On the equivalence problems associated with a certain class of homogeneous spaces

By Noboru TANAKA

(Received Sept. 19, 1964)

Introduction

The present paper, first of all, introduces the notion of an l-system on which our theory is based. An l-system L is defined to be a system of a real semi-simple Lie algebra $\mathfrak g$ and three subalgebras of $\mathfrak g$ satisfying certain conditions (Definition 1.1). To every l-system L we associate a homogeneous space $M_L = G/G'$ of a Lie group G over a closed subgroup G' of G (see § 1). It is remarkable that the homogeneous space $M_L = G/G'$ is a prolongation of a compact Riemannian symmetric space in the following sense (cf. Proposition 3.2): A maximal compact subgroup K of G acts transitively on M_L , and the homogeneous space $M_L = K/K \cap G'$ is a compact Riemannian symmetric space. A recent work of T. Nagano [T] proves that, roughly speaking, any prolongation of a compact Riemannian symmetric space is locally isomorphic with a homogeneous space of the form $M_L = G/G'$.

Now let L be an l-system and let $M_L = G/G'$ be the corresponding homogeneous space. G being considered as a transformation group on M_L , the linear isotropy group \tilde{G} of G at the origin o of M_L is a subgroup of the general linear group $GL(\mathfrak{m})$ of the tangent vector space \mathfrak{m} to M_L at o. In this way, to every l-system L there corresponds a representation (\tilde{G},\mathfrak{m}) . Therefore there can be defined the notion of a \tilde{G} -structure: A \tilde{G} -structure on a manifold M is a principal fiber bundle \tilde{P} over the base space M with structure group \tilde{G} which is a subbundle of the bundle of frames of M (Definition 5.1).

The main purpose of the present paper is, for a given l-system L, to study conditions for the equivalence of two \tilde{G} -structures. Our main results (Theorems 9.3, 9.4, 10.1 and 10.2) may be stated as follows: Under general hypotheses on L, to every \tilde{G} -structure \tilde{P} there is associated a system, called the normal connection of type (L), in such a way that the equivalence of two \tilde{G} -structures can be characterized. The normal connection of type (L) is a Cartan connection corresponding to the homogeneous space $M_L = G/G'$ and is found to be a generalization of the normal conformal connection. It should be here noted that there also exists the notion of the normal connection of

type (L) under a weaker hypothesis on L (Theorems 9.1 and 9.2), which just generalizes the notion of the normal projective connection.

In § 1, we construct the homogeneous space $M_L = G/G'$ and study the fundamental properties of it. In § 2, we define the notion of an irreducible l-system (Definition 2.1). It is shown that an arbitrary l-system L is decomposed into a product of irreducible l-systems (Propositions 2.1 and 2.2) and that the set of all irreducible l-systems is devided into two classes called of type (R) and of type (C) (Definition 2.2). § 3 is devoted to the study of the duality which lies among l-systems. This leads to the investigation of the maximal compact subgroups of the group G. In § 4, it is shown that the set of all isomorphism classes of irreducible l-systems of type (C) is in a one to one correspondence with the set of all isomorphism classes of compact irreducible hermitian symmetric spaces. § 5, § 6 and § 7 are preliminary to the subsequent two sections. In § 8, it is proved that to every G-structure P on a manifold M there is associated a tensor field T of type $\binom{1}{2}$ on M called the torsion tensor field of P. This notion turns out to be a generalization of the notion of the Nijenhuis tensor field of an almost complex structure.

§ 9 is concerned with the construction of the normal connection of type (L), which will be carried out following the construction of the normal projective connection given in [9]. Hypotheses on L for the existence of the normal connection of type (L) will be stated in terms of an endomorphism Φ_L and an integer $\delta(L)$ (as for the cohomological interpretations of these hypotheses, see Appendix). The endomorphism Φ_L has an intimate relationship to the quadratic form which appears in the study of discrete subgroups of a Lie group, for example, in [11]. The integer $\delta(L)$ is the dimension of the first derived space associated with the representation (\tilde{G}, m) . Finally in § 10, we study the endomorphism Φ_L and the integer $\delta(L)$ by using the results in § 2, § 3 and § 4 and show that hypotheses on L for the existence of the normal connection of type (L) are generally satisfied. Owing to the results in § 2, the problems will be reduced to the case where L is an irreducible l-system of type (C).

Preliminary remark

Throughout this paper, we always assume the differentiability of class C^{∞} , and by a manifold we shall mean a manifold satisfying the second countability axiom. R (resp. C) will denote the field of real numbers (resp. of complex numbers).

\S 1. The groups G, G' and \widetilde{G}

DEFINITION 1.1. Let $\mathfrak g$ be a real semi-simple Lie algebra and let $\mathfrak m$, $\mathfrak m^*$ and $\tilde{\mathfrak g}$ be three subalgebras of $\mathfrak g$. The (ordered) system $L=(\mathfrak g,\mathfrak m,\mathfrak m^*,\tilde{\mathfrak g})$ is called an l-system if it satisfies the following conditions:

- (l. 1) $g = m + m^* + \tilde{g}$ (direct sum of vector spaces);
- (l. 2) Both m and m* are abelian;
- (l. 3) $[\tilde{g}, \mathfrak{m}] \subset \mathfrak{m}$ and $[\tilde{g}, \mathfrak{m}^*] \subset \mathfrak{m}^*$;
- (l. 4) $[\mathfrak{m}, \mathfrak{m}^*] = \tilde{\mathfrak{g}}.$

Let $L_i = (\mathfrak{g}_i, \mathfrak{m}_i, \mathfrak{m}_i^*, \tilde{\mathfrak{g}}_i)$ (i = 1, 2) be an l-system. An isomorphism f of the Lie algebra \mathfrak{g}_1 onto the Lie algebra \mathfrak{g}_2 is called an isomorphism of L_1 onto L_2 if $f(\mathfrak{m}_1) = \mathfrak{m}_2$, $f(\mathfrak{m}_1^*) = \mathfrak{m}_2^*$ (and hence $f(\tilde{\mathfrak{g}}_1) = \tilde{\mathfrak{g}}_2$).

Let $\mathfrak g$ be a real Lie algebra, let $\mathfrak n$ be a subspace of $\mathfrak g$ and let $\mathfrak g$ be a subalgebra of $\mathfrak g$. The system $S=(\mathfrak g,\mathfrak n,\mathfrak g)$ will be called an *infinitesimal (affine)* symmetric space or briefly an s-system if it satisfies the following conditions:

- (s. 1) $\mathfrak{g} = \mathfrak{n} + \tilde{\mathfrak{g}}$ (direct sum);
- (s. 2) $[\tilde{g}, \mathfrak{n}] \subset \mathfrak{n}$;
- $(s. 3) [n, n] \subset \tilde{g}.$

We see from Def. 1.1 that 1), for any l-system $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$, the system $S = (\mathfrak{g}, \mathfrak{m} + \mathfrak{m}^*, \mathfrak{g})$ forms an s-system.

From now on, we shall consider a fixed l-system $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}})$ and denote by φ the Killing form of \mathfrak{g} .

We have easily

LEMMA 1.1.

$$\varphi(\mathfrak{m}, \mathfrak{m}) = \varphi(\mathfrak{m}^*, \mathfrak{m}^*) = \varphi(\mathfrak{m} + \mathfrak{m}^*, \tilde{\mathfrak{g}}) = \{0\}$$

We put

$$\langle \xi, \omega \rangle = \varphi(\xi, \omega)$$

for all $\xi \in \mathfrak{m}$ and $\omega \in \mathfrak{m}^*$.

PROPOSITION 1.1. (1) The bilinear mapping $m \times m^* \ni (\xi, \omega) \to \langle \xi, \omega \rangle \in \mathbf{R}$ gives a duality between the two vector spaces \mathfrak{m} and \mathfrak{m}^* , i.e., if $\xi \in \mathfrak{m}$ (resp. $\omega \in \mathfrak{m}^*$) and if $\langle \xi, \mathfrak{m}^* \rangle = \{0\}$ (resp. $\langle \mathfrak{m}, \omega \rangle = \{0\}$), then $\xi = 0$ (resp. $\omega = 0$). In particular, dim $\mathfrak{m} = \dim \mathfrak{m}^*$. (2) The restriction of φ to \mathfrak{g} is non-degenerate.

This follows immediately from Lemma 1.1 and the fact that φ is non-degenerate.

LEMMA 1.2. (1) If $\xi \in \mathfrak{m}$ (resp. $\omega \in \mathfrak{m}^*$) and if $[\xi, \mathfrak{m}^*] = \{0\}$ (resp. $[\mathfrak{m}, \omega] = \{0\}$), then $\xi = 0$ (resp. $\omega = 0$). (2) If $A \in \mathfrak{g}$ and if $[A, \mathfrak{m}] = \{0\}$ or $[A, \mathfrak{m}^*]$

¹⁾ Therefore, some of our results (in § 1-§ 4) essentially follow from Berger [1].

 $= \{0\}, then A = 0.$

PROOF. (1) Suppose that a $\xi \in \mathfrak{m}$ satisfies the condition $[\xi, \mathfrak{m}^*] = \{0\}$. We have $\langle [\xi, \tilde{\mathfrak{g}}], \mathfrak{m}^* \rangle = \varphi(\tilde{\mathfrak{g}}, [\xi, \mathfrak{m}^*]) = \{0\}$, whence $[\xi, \tilde{\mathfrak{g}}] = \{0\}$ (Prop. 1.1, (1)). It follows that ξ is in the center of \mathfrak{g} (conditions (l. 1) and (l. 2)). Since \mathfrak{g} is semi-simple, we have $\xi = 0$. The second assertion can be similarly proved. (2) Suppose that an $A \in \tilde{\mathfrak{g}}$ satisfies the condition $[A, \mathfrak{m}] = \{0\}$. We have $\langle \mathfrak{m}, [A, \mathfrak{m}^*] \rangle = \varphi([A, \mathfrak{m}], \mathfrak{m}^*) = \{0\}$, whence $[A, \mathfrak{m}^*] = \{0\}$. Since $\tilde{\mathfrak{g}} = [\mathfrak{m}, \mathfrak{m}^*]$ (condition (l. 4)), we get $[A, \tilde{\mathfrak{g}}] = \{0\}$. If follows that A is in the center of \mathfrak{g} and hence A = 0. The second assertion can be similarly proved.

NOTATION. Let \mathfrak{g} be a Lie algebra and let \mathfrak{h} be a subalgebra of \mathfrak{g} . $N(\mathfrak{h},\mathfrak{g})$ (resp. $C(\mathfrak{h},\mathfrak{g})$) will denote the normalizer (resp. the centralizer) of \mathfrak{h} in \mathfrak{g} .

By Lemma 1.2, we have easily

PROPOSITION 1.2. (1) $N(\mathfrak{m}, \mathfrak{g}) = \mathfrak{m} + \mathfrak{g}$ and $N(\mathfrak{m}^*, \mathfrak{g}) = \mathfrak{m}^* + \mathfrak{g}$. (2) $C(\mathfrak{m}, \mathfrak{g}) = \mathfrak{m}$ and $C(\mathfrak{m}^*, \mathfrak{g}) = \mathfrak{m}^*$, in other words, both \mathfrak{m} and \mathfrak{m}^* are maximal abelian subalgebras of \mathfrak{g} .

We shall denote by $A(\mathfrak{g})$ the group of all automorphisms of the Lie algebra \mathfrak{g} . \mathfrak{g} being semi-simple, the Lie algebra of $A(\mathfrak{g})$ may be identified with the Lie algebra \mathfrak{g} in such a way that adaX = aX for all $a \in A(\mathfrak{g})$ and $X \in \mathfrak{g}$. We prefer the notation adaX to the one aX.

NOTATION. Let G be a Lie group and let $\mathfrak g$ be the Lie algebra of G. Given a subalgebra $\mathfrak h$ of $\mathfrak g$, $N(\mathfrak h,G)$ (resp. $C(\mathfrak h,G)$) will denote the normalizer (resp. the centralizer) of $\mathfrak h$ in G, which is, by definition, the subgroup of G consisting of all the elements a such that $ada\mathfrak h=\mathfrak h$ (resp. adaX=X for all $X\in\mathfrak h$). The Lie algebra of $N(\mathfrak h,G)$ (resp. $C(\mathfrak h,G)$) coincides with $N(\mathfrak h,\mathfrak g)$ (resp. $C(\mathfrak h,\mathfrak g)$).

We shall denote by \widetilde{G} the intersection of the normalizer of \mathfrak{m} in $A(\mathfrak{g})$ and that of \mathfrak{m}^* in $A(\mathfrak{g})$, i.e., $\widetilde{G}=N(\mathfrak{m},A(\mathfrak{g}))\cap N(\mathfrak{m}^*,A(\mathfrak{g}))$. It follows from Prop. 1.2, (1) that the Lie algebra of \widetilde{G} is identical with the Lie algebra $\widetilde{\mathfrak{g}}$. Note that the group \widetilde{G} may be characterized as the group of all automorphisms of L. We now define a representation ρ of \widetilde{G} on \mathfrak{m} by $\rho(a)\xi=ada\xi$ for all $a\in\widetilde{G}$ and $\xi\in\mathfrak{m}$ and denote by the same letter ρ the corresponding representation of $\widetilde{\mathfrak{g}}$ on \mathfrak{m} ; we have $\rho(A)\xi=[A,\xi]$ for all $A\in\widetilde{\mathfrak{g}}$ and $\xi\in\mathfrak{m}$.

In the same manner as in Lemma 1.2, (2), we can prove

Lemma 1.3. The representation ρ of \widetilde{G} on \mathfrak{m} is faithful.

By Prop. 1.1, (1), the vector space \mathfrak{m}^* may be identified with the dual space of \mathfrak{m} and, by Lemma 1.3, the group \widetilde{G} (resp. the Lie algebra \mathfrak{g}) may be identified with a subgroup (resp. a subalgebra) of the general linear group $GL(\mathfrak{m})$ of \mathfrak{m} (resp. the Lie algebra $\mathfrak{gl}(\mathfrak{m})$ of all endomorphisms of \mathfrak{m}). Under these identifications, we have the equalities:

(1.1)
$$ada\xi = a\xi, \quad ada\omega = {}^{t}a^{-1}\omega, \quad adaB = aBa^{-1},$$
$$[A, \xi] = A\xi, \quad [A, \omega] = -{}^{t}A\omega, \quad [A, B] = AB - BA$$

for all $a \in \widetilde{G}$, $\xi \in \mathfrak{m}$, $\omega \in \mathfrak{m}^*$ and $A, B \in \mathfrak{g}$, where tA stands for the transpose of an endomorphism A of \mathfrak{m} with respect to the duality between \mathfrak{m} and \mathfrak{m}^* .

Let $\tilde{\varphi}$ be the Killing form of $\tilde{\mathfrak{g}}$. Then a direct calculation gives LEMMA 1.4.

$$\varphi(A, B) = \hat{\varphi}(A, B) + 2TrAB$$

for all $A, B \in \mathfrak{g}$, where TrC is the trace of an endomorphism C of \mathfrak{m} . Proposition 1.3.

$$\widetilde{G} = N(\widetilde{\mathfrak{g}}, GL(\mathfrak{m}))$$
.

PROOF. We have clearly $\tilde{G} \subset N(\tilde{\mathfrak{g}}, GL(\mathfrak{m}))$. Take any $a \in N(\tilde{\mathfrak{g}}, GL(\mathfrak{m}))$ and define an automorphism \hat{a} of \mathfrak{g} (as a vector space) as follows: $\hat{a}\xi = a\xi$, $\hat{a}\omega = ta^{-1}\omega$ and $\hat{a}A = aAa^{-1}$ for all $\xi \in \mathfrak{m}$, $\omega \in \mathfrak{m}^*$ and $A \in \tilde{\mathfrak{g}}$. We show that \hat{a} , thus obtained, is an automorphism of the Lie algebra \mathfrak{g} . By (1.1), it suffices to verify the equality: $\hat{a}[\xi, \omega] = [\hat{a}\xi, \hat{a}\omega]$ for all $\xi \in \mathfrak{m}$ and $\omega \in \mathfrak{m}^*$. By Lemma 1.4, we have $\varphi(\hat{a}A, \hat{a}B) = \varphi(A, B)$ for all $A, B \in \tilde{\mathfrak{g}}$. Hence, we have $\varphi(\hat{a}[\xi, \omega], \hat{a}A) = \varphi([\xi, \omega], A) = \langle [A, \xi], \omega \rangle = \langle [\hat{a}A, \hat{a}\xi], \hat{a}\omega \rangle = \varphi([\hat{a}\xi, \hat{a}\omega], \hat{a}A)$ for all $A \in \tilde{\mathfrak{g}}$. It follows from Prop. 1.1, (2) that $\hat{a}[\xi, \omega] = [\hat{a}\xi, \hat{a}\omega]$, which proves our assertion. We have clearly $a = \hat{a} \in \tilde{G}$.

COROLLARY. The identity transformation E_L of \mathfrak{m} is in the center of \mathfrak{g} . Proposition 1.4.

$$\langle \xi, \omega \rangle = 2 Tr[\xi, \omega]$$

for all $\xi \in \mathfrak{m}$ and $\omega \in \mathfrak{m}^*$.

PROOF. By Lemma 1.4 and Cor. to Prop. 1.3, we have $\varphi([\xi, \omega], E_L) = 2Tr[\xi, \omega]$. We have $\varphi([\xi, \omega], E_L) = \langle \xi, [\omega, E_L] \rangle = \langle \xi, \omega \rangle$.

We shall denote by G' the normalizer of \mathfrak{m}^* in $A(\mathfrak{g})$, i.e., $G' = N(\mathfrak{m}^*, A(\mathfrak{g}))$. By Prop. 1.2, (1), the Lie algebra of G' is given by $\mathfrak{g}' = \mathfrak{m}^* + \mathfrak{g}$. We have clearly \widetilde{G} , $\exp \mathfrak{m}^* \subset G'$, where $\exp \mathfrak{m}^*$ denotes the abelian subgroup of $A(\mathfrak{g})$ generated by \mathfrak{m}^* .

LEMMA 1.5.

$$G' = N(\mathfrak{g}', A(\mathfrak{g}))$$
.

PROOF. We have clearly $G' \subset N(\mathfrak{g}', A(\mathfrak{g}))$. Take any a in $N(\mathfrak{g}', A(\mathfrak{g}))$. We have $\varphi(ada\mathfrak{m}^*, \mathfrak{g}') = \varphi(\mathfrak{m}^*, \mathfrak{g}') = \{0\}$ (Lemma 1.1). Hence, it follows from Lemma 1.1 and Prop. 1.1 that $ada\mathfrak{m}^* \subset \mathfrak{m}^*$, i. e., $a \in G'$.

We have

$$g = m + g'$$
 (direct sum).

