/(ey), ] (e;)>
for all /, /7 €&’ where (e;) is an orthonormal base of m with respect to the
inner product (,) introduced in §8, i.e., {e;, f¢;>=—0;;;

(W, W)= = 5 o(Wes e, OW'(es, ¢.)

for all W, W’ e 9", (e;) being just as above. Then, analogously to [Lemma 8.2,
we get
(W, A'(TN=U*W), ]
for all W e 49’ and J=¢’, from which follows that
® 0:/(0)=4-1(0),
@ @D, D=, 4N =0.
We mention that we can give a direct proof of Th. 10.1 by using (1).

Appendix
The cohomology group associated with an l-system

As we have observed in-the text, the operators 4, 4%, O, 4/, 4’*, @, and
the integer d(L) play very important roles in the construction of the normal
connections of type (L). In this appendix, we shall give cohomological inter-
pretations of these operators and integer®.

Let L=(g, m, m*, §) be an [-system. We use the notations and identifica-
tions given in the text. Put g(m)= 29‘;(111) (for the definition of g7(m), see
§5). Then the group G(C GL(m)) linearly acts on g(m) through the mapping
GXT m)=(e, X)—»>X*=g(m) (§5). Note that m, m*, §(Cgl(m)) and hence g
are G-stable subspaces of ().

For each integer p, define a subspace g, of g as follows: g,=m(p=—1),
=§(p=0), =m* (p=1) and =0 (px—1,0,1). Then the family (g,) satisfies
the followings:

) g= X g, (direct sum),
¥4

(2) [:gp: gq] - gp+q .

(1) and (2) mean that g is a graded Lie algebra. By utilizing the family (g,)
thus obtained, we shall define the cohomology group H(L)= 3 H?Y(L) asso-
»,q

ciated with the [-system L.
Let C?9(L) be the vector space of all g,-,-valued ¢g-forms on m=g_, and

9) We owe to the referee these cohomological interpretations.
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put
C(L)y= 3 Cc»Y(L).
»,q

Then, C?»%L) and hence C(L) are G-stable subspaces of T(m): (cM)(xy, -+, Xg)
=(c(a~xy, -+, a7 x))* for all ceC»Y(L),ac G and Xy, -+, Xxg=m. More pre-
cisely, C»%L) (resp. C»%L), resp. C29(L)) is a G-stable subspace of g7} (m) (resp.
gh,(m), resp. I%.,(m), and CP»YL)=0 (p=0,1,2). Now define coboundary
operator 0 :C(L)— C(L) to be 0C?»%L)cC C?P~12*+(L) and

(ac)(xly Tty xq-H) :jg(—l)i[:c(xly Tty 92'7;, Tty xq+1); xi]

for all ce C?»Y(L) and xy, -+, X440, E M.
We have easily
LEMMA 1. 9(c®)=(0c%,c=CL),aec G.
LEMMA 2. 02=0.
Proor. Take any c= C?»%L) and x,, -+, xseo €m. Then we have

@)ty s Ty = S (DO, -+, &y, Kgao), %]
:jé_(—l)i”[[c(xn e Ry ey B e, Xy X7, %5
+j§ (=D LeQhy, oy By v By -0 5 Xgaa)s X1, %o
—_—_Ei (— L) [e(xy, -, Bjy oy Biy oo xq+2), x7], %]
+]§i (=D)L Lc(ty, -y £y o s Bay oo s Xgaa)s Xids X7 .
Since [m, m]=0, we get (0%¢)(xy, *+, Xg4s) =0.
As usual, to the complex (C(L)= 3 C»%(L), 0) there is associated the coho-
mology group H(L)= ;‘_,qu’q(L): o
H?»Y(L)=0""0) N CHYL)/CP*e=Y(L).

We can easily verify that H»%(L)=0 (p =0, 1, 2), H*(L)=m, H-(L)= H2%L)
=0 and H>(L)=gl(m)/d (Lemma 1.2).

We now define the (formal) adjoint operator 0*:C(L)— C(L) of 0 to be
o*CPYLyc Cr+1e-1(L) and

(3*6)(961, Tty xq-—l) = (—l)q izzl I:C(xh "ty xq—-ls ei)’ wlj

for all ce C?%L) and x,, -+, x,—, €m, where (e¢;) is a base of m and («?) is the
dual base of (¢;). It is evident that 9*c is well defined.

We get easily

LEMMA 3. 3% =(0%c) c = C(L); a=G.
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Let us now show that 9* is really the adjoint operator of 0 with respect
to a certian positive definite inner product (,) on C(L). Take any *-isomor-
phism 6 of L onto L* and define a positive definite inner product (,) on g by
(x, y)= —o(x, 0y) for all x, yeq. This being said, we define a positive definite
inner product (,) on C»%L) by

(Cr Cl) :%— " Eiq (c(eip “tty eiq)y C,(ei;p Tty e’iq))

vy

for all ¢, ¢/ € C*9(L), where (e¢;) is an orthonormal base of m with respect to
the inner product (,). The inner products (,) on C?%L) naturally give rise
to a positive definite inner product (,) on C(L).

LEMMA 4. 0% is the adjoint operator of 0 with respect to the inner pro-
duct (,) on C(L):(dc, ¢/)={(c, 0%c"), ¢, ¢’ € C(L).

PrROOF. Let ceC?4L) and ¢’ € CP~+2+(L), Then we get

(aC, C/) - —-(—q——*_{—i.)—!—— i 2 @((ac)(eip Tty eiq+1>y 0 * C/(eily ) eiq+1))

e lgag

1 - ; . ,
DB B D e 0 63,0+ )
(_1)(14"1 .
= (q+1>! E AZ 2 SD(C(eiU Ty eij) Tty eiq+1);

Jodyystgsesigrn iy

0[6/(97:1, ety é'b], Tty eiq.}.p el])) 091']])

:_C}:FT Z iy, ,2 (c(eill Tty éijr Tty eiq.;_l), (6*6/)(8721: "ty éij; Sty eiq+1))

where we have used the fact that (—6@e;) is the dual base of (e)).

An important consequence of Lemma 4 is that there is defined the notion
of a harmonic form in C(L). We put 0O = 8*3-+09* (Laplace Bertrami opera-
tor). Then a form in D‘I(O)zjf:pz ™ is called harmonic. As usual we

'q

get H??2=0-10) N 0*0) ~C»%L) and the orthogonal decompositions :
CrUL)=%"24+0 CPYL),
= j[p,q_{_ac p+1,q~1(L)+a*cp~1,q-l<1([l) ,
0~1(0) N\ CPYUL) = 4P} 9CP+He-Y(L) .
Therefore we get H»(L)= 4?1,
Relations between our previous notations and cohomology :
(A) &€=Cv{(L), T=C%(L), d=20|C¥ (L), 4* =0* | C*%(L), ©® = 0% | C*(L)
§9; ,
(B) & =C>(L), g’ =Cv(L), =0 |C>(L), 4’*=0*|C¥%(L), ;= 0*0
|C*(L)=0[C>(L) (§9 and §10);
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© &=—0w, wecm*=C>»(L), 6(L)=dim (0~'(0) ~ C>(L)), n(L)
=dim aC>°(L) (§9 and §10);

(D) R*=0*R, S*=0%*S, W*=0*W, T*=0*T (§5, §7 and §8).

Finally we add

ProrosITION. (1) @, is an automorphism if and only if H>Y(L)=0. (2)
o(Ly=n(L) if and only if H (L)=0.

Proor. (1) follows from (B) and the fact that HzW(L)=4*!. (2) is im-
mediate from (C).
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