Taking account of Lemma 1.5, we now define a homomorphism l of G' into $GL(\mathfrak{m})$ by

$$(1.2) ada\xi \equiv l(a)\xi \bmod \mathfrak{g}'$$

for all $a \in G'$ and $\xi \in \mathfrak{m}$. We shall denote by the same letter l the corresponding homomorphism of \mathfrak{g}' into $\mathfrak{gl}(\mathfrak{m})$, i. e.,

$$[X, \xi] \equiv l(X)\xi \mod \mathfrak{g}'$$

for all $X \in \mathfrak{g}'$ and $\xi \in \mathfrak{m}$. We see easily that l(X) coincides with the \mathfrak{g} -component of X in the decomposition $\mathfrak{g}' = \mathfrak{m}^* + \mathfrak{g}$. Now it is clear that the restriction of $l(\mathfrak{g}' \to GL(\mathfrak{m}))$ to \widetilde{G} is the identity transformation of \widetilde{G} . We have

$$ad(\exp \omega)\xi = \xi + [\omega, \xi] + \frac{1}{2}[\omega, [\omega, \xi]]$$

for all $\omega \in \mathfrak{m}^*$ and $\xi \in \mathfrak{m}$, which implies that the group $\exp \mathfrak{m}^*$ is contained in the kernel of l.

Proposition 1.5.

$$l(G') = \tilde{G}$$
.

PROOF. As we have seen above, the restriction of l to \widetilde{G} is the identity transformation of \widetilde{G} . Hence $l(\widetilde{G}) = \widetilde{G}$. Therefore we have only to prove that $l(G') \subset \widetilde{G}$. Take any a in G'. We have $\lceil adaA, \xi \rceil = ada\lceil A, ada^{-1}\xi \rceil \equiv ada(Al(a)^{-1}\xi) \equiv l(a)Al(a)^{-1}\xi \mod \mathfrak{g}'$ for all $\xi \in \mathfrak{m}$ and $A \in \mathfrak{g}$. This implies that $l(a)Al(a)^{-1}$ coincides with the \mathfrak{g} -component of adaA (in the decomposition $\mathfrak{g}' = \mathfrak{m}^* + \mathfrak{g}$) for all $A \in \mathfrak{g}$. Therefore, $l(a) \in \widetilde{G}$ by Prop. 1.3.

LEMMA 1.6. Let $a \in G'$ be in the kernel of l. (1) $ada\omega = \omega$ for all $\omega \in \mathfrak{m}^*$. (2) If we put $\omega = adaE_L - E_L$, then we have $\omega \in \mathfrak{m}^*$ and

$$ada\xi - \xi \equiv [\omega, \xi] \mod \mathfrak{m}^*$$

for all $\xi \in \mathfrak{m}$.

PROOF. (1) By Lemma 1.1, we have $\langle \xi, ada\omega \rangle = \varphi(ada^{-1}\xi, \omega) = \langle \xi, \omega \rangle$ for all $\xi \in \mathfrak{m}$, whence $ada\omega = \omega$. (2) It follows from the proof of Prop. 1.5 that $adaA \equiv A \mod \mathfrak{m}^*$ for all $A \in \mathfrak{g}$. Hence $\omega \in \mathfrak{m}^*$. Since E_L is in the center of \mathfrak{g} , we get $[E_L, ada^{-1}\xi] \equiv \xi \mod \mathfrak{m}^*$. Therefore we have $[\omega, \xi] = ada[E_L, ada^{-1}\xi] - \xi \equiv ada\xi - \xi \mod \mathfrak{m}^*$.

Proposition 1.6. The kernel of l is equal to $exp m^*$.

PROOF. As we have seen above, the group $\exp \mathfrak{m}^*$ is contained in the kernel of l. Take any $a \in G'$ in the kernel of l. By Lemma 1.6, we can find an $\omega \in \mathfrak{m}^*$ such that $ada\xi - \xi \equiv [\omega, \xi] \mod \mathfrak{m}^*$ for all $\xi \in \mathfrak{m}$. If we put $b = (\exp(-\omega))a$, then we have easily $adb\xi \equiv \xi \mod \mathfrak{m}^*$ for all $\xi \in \mathfrak{m}$. Let us prove that $adb\xi = \xi$ for all $\xi \in \mathfrak{m}$. We set $\gamma(\xi) = adb\xi - \xi$, which is in \mathfrak{m}^* . We have $adb[\xi, \xi'] = [\xi, \gamma(\xi')] - [\xi', \gamma(\xi)] = 0$. Hence we get $\langle \xi, \gamma(\xi') \rangle = \langle \xi', \gamma(\xi) \rangle$ by Prop. 1.4. On the other hand, we have $adb^{-1}\xi' = \xi' - \gamma(\xi')$ by Lemma 1.6, (1). Hence we have $\langle \xi', \gamma(\xi) \rangle = \varphi(\xi', adb\xi - \xi) = \varphi(\xi', adb\xi) = \varphi(adb^{-1}\xi', \xi) = \varphi(\xi' - \gamma(\xi'), \xi) = -\langle \xi, \gamma(\xi') \rangle$. Consequently, we have $\gamma = 0$, i.e.,

 $adb\xi = \xi$ for all $\xi \in \mathfrak{m}$. By Lemma 1.6 (1), we have $adb\omega = \omega$ for all $\omega \in \mathfrak{m}^*$. It follows that adbX = X for all $X \in \mathfrak{g}$, which means b = e, i.e., $a = \exp \omega$, where e is the identity element of $A(\mathfrak{g})$.

PROPOSITION 1.7. Every element of G' is uniquely expressed in the form $a \exp \omega$, where $a \in \widetilde{G}$ and $\omega \in \mathfrak{m}^*$.

PROOF. Take any $a \in G'$. Since $l(G') = \widetilde{G} \subset G'$ and since the restriction of l to \widetilde{G} is the identity transformation of \widetilde{G} , we see that $l(a)^{-1}a$ is in the kernel of l, i. e., of the form $\exp \omega$ with an $\omega \in \mathfrak{m}^*$ (Prop. 1.6). Hence $a = l(a) \exp \omega$. It remains to prove the uniqueness. Suppose that an $a \in G'$ is expressed as l exp l with a l is expressed and l exp l with a l exp l and hence l and l exp l is equality means that l is uniquely determined by l and hence by l.

Finally, let $A(\mathfrak{g})^{\circ}$ be the connected component of the identity of $A(\mathfrak{g})$ that is just the adjoint group of \mathfrak{g} . We set $G = A(\mathfrak{g})^{\circ} \cdot \widetilde{G}$, which is an open subgroup of $A(\mathfrak{g})$. The homogeneous space $M_L = G/G'$ will be called associated with the l-system L. Since $G/G' = A(\mathfrak{g})^{\circ}/G' \cap A(\mathfrak{g})^{\circ}$, the space M_L is connected. By (1.2) and Prop. 1.5, we see that the group \widetilde{G} may be identified with the linear isotropy group of G/G' and that the homomorphism l may be identified with the homomorphism of the isotropy group G' of G/G' onto the linear isotropy group \widetilde{G} . Later on, we shall see that M_L is compact and the action of G on M_L is effective.

EXAMPLE. Let $P^m(K)$ be the m-dimensional projective space over a field K, where $K = \mathbf{R}$ or \mathbf{C} . The group G of all projective transformations of $P^m(K)$ acts transitively on $P^m(K)$ and hence the space $P^m(K)$ may be represented by a homogeneous space G/G', G' being the isotropy group of G at a point o of $P^m(K)$. Now, with the projective space $P^m(K)$ there is associated an l-system L as follows: The Lie algebra $\mathfrak g$ of G may be identified with the Lie algebra $\mathfrak g(m+1,K)^{2^{\flat}}$. Therefore every element of $\mathfrak g$ is uniquely expressed as

$$M(\xi, \omega, A) = \begin{pmatrix} -\frac{1}{m+1} TrA & \omega \\ \xi & A - \frac{1}{m+1} TrA \end{pmatrix}.$$

where

$$\xi = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_m \end{pmatrix}$$
, $\omega = (\omega_1, \cdots, \omega_m)$, $A = (A_{ij})_{1 \leq i, j \leq m}$.

Setting $\tilde{\xi} = M(\xi, 0, 0)$, $\tilde{\omega} = M(0, \omega, 0)$ and $\tilde{A} = M(0, 0, A)$, we have $M(\xi, \omega, A)$

²⁾ For the classical groups and their Lie algebras, we use the notations given in C. Chevalley, Theory of Lie groups I.

 $=\tilde{\xi}+\tilde{\omega}+\tilde{A},\ [\tilde{\xi},\tilde{\xi}']=[\tilde{\omega},\tilde{\omega}']=0,\ [\tilde{A},\tilde{A}']=[\tilde{A},A'],\ [\tilde{A},\tilde{\xi}]=\widetilde{A\xi},\ [\tilde{A},\tilde{\omega}]=-\widetilde{\omega}\widetilde{A}$ and $[\tilde{\xi},\tilde{\omega}]=\widetilde{\xi}\omega+\omega\xi$. Let m (resp. m*, resp. $\tilde{\mathfrak{g}}$) be the subalgebra of \mathfrak{g} consisting of all elements $\tilde{\xi}$ (resp. $\tilde{\omega}$, resp. \tilde{A}). Then we see from the above consideration that the system $L=(\mathfrak{g},\mathfrak{m},\mathfrak{m}^*,\tilde{\mathfrak{g}})$ forms an l-system. An l-system which is isomorphic with the l-system L, will be called of type $P^m(K)$. One notes that the homogeneous space $P^m(K)=G/G'$ may be regarded as the homogeneous space associated with the l-system L.

§ 2. Decomposition of an l-system

LEMMA 2.1. Let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}})$ be an l-system and let \mathfrak{h} be an ideal of \mathfrak{g} . Then we have

$$\mathfrak{h} = (\mathfrak{h} \cap \mathfrak{m}) + (\mathfrak{h} \cap \mathfrak{m}^*) + (\mathfrak{h} \cap \tilde{\mathfrak{g}})$$

and the system $(\mathfrak{h}, \mathfrak{h} \cap \mathfrak{m}, \mathfrak{h} \cap \mathfrak{m}^*, \mathfrak{h} \cap \mathfrak{g})$ forms an l-system.

PROOF. Take any $X \in \mathfrak{h}$ and express it as $\xi + \omega + A$, where $\xi \in \mathfrak{m}$, $\omega \in \mathfrak{m}^*$ and $A \in \mathfrak{g}$. We have $[E_L, X] = \xi - \omega$ and $[E_L, [E_L, X]] = \xi + \omega$. Since $[E_L, \mathfrak{h}]$, $[E_L, [E_L, \mathfrak{h}]] \subset \mathfrak{h}$, it follows that $\xi, \omega \in \mathfrak{h}$ and hence $A \in \mathfrak{h}$. The second half of Lemma 2.1 can be easily proved by considering the complementary ideal of \mathfrak{h} in \mathfrak{g} .

Let $L_i = (\mathfrak{g}_i, \mathfrak{m}_i, \mathfrak{m}_i^*, \tilde{\mathfrak{g}}_i)$ $(1 \leq i \leq s)$ be an l-system. If we set $\mathfrak{g} = \mathfrak{g}_1 \times \cdots \times \mathfrak{g}_s$, $\mathfrak{m} = \mathfrak{m}_1 \times \cdots \times \mathfrak{m}_s$, $\mathfrak{m}^* = \mathfrak{m}_1^* \times \cdots \times \mathfrak{m}_s^*$ and $\tilde{\mathfrak{g}} = \tilde{\mathfrak{g}}_1 \times \cdots \times \tilde{\mathfrak{g}}_s$, then we see that the system $(\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}})$ forms an l-system, which will be called the product of L_1, \cdots, L_s and denoted by $L_1 \times \cdots \times L_s$.

By Lemma 2.1, we get

PROPOSITION 2.1. Let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$ be an l-system and let $\mathfrak{g} = \mathfrak{g}_1 + \cdots + \mathfrak{l}_s$ be the decomposition of \mathfrak{g} into simple ideals. We set $\mathfrak{m}_i = \mathfrak{g}_i \cap \mathfrak{m}, \mathfrak{m}_i^* = \mathfrak{g}_i \cap \mathfrak{m}^*$ and $\mathfrak{g}_i = \mathfrak{g}_i \cap \mathfrak{g}$. Then the systems $L_i = (\mathfrak{g}_i, \mathfrak{m}_i, \mathfrak{m}_i^*, \mathfrak{g}_i)$ are l-systems and the given l-system L is isomorphic with the product $L_1 \times \cdots \times L_s$.

Given an l-system $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$, we shall denote by $(\mathfrak{g}, \mathfrak{m})$ the (identity) representation of \mathfrak{g} on \mathfrak{m} .

PROPOSITION 2.2. Let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$ be an l-system. A necessary and sufficient condition that the representation $(\mathfrak{g}, \mathfrak{m})$ is irreducible is that \mathfrak{g} is simple.

PROOF. Necessity follows from Prop. 2.1. Sufficiency is proved as follows: Take any \mathfrak{g} -stable subspace \mathfrak{m}' of \mathfrak{m} and set $\mathfrak{g}' = \mathfrak{m}' + \lceil \lfloor \mathfrak{m}', \mathfrak{m}^* \rceil, \mathfrak{m}^* \rceil + \lceil \mathfrak{m}', \mathfrak{m}^* \rceil$. We see easily that \mathfrak{g}' is an ideal of \mathfrak{g} . Therefore we have $\mathfrak{m}' = \{0\}$ or \mathfrak{m} according as $\mathfrak{g}' = \{0\}$ or \mathfrak{g} .

DEFINITION 2.1. An l-system $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}})$ is called irreducible if the representation $(\tilde{\mathfrak{g}}, \mathfrak{m})$ is irreducible.

DEFINITION 2.2. An irreducible l-system $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}})$ is called of type

(R) (resp. of type (C)) if the representation $(\tilde{g}, \mathfrak{m})$ is of first class (resp. of second class).

In general, let (\mathfrak{g}, V) be a real representation, i.e., V is a real vector space and \mathfrak{g} is a subalgebra of $\mathfrak{gl}(V)$. V^c denoting the complexification of V, \mathfrak{g} may be regarded as a (real) subalgebra of the complex Lie algebra of all complex endomorphisms of V^c . Assuming that the representation (\mathfrak{g}, V) is irreducible, we say that (\mathfrak{g}, V) is of first class (resp. of second class) if the complex representation (\mathfrak{g}, V^c) is irreducible (resp. reducible) [3].

Let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}})$ be an l-system. We shall denote by \widetilde{C} (resp. $\widetilde{\mathfrak{c}}$) the center of the group \widetilde{G} (resp. the Lie algebra $\tilde{\mathfrak{g}}$). By Prop. 1.3, we have $\widetilde{\mathfrak{c}} = C(\tilde{\mathfrak{g}}, \mathfrak{gl}(\mathfrak{m}))$ and $\widetilde{C} \subset C(\tilde{\mathfrak{g}}, GL(\mathfrak{m})) \subset \widetilde{G}$.

This being said, we have

PROPOSITION 2.3. The notation being as above, we assume that L is irreducible. (1) If L is of type (R), then \tilde{c} consists of all the elements λE_L , where $\lambda \in \mathbf{R}$. (2) If L is of type (C), then there is an element I_L of \tilde{c} such that $I_L^2 = -E_L$ and such that \tilde{c} consists of all the elements $\lambda E_L + \mu I_L$, where λ , $\mu \in \mathbf{R}$. Moreover, I_L is unique up to the factor -1. (3) $\tilde{C} = C(\tilde{g}, GL(\mathfrak{m})) = \tilde{c} \cap GL(\mathfrak{m})$.

We shall now show that an irreducible l-system of type (C) is really "complex".

LEMMA 2.2. Let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}})$ be an l-system. Then we have

$$A \cdot [\xi, \omega] = [[A, \xi], \omega] = -[\xi, [A, \omega]]$$

for all $A \in \tilde{\mathfrak{c}}$, $\xi \in \mathfrak{m}$ and $\omega \in \mathfrak{m}^*$.

PROOF. We have $A \cdot [\xi, \omega] \cdot \xi' = [A, [[\xi, \omega], \xi']] = [A, [\xi, [\omega, \xi']]] = [[A, \xi], [\omega, \xi']] = [[A, \xi], \omega] \cdot \xi'$ for all $\xi' \in \mathfrak{m}$. Hence $A \cdot [\xi, \omega] = [[A, \xi], \omega]$. The second equality is clear.

By Lemma 2.2, we have

PROPOSITION 2.4. Let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$ be an irreducible l-system of type (C). (1) $I_L \cdot \mathfrak{g} = \mathfrak{g}$. (2) \mathfrak{g} is given a complex structure as follows: $\sqrt{-1} \xi = [I_L, \xi]$, $\sqrt{-1} \omega = -[I_L, \omega]$ and $\sqrt{-1} A = I_L \cdot A$ for all $\xi \in \mathfrak{m}$, $\omega \in \mathfrak{m}^*$ and $A \in \mathfrak{g}$. (3) \mathfrak{g} is a complex Lie algebra with respect to this complex structure, so that \mathfrak{m} , \mathfrak{m}^* and \mathfrak{g} are complex subalgebras of \mathfrak{g} .

Finally, let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$ be an l-system and let $\mathfrak{g}^c, \mathfrak{m}^c, \mathfrak{m}^{*c}$ and \mathfrak{g}^c be the complexifications of $\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*$ and \mathfrak{g} respectively. If we consider $\mathfrak{g}^c, \mathfrak{m}^c, \mathfrak{m}^{*c}$ and \mathfrak{g}^c as real Lie algebras, we find that the system $(\mathfrak{g}^c, \mathfrak{m}^c, \mathfrak{m}^c, \mathfrak{g}^c)$ forms an l-system, which will be called the *complexification* of L and denoted by L^c .

By Prop. 2.3, we have

PROPOSITION 2.5. If L is an irreducible l-system of type (R), then the complexification L^c of L is irreducible of type (C).

§ 3. The duality

The following lemma is a generalization of Prop. 1.3. The proof (which is omitted) is analogous to that of Prop. 1.3.

LEMMA 3.1. Let $L_i = (\mathfrak{g}_i, \mathfrak{m}_i, \mathfrak{m}_i^*, \mathfrak{g}_i)$ (i = 1, 2) be an l-system. Let f' be an isomorphism of \mathfrak{g}_1 onto \mathfrak{g}_2 and let f'' be an isomorphism of \mathfrak{m}_1 onto \mathfrak{m}_2 . If $f''[A, \xi] = [f'A, f''\xi]$ for all $A \in \mathfrak{g}_1$, and $\xi \in \mathfrak{m}_1$, there exists a unique isomorphism f of L_1 onto L_2 such that fA = f'A and $f\xi = f''\xi$ for all $A \in \mathfrak{g}_1$ and $\xi \in \mathfrak{m}_1$.

Hereafter we shall study a fixed l-system $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$ and use the notations in the previous sections. We shall say that the l-system $L^* = (\mathfrak{g}, \mathfrak{m}^*, \mathfrak{m}, \mathfrak{g})$ is the dual of L and that an isomorphism θ of L onto L^* is involutive if θ is an involutive automorphism of \mathfrak{g} . Moreover an involutive isomorphism θ of L onto L^* will be called a *-isomorphism if θ is the involutive automorphism of \mathfrak{g} associated with a certain Cartan decomposition of \mathfrak{g} , or equivalently if the quadratic form $\mathfrak{g} \ni X \to \varphi(X, \theta X) \in \mathbf{R}$ is negative definite.

PROPOSITION 3.1. There exists at least one *-isomorphism θ of L onto L^* . PROOF. By Prop. 2.1, we may assume without loss of generality that L is irreducible. The representation $(\mathfrak{F},\mathfrak{m})$ being irreducible, the Lie algebra \mathfrak{F} is reductive: $\mathfrak{F} = \mathfrak{F} + [\mathfrak{F},\mathfrak{F}]$ (direct sum) and the Lie algebra $[\mathfrak{F},\mathfrak{F}]$ is semi-simple. By Prop. 2.3 and the theorem of E. Cartan, Mostow and Iwasawa [8], we can find an involutive automorphism θ' of \mathfrak{F} and a negative definite inner product (,) on \mathfrak{m} which satisfy the following conditions: The quadratic form $\mathfrak{F} = A \rightarrow \tilde{\varphi}(A, \theta'A) \in \mathbf{R}$ is negative semi-definite and

$$(3.1) (A\xi, \xi') + (\xi, \theta' A \cdot \xi') = 0$$

for all $A \in \mathfrak{F}$ and $\xi, \xi' \in \mathfrak{m}$. It follows from Lemma 1.4 that the quadratic form $\mathfrak{F} \ni A \to \varphi(A, \theta'A) \in \mathbf{R}$ is negative definite. We now define an isomorphism θ'' of \mathfrak{m} onto \mathfrak{m}^* by $\langle \xi, \theta'' \xi' \rangle = (\xi, \xi')$ for all $\xi, \xi' \in \mathfrak{m}$. From (3.1), we get $\theta''[A, \xi] = [\theta'A, \theta''\xi]$ for all $A \in \mathfrak{F}$ and $\xi \in \mathfrak{m}$. Therefore by Lemma 3.1, there is a unique isomorphism θ of L onto L^* such that $\theta A = \theta'A$ and $\theta \xi = \theta''\xi$ for all $A \in \mathfrak{F}$ and $\xi \in \mathfrak{m}$. Since we have $\theta^{-1}A = \theta'A$ and $\theta^{-1}\xi = \theta''\xi$ for all $A \in \mathfrak{F}$ and $\xi \in \mathfrak{m}$, it follows from Lemma 3.1 that θ is involutive. It remains to prove that θ is a *-isomorphism. Every $X \in \mathfrak{F}$ can be uniquely expressed as $\xi + \theta \xi' + A$, where $\xi, \xi' \in \mathfrak{m}$ and $A \in \mathfrak{F}$. We have $\varphi(X, \theta X) = (\xi, \xi) + (\xi', \xi') + \varphi(A, \theta A)$. Since both the inner product (,) and the quadratic form $\mathfrak{F} \ni A \to \varphi(A, \theta A)$ are negative definite, this equality means that the quadratic form $\mathfrak{F} \ni A \to \varphi(X, \theta X) \in \mathbf{R}$ is also negative definite.

Let θ be an involutive isomorphism of L onto L^* . We shall denote by \mathfrak{g}_{θ} the eigen space of the involutive automorphism θ of \mathfrak{g} corresponding to the eigen value 1. \mathfrak{g}_{θ} is, as usual, a subalgebra of \mathfrak{g} and, putting $\mathfrak{g}_{\theta} = \mathfrak{g} \cap \mathfrak{g}_{\theta}$ and

 $\mathfrak{m}_{\theta} = (\mathfrak{m} + \mathfrak{m}^*) \cap \mathfrak{g}_{\theta}$, we find that the system $(\mathfrak{g}_{\theta}, \mathfrak{m}_{\theta}, \tilde{\mathfrak{g}}_{\theta})$ forms an s-system and that dim $\mathfrak{m}_{\theta} = \dim \mathfrak{m}$. Noting that θ is an element of $A(\mathfrak{g})$, we have $ad\theta \tilde{G} = \tilde{G}$ and $ad\theta G = G$, where $ad\theta a = \theta a\theta^{-1}$ for all $a \in A(\mathfrak{g})$. We shall denote by G_{θ} the subgroup of G consisting of all fixed points $(\in G)$ of $ad\theta$. The Lie algebra of G_{θ} is given by \mathfrak{g}_{θ} . We put $\tilde{G}_{\theta} = G_{\theta} \cap \tilde{G}$. Then we have easily $\tilde{G}_{\theta} = G_{\theta} \cap G'$ and

PROPOSITION 3.2. (1) The homogeneous space $G_{\theta}/\tilde{G}_{\theta}$ is an affine symmetric homogeneous space, and is naturally an open submanifold of G/G'. (2) If θ is a *-isomorphism, $G_{\theta}/\tilde{G}_{\theta}$ is a compact Riemannian symmetric homogeneous space, and $G_{\theta}/\tilde{G}_{\theta} = G/G'$.

PROOF. (1) Let α be the involutive automorphism of \mathfrak{g} associated with the s-system $(\mathfrak{g}, \mathfrak{m}+\mathfrak{m}^*, \tilde{\mathfrak{g}})$, α being an element of $A(\mathfrak{g})$. We have $ad\alpha \tilde{G} = \tilde{G}$ and $ad\alpha G = G$. Since $\theta\alpha = \alpha\theta$, it follows that $ad\alpha G_{\theta} = G_{\theta}$. Let H be the subgroup of G_{θ} consisting of all fixed points $(\in G_{\theta})$ of $ad\alpha$. Then we have $\tilde{G}_{\theta} \subset H$ and we see that the Lie algebra of H coincides with that of \tilde{G}_{θ} , i. e., $\tilde{\mathfrak{g}}_{\theta}$. Hence $G_{\theta}/\tilde{G}_{\theta}$ is an affine symmetric homogeneous space with respect to the involution: $G_{\theta} \ni a \to ad\alpha a \in G_{\theta}$. We have $\dim G_{\theta}/\tilde{G}_{\theta} = \dim \mathfrak{m}_{\theta} = \dim \mathfrak{m}$ and $\tilde{G}_{\theta} = G_{\theta} \cap G'$, which indicates that $G_{\theta}/\tilde{G}_{\theta}$ is naturally an open submanifold of G/G'. (2) Since the quadratic form $\mathfrak{g} \ni X \to \varphi(X, \theta X) \in \mathbf{R}$ is negative definite, we know that G_{θ} is compact. Therefore $G_{\theta}/\tilde{G}_{\theta}$ is a compact Riemannian symmetric homogeneous space. Since $G_{\theta}/\tilde{G}_{\theta}$ is an open and closed submanifold of G/G' and since G/G' is connected, we get $G_{\theta}/\tilde{G}_{\theta} = G/G'$.

REMARK 1. If L is an irreducible l-system of type (C) and if θ is a *-isomorphism, then $G_{\theta}/\tilde{G}_{\theta}$ can be proved to be a compact hermitian symmetric homogeneous space and G to be the group of all complex automorphisms of $G_{\theta}/\tilde{G}_{\theta}$, cf. § 4.

REMARK 2. Let θ be an involutive isomorphism of L onto L^* . We define the $dual\ \theta^*$ of θ , being again an involutive isomorphism of L onto L^* , as follows: $\theta^*X = -\theta X$ if $X \in \mathfrak{m} + \mathfrak{m}^*$ and $\theta^*X = \theta X$ if $X \in \mathfrak{g}$. We have $\mathfrak{m}_{\theta} + \mathfrak{m}_{\theta *}$ (direct sum) = $\mathfrak{m} + \mathfrak{m}^*$ and $\widetilde{G}_{\theta} = \widetilde{G}_{\theta *}$. Under the hypothesis that θ is a *-isomorphism, $G_{\theta *}/\widetilde{G}_{\theta}$ may be regarded as the non-compact form of $G_{\theta}/\widetilde{G}_{\theta}$.

Finally we shall prove the uniqueness of *-isomorphisms. Hereafter, the symbol G° will denote the connected component of the identity of a Lie group G. If θ is a *-isomorphism of L onto L^{*} , we know that G°_{θ} is a maximal compact subgroup of the adjoint group $A(\mathfrak{g})^{\circ} = G^{\circ}$ of \mathfrak{g} .

Lemma 3.2. Let θ be a *-isomorphism of L onto L^* . Then $\tilde{G}_{\theta}^{\circ}$ is a maximal compact subgroup of \tilde{G}° .

PROOF. Let (,) be the positive definite inner product on m defined by $(\xi, \xi') = -\langle \xi, \theta \xi' \rangle$ for all $\xi, \xi' \in \mathfrak{m}$ and denote by ta the transpose of an endomorphism a of m with respect to this inner product. Then we have ${}^ta^{-1}$

 $=ad\theta a \in \widetilde{G}$ for all $a \in \widetilde{G}$, and \widetilde{G}_{θ} consists of all elements $a \in \widetilde{G}$ such that $a={}^ta^{-1}$. Lemma 3.2 follows from these and the fact that $\widetilde{G}=N(\mathfrak{g},GL(\mathfrak{m}))$ is an algebraic subgroup of $GL(\mathfrak{m})$, cf. [6].

PROPOSITION 3.3. Let θ_i (i=1,2) be a *-isomorphism of L onto L^* . Then there exists an $a \in \widetilde{G}^{\circ}$ such that $a\theta_1 a^{-1} = \theta_2$.

PROOF. By Prop. 2.1, we may assume without loss of generality that L is irreducible. By Lemma 3.2, $\tilde{G}_{\theta_i}^*$ is a maximal compact subgroup of \tilde{G}° . Hence we can find an $a \in \tilde{G}^\circ$ such that $ada\tilde{G}_{\theta_1}^\circ = \tilde{G}_{\theta_2}^\circ$ or equivalently $ada\tilde{g}_{\theta_1} = \tilde{g}_{\theta_2}$. Since $a\theta_1a^{-1}$ is again a *-isomorphism of L onto L^* and since $\tilde{g}_{a\theta_1a^{-1}} = ada\tilde{g}_{\theta_1}$, we may assume that $\tilde{g}_{\theta_1} = \tilde{g}_{\theta_2}$. It follows from Prop. 1.1 that $\theta_1A = \theta_2A$ for all $A \in \tilde{g}$. We now put $u = \theta_1^{-1}\theta_2$, which is an element of $\tilde{G}: \theta_1(u\xi) = \theta_2\xi$ for all $\xi \in \mathfrak{m}$. We see easily that u is in the center C of \tilde{G} . Therefore by Prop. 2.3, (3), u is of the form λE_L ($\lambda \neq 0$) or $\lambda E_L + \mu I_L$ ((λ, μ) $\lambda \neq 0$) according as L is of type (L) or of type (L). But we have L0 for all L1 is of type (L2), L3, with a L3 in either case. Finally we set L4 is of the form L4 is an anti-automorphism of L4 (see Prop. 4.1). It follows that L4 is of the form L5 with a L5 in either case. Finally we set L5 m and consequently L6 is an element of L6. Then we have L6 in either case. Finally we set L6 m and consequently L8 is an anti-automorphism of L9.

§ 4. Classification of irreducible l-systems of type (C)

PROPOSITION 4.1. Let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$ be an irreducible l-system of type (C) and let θ be a *-isomorphism of L onto L^* . The notation being as in § 3, we have: (1) \mathfrak{g}_{θ} is a simple compact real form of \mathfrak{g} , where \mathfrak{g} should be regarded as a complex Lie algebra as in Prop. 2.4; (2)³⁾ \mathfrak{g}_{θ} is a real form of \mathfrak{g} ; (3) I_L is in the center of \mathfrak{g}_{θ} ; (4)⁴⁾ \mathfrak{m}_{θ} is a real form of $\mathfrak{m}+\mathfrak{m}^*$, more precisely, \mathfrak{m} (resp. \mathfrak{m}^*) consists of all elements $X - \sqrt{-1} [I_L, X]$ (resp. $X + \sqrt{-1} [I_L, X]$), where $X \in \mathfrak{m}_{\theta}$.

PROOF. (1) Since the quadratic form $\mathfrak{g}\ni X\to \varphi(X,\theta X)\in \mathbf{R}$ is negative definite, θ is an anti-automorphism of \mathfrak{g} and hence \mathfrak{g}_{θ} is a compact real form of \mathfrak{g} . By Prop. 2.2, \mathfrak{g}_{θ} is a simple Lie algebra. (2) is clear, because $\theta \tilde{\mathfrak{g}}=\tilde{\mathfrak{g}}$. (3) We have $\theta E_L=-E_L$ and $I_L=\sqrt{-1}\,E_L$. Since θ is an anti-automorphism, we get $\theta I_L=I_L$, i. e., $I_L\in \tilde{\mathfrak{g}}_{\theta}$. I_L is clearly in the center of $\tilde{\mathfrak{g}}_{\theta}$. (4) Take any $\xi\in \mathfrak{m}$ and set $X=\xi+\theta\xi$ ($\in\mathfrak{m}_{\theta}$). We have $[I_L,X]=\sqrt{-1}\,\xi-\sqrt{-1}\,\theta\xi$, whence $\xi=\frac{1}{2}(X-\sqrt{-1}\,[I_L,X])$ and $\theta\xi=\frac{1}{2}(X+\sqrt{-1}\,[I_L,X])$. Since $\dim_R\mathfrak{m}_{\theta}=\dim_R\mathfrak{m}$, we get (4).

We shall say that an s-system $S = (\mathfrak{g}_0, \mathfrak{m}_0, \tilde{\mathfrak{g}}_0)$ is simple (resp. compact) if \mathfrak{g}_0

³⁾ and 4) By Prop. 2.4, m, m* and \mathfrak{g} are complex subalgebras of \mathfrak{g} .

is simple (resp. compact). A simple compact s-system $S = (\mathfrak{g}_0, \mathfrak{m}_0, \mathfrak{g}_0)$ will be called *hermitian* if the center of \mathfrak{g}_0 is not trivial. The notation being as in Prop. 4.1, we find from Prop. 4.1 that the system $S = (\mathfrak{g}_{\theta}, \mathfrak{m}_{\ell}, \mathfrak{g}_{\theta})$ is a simple compact hermitian s-system.

PROPOSITION 4.2. Let $S = (\mathfrak{g}_0, \mathfrak{m}_0, \tilde{\mathfrak{g}}_0)$ be a simple compact hermitian s-system and set $\mathfrak{g} = \mathfrak{g}_0^C$ and $\tilde{\mathfrak{g}} = \tilde{\mathfrak{g}}_0^C$. There are complex subalgebras \mathfrak{m} and \mathfrak{m}^* of \mathfrak{g} satisfying the following conditions: (1) If we consider \mathfrak{g} , \mathfrak{m} , \mathfrak{m}^* and $\tilde{\mathfrak{g}}$ as real algebras, then the system $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}})$ forms an irreducible l-system of type (C); (2) The conjugation θ of \mathfrak{g} with respect to \mathfrak{g}_0 gives a *-isomorphism of L onto L^* such that $S = (\mathfrak{g}_{\theta}, \mathfrak{m}_{\theta}, \tilde{\mathfrak{g}}_{\theta})$.

For a proof of Prop. 4.2, see Helgason [2].

To each irreducible l-system of type (C), $L=(\mathfrak{g},\mathfrak{m},\mathfrak{m}^*,\mathfrak{g})$, we now associate a fixed *-isomorphism θ of L onto L^* , and we set $S=(\mathfrak{g}_{\theta},\ m_{\theta},\ \mathfrak{g}_{\theta})$ which is a simple compact hermitian s-system. In virtue of Props. 3.3, 4.1 and 4.2, we arrive at the following conclusion: The assignment $L \to S$ gives a one-to-one correspondence between the set of all isomorphism classes of irreducible l-system of type (C) and the set of all isomorphism classes of simple compact hermitian s-systems.

Here is the list of classification of simple compact hermitian s-systems and hence of irreducible l-systems of type (C).

Type of S (or L)	90	$\widetilde{\mathfrak{g}}_{ heta}$
$I_{m, m'} \ (m \ge m' \ge 1)$	$\mathfrak{gu}(m+m')$	$\mathfrak{gu}(m) \times \mathfrak{gu}(m') \times \mathbf{R}$
$II_m \ (m \ge 3)$	€0(2 m, R)	$\mathfrak{u}(m)$
$III_m \ (m \ge 2)$	§p(m)	$\mathfrak{u}(m)$
$IV_m \ (m \ge 3)$	§o(m+2, R)	$\mathfrak{So}(m,\ m{R}) imes\mathfrak{So}(2,\ m{R})$
V	€6	$\mathfrak{go}(10, \mathbf{R}) \times \mathfrak{go}(2, \mathbf{R})$
VI	e ₇	$e_6 \times \mathfrak{SO}(2, \mathbf{R})$

One notes that an irreducible l-system of type $I_{m,1}$ means an l-system of type $P^m(C)$.

PROPOSITION 4.3. Let L be an irreducible l-system of type (R). Then L is of type $P^m(\mathbf{R})$ if and only if L^c is of type $I_{m,1}$.

PROOF. This follows easily from Lemma 3.1.

\S 5. \widetilde{G} -structures

Throughout this and subsequent four sections, we shall study a fixed l-system $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}})$ and use the notations and identifications given in § 1. We set $n = \dim \mathfrak{m}$.

Let M be a manifold of dimension n. The bundle of frames of M, F, is a principal fiber bundle over the base space M with the general linear group $GL(n, \mathbf{R})$ of degree n as structure group. If we identify the two groups $GL(n, \mathbf{R})$ and $GL(\mathfrak{m})$ with respect to a fixed base of \mathfrak{m} , the principal fiber bundle F may be defined as follows: The point-set of F is the totality of all isomorphisms of \mathfrak{m} onto $T_p(M)$, where p runs over M; the action of $GL(\mathfrak{m})$ on F is given by $F \times GL(\mathfrak{m}) \ni (x, a) \to xa = x \circ a \in F$; the projection π_F of F onto M is defined by $\pi_F(x) = p$ if x maps \mathfrak{m} onto $T_p(M)$.

Considering the (identity) representation of \widetilde{G} on \mathfrak{m} , we give the following definition.

DEFINITION 5.1. Let M be an n-dimmensional manifold. A \tilde{G} -structure on M is a principal fiber bundle \tilde{P} over the base space M with structure group \tilde{G} which is a subbundle of the bundle of frames of M, F.

Let \widetilde{P} be a \widetilde{G} -structure on a manifold M and let $\widetilde{\pi}$ be the projection of \widetilde{P} onto M, $\widetilde{\pi}$ being the restriction of π_F to \widetilde{P} . The *basic form* $\widetilde{\theta}$ of \widetilde{P} is, by definition, the m-valued 1-form on \widetilde{P} defined by $\widetilde{\theta}(X) = x^{-1}\widetilde{\pi}X$ for all $x \in \widetilde{P}$ and $X \in T_x(\widetilde{P})$.

NOTATION. Let P be a principal fiber⁵⁾ bundle over a manifold M with a Lie group G as structure group. R_a (resp. A^*) will denote the right translation (resp. the vertical vector field) on P corresponding to an $a \in G$ (resp. an $A \in \mathfrak{g}$), \mathfrak{g} being the Lie algebra of G.

PROPOSITION 5.1. (1) Let X be a tangent vector to \tilde{P} at $x \in \tilde{P}$. $\tilde{\theta}(X) = 0$ if and only if X is vertical, i. e., of the form A_x^* with a (unique) $A \in \tilde{\mathfrak{g}}$. (2) $R_a^* \tilde{\theta} = a^{-1} \hat{\theta}$ for all $a \in \tilde{G}$.

DEFINITION 5.2. Let \tilde{P}_i (i=1,2) be a \tilde{G} -structure on a manifold M_i and let $\tilde{\theta}_i$ be the basic form of \tilde{P}_i . An isomorphism of \tilde{P}_1 onto \tilde{P}_2 is a bundle isomorphism φ of \tilde{P}_1 onto \tilde{P}_2 such that $\varphi^*\tilde{\theta}_2=\tilde{\theta}_1$. A homeomorphism f of M_1 onto M_2 is called a \tilde{G} -homeomorphism of M_1 onto M_2 if it is covered by an isomorphism φ of \tilde{P}_1 onto \tilde{P}_2 .

PROPOSITION 5.2. The notation being as in Def. 5.2, every \tilde{G} -homeomorphism f of M_1 onto M_2 is covered by a unique isomorphism φ of \tilde{P}_1 onto \tilde{P}_2 .

Assuming that a \tilde{G} -structure is given on a manifold M, let us define the notion of a tensor field on M in terms of the \tilde{G} -structure.

⁵⁾ As for a principal fiber bundle, we use the notations and terminologies given in [5].

NOTATION. $\mathcal{T}_s^r(\mathfrak{m})$ will denote the vector space of all tensors of type $\binom{r}{s}$ on \mathfrak{m} , i. e., $\mathcal{T}_s^r(\mathfrak{m}) = (\otimes^r \mathfrak{m}) \times (\otimes^s \mathfrak{m}^*)$. Given vector spaces V_1, \cdots, V_l and $V, \mathcal{L}(V_1, \cdots, V_l; V)$ will denote the vector space of all multi-linear mappings of $V_1 \times \cdots \times V_l$ into V. We may naturally identify $\mathcal{L}(\mathfrak{m}^*, \cdots, \mathfrak{m}^*, \mathfrak{m}, \cdots, \mathfrak{m}; \mathcal{T}_s^r(\mathfrak{m}))$ (with \mathfrak{m}^* p times and \mathfrak{m} q times) with $\mathcal{T}_{s+q}^{r+p}(\mathfrak{m})$; for example, $\mathcal{L}(\mathfrak{m}; \mathfrak{m}) = \mathfrak{gl}(\mathfrak{m})$ = $\mathfrak{m} \otimes \mathfrak{m}^*$ and $\mathcal{L}(\mathfrak{m}, \mathfrak{m}; \mathbf{R}) = \mathcal{L}(\mathfrak{m}; \mathfrak{m}^*) = \mathfrak{m}^* \otimes \mathfrak{m}^*$. The group $GL(\mathfrak{m})$ linearly acts on $\mathcal{T}_s^r(\mathfrak{m})$ through the mapping $GL(\mathfrak{m}) \times \mathcal{T}_s^r(\mathfrak{m}) \ni (a, X) \to X^a \in \mathcal{T}_s^r(\mathfrak{m})$, where $(\xi_1 \otimes \cdots \otimes \xi_r \otimes \omega_1 \otimes \cdots \otimes \omega_s)^a = (a\xi_1) \otimes \cdots \otimes (a\xi_r) \otimes (^t a^{-1}\omega_1) \otimes \cdots \otimes (^t a^{-1}\omega_s)$ for all $\xi_1, \cdots, \xi_r \in \mathfrak{m}$ and $\omega_1, \cdots, \omega_s \in \mathfrak{m}^*$.

DEFINITION 5.3. Let \widetilde{P} be a \widetilde{G} -structure on a manifold M. A tensor field of type $\binom{r}{s}$ on M is a mapping Φ of \widetilde{P} into $\mathcal{T}_s^r(\mathfrak{m})$ satisfying the equality

$$\Phi_{xa} = (\Phi_x)^{a-1}$$

for all $x \in \widetilde{P}$ and $a \in \widetilde{G}$.

As is clear, this definition of a tensor field on M is equivalent to the usual one.

EXAMPLES. (1) A tensor field of type $\binom{1}{0}$ (a vector field) on M is a mapping X of \widetilde{P} into \mathfrak{m} such that $X_{xa}=a^{-1}X_x$. (2) A tensor field of type $\binom{0}{1}$ (a 1-form) on M is a mapping E of \widetilde{P} into \mathfrak{m}^* such that $E_{xa}={}^taE_x$. (3) A tensor field of type $\binom{1}{1}$ on M is a mapping U of \widetilde{P} into $\mathfrak{gl}(\mathfrak{m})$ such that $U_{xa}=a^{-1}U_xa$. (3) We define a mapping Ψ_L of $\mathfrak{m}\otimes\mathfrak{m}^*$ into $\widetilde{\mathfrak{g}}\subset\mathfrak{gl}(\mathfrak{m})$ by $\Psi_L(\xi,\omega)=[\xi,\omega]$ for all $\xi\in\mathfrak{m}$ and $\omega\in\mathfrak{m}^*$, which is a tensor of type $\binom{2}{2}$ on \mathfrak{m} . We have $\Psi_L^a=\Psi_L$ for all $a\in\widetilde{G}$, i. e.,

$$a \cdot [a^{-1}\xi, {}^t a\omega] \cdot a^{-1} = [\xi, \omega]$$

for all $\xi \in \mathfrak{m}$ and $\omega \in \mathfrak{m}^*$. This means that the constant mapping $\widetilde{P} \ni x \to \Psi_L$ $\in \mathcal{I}^2_{\mathfrak{I}}(\mathfrak{m})$ is a tensor field of type $\binom{2}{2}$ on M. It can be shown that \widetilde{G} consists of all elements $a \in GL(\mathfrak{m})$ leaving Ψ_L invariant.

In what follows, we shall consider a fixed \tilde{G} -structure \tilde{P} on a manifold M. Definition 5.4. An affine connection in \tilde{P} is a linear mapping B of \mathfrak{m} into the vector space $\mathfrak{X}(\tilde{P})$ of all vector fields on \tilde{P} satisfying the conditions:

(B. 1) $\tilde{\theta}(B(\xi)) = \xi$ for all $\xi \in \mathfrak{m}$, $\tilde{\theta}$ being the basic form of \tilde{P} ;

(B. 2) $R_aB(\xi)=B(a^{-1}\xi)$ for all $a\in \widetilde{G}$ and $\xi\in\mathfrak{m}$.

By condition (B. 1) and Prop. 5.1, 1, we get

Lemma 5.1. Let B be an affine connection in \tilde{P} . Every tangent vector X

⁶⁾ Therefore, we see that a \widetilde{G} -structure \widetilde{P} on a manifold M is a tensor structure on M defined by a suitable tensor field of type $\binom{2}{2}$ on M.

to \widetilde{P} at $x \in \widetilde{P}$ is uniquely written in the form $B(\xi)_x + A_x^*$, where $\xi \in \mathfrak{m}$ and $A \in \mathfrak{g}$. Let B be an affine connection in \widetilde{P} . By Lemma 5.1, we can find, for each $x \in \widetilde{P}$ and ξ , $\xi' \in \mathfrak{m}$, a unique pair $(T_x(\xi, \xi'), R_x(\xi, \xi'))$ of elements of \mathfrak{m} and \mathfrak{g} respectively as follows:

$$[B(\xi), B(\xi')]_x = B(T_x(\xi, \xi'))_x + R_x(\xi, \xi')_x^*.$$

The elements $T_x(\xi,\xi')$ and $R_x(\xi,\xi')$ are bilinear and anti-symmetric with respect to the two variables ξ and ξ' . By condition (B. 2), the mappings $T: \widetilde{P} \ni x \to T_x \in \mathcal{L}(\mathfrak{m},\mathfrak{m};\mathfrak{m})$ and $R: \widetilde{P} \ni x \to R_x \in \mathcal{L}(\mathfrak{m},\mathfrak{m};\mathfrak{g})$ are tensor fields of type $\binom{1}{2}$ and of type $\binom{1}{3}$ on M respectively, i.e., $T_{xa}(\xi,\xi') = a^{-1}T_x(a\xi,a\xi')$ and $R_{xa}(\xi,\xi') = a^{-1}R_x(a\xi,a\xi')a$. The tensor field T and R are called the torsion and curvature tensor fields of R respectively. The Ricci tensor field of R is, by definition, the tensor field $R^*: \widetilde{P} \ni x \to R_x^* \in \mathcal{L}(\mathfrak{m};\mathfrak{m}^*)$ of type $\binom{0}{2}$ on R defined by $R_x(\xi,\xi') = \mathbb{E}[R_x(\xi,e_i),\omega^i]$ for all $\xi \in \mathbb{E}$, where $R_x(\eta,\xi)\xi'$ of $\mathbb{E}[R_x(\xi,e_i),\omega^i]$ for all $\xi \in \mathbb{E}[R_x(\xi,e_i),\omega^i]$ is a base of $\mathbb{E}[R_x(\xi,e_i),\omega^i]$ for all $\xi \in \mathbb{E}[R_x(\xi,e_i),\omega^i]$ and R is the dual base of R and R are called the torsion field R of type R on R and R are called the torsion field R are called the torsion and R are called the torsion field R and R are called the torsion field R are called the torsion and R are called the torsion R and R are called the torsion and R are called the

$$\nabla_{\varepsilon} \Phi_{xa} = (\nabla_{a\varepsilon} \Phi_{x})^{a-1}$$
.

This indicates that the mapping $abla \Phi : \widetilde{P} \ni x \to
abla \Phi_x \in \mathcal{L}(\mathfrak{m}; \mathcal{T}_s^r(\mathfrak{m})) = \mathcal{T}_{s+1}^r(\mathfrak{m})$ is a tensor field of type $\binom{r}{s+1}$ on M, which is called the covariant derivative of Φ .

The following proposition will be usefull in our later arguments.

PROPOSITION 5.3. (1) Let B_i (i=1,2) be an affine connection in \widetilde{P} and let T_i be the torsion tensor field of B_i . Then there is a unique tensor field $U: \widetilde{P} \ni x \to U_x \in \mathcal{L}(\mathfrak{m}; \widetilde{\mathfrak{g}})$ of type $\binom{1}{2}$ on M such that

(5.1)
$$B_2(\xi)_x = B_1(\xi)_x + U_x(\xi)_x^*$$

for all $x \in \tilde{P}$ and $\xi \in \mathfrak{m}$. In this case, we have

$$T_2(\xi, \xi') = T_1(\xi, \xi') + U(\xi)\xi' - U(\xi')\xi$$

for all $\xi, \xi' \in \mathfrak{m}$. (2) If B_1 is an affine connection in \widetilde{P} and if U is a tensor field of type $\binom{1}{2}$ on M, then the linear mapping B_2 of \mathfrak{m} into $\mathfrak{X}(\widetilde{P})$ defined by (5.1) is an affine connection in \widetilde{P} .

\S 6. G'-bundles

DEFINITION 6.1. Let \tilde{P} be a \tilde{G} -structure on a manifold M. We say that a system (P,\tilde{l}) is a G'-bundle associated to the \tilde{G} -structure \tilde{P} , if P is a principal fiber bundle over the base space M with structure group G' and if \tilde{l} is a base preserving bundle homomorphism of P onto \tilde{P} corresponding to the homomorphism l of G' onto \tilde{G} .

Let \widetilde{P} be a \widetilde{G} -structure on a manifold M and let (P, \overline{l}) be a G'-bundle associated to \widetilde{P} . The m-valued 1-form $\theta = \overline{l} * \theta$ will be called the *basic form* of (P, \overline{l}) , $\widehat{\theta}$ being the basic form of \widetilde{P} .

By Prop. 5.1, we have

PROPOSITION 6.1. (1) Let X be a tangent vector to P at $z \in P$. $\theta(X) = 0$ if and only if X is vertical, i.e., of the form A_z^* with a (unique) $A \in \mathfrak{g}'$. (2) $R_a^* \theta = l(a)^{-1}\theta$ for all $a \in G'$.

We show that to each \tilde{G} -structure \tilde{P} on a manifold M there is associated at least one G'-bundle, say (P,\bar{l}) . Indeed, the \tilde{G} -structure \tilde{P} and the injection of \tilde{G} into G' give rise to a principal fiber bundle P over the base space M with structure group G' in such a way that \tilde{P} is a subbundle of P. Furthermore, there is a unique homomorphism \bar{l} of P onto \tilde{P} subject to the condition $\bar{l}(x)=x$ at each $x=\tilde{P}$.

DEFINITION 6.2. Let \widetilde{P}_i (i=1,2) be a \widetilde{G} -structure on a manifold M_i , let (P_i,\overline{l}_i) be a G'-bundle associated to \widetilde{P}_i and let θ_i be the basic form of (P_i,\overline{l}_i) . An isomorphism of (P_1,\overline{l}_1) onto (P_2,\overline{l}_2) is a bundle isomorphism φ of P_1 onto P_2 such that $\varphi*\theta_2=\theta_1$.

PROPOSITION 6.2. The notation being as in Def. 6.2, let φ be a bundle isomorphism of P_1 onto P_2 . Then φ is an isomorphism of (P_1, \bar{l}_1) onto (P_2, \bar{l}_2) if and only if there is a (unique) isomorphism $\tilde{\varphi}$ of \tilde{P}_1 onto \tilde{P}_2 such that $\tilde{\varphi} \circ \bar{l}_1 = \bar{l}_2 \circ \varphi$.

PROOF. First suppose that φ is an isomorphism of (P_1, \bar{l}_1) onto (P_2, \bar{l}_2) . There is a unique bundle isomorphism $\tilde{\varphi}$ of \tilde{P}_1 onto \tilde{P}_2 such that $\tilde{\varphi} \circ \bar{l}_1 = \bar{l}_2 \circ \varphi$. Since $\varphi^*\theta_2 = \theta_1$, we have $\bar{l}_1^*\tilde{\theta}_1 = \bar{l}_1^*(\tilde{\varphi}^*\tilde{\theta}_2)$. Hence $\tilde{\theta}_1 = \tilde{\varphi}^*\tilde{\theta}_2$. The converse is easy.

PROPOSITION 6.3. The notation being as in Def. 6.2, let $\tilde{\varphi}$ be an isomorphism of \tilde{P}_1 onto \tilde{P}_2 . Then there is at least one isomorphism φ of (P_1, \bar{l}_1) onto (P_2, \bar{l}_2) such that $\bar{l}_2 \circ \varphi = \tilde{\varphi} \circ \bar{l}_1$.

PROOF. By Prop. 1.7 the homogeneous space G'/\tilde{G} is homeomorphic with the vector space \mathfrak{m}^* . Therefore we can find at least one bundle homomorphism h_i of \tilde{P}_i into P_i (corresponding to the injection of \tilde{G} into G') such that $\bar{l}_i \circ h_i = 1$ (the identity transformation of \tilde{P}_i). Hence there is a unique bundle isomorphism φ of P_1 onto P_2 such that $\varphi \circ h_1 = h_2 \circ \tilde{\varphi}$. We have clearly $\bar{l}_2 \circ \varphi$

 $\tilde{\varphi} \circ \bar{l}_1$.

Let \widetilde{P} be a \widetilde{G} -structure on a manifold M and let (P,\overline{l}) be a G'-bundle associated to \widetilde{P} . We shall say that a bundle homomorphism h of \widetilde{P} into P (corresponding to the injection of \widetilde{G} into G') is admissible if it satisfies the condition $\overline{l} \circ h = 1$. By the proof of Prop. 6.3, there is at least one admissible homomorphism of \widetilde{P} into P.

PROPOSITION 6.4. (1) The notation being as above, let h_i (i=1,2) be an admissible homomorphism of \tilde{P} into P. Then there exists a unique 1-form $F: \tilde{P} \to \mathfrak{m}^*$ on M such that

$$(6.1) h_2(x) = h_1(x) \cdot \exp F_x$$

at each $x \in \widetilde{P}$. (2) If h_1 is an admissible homomorphism of \widetilde{P} into P and if $F: \widetilde{P} \to \mathfrak{m}^*$ is a 1-form on M, then the mapping h_2 of \widetilde{P} into P defined by (6.1) is an admissible homomorphism of \widetilde{P} into P.

PROOF. (1) At each $x \in \widetilde{P}$, $h_1(x)$ and $h_2(x)$ lie in the same fiber of P. Hence there is a unique $\tau \in G'$ such that $h_2(x) = h_1(x)\tau$. Since $\overline{l} \circ h_1 = \overline{l} \circ h_2 = 1$, we have $x = x \cdot l(\tau)$, i.e., $l(\tau) = e$. By Prop. 1.6, τ is of the form $\exp F_x$ with a unique $F_x \in \mathfrak{m}^*$. We must prove that the mapping $F: \widetilde{P} \ni x \to F_x \in \mathfrak{m}^*$ is a 1-form on M. We have $\exp F_{xa} = a^{-1}(\exp F_x)a = \exp(ada^{-1}F_x)$ for all $x \in \widetilde{P}$ and $a \in \widetilde{G}$, whence $F_{xa} = {}^t a F_x$. (2) can be analogously proved.

We here state a lemma concerning a tensor field on a manifold with a \widetilde{G} -structure.

LEMMA 6.1. Let \tilde{P} be a \tilde{G} -structure on a manifold M and let (P, \bar{l}) be a G'-bundle associated to \tilde{P} . If $\tilde{\Phi}: \tilde{P} \to \mathcal{T}_s^r(\mathfrak{m})$ is a tensor field of type $\binom{r}{s}$ on M, then the mapping $\Phi = \tilde{\Phi} \circ \bar{l}: P \to \mathcal{T}_s^r(\mathfrak{m})$ satisfies the equality:

$$(6.2) \Phi_{za} = (\Phi_z)^{l(a)^{-1}}$$

for all $z \in P$ and $a \in G'$. Conversely, every mapping $\Phi: P \to \mathcal{I}_s^r(\mathfrak{m})$ satisfying (6.2) induces a unique tensor field $\tilde{\Phi}: \tilde{P} \to \mathcal{I}_s^r(\mathfrak{m})$ of type $\binom{r}{s}$ on M such that $\Phi = \tilde{\Phi} \circ \tilde{l}$.

Lemma 6.1 enables us to define a tensor field of type $\binom{r}{s}$ on M to be a mapping $\Phi: P \to \mathcal{I}_s^r(\mathfrak{m})$ satisfying (6.2).

Example (the prototype of G'-bundles). Let us consider the homogeneous space $M_L = G/G'$. As usual, G may be considered as a principal fiber bundle over the base space M_L with structure group G': The action of G' on G is given by the mapping $G \times G' \ni (z, a) \to za \in G$, where za stands for the product of z and a in the group G, and the projection π of G onto M_L is defined by $\pi(z) = zo$, o being the origin of M_L , i.e., the coset G' of G/G'. The group G acts on the bundle of frames F of M_L as follows: $(zx)\xi = z(x\xi)$ for all $z \in G$, $x \in F$ and $\xi \in \mathfrak{m}$, where z in the right side should be confounded with the

transformation on M_L induced by z. Now we have $\mathfrak{g}=\mathfrak{m}+\mathfrak{g}'$ (direct sum). This being said, we define an isomorphism x_0 of \mathfrak{m} onto $T_0(M_L)$ by $x_0\xi=\pi\xi_e$ for all $\xi\in\mathfrak{m}$, where ξ_e means the value at e taken by the left invariant vector field ξ on G. Note that we are identifying \mathfrak{g} with the Lie algebra of all left invariant vector fields on G. x_0 being a point of F, let \bar{l} be the mapping of G into F defined by $\bar{l}(z)=zx_0$ for all $z\in G$.

Lemma 6.2. The mapping \overline{l} is a base preserving bundle homomorphism of G into F corresponding to the homomorphism l of G' into $GL(\mathfrak{m})$.

PROOF. We first show that $ax_0 = x_0l(a)$ for all $a \in G'$. In fact, we have $(ax_0)\xi = a(\pi\xi_e) = \pi((ada\xi)_e) = \pi((l(a)\xi)_e) = (x_0l(a))\xi$ for all $\xi \in \mathfrak{m}$, whence $ax_0 = x_0l(a)$. It follows that $\overline{l}(za) = \overline{l}(z)l(a)$ for all $z \in G$ and $a \in G'$. Moreover we have $\pi_F(\overline{l}(z)) = \pi_F(zx_0) = \pi(z)$ for all $z \in G$, π_F being the projection of F onto M_L .

Lemma 6.2 indicates that the image \tilde{P}_L of G by \tilde{l} is a \tilde{G} -structure on M_L and that the system (G, \tilde{l}) is a G'-bundle associated to \tilde{P}_L .

PROPOSITION 6.5. Let θ be the basic form of (G, \bar{l}) . Then we have $\theta(\xi) = \xi$ for all $\xi \in \mathfrak{m}$.

PROOF. Let $\tilde{\pi}$ be the projection of \tilde{P}_L onto M_L and let $\tilde{\theta}$ be the basic form of \tilde{P}_L . Since $\theta = \tilde{l}^*\tilde{\theta}$, we have $\tilde{l}(z)\theta(\xi_z) = \tilde{l}(z)\hat{\theta}(\tilde{l}(\xi_e)) = \tilde{\pi}(\tilde{l}\xi_z) = \pi\xi_z = z(\pi\xi_e) = (zx_0)\xi = \tilde{l}(z)\xi$ for all $z \in G$ and $\xi \in \mathfrak{m}$, whence $\theta(\xi_z) = \xi$.

\S 7. Connections of type (L)

For all $a \in G'$ and $\xi \in \mathfrak{m}$, we shall denote by $D(a, \xi)$ the \mathfrak{g}' -component of $ada\xi$ in the decomposition: $\mathfrak{g} = \mathfrak{m} + \mathfrak{g}'$. We have $ada\xi = l(a)\xi + D(a, \xi)$.

DEFINITION 7.1. Let \tilde{P} be a \tilde{G} -structure on a manifold M and let (P, \tilde{l}) be a G'-bundle associated to \tilde{P} . A connection of type (L) in (P, \tilde{l}) is a linear mapping C of \mathfrak{m} into the vector space $\mathfrak{X}(P)$ of all vector fields on P satisfying the following conditions:

- (C. 1) $\theta(C(\xi)) = \xi$ for all $\xi \in \mathfrak{m}$, θ being the basic form of (P, \bar{l}) ;
- (C. 2) $R_aC(\xi) = C(l(a)^{-1}\xi) + D(a^{-1}, \xi)^*$ for all $a \in G'$ and $\xi \in \mathfrak{m}$.

EXAMPLE (the prototype of connections of type (L)). Let us consider the \tilde{G} -structure \tilde{P}_L on the hemogeneous space $M_L = G/G'$ and the G'-bundle (G, \bar{l}) associated to \tilde{P}_L . We define a linear mapping C_L of \mathfrak{m} into $\mathfrak{X}(G)$ by $C_L(\xi) = \xi$ for all $\xi \in \mathfrak{m}$. By Prop. 6.5, C_L satisfies condition (C. 1). We have $R_a \xi = ada^{-1} \xi$, showing that C_L satisfies condition (C. 2). Hence C_L is a connection of type (L) in (G, \bar{l}) .

The notation being as in Def. 7.1, we study the fundamental properties of a connection of type (L).

I. From condition (C.1) and Prop. 6.1, (1), we get

LEMMA 7.1. Every tangent vector X to P at $z \in P$ is uniquely written in

the form: $C(\xi)_z + A_z^*$, where $\xi \in \mathfrak{m}$ and $A \in \mathfrak{g}'$.

For each $X \in \mathfrak{g}$, we define a vector field X^* on P by $X^* = C(\xi) + A^*$ if $X = \xi + A$, $\xi \in \mathfrak{m}$ and $A \in \mathfrak{g}'$. The mapping $\mathfrak{g} \ni X \to X^* \in \mathcal{X}(P)$ is linear and we have

Proposition 7.1.

- (1) The mapping $X \to X_z^*$ gives an isomorphism of $\mathfrak g$ onto $T_z(P)$ at each $z \in P$;
 - (2) $\theta(X^*) \equiv X \mod \mathfrak{g}' \text{ for all } X \in \mathfrak{g};$
 - (3) $R_a X^* = (ada^{-1}X)^*$ for all $X \in \mathfrak{g}$ and $a \in G'$;
 - (4) $[A^*, X^*] = [A, X]^*$ for all $X \in \mathfrak{g}$ and $A \in \mathfrak{g}'$.

This is easy from conditions (C.1), (C.2) and Lemma 7.1.

By Lemma 7.1, we can find, for each $z \in P$ and $\xi, \xi' \in \mathfrak{m}$, a unique pair $(S_z(\xi, \xi'), K_z(\xi, \xi'))$ of elements of \mathfrak{m} and \mathfrak{g}' respectively as follows:

$$[C(\xi), C(\xi')]_z = C(S_z(\xi, \xi'))_z + K_z(\xi, \xi')_z^*$$

or equivalently

$$[\xi^*, \xi'^*]_z = (S_z(\xi, \xi') + K_z(\xi, \xi'))_z^*$$
.

The elements $S_z(\xi, \xi')$ and $K_z(\xi, \xi')$ are bilinear and anti-symmetric with respect to the two variables ξ and ξ' .

LEMMA 7.2. Let $a \in G'$, ξ , $\xi' \in \mathfrak{m}$ and $z \in P$. Then we have

$$S_{za}(\xi, \xi') + K_{za}(\xi, \xi') = ada^{-1}S_z(l(a)\xi, l(a)\xi') + ada^{-1}K_z(l(a)\xi, l(a)\xi')$$
.

PROOF. We have

$$\begin{split} R_{a^{-1}} \cdot & [\xi^*, \, \xi'^*]_{za} = [R_{a^{-1}}\xi^*, \, R_{a^{-1}}\xi'^*]_z = [(ada\xi)^*, \, (ada\xi')^*]_z \\ &= [(l(a)\xi)^* + D(a, \, \xi)^*, \, (l(a)\xi')^* + D(a, \, \xi')^*]_z \\ &= (S_z(l(a)\xi, \, l(a)\xi') + K_z(l(a)\xi, \, l(a)\xi') + [D(a, \, \xi), \, l(a)\xi'] \\ &+ [l(a)\xi, \, D(a, \, \xi')] + [D(a, \, \xi), \, D(a, \, \xi')])_z^* \,. \end{split}$$

We have

$$ada[\xi, \xi'] = [ada\xi, ada\xi'] = [l(a)\xi + D(a, \xi), l(a)\xi' + D(a, \xi')]$$
$$= [D(a, \xi), l(a)\xi'] + [l(a)\xi, D(a, \xi')] + [D(a, \xi), D(a, \xi')]$$
$$= 0.$$

Hence we get

$$(7.1) R_{a-1} \cdot [\xi^*, \xi'^*]_{za} = (S_z(l(a)\xi, l(a)\xi') + K_z(l(a)\xi, l(a)\xi'))_z^*.$$

On the other hand, we get

$$(7.2) R_{a-1} \cdot [\xi^*, \xi'^*]_{za} = (adaS_{za}(\xi, \xi') + adaK_{za}(\xi, \xi'))_z^*.$$

Lemma 7.2 follows immediately from (7.1) and (7.2).

We define, at each $z \in P$, a linear mapping S_z^* of m into \tilde{g} by $S_z^*(\xi)$

 $=\sum_i [S_z(\xi,e_i),\omega^i]$ for all $\xi\in\mathfrak{m}$, where (e_i) is a base of \mathfrak{m} and (ω^i) is the dual base of (e_i) . Moreover, we denote by $W_z(\xi,\xi')$ the \mathfrak{g} -component of $K_z(\xi,\xi')$ in the decomposition: $\mathfrak{g}'=\mathfrak{m}^*+\mathfrak{g}$, and define, at each $z\in P$, a linear mapping of \mathfrak{m} into \mathfrak{m}^* by $W_z^*(\xi)=\sum_i [W_z(\xi,e_i),\omega^i]$ for all $\xi\in\mathfrak{m}$, (e_i) and (ω^i) being just as above. It is clear that S_z^* and W_z^* are well defined.

PROPOSITION 7.2. Let $a \in G'$, ξ , $\xi' \in \mathfrak{m}$ and $z \in P$.

(1)
$$S_{za}(\xi, \xi') = l(a)^{-1}S_z(l(a)\xi, l(a)\xi');$$

(2) Assume that $S_w = 0$ at each $w \in P$. Then,

$$W_{za}(\xi, \xi') = l(a)^{-1}W_{z}(l(a)\xi, l(a)\xi')l(a);$$

(3) Assume that $S_w^* = 0$ at each $w \in P$. Then,

$$W_{za}^*(\xi) = {}^t l(a) W_z^*(l(a)\xi)$$
.

PROOF. There is a unique element ω of \mathfrak{m}^* such that $a = l(a) \cdot \exp \omega$ (Prop. 1.6). Then we have, from Lemma 7.2,

$$\begin{split} S_{za}(\xi,\,\xi') + W_{za}(\xi,\,\xi') &\equiv l(a)^{-1} S_z(l(a)\xi,\,l(a)\xi') \\ &- \lceil \omega,\,l(a)^{-1} S_z(l(a)\xi,\,l(a)\xi') \rceil + l(a)^{-1} W_z(l(a)\xi,\,l(a)\xi') l(a) \bmod \mathfrak{m}^* \,. \end{split}$$

(1) and (2) are immediate from this equality. We have

$$W_{za}(\xi, \xi') = -[\omega, l(a)^{-1}S_z(l(a)\xi, l(a)\xi')] + l(a)^{-1}W_z(l(a)\xi, l(a)\xi')l(a)$$

and hence it follows that

$$\begin{split} W_{za}^*(\xi) &= -\, \sum_i \, \big[\big[\omega, \, l(a)^{-1} S_z(l(a)\xi, \, l(a)e_i) \big], \, \omega^i \big] \\ &+ \sum_i \, \big[\, l(a)^{-1} W_z(l(a)\xi, \, l(a)e_i) l(a), \, \omega^i \big] \\ &= - \big[\omega, \, adl(a)^{-1} \, \sum_i \, \big[\, S_z(l(a)\xi, \, l(a)e_i), \, {}^tl(a)^{-1} \omega^i \big] \big] \\ &+ adl(a)^{-1} \, \sum_i \, \big[\, W_z(l(a)\xi, \, l(a)e_i), \, {}^tl(a)^{-1} \omega^i \big] \, . \end{split}$$

Since $(l(a)e_i)$ forms a base of \mathfrak{m} and $(l(a)^{-1}\omega^i)$ is the dual base of $(l(a)e_i)$, we get

$$W_{za}^*(\xi) = -[\omega, adl(a)^{-1}S_z^*(l(a)\xi)] + {}^tl(a)W_z^*(l(a)\xi) = {}^tl(a)W_z^*(l(a)\xi).$$

Prop. 7.2, (1) shows that the mapping $S:P\ni z\to S_z\in\mathcal{L}(\mathfrak{m},\mathfrak{m};\mathfrak{m})$ is a tensor field of type $\binom{1}{2}$ on M (see Lemma 6.1), which will be called the torsion tensor field of C. It follows that the mapping $S^*:P\ni z\to S_z^*\in\mathcal{L}(\mathfrak{m};\mathfrak{g})$ is a tensor field of type $\binom{1}{2}$ on M. Similarly, Prop. 7.2, (2) (resp. (3)) means that the mapping $W:P\ni z\to W_z\in\mathcal{L}(\mathfrak{m},\mathfrak{m};\mathfrak{g})$ (resp. $W^*:P\ni z\to W_z^*\in\mathcal{L}(\mathfrak{m};\mathfrak{m}^*)$) is a tensor field of type $\binom{1}{3}$ (resp. of type $\binom{0}{2}$ on M under the condition that S=0

(resp. $S^* = 0$).

II. Let us fix an admissible homomorphism h of \widetilde{P} into P.

PROPOSITION 7.3. There exists a unique pair (B, J) of an affine connection B in \widetilde{P} and a tensor field $J: \widetilde{P} \ni x \to J_x \in \mathcal{L}(\mathfrak{m}; \mathfrak{m}^*)$ of type $\binom{0}{2}$ on M such that

(7.3)
$$h \cdot B(\xi)_x = C(\xi)_z + J_x(\xi)_z^*$$

for all $x \in \widetilde{P}$ and $\xi \in \mathfrak{m}$, where z = h(x).

PROOF. First we make a general remark: Let X be a tangent vector to P at $z \in P$. Then, $\bar{l}X = 0$ if and only if X is of the form ω_z^* with a unique $\omega \in \mathfrak{m}^*$. Uniqueness: By (7.3), we have $\tilde{l} \circ h \cdot B(\xi)_x = \tilde{l} \cdot C(\xi)_z + \tilde{l} \cdot J_x(\xi)_z^* = \tilde{l} \cdot C(\xi)_z$. Since $l \circ h = 1$, this means that B and hence J are uniquely determined by C. Existence: First we define a linear mapping B of m into $\mathfrak{X}(\widetilde{P})$ by $B(\xi)_x$ $= \overline{l} \cdot C(\xi)_z$ for all $x \in \widetilde{P}$ and $\xi \in \mathfrak{m}$, where z = h(x). By condition (C.1), we have $\tilde{\theta}(B(\xi)_x) = \theta(C(\xi)_z) = \xi$, showing that B satisfies condition (B.1). By condition (C. 2), we get $R_a \cdot B(\xi)_x = R_a \circ \tilde{l} \cdot C(\xi)_z = \tilde{l} \circ R_a \cdot C(\xi)_z = \tilde{l} \cdot C(a^{-1}\xi)_{za} = B(a^{-1}\xi)_{xa}$ for all $a \in \tilde{G}$. Hence B satisfies condition (B. 2). Thus B is an affine connection in \widetilde{P} . Next we have $l \cdot (h \cdot B(\xi)_x - C(\xi)_z) = B(\xi)_x - B(\xi)_x = 0$. Hence, $h \cdot B(\xi)_x$ $-C(\xi)_z$ is of the form $J_x(\xi)^*_z$ with a unique $J_x(\xi) \in \mathfrak{m}^*$. It is clear that $J_x(\xi)$ is linear with respect to the variable ξ . We must prove that the mapping $J: \widetilde{P} \ni x \to J_x \in \mathcal{L}(\mathfrak{m}; \mathfrak{m}^*)$ is a tensor field of type $\binom{0}{2}$ on M. For all $a \in \widetilde{G}$, we have $R_a \circ h \cdot B(\xi)_x = h \circ R_a \cdot B(\xi)_x = h \cdot B(a^{-1}\xi)_{xa} = C(a^{-1}\xi)_{za} + J_{xa}(a^{-1}\xi)_{za}^*$ and $R_a \circ h \cdot B(\xi)_x = R_a \cdot C(\xi)_z + R_a \cdot J_x(\xi)_z^* = C(a^{-1}\xi)_{za} + (ada^{-1}J_x(\xi))_{za}^*$. It follows that $J_{xa}(a^{-1}\xi) = ada^{-1}J_x(\xi) = {}^taJ_x(\xi)$, which proves that J is a tensor field of type $\binom{0}{2}$ on M.

The affine connection B and the tensor field J in Prop. 7.3 will be called induced from C by h.

Let z be a point of P and set $x = \overline{l}(z)$. Since z and h(x) lie in the same fiber of P, there is a unique $a \in G'$ such that z = h(x)a. Since $x = \overline{l}(z) = x \cdot l(a)$, we have l(a) = e, i.e., a is of the form $\exp \omega$ with a unique $\omega \in \mathfrak{m}^*$.

In what follows, B (resp. J) will denote the affine connection (resp. the tensor field) induced from C by h.

PROPOSITION 7.4. The notation being as above, we have

(7.4)
$$C(\xi)_z = R_a \circ h \cdot B(\xi)_x - (J_x(\xi) + D(a^{-1}, \xi))_z^*$$

for all $z \in P$ and $\xi \in \mathfrak{m}$.

PROOF. We put y = h(x). By (7.3), we have $R_a \circ h \cdot B(\xi)_x = R_a \cdot C(\xi)_y + R_a \cdot J_x(\xi)_y^* = C(\xi)_z + D(a^{-1}, \xi)_z^* + (ada^{-1}J_x(\xi))_z^* = C(\xi)_z + (J_x(\xi) + D(a^{-1}, \xi))_z^*$.

As for the affine connection B, we shall use the notations in § 5.

LEMMA 7.3. Let $x \in \widetilde{P}$, ξ , $\xi' \in \mathfrak{m}$ and set z = h(x). We have

$$T_{x}(\xi, \xi') + J_{x}(T_{x}(\xi, \xi')) + R_{x}(\xi, \xi')$$

$$= S_{z}(\xi, \xi') + K_{z}(\xi, \xi') + [J_{x}(\xi), \xi'] + [\xi, J_{x}(\xi')] + V_{\varepsilon}J_{x}(\xi') - V_{\varepsilon}J_{x}(\xi).$$

PROOF. For all $\xi \in \mathfrak{m}$, we define a vector field $H(\xi)$ on P by $H(\xi)_w = (\xi + J_y(\xi))_w^*$ at each $w \in P$, where $y = \overline{l}(w)$. Since $\overline{l} \circ h = 1$, (7.3) means that $H(\xi)$ is h-related to $B(\xi)$, i. e., $h \cdot B(\xi)_x = H(\xi)_x$ at each $x \in \widetilde{P}$, where z = h(x). It follows that $[H(\xi), H(\xi')]$ is also h-related to $[B(\xi), B(\xi')]$, i. e.,

$$(7.5) h \cdot [B(\xi), B(\xi')]_x = [H(\xi), H(\xi')]_z.$$

First we have

(7.6)
$$h \cdot [B(\xi), B(\xi')]_x = h \cdot B(T_x(\xi, \xi'))_x + h \cdot R_x(\xi, \xi')_x^*$$
$$= H(T_x(\xi, \xi'))_z + R_x(\xi, \xi')_z^*$$
$$= (T_x(\xi, \xi') + J_x(T_x(\xi, \xi')) + R_x(\xi, \xi'))_z^*.$$

Let f be any function defined on a neighborhood U of z. We have

$$(H(\xi')f)(w) = (\xi' + J_y(\xi'))_w^* f$$

at each $w \in U$, where $y = \overline{l}(w)$. Since $\overline{l} \cdot H(\xi)_z = B(\xi)_x$, it follows easily that $H(\xi)_z H(\xi') f = (\nabla_z I_x(\xi'))_z^* f + (\xi + I_x(\xi))_z^* ((\xi' + I_x(\xi'))^* f)$.

From this and an analogous equality, we get

(7.7)
$$[H(\xi), H(\xi')]_z = (V_{\xi}J_x(\xi') - V_{\xi'}J_x(\xi))_z^*$$

$$+ [(\xi + J_x(\xi))^*, (\xi' + J_x(\xi'))^*]_z$$

$$= (S_z(\xi, \xi') + K_z(\xi, \xi') + [\xi, J_x(\xi')]$$

$$+ [J_x(\xi), \xi'] + V_{\xi}J_x(\xi') - V_{\xi'}J_x(\xi))_z^* .$$

Lemma 7.3 follows from (7.5), (7.6) and (7.7).

Proposition 7.5. The notation being as in Lemma 6.1, we have

$$\hat{S} = T;$$

(2) Assume that S=0. Then,

$$\widetilde{W}(\xi, \xi') = R(\xi, \xi') - [J(\xi), \xi'] + [J(\xi'), \xi]';$$

(3) Assume that $S^* = 0$. Then,

$$(\widetilde{W}^*)(\xi) = R^*(\xi) - \frac{1}{2}J(\xi) + \sum_i [[J(e_i), \xi], \omega^i],$$

where (e_i) is a base of m and (ω^i) is the dual base of (e_i) .

PROOF. First note that W (resp. W^*) is a tensor field on M under the condition that S=0 (resp. $S^*=0$). (1) and (2) are immediate from Lemma 7.3. Let us prove (3). From 7.3, we get $(\widetilde{W}^*)(\xi) = R^*(\xi) - \sum_i [[J(\xi), e_i], \omega^i] + \sum_i [[J(e_i), \xi], \omega^i]$. But, for all $\xi' \in \mathfrak{m}$, we have $\langle \xi', \sum_i [[J(\xi), e_i], \omega^i] \rangle$

$$\begin{split} &= \sum_{i} \varphi([\xi', J(\xi)], [e_{i}, \omega^{i}]) = \sum_{i} \langle [\xi', J(\xi)] e_{i}, \omega^{i} \rangle = Tr[\xi', J(\xi)]. \quad \text{Since} \quad Tr[\xi', J(\xi)] \\ &= \frac{1}{2} \langle \xi', J(\xi) \rangle \text{ (Prop. 1.4), we get } \sum_{i} [[J(\xi), e_{i}], \omega^{i}] = \frac{1}{2} J(\xi). \end{split}$$

III. PROPOSITION 7.6. Let h_i (i=1,2) be an admissible homomorphism of \tilde{P} into P and let B_i be the affine connection in \tilde{P} induced from C by h_i . Let F be the 1-form on M defined by (6.1). Then we have

$$B_2(\xi)_x = B_1(\xi)_x + [F_x, \xi]_x^*$$

for all $x \in \widetilde{P}$ and $\xi \in \mathfrak{m}$.

PROOF. Let x be a point of \widetilde{P} . If we set $z = h_2(x)$ and $a = \exp F_x$, then we have $x = \overline{l}(z)$ and $z = h_1(x) \cdot a$. Hence from Prop. 7.4, we get

(7.8)
$$C(\xi)_z = R_a \circ h_1 \cdot B_1(\xi) - (J_x(\xi) + D(a^{-1}, \xi))_z^*,$$

J being the tensor field on M induced from C by h_1 . We have

$$\bar{l} \circ R_a \circ h_1 = 1$$
, $l(D(a^{-1}, \xi)) = -[F_x, \xi]$ and $B_2(\xi)_x = \bar{l} \cdot C(\xi)_z$.

Therefore by applying l to the both sides of (7.8), we obtain the desired equality.

We shall denote by $\mathfrak{A}(C)$ the family of affine connections in \widetilde{P} which are induced from C by all admissible homomorphisms of \widetilde{P} into P.

PROPOSITION 7.7. Each affine connection in $\mathfrak{A}(C)$ is induced from C by a unique admissible homomorphism of \widetilde{P} into P.

PROOF. Suppose that an affine connection B in \widetilde{P} is induced from C by two admissible homomorphisms, say h_1 and h_2 , of \widetilde{P} into P. Let F be the 1-form on M defined by (6.1). Then by Prop. 7.6, we have $[F_x, \xi] = 0$ for all $x \in \widetilde{P}$ and $\xi \in \mathfrak{m}$. Therefore we get F = 0 (Prop. 1.2, (2)).

§ 8. The torsion tensor field of a \widetilde{G} -structure

Let \widetilde{P} be a \widetilde{G} -structure on a manifold M. Given a tensor field $T:\widetilde{P}\to \mathcal{L}(\mathfrak{m},\mathfrak{m};\mathfrak{m})$ of type $\binom{1}{2}$ on M, we define a new tensor field $T^*:\widetilde{P}\to \mathcal{L}(\mathfrak{m};\mathfrak{g})$ of type $\binom{1}{2}$ on M by $T_x^*(\xi) = \sum_i [T_x(\xi,e_i),\omega^i]$ for all $\xi\in\mathfrak{m}$ and $x\in\widetilde{P}$, where (e_i) is a base of \mathfrak{m} and (ω^i) is the dual base of (e_i) .

THEOREM 8.1. Let \tilde{P} be a \tilde{G} -structure on a manifold M. Then there exists a unique tensor field $T: \tilde{P} \to \mathcal{L}(\mathfrak{m}, \mathfrak{m} : \mathfrak{m})$ of type $\binom{1}{2}$ on M satisfying the following conditions:

(1)
$$T^* = 0$$
;

(2) There exists at least one affine connection B in \tilde{P} whose torsion tensor

field is equal to T.

DEFINITION 8.1. Let \widetilde{P} be a \widetilde{G} -structure on a manifold M. The tensor field $T: \widetilde{P} \to \mathcal{L}(\mathfrak{m}, \mathfrak{m}; \mathfrak{m})$ of type $\binom{1}{2}$ on M whose unique existence is assured by Th. 8.1, is called the torsion tensor field of the \widetilde{G} -structure \widetilde{P} .

The proof of Th. 8.1 is preceded by several lemmas. Let \mathcal{I} be the subspace of $\mathcal{L}(\mathfrak{m},\mathfrak{m};\mathfrak{m})$ consisting of all elements T such that $T(\xi,\xi')=-T(\xi',\xi)$ for all $\xi,\xi'\in\mathfrak{m}$. We set $\mathcal{E}=\mathcal{L}(\mathfrak{m};\mathfrak{g})$ and define a linear mapping Δ of \mathcal{E} into \mathcal{I} by $\Delta(U)(\xi,\xi')=U(\xi)\xi'-U(\xi')\xi$ for all $U\in\mathcal{E}$ and $\xi,\xi'\in\mathfrak{m}$. Furthermore we define a linear mapping Δ^* of \mathcal{I} into \mathcal{E} by $\Delta^*(T)(\xi)=\sum_i [T(\xi,e_i),\omega^i]$ for all $T\in\mathcal{I}$ and $\xi\in\mathfrak{m}$, where (e_i) is a base of \mathfrak{m} and (ω^i) is the dual base of (e_i) . \mathcal{I} (resp. \mathcal{E}) is clearly a \widetilde{G} -stable subspace of $\mathcal{L}(\mathfrak{m},\mathfrak{m};\mathfrak{m})$ (resp. $\mathcal{L}(\mathfrak{m};\mathfrak{gl}(\mathfrak{m}))$).

We have easily

LEMMA 8.1. Let $T \in \mathcal{I}$, $U \in \mathcal{E}$ and $a \in \widetilde{G}$.

(1)
$$\Delta(U^a) = \Delta(U)^a;$$

(2)
$$\Delta^*(T^a) = \Delta^*(T)^a.$$

Let θ be a fixed *-isomorphism of L onto L^* . We define positive definite inner products (,) on \mathfrak{m} , \mathcal{I} and \mathcal{E} respectively as follows: $(\xi,\xi')=-\langle \xi,\theta\xi'\rangle$ for all $\xi,\xi'\in\mathfrak{m}$; $(T,T')=\frac{1}{2}\sum_{i,j}(T(e_i,e_j),T'(e_i,e_j))$ for all $T,T'\in\mathcal{I}$, where (e_i) is an orthonormal base with respect to the inner product (,) on \mathfrak{m} ; $(U,U')=-\sum_i \varphi(U(e_i),\theta U'(e_i))$ for all $U,U'\in\mathcal{E}$, (e_i) being just as above.

LEMMA 8.2.

$$(T, \Delta(U)) = (\Delta^*(T), U)$$

for all $T \in \mathcal{I}$ and $U \in \mathcal{E}$.

PROOF.

$$\begin{split} (T, \Delta(U)) &= -\frac{1}{2} \sum_{i,j} \langle T(e_i, e_j), \theta \Delta(U)(e_i, e_j) \rangle \\ &= -\frac{1}{2} \sum_{i,j} \varphi(T(e_i, e_j), [\theta U(e_i), \theta e_j] - [\theta U(e_j), \theta e_i]) \\ &= \sum_{i,j} \varphi([T(e_i, e_j), \theta e_j], \theta U(e_i)) \\ &= -\sum_i \varphi(\Delta^*(T)(e_i), \theta U(e_i)) \\ &= (\Delta^*(T), U) \,. \end{split}$$

We put $\Theta = \Delta^* \circ \Delta$. Then we have easily, from Lemma 8.2, LEMMA 8.3.

(1)
$$\Theta(\mathcal{E}) = \Delta^*(\mathcal{I});$$

(2)
$$\Theta^{-1}(0) = \Delta^{-1}(0)$$
;

(3)
$$\mathcal{E} = \Theta^{-1}(0) + \Theta(\mathcal{E}) \quad (direct sum).$$

PROOF OF THEOREM 8.1. We first prove uniqueness. Let B (resp. B') be an affine connection in \tilde{P} and let T (resp. T') be the torsion tensor field of B (resp. B'). Assuming that $T^* = T'^* = 0$, we must prove T = T'. By Prop. 5.3, we can find a tensor field $U: \widetilde{P} \to \mathcal{E}$ of type $\binom{1}{2}$ on M such that $T' = T + \Delta(U)$. Since $\Delta^*(T) = T^* = \Delta^*(T') = T'^* = 0$, we have $\Theta(U) = 0$. Therefore by Lemma 8.3, (2), we get $\Delta(U) = 0$, whence T = T'. Let us now prove existence. We see from the proof of Lemma 3.2 that the group $\widetilde{G}_{ heta}$ is a (maximal) compact subgroup of \widetilde{G} and that the homogeneous space $\widetilde{G}/\widetilde{G}_{\theta}$ is homeomorphic with a euclidean space. Hence there is at least one affine connection, say B', in \tilde{P} , cf. [5]. Denoting by T' the torsion tensor field of B', we can find, at each $x \in \widetilde{P}$, a unique element U_x of $\Theta(\mathcal{E})$ such that $\Delta^*(T_x') = \Theta(U_x)$ (Lemma 8.3). For all $x \in \widetilde{P}$ and $a \in \widetilde{G}$, we have $\Delta^*(T'_{xa}) = \Theta(U_{xa}) = \Theta(U_x^{a-1})$ and $U_x^{a-1} \in \Theta(\mathcal{E})$ (Lemma 8.1), whence $U_{xa} = U_x^{a-1}$. This means that the mapping $U: \tilde{P} \ni x \to 0$ $U_x \in \Theta(\mathcal{E})$ is a tensor field of type $\binom{1}{2}$ on M. Therefore by Prop. 5.3, there is an affine connection B in \tilde{P} whose torsion tensor field is given by T = T' - $\Delta(U)$. We have $T^* = \Delta^*(T) = \Delta^*(T') - \Theta(U) = 0$, completing the proof of Th. 8.1.

REMARK. The notion of the torsion tensor field of a \tilde{G} -structure generalizes the notion of the Nijenhuis tensor field of an almost complex structure. In fact, let L be an irreducible l-system of type I_m , i. e., of type $P^m(C)$. In this case, the associated representation $(\tilde{G}, \mathfrak{m})$ is equivalent to the representation $(GL(m, C), C^m)$, and it can be proved that the torsion tensor field of a \tilde{G} -structure coincides with the Nijenhuis tensor field of the corresponding almost complex structure.

\S 9. Normal connections of type (L)

Let \widetilde{P} be a \widetilde{G} -structure on a manifold M. We introduce an equivalence relation in the set of all affine connections in \widetilde{P} as follows: Let B_i (i=1,2) be an affine connection in \widetilde{P} . $B_1 \sim B_2$ if and only if there is a 1-form $F: \widetilde{P} \to \mathfrak{m}^*$ on M such that

(9.1)
$$B_2(\xi)_x = B_1(\xi)_x + [F_x, \xi]_x^*$$

for all $x \in \widetilde{P}$ and $\xi \in \mathfrak{m}$. One notes that the 1-form F in (9.1) is uniquely determined by B_1 and B_2 (cf. Prop. 7.7) and that, given an affine connection B_1 in \widetilde{P} and a 1-form F on M, the linear mapping B_2 of \mathfrak{m} into $\mathfrak{X}(\widetilde{P})$ defined by (9.1) is an affine connection in \widetilde{P} (Prop. 5.3). Moreover since $\lceil \lceil \omega, \xi \rceil, \xi' \rceil$

=[[ω , ξ'], ξ] for all ξ , $\xi' \in \mathfrak{m}$ and $\omega \in \mathfrak{m}^*$, it follows from Prop. 5.3 that if $B_1 \sim B_2$, then the torsion tensor fields of the two connections coincide.

DEFINITION 9.1. We say that two affine connections B_1 and B_2 in \tilde{P} are mutually L-equivalent if $B_1 \sim B_2$. Let $\mathfrak A$ be a class of mutually L-equivalent affine connections in \tilde{P} . The torsion tensor field T of $\mathfrak A$ is defined to be the torsion tensor field of some affine connection in $\mathfrak A$. The class $\mathfrak A$ is called admissible if $T^*=0$ or equivalently if T coincides with the torsion tensor field of \tilde{P} .

From Props. 6.4, 7.5 and 7.6, we get

PROPOSITION 9.1. Let (P, \overline{l}) be a G'-bundle associated to \widetilde{P} and let C be a connection of type (L) in (P, \overline{l}) . The family $\mathfrak{A}(C)$ of affine connections in \widetilde{P} induced from C forms a class of mutually L-equivalent affine connections in \widetilde{P} . The class $\mathfrak{A}(C)$ is admissible if and only if $S^*=0$.

DEFINITION 9.2. Let \widetilde{P}_i (i=1,2) be a \widetilde{G} -structure on a manifold M_i and let \mathfrak{A}_i be a class of mutually L-equivalent affine connections in \widetilde{P}_i . An isomorphism $\widetilde{\varphi}$ of \widetilde{P}_1 onto \widetilde{P}_2 is called an isomorphism of $(\widetilde{P}_1,\mathfrak{A}_1)$ onto $(\widetilde{P}_2,\mathfrak{A}_2)$ if $\widetilde{\varphi}\mathfrak{A}_1=\mathfrak{A}_2$. A homeomorphism f of M_1 onto M_2 is called a homeomorphism of (M_1,\mathfrak{A}_1) onto (M_2,\mathfrak{A}_2) if there is a (unique) isomorphism $\widetilde{\varphi}$ of $(\widetilde{P}_1,\mathfrak{A}_1)$ onto $(\widetilde{P}_2,\mathfrak{A}_2)$ which covers f.

Now let us define an endomorphism Q_L of $\mathcal{L}(\mathfrak{m}; \mathfrak{m}^*)$ by

$$Q_L(J)(\xi) = \sum\limits_i \left[\left[J(e_i), \, \xi
ight], \, \pmb{\omega}^i
ight]$$

for all $J \in \mathcal{L}(\mathfrak{m}; \mathfrak{m}^*)$ and $\xi \in \mathfrak{m}$, where (e_i) is a base of \mathfrak{m} and (ω^i) is the dual base of (e_i) .

LEMMA 9.1.

$$Q_L(J^a) = Q_L(J)^a$$

for all $J \in \mathcal{L}(\mathfrak{m}; \mathfrak{m}^*)$ and $a \in \widetilde{G}$.

Furthermore we define an endomorphism Φ_L of $\mathcal{L}(\mathfrak{m};\mathfrak{m}^*)$ to be

$$\Phi_L(J) = \frac{1}{2}J - Q_L(J)$$

for all $J \in \mathcal{L}(\mathfrak{m}; \mathfrak{m}^*)$.

From now on (Th. 9.1-Prop. 9.4), we assume that the endomorphism Φ_L is an automorphism.

THEOREM 9.1. Let \tilde{P} be a \tilde{G} -structure on a manifold M, let \mathfrak{A} be an admissible class of mutually L-equivalent affine connections in \tilde{P} and let (P, \bar{l}) be a G'-bundle associated to \tilde{P} . The notation being as in §7, there exists a connection C of type (L) in (P, \bar{l}) satisfying the condition:

(9.2)
$$\mathfrak{A}(C) = \mathfrak{A}, \quad S^* = 0 \quad and \quad W^* = 0.$$

PROOF. We fix an affine connection B in $\mathfrak A$ and an admissible homomor-

phism h of \widetilde{P} into P. Since Φ_L is assumed to be an automorphism, we can find, at each $x \in \widetilde{P}$, a unique linear mapping J_x of \mathfrak{m} into \mathfrak{m}^* such that

$$(9.3) R_x^* = \Phi_L(J_x),$$

where R^* is the Ricci tensor field of B. It follows from Lemma 9.1 that the mapping $J: \tilde{P} \ni x \to J_x \in \mathcal{L}(\mathfrak{m}; \mathfrak{m}^*)$ is a tensor field of type $\binom{0}{2}$ on M. Using h, B and J thus obtained, we define a linear mapping C of \mathfrak{m} into $\mathcal{L}(P)$ by (7.4). From Prop. 6.1 and conditions (B.1) and (B.2), we infer that C satisfies conditions (C.1) and (C.2), i. e., C is a connection of type (L) in (P, \tilde{l}). It is clear that B (resp. J) coincides with the affine connection (resp. the tensor field), induced from C by h. Hence $\mathfrak{N}(C) = \mathfrak{N}$. Since \mathfrak{N} is admissible, we see from Prop. 7.5, (1) that $S^* = 0$. Finally from (9.3) and Prop. 7.5, (3), we get $W^* = 0$.

DEFINITION 9.3. Let \tilde{P} be a \tilde{G} -structure on a manifold M and let \mathfrak{A} be an admissible class of mutually L-equivalent affine connections in \tilde{P} . We say that a system (P, \bar{l}, C) is a normal connection of type (L) associated to \mathfrak{A} , if (P, \bar{l}) is a G'-bundle associated to \tilde{P} and if C is a connection of type (L) in (P, l) satisfying condition (9.2).

DEFINITION 9.4. Let \widetilde{P}_i (i=1,2) be a \widetilde{G} -structure on a manifold M_i and let (P_i,\overline{l}_i,C_i) be a normal connection of type (L) associated to a certain admissible class of mutually L-equivalent affine connections in \widetilde{P}_i . An isomorphism φ of (P_1,\overline{l}_1) onto (P_2,\overline{l}_2) is called an isomorphism of (P_1,\overline{l}_1,C_1) onto (P_2,\overline{l}_2,C_2) if $\varphi C_1=C_2$.

Theorem 9.2°. Let \tilde{P}_i (i=1,2) be a \tilde{G} -structure on a manifold M_i , let \mathfrak{A}_i be an admissible class of mutually L-equivalent affine connections in \tilde{P}_i and let (P_i, \bar{l}_i, C) be a normal connection of type (L) associated to \mathfrak{A}_i . If $\tilde{\varphi}$ is an isomorphism of $(\tilde{P}_1, \mathfrak{A}_1)$ onto $(\tilde{P}_2, \mathfrak{A}_2)$, there corresponds to $\tilde{\varphi}$ a unique isomorphism φ of (P_1, \bar{l}_1, C_1) onto (P_2, \bar{l}_2, C_2) which induces $\tilde{\varphi}$ i.e., $l_2 \circ \varphi = \tilde{\varphi} \circ l_1$. Conversely every isomorphism φ of (P_1, l_1, C_1) onto (P_2, l_2, C_2) induces a unique isomorphism $\tilde{\varphi}$ of $(\tilde{P}_1, \mathfrak{A}_1)$ onto $(\tilde{P}_2, \mathfrak{A}_2)$.

PROOF. First suppose that there is given an isomorphism $\tilde{\varphi}$ of $(\tilde{P}_1, \mathfrak{A}_1)$ onto $(\tilde{P}_2, \mathfrak{A}_2)$. We take a fixed affine connection B_1 in \mathfrak{A}_1 and set $B_2 = \tilde{\varphi}B_1$. Since $\tilde{\varphi}\mathfrak{A}_1 = \mathfrak{A}_2$, B_2 belongs to \mathfrak{A}_2 . Since $\mathfrak{A}_i = \mathfrak{A}(C_i)$, it follows from Prop. 7.7 that the affine connection B_i is induced from C_i by a unique admissible homomorphism h_i of \tilde{P}_i into P_i . By the proof of Prop. 6.3, there is a unique bundle isomorphism φ of P_1 onto P_2 such that $\varphi \circ h_1 = h_2 \circ \tilde{\varphi}$. We have $\tilde{l}_2 \circ \varphi = \tilde{\varphi} \circ \tilde{l}_1$ and hence φ is an isomorphism of (P_1, \tilde{l}_1) onto (P_2, \tilde{l}_2) . Let J_i be the tensor

⁷⁾ This allows us to speak of "the" normal connection of type (L) associated to a \widetilde{G} -structure \widetilde{P}_{\bullet}

field on M_i induced from C_i by h_i . Since $B_i = \tilde{\varphi}B_i$ and since Φ_L is an automorphism, we have $(J_2)_{\widetilde{\varphi}(x)} = (J_1)_x$ at each $x \in \widetilde{P}_1$ (Prop. 7.5, (3)). Therefore, it follows from Prop. 7.4 that $\varphi C_1 = C_2$, which shows that φ is an isomorphism of (P_1, \bar{l}_1, C_1) onto (P_2, \bar{l}_2, C_2) . Let us now prove the uniqueness of φ . Let φ' be a second isomorphism of (P_1, \bar{l}_1, C_1) onto (P_2, \bar{l}_2, C_2) such that $\bar{l}_2 \circ \varphi' = \tilde{\varphi} \circ \bar{l}_1$. We put $h_2 = \varphi' \circ h_1 \circ \tilde{\varphi}^{-1}$, being an admissible homomorphism of \tilde{P}_2 into P_2 . Then we have $B_2(\xi)_y = \tilde{\varphi} \cdot B_1(\xi)_x = \tilde{\varphi} \circ \tilde{l}_1 \cdot C_1(\xi)_z = \tilde{l}_2 \circ \varphi' \cdot C_1(\xi)_z = \tilde{l}_2 \cdot C_2(\xi)_w$ at each $y \in \widetilde{P}_2$, where $x = \widetilde{\varphi}^{-1}(y)$, $z = h_1(x)$ and $w = h'_2(y)$. This means that the affine connection B_2 is induced from C_2 by h'_2 . Hence we have $h'_2 = h_2$ by Prop. 7.7. Since $\varphi' \circ h_1 = h_2 \circ \tilde{\varphi} = \varphi \circ h_1$, we get $\varphi' = \varphi$. Now suppose that there is given an isomorphism φ of (P_1, \bar{l}_1, C_1) onto (P_2, \bar{l}_2, C_2) . By Prop. 6.2, φ induces a unique isomorphism $\tilde{\varphi}$ of \tilde{P}_1 onto \tilde{P}_2 . We take any affine connection B_1 in \mathfrak{A}_1 and denote by h_1 the corresponding admissible homomorphism of \widetilde{P}_1 into P_1 . If we put $h_2 = \varphi \circ h_1 \circ \tilde{\varphi}^{-1}$, being an admissible homomorphism of \tilde{P}_2 into P_2 , then we have $(\tilde{\varphi}B_1(\xi))_y = \tilde{\varphi} \cdot B_1(\xi)_x = \tilde{\varphi} \circ \tilde{l}_1 \cdot C(\xi)_z = \tilde{l}_2 \circ \varphi \cdot C_1(\xi)_z = \tilde{l}_2 \cdot C_2(\xi)_w$ at each $y \in \widetilde{P}_2$, where $x = \widetilde{\varphi}^{-1}(y)$, $z = h_1(x)$ and $w = h_2(y)$. This means that the affine connection $\tilde{\varphi}B_1$ in \tilde{P}_2 is induced from C_2 by h_2 . Thus $\tilde{\varphi}B_1 \in \mathfrak{A}_2$. Therefore $\tilde{\varphi}\mathfrak{A}_1 \subset \mathfrak{A}_2$ and hence $\tilde{\varphi}\mathfrak{A}_1 = \mathfrak{A}_2$.

Let \widetilde{P} be a \widetilde{G} -structure on a manifold M and let \mathfrak{A} be a class of mutually L-equivalent affine connections in \widetilde{P} . We denote by $G(M,\mathfrak{A})$ the group of all transformations of (M,\mathfrak{A}) .

PROPOSITION 9.2. The notation being as above, we assume that M is connected and that the class $\mathfrak A$ is admissible. Then the group $G(M, \mathfrak A)$ is a Lie group of dimension $\leq \dim \mathfrak g$ with respect to the natural topology.

PROOF. By Th. 9.1, there is associated to $\mathfrak A$ a normal connection (P,\overline{l},C) of type (L). By Th. 9.2 and Prop. 5.2, $G(M,\mathfrak A)$ may be identified with the group of all automorphisms of (P,\overline{l},C) ; the notation being as in §7, $G(M,\mathfrak A)$ consists of all transformations φ of P satisfying the equalities: $\varphi X^* = X^*$, $R_a \circ \varphi = \varphi \circ R_a$ for all $X \in \mathfrak g$ and $a \in G'$. Therefore by Prop. 7.1, (1) and a theorem of S. Kobayashi [4], $G(M,\mathfrak A)$ becomes a Lie group of dimension $\subseteq \dim \mathfrak g$ in such a way that it is a Lie transformation group on P and hence on M.

Let us now consider the \widetilde{G} -structure \widetilde{P}_L on the homogeneous space $M_L = G/G'$, the G'-bundle (G, \overline{l}) associated to \widetilde{P}_L and the connection C_L of type (L) in (G, \overline{l}) which have been observed in § 6 and § 7. We have $[C_L(\xi), C_L(\xi')] = [\xi, \xi'] = 0$ for all $\xi, \xi' \in \mathfrak{m}$. Hence the system (G, \overline{l}, G_L) forms a normal connection of type (L) associated to the admissible class $\mathfrak{A}_L = \mathfrak{A}(C_L)$.

Proposition 9.3. We have naturally $G = G(M_L, \mathfrak{A}_L)$.

PROOF. For all $a \in G$, we denote by L_a (resp. T_a) the left translation on G (resp. the transformation of M_L) induced by a. Now let a be any element

of G. We have $L_aX=X$ for all $X\in\mathfrak{g}$. Hence we see that L_a is an automorphism of (G,\overline{l},C_L) . Since L_a induces the transformation T_a of M_L , it follows from Th. 9.2 that T_a is a transformation of (M_L,\mathfrak{A}_L) , i.e., $T_a\in G(M_L,\mathfrak{A}_L)$. Since T_a is covered by a unique automorphism of (G,\overline{l},C_L) , we deduce that the homomorphism $G\ni a\to T_a\in G(M_L,\mathfrak{A}_L)$ is injective. Thus we have proved $G\subset G(M_L,\mathfrak{A}_L)$. Conversely we shall prove $G(M_L,\mathfrak{A}_L)\subset G$. We take any element f of $G(M_L,\mathfrak{A}_L)$. By Th. 9.2, f is induced by a unique isomorphism φ of (G,\overline{l},C_L) . We have $\varphi X^*=X^*$ for all $X\in\mathfrak{g}$. Since $X^*=X$, there is a unique element a of G such that $\varphi=L_a$. Consequently we get $f=T_a$, which proves our assertion.

PROPOSITION 9.4. Let U_i (i=1,2) be a connected open set of M_L . Every homeomorphism f of (U_1, \mathfrak{A}_L) onto (U_2, \mathfrak{A}_L) is extended to a unique transformation of M_L of the form $T_a(a \in G)$.

The proof of Prop. 9.4 is entirely similar to that of Prop. 9.3 and therefore it is omitted.

REMARK. Prop. 9.3 implies that the action of G on the homogeneous space $M_L = G/G'$ is effective under the hypothesis that Φ_L is an automorphism. However this hypothesis is unnecessary, as is seen from the proof of Th. 9.2.

The following discussions will be concerned with the equivalence problems associated with \widetilde{G} -structures.

The notation being as in § 8, we put

$$\delta(L) = \dim \Delta^{-1}(0)$$
.

For each $\omega \in \mathfrak{m}^*$, let $\widetilde{\omega}$ be the element of \mathcal{E} defined by $\widetilde{\omega}(\xi) = [\omega, \xi]$ for all $\xi \in \mathfrak{m}$. Since $[[\omega, \xi], \xi'] = [[\omega, \xi'], \xi]$ for all $\xi, \xi' \in \mathfrak{m}$, it follows from Prop. 1.2, (2) that the assignment $\omega \to \widetilde{\omega}$ gives an injective linear mapping of \mathfrak{m}^* into $\Delta^{-1}(0)$. Hence we have

Lemma 9.2. $\delta(L) \ge n = \dim \mathfrak{m}$, and the equality holds good if and only if the mapping $\omega \to \widetilde{\omega}$ gives an isomorphism of \mathfrak{m}^* onto $\Delta^{-1}(0)$.

From Prop. 5.3 and Lemma 9.2, we get

PROPOSITION 9.5. Assume that $\delta(L) = n$. Every \tilde{G} -structure \tilde{P} on a manifold M admits a unique admissible class, say $\langle P \rangle$, of mutually L-equivalent affine connections.

Hereafter we assume that Φ_L is an automorphism and that $\delta(L) = n$.

DEFINITION 9.5. Let \widetilde{P} be a \widetilde{G} -structure on a manifold M. We say that a system (P, \overline{l}, C) is a normal connection of type (L) associated to \widetilde{P} if it is a normal connection of type (L) associated to the unique class $\langle P \rangle$.

THEOREM 9.3. To every \tilde{G} -structure \tilde{P} on a manifold M there is associated at least one normal connection (P, \bar{l}, C) of type (L).

Theorem 9.4. Let \widetilde{P}_i (i = 1, 2) be a \widetilde{G} -structure on a manifold M_i and let

 (P_i, \bar{l}_i, C_i) be a normal connection of type (L) associated to \tilde{P}_i . If $\tilde{\varphi}$ is an isomorphism of \tilde{P}_1 onto \tilde{P}_2 , there corresponds to $\tilde{\varphi}$ a unique isomorphism φ of (P_1, \bar{l}_1, C_1) onto (P_2, \bar{l}_2, C_2) which induces $\tilde{\varphi}$. Conversely, every isomorphism φ of (P_1, \bar{l}_1, C_1) onto (P_2, \bar{l}_2, C_2) induces a unique isomorphism $\tilde{\varphi}$ of \tilde{P}_1 onto \tilde{P}_2 .

Ths. 9.3 and 9.4 follow from Ths. 9.1 and 9.2 respectively.

Given a \tilde{G} -structure \tilde{P} on a manifold M, we shall denote by G(M) the group of all \tilde{G} -transformations of M.

Prop. 9.2 yields

PROPOSITION 9.6. The notation being as above, we assume that M is connected. Then the group G(M) is a Lie group of dimension $\leq \dim \mathfrak{g}$ with respect to the natural topology.

Props. 9.3 and 9.4 yield

Proposition 9.7. $G = G(M_L)$.

Proposition 9.8. Let U_i (i=1,2) be a connected open set of M_L . Every \tilde{G} -homeomorphism f of U_1 onto U_2 is extended to a unique transformation of M_L of the form $T_a(a \in G)$.

EXAMPLES. (1) Let L be an l-system of type $P^m(R)$. If $m \ge 2$, the endomorphism Φ_L is an automorphism (Th. 10.1). The normal connection of type (L) is nothing but the normal projective connection of degree m. (2) The m-dimensional Möbius space gives rise to an l-system L such that the complexification L^c of L is irreducible of type IV_m [10]. If $m \ge 3$, the endomorphism Φ_L is an automorphism and $\delta(L) = n$ (Ths. 10.1 and 10.2). The normal connection of type (L) is nothing but the normal conformal connection of degree m.

§ 10. The endomorphism Φ_L and the integer $\delta(L)$

THEOREM 10.1. Let L be an l-system and let $L \cong L_1 \times \cdots \times L_s$ be a decomposition of L into irreducible l-systems. Then Φ_L is an automorphism if and only if none of L_i is of type $P^1(\mathbf{R})$ or $P^1(\mathbf{C})$.

In general, let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$ be an l-system. We identify $\mathcal{L}(\mathfrak{m}; \mathfrak{m}^*)$ and $\mathfrak{m}^* \otimes \mathfrak{m}^*$ as follows: $(\omega \otimes \omega') \xi = \langle \xi, \omega' \rangle \omega$ for all $\omega, \omega' \in \mathfrak{m}^*$ and $\xi \in \mathfrak{m}$. The duality \langle , \rangle between \mathfrak{m} and \mathfrak{m}^* yields a duality \langle , \rangle between $\mathfrak{m} \otimes \mathfrak{m}$ and $\mathfrak{m}^* \otimes \mathfrak{m}^*$, and the endomorphism Q_L is then defined by

$$\langle \xi \otimes \xi', Q_L(\omega \otimes \omega') \rangle = \varphi(\lceil \xi, \omega \rceil, \lceil \xi', \omega' \rceil)$$

for all $\xi, \xi' \in \mathfrak{m}$ and $\omega, \omega' \in \mathfrak{m}^*$.

LEMMA 10.1. Let L_i $(1 \le i \le s)$ be an l-system and let L be the product of L_1, \dots, L_s . Then Φ_L is injective if and only if each Φ_{L_i} is injective.

PROOF. We set $L_i = (\mathfrak{g}_i, \mathfrak{m}_i, \mathfrak{m}_i^*, \tilde{\mathfrak{g}}_i)$ and $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}})$ and identify \mathfrak{g}_i with

an ideal of g. We have $\mathfrak{m}^* \otimes \mathfrak{m}^* = \sum_{i,j} \mathfrak{m}_i^* \otimes \mathfrak{m}_j^*$ (direct sum). Lemma 10.1 follows from the following facts: (1) $Q_L(\mathfrak{m}_i^* \otimes \mathfrak{m}_i^*) \subset \mathfrak{m}_i^* \otimes \mathfrak{m}_i^*$ and $Q_L(\mathfrak{m}_i^* \otimes \mathfrak{m}_j^*) = \{0\}$ $(i \neq j)$; (2) Q_{L_i} is identical with the restriction of Q_L to $\mathfrak{m}_i^* \otimes \mathfrak{m}_i^*$.

LEMMA 10.2. Let L be an l-system and let L^c be the complexification of L. Then Φ_L is injective if and only if Φ_{L^c} is injective.

PROOF. Setting $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$, we have $L^c = (\mathfrak{g}^c, \mathfrak{m}^c, \mathfrak{m}^{*c}, \mathfrak{g}^c)$. We identify $\mathfrak{m}^{*c} \bigotimes \mathfrak{m}^{*c}$ with a subspace of $\mathfrak{m}^{*c} \bigotimes \mathfrak{m}^{*c}$ as follows:

$$\omega \otimes \omega' = \frac{1}{2} (\omega \otimes \omega' - (\sqrt{-1} \ \omega) \otimes (\sqrt{-1} \ \omega'))$$

for all ω , $\omega' \in \mathfrak{m}^{*c}$. Furthermore we define an injective linear mapping ρ of $\mathfrak{m}^* \otimes \mathfrak{m}^*$ into $\mathfrak{m}^{*c} \otimes \mathfrak{m}^{*c}$ by $\rho(\omega \otimes \omega') = \omega \otimes \omega'$. We have $\mathfrak{m}^{*c} \otimes \mathfrak{m}^{*c} = \rho(\mathfrak{m}^* \otimes \mathfrak{m}^*) + \sqrt{-1} \rho(\mathfrak{m}^* \otimes \mathfrak{m}^*)$ (direct sum). Now Lemma 10.2 is an immediate consequence from the followings: (1) $Q_{L^C}(\mathfrak{m}^{*c} \otimes \mathfrak{m}^{*c}) \subset \mathfrak{m}^{*c} \otimes \mathfrak{m}^{*c}$; (2) Q_{L^C} restricted to $\mathfrak{m}^{*c} \otimes \mathfrak{m}^{*c}$ is complex linear; (3) $Q_{L^C} \circ \rho = \rho \circ Q_L$.

Let $L=(\mathfrak{g},\mathfrak{m},\mathfrak{m}^*,\mathfrak{g})$ be an irreducible l-system of type (C). By Prop. 2.4, \mathfrak{g} becomes a complex Lie algebra in such a way that $\mathfrak{m},\mathfrak{m}^*$ and $\mathfrak{g}}$ are complex subalgebras of \mathfrak{g} . Let us identify $\mathfrak{m}^* \otimes \mathfrak{m}^*$ with a subspace of $\mathfrak{m}^* \otimes \mathfrak{m}^*$ as above. Then we have easily $Q_L(\mathfrak{m}^* \otimes \mathfrak{m}^*) \subset \mathfrak{m}^* \otimes \mathfrak{m}^*$. Now take a *-isomorphism θ of L onto L^* and let $S=(\mathfrak{g}_{\theta},\mathfrak{m}_{\ell},\mathfrak{g}_{\theta})$ be the corresponding simple compact hermitian s-system. We have $\mathfrak{g}=\mathfrak{g}_{\theta}^C$, $\mathfrak{g}=\mathfrak{g}_{\theta}^C$ and $\mathfrak{m}+\mathfrak{m}^*=\mathfrak{m}_{\theta}^C$ (Prop. 4.1). Let φ_{θ} be the Killing form of \mathfrak{g}_{θ} and let $\langle , \rangle_{\theta}$ be the positive definite inner product on \mathfrak{m}_{θ} defined by $\langle X,Y\rangle_{\theta}=-\varphi_{\theta}(X,Y)$ for all $X,Y\in\mathfrak{m}_{\theta}$; the inner product $\langle , \rangle_{\theta}$ on \mathfrak{m}_{θ} gives rise to a positive definite inner product $\langle , \rangle_{\theta}$ on $\mathfrak{m}_{\theta}\otimes\mathfrak{m}_{\theta}$. This being said, we define an endomorphism P^{8} of $\mathfrak{m}_{\theta}\otimes\mathfrak{m}_{\theta}$ by

$$\langle X \otimes X', P(Y \otimes Y') \rangle_{\theta} = \varphi_{\hat{\theta}}([X, Y], [X', Y'])$$

for all $X, X', Y, Y' \in \mathfrak{m}_{\theta}$, cf. [11]. It is shown that P is self-adjoint with respect to the inner product $\langle , \rangle_{\theta}$. Now the endomorphism P is naturally extended to a complex endomorphism P^c of $(\mathfrak{m}_{\theta} \otimes \mathfrak{m}_{\theta})^c = \mathfrak{m}_{\theta}^c \otimes \mathfrak{m}_{\theta}^c$. Then we can

$$[[X_h, X_k], X_j] = \sum_i R_{ijhk} X_i.$$

Then R_{ijhk} may be considered as the components of the curvature tensor field of the (compact irreducible hermition) symmetric space $M_L = G_\theta/\widetilde{G}_\theta$. If $f = \sum\limits_{i,j} f_{ij} X_i \otimes X_j$, we get

$$P(f) = \sum_{i,j} \left(\sum_{h,k} R_{ihjk} f_{hk} \right) X_i \otimes X_j.$$

⁸⁾ Let X_1, \dots, X_n be an orthonormal base of \mathfrak{m}_θ with respect to the inner product $<,>_{\theta}$. Set

prove that P^{σ} leaves $\mathfrak{m}^* \otimes \mathfrak{m}^*$ stable and that Q_L and P^{σ} coincide on $\mathfrak{m}^* \otimes \mathfrak{m}^*$.

LEMMA 10.3. Let L be an irreducible l-system of type (C). Then Φ_L is injective except the case when L is of type $I_{1,1}$.

PROOF. We first remark that L is of type $I_{1,1}$ if and only if $\dim \mathfrak{g}_{\theta}=3$. Let P^* be the restriction of P^c to $\mathfrak{m}^* \underset{c}{\otimes} \mathfrak{m}^*$. Then we see from the above argument that Φ_L is injective if and only if $-\frac{1}{2}$ — is not an eigen value of P^* . If $\dim \mathfrak{g}_{\theta}=3$, we have easily $\Phi_L=0$. If $\dim \mathfrak{g}_{\theta}\geq 3$, we infer from [11] that the maximal eigen value of P and hence of P^* is smaller than $-\frac{1}{2}$ —, from which follows that Φ_L is injective.

Theorem 10.1 follows from Lemmas 10.1, 10.2, 10.3 and Props. 2.1, 2.2, 2.5, 4.3.

Now we give our attention to the integer $\delta(L)$.

Given an *l*-system $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}}), n(L)$ will denote the dimension of \mathfrak{m} .

THEOREM 10.2. Let L be an l-system and let $L \cong L_1 \times \cdots \times L_s$ be a decomposition of L into irreducible l-systems. We assume that each L_i is of classical type. Then $\delta(L) = n(L)$ if and only if none of L_i is of type $P^m(\mathbf{R})$ or $P^m(\mathbf{C})$ $(m \ge 2)$.

LEMMA 10.4. Let L_i $(1 \le i \le s)$ be an l-system and let L be the product of L_1, \dots, L_s . Then $\delta(L) = n(L)$ if and only if $\delta(L_i) = n(L_i)$ for each i.

PROOF. $\delta(L) = \sum_{i} \delta(L_i)$, $n(L) = \sum_{i} n(L_i)$ and $\delta(L_i) \ge n(L_i)$.

LEMMA 10.5. Let L be an l-system and let L^c be the complexification of L. Then $\delta(L) = n(L)$ if and only if $\delta(L^c) = n(L^c)$.

PROOF. $\delta(L^c) = 2\delta(L)$ and $n(L^c) = 2n(L)$.

A direct calculation gives

LEMMA 10.6. Let L be an irreducible l-system of type (C). Assuming that L is of classical type, we have $\delta(L) = n(L)$ except the case when L is of type $I_{m,1}$ $(m \ge 2)$ or III_3 .

Since $III_3 \cong I_{3,1}$, Th. 10.2 follows from Lemmas 10.4, 10.5, 10.6 and Props. 2.1, 2.2, 2.5, 4.3.

REMARK. Let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$ be an l-system. Set $\mathcal{E}' = \mathcal{L}(\mathfrak{m}; \mathfrak{m}^*)$ and denote by \mathcal{I}' the subspace of $\mathcal{L}(\mathfrak{m}, \mathfrak{m}; \mathfrak{g})$ consisting of all elements W such that $W(\xi, \xi') = -W(\xi', \xi)$ for all $\xi, \xi' \in \mathfrak{m}$. Define linear mappings Δ' of \mathcal{E}' into \mathcal{I}' and Δ'^* of \mathcal{I}' into \mathcal{E}' respectively as follows: $\Delta'(J)(\xi, \xi') = [J(\xi), \xi'] - [J(\xi'), \xi]$ for all $J \in \mathcal{E}'$ and $\xi, \xi' \in \mathfrak{m}$; $\Delta'^*(W)(\xi) = \sum_i [W(\xi, e_i), \omega^i]$ for all $W \in \mathcal{I}'$ and $\xi \in \mathfrak{m}$, where (e_i) is a base of \mathfrak{m} and (ω^i) is the dual base of (e_i) . Then we have

$$\Phi_L = \Delta'^* \circ \Delta'$$
.

Now take a *-isomorphism θ of L onto L^* and define positive definite inner products (,) in \mathcal{E}' and \mathcal{I}' respectively as follows: $(J, J') = -\sum_i \langle \theta J(e_i), J'(e_i) \rangle$ for all $J, J' \in \mathcal{E}'$ where (e_i) is an orthonormal base of \mathfrak{m} with respect to the inner product (,) introduced in § 8, i.e., $\langle e_i, \theta e_j \rangle = -\delta_{ij}$;

$$(W, W') = -\frac{1}{2} \sum_{i,j} \varphi(W(e_i, e_j), \theta W'(e_i, e_j))$$

for all W, $W' \in \mathcal{I}'$, (e_i) being just as above. Then, analogously to Lemma 8.2, we get

$$(W, \Delta'(J)) = (\Delta'^*(W), J)$$

for all $W \in \mathcal{I}'$ and $J \in \mathcal{E}'$, from which follows that

(1)
$$\Phi_L^{-1}(0) = \Delta^{\prime -1}(0),$$

(2)
$$(\Phi_L(J), J) = (\Delta'(J), \Delta'(J)) \ge 0.$$

We mention that we can give a direct proof of Th. 10.1 by using (1).

Appendix

The cohomology group associated with an l-system

As we have observed in the text, the operators Δ , Δ^* , Θ , Δ' , Δ'^* , Φ_L and the integer $\delta(L)$ play very important roles in the construction of the normal connections of type (L). In this appendix, we shall give cohomological interpretations of these operators and integer⁹⁾.

Let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$ be an l-system. We use the notations and identifications given in the text. Put $\mathcal{I}(\mathfrak{m}) = \sum_{r,s} \mathcal{I}_s^r(\mathfrak{m})$ (for the definition of $\mathcal{I}_s^r(\mathfrak{m})$, see § 5). Then the group $\widetilde{G}(\subset GL(\mathfrak{m}))$ linearly acts on $\mathcal{I}(\mathfrak{m})$ through the mapping $\widetilde{G} \times \mathcal{I}(\mathfrak{m}) \ni (a, X) \to X^a \in \mathcal{I}(\mathfrak{m})$ (§ 5). Note that $\mathfrak{m}, \mathfrak{m}^*, \mathfrak{g}(\subset \mathfrak{gl}(\mathfrak{m}))$ and hence \mathfrak{g} are \widetilde{G} -stable subspaces of $\mathcal{I}(\mathfrak{m})$.

For each integer p, define a subspace \mathfrak{g}_p of \mathfrak{g} as follows: $\mathfrak{g}_p = \mathfrak{m}(p=-1)$, $= \tilde{\mathfrak{g}}(p=0)$, $= \mathfrak{m}^*$ (p=1) and = 0 $(p \neq -1, 0, 1)$. Then the family (\mathfrak{g}_p) satisfies the followings:

(1)
$$g = \sum_{p} g_{p}$$
 (direct sum),

$$[\mathfrak{g}_p,\,\mathfrak{g}_q]\subset\mathfrak{g}_{p+q}.$$

(1) and (2) mean that \mathfrak{g} is a graded Lie algebra. By utilizing the family (\mathfrak{g}_p) thus obtained, we shall define the cohomology group $H(L) = \sum_{p,q} H^{p,q}(L)$ associated with the l-system L.

Let $C^{p,q}(L)$ be the vector space of all \mathfrak{g}_{p-1} -valued q-forms on $\mathfrak{m} = \mathfrak{g}_{-1}$ and

⁹⁾ We owe to the referee these cohomological interpretations.

put

$$C(L) = \sum_{p,q} C^{p,q}(L)$$
.

Then, $C^{p,q}(L)$ and hence C(L) are \widetilde{G} -stable subspaces of $\mathcal{I}(\mathfrak{m})$: $(c^a)(x_1, \cdots, x_q) = (c(a^{-1}x_1, \cdots, a^{-1}x_q))^a$ for all $c \in C^{p,q}(L)$, $a \in \widetilde{G}$ and $x_1, \cdots, x_q \in \mathfrak{m}$. More precisely, $C^{0,q}(L)$ (resp. $C^{1,q}(L)$, resp. $C^{2,q}(L)$) is a \widetilde{G} -stable subspace of $\mathcal{I}_q^1(\mathfrak{m})$ (resp. $\mathcal{I}_{q+1}^1(\mathfrak{m})$, resp. $\mathcal{I}_{q+1}^0(\mathfrak{m})$), and $C^{p,q}(L) = 0$ ($p \neq 0, 1, 2$). Now define coboundary operator $\partial: C(L) \to C(L)$ to be $\partial C^{p,q}(L) \subset C^{p-1,q+1}(L)$ and

$$(\partial c)(x_1, \dots, x_{q+1}) = \sum_{i=1}^{q+1} (-1)^i [c(x_1, \dots, \hat{x}_i, \dots, x_{q+1}), x_i]$$

for all $c \in C^{p,q}(L)$ and $x_1, \dots, x_{q+1} \in \mathfrak{m}$.

We have easily

LEMMA 1. $\partial(c^a) = (\partial c^a), c \in C(L), a \in \widetilde{G}.$

LEMMA 2. $\partial^2 = 0$.

PROOF. Take any $c \in C^{p,q}(L)$ and $x_1, \dots, x_{q+2} \in \mathfrak{m}$. Then we have

$$\begin{split} (\partial^2 c)(x_1, \, \cdots, \, x_{q+2}) &= \sum_i \, (-1)^i \big[(\partial c)(x_1, \, \cdots, \, \hat{x}_i, \, \cdots, \, x_{q+2}), \, x_i \big] \\ &= \sum_{j < i} \, (-1)^{i+j} \big[\big[c(x_1, \, \cdots, \, \hat{x}_j, \, \cdots, \, \hat{x}_i, \, \cdots, \, x_{q+2}), \, x_j \big], \, x_i \big] \\ &+ \sum_{j > i} \, (-1)^{i+j-1} \big[\big[c(x_1, \, \cdots, \, \hat{x}_i, \, \cdots, \, \hat{x}_j, \, \cdots, \, x_{q+2}), \, x_j \big], \, x_i \big] \\ &= \sum_{j < i} \, (-1)^{i+j} \big[\big[c(x_1, \, \cdots, \, \hat{x}_j, \, \cdots, \, \hat{x}_i, \, \cdots, \, x_{q+2}), \, x_j \big], \, x_i \big] \\ &+ \sum_{i < i} \, (-1)^{i+j-1} \big[\big[c(x_1, \, \cdots, \, \hat{x}_j, \, \cdots, \, \hat{x}_i, \, \cdots, \, x_{q+2}), \, x_i \big], \, x_j \big] \,. \end{split}$$

Since $[\mathfrak{m}, \mathfrak{m}] = 0$, we get $(\partial^2 c)(x_1, \dots, x_{q+2}) = 0$.

As usual, to the complex $(C(L) = \sum_{p,q} C^{p,q}(L), \partial)$ there is associated the cohomology group $H(L) = \sum_{p,q} H^{p,q}(L)$:

$$H^{p,q}(L) = \partial^{-1}(0) \cap C^{p,q}(L)/C^{p+1,q-1}(L)$$
.

We can easily verify that $H^{p,q}(L) = 0$ ($p \neq 0$, 1, 2), $H^{0,0}(L) = \mathfrak{m}$, $H^{1,0}(L) = H^{2,0}(L)$ = 0 and $H^{0,1}(L) = \mathfrak{gl}(\mathfrak{m})/\tilde{\mathfrak{g}}$ (Lemma 1.2).

We now define the (formal) adjoint operator $\partial^*: C(L) \to C(L)$ of ∂ to be $\partial^*C^{p,q}(L) \subset C^{p+1,q-1}(L)$ and

$$(\partial^* c)(x_1, \dots, x_{q-1}) = (-1)^q \sum_{i=1}^n [c(x_1, \dots, x_{q-1}, e_i), \omega^i]$$

for all $c \in C^{p,q}(L)$ and $x_1, \dots, x_{q-1} \in \mathfrak{m}$, where (e_i) is a base of \mathfrak{m} and (ω^i) is the dual base of (e_i) . It is evident that $\partial^* c$ is well defined.

We get easily

LEMMA 3. $\partial^*(c^a) = (\partial^*c)^a$, $c \in C(L)$, $a \in \widetilde{G}$.

Let us now show that ∂^* is really the adjoint operator of ∂ with respect to a certian positive definite inner product (,) on C(L). Take any *-isomorphism θ of L onto L^* and define a positive definite inner product (,) on \mathfrak{g} by $(x,y)=-\varphi(x,\theta y)$ for all $x,y\in\mathfrak{g}$. This being said, we define a positive definite inner product (,) on $C^{p,q}(L)$ by

$$(c, c') = \frac{1}{q!} \sum_{i_1, \dots, i_q} (c(e_{i_1}, \dots, e_{i_q}), c'(e_{i_1}, \dots, e_{i_q}))$$

for all $c, c' \in C^{p,q}(L)$, where (e_i) is an orthonormal base of \mathfrak{m} with respect to the inner product (,). The inner products (,) on $C^{p,q}(L)$ naturally give rise to a positive definite inner product (,) on C(L).

LEMMA 4. ∂^* is the adjoint operator of ∂ with respect to the inner product (,) on $C(L):(\partial c, c')=(c, \partial^*c'), c, c' \in C(L)$.

PROOF. Let $c \in C^{p,q}(L)$ and $c' \in C^{p-1,q+1}(L)$. Then we get

$$\begin{split} (\partial c,\,c') &= -\frac{1}{(q+1)!} \sum_{i_1,\cdots,i_{q+1}} \varphi((\partial c)(e_{i_1},\,\cdots,\,e_{i_{q+1}}),\,\theta\cdot c'(e_{i_1},\,\cdots,\,e_{i_{q+1}})) \\ &= -\frac{1}{(q+1)!} \sum_{i_1,\cdots,i_{q+1}} \sum_{j} (-1)^j \varphi([c(e_{i_1},\,\cdots,\,\hat{e}_{i_j},\,\cdots,\,e_{i_{q+1}}),\,e_{i_j}],\,\theta\cdot c'(e_{i_1},\,\cdots,\,e_{i_{q+1}})) \\ &= \frac{(-1)^{q+1}}{(q+1)!} \sum_{j} \sum_{i_1,\cdots,\hat{i}_j,\cdots,i_{q+1}} \sum_{j} \varphi(c(e_{i_1},\,\cdots,\,\hat{e}_{i_j},\,\cdots,\,e_{i_{q+1}}),\\ &\qquad \qquad \qquad \theta[c'(e_{i_1},\,\cdots,\,\hat{e}_{i_j},\,\cdots,\,e_{i_{q+1}},\,e_{i_j}),\,\theta e_{i_j}]) \\ &= \frac{1}{q+1} \sum_{j_j} \sum_{i_1,\cdots,\hat{i},\cdots,i_{q+1}} (c(e_{i_1},\,\cdots,\,\hat{e}_{i_j},\,\cdots,\,e_{i_{q+1}}),\,(\hat{o}^*c')(e_{i_1},\,\cdots,\,\hat{e}_{i_j},\,\cdots,\,e_{i_{q+1}})) \\ &= (c,\,\hat{o}^*c')\,, \end{split}$$

where we have used the fact that $(-\theta e_i)$ is the dual base of (e_i) .

An important consequence of Lemma 4 is that there is defined the notion of a harmonic form in C(L). We put $\square = \partial^* \partial + \partial \partial^*$ (Laplace Bertrami operator). Then a form in $\square^{-1}(0) = \mathcal{H} = \sum_{p,q} \mathcal{H}^{p,q}$ is called harmonic. As usual we get $\mathcal{H}^{p,q} = \partial^{-1}(0) \cap \partial^{*-1}(0) \cap C^{p,q}(L)$ and the orthogonal decompositions:

$$C^{p,q}(L) = \mathcal{H}^{p,q} + \Box C^{p,q}(L),$$

$$= \mathcal{H}^{p,q} + \partial C^{p+1,q-1}(L) + \partial^* C^{p-1,q+1}(L),$$

$$\partial^{-1}(0) \cap C^{p,q}(L) = \mathcal{H}^{p,q} + \partial C^{p+1,q-1}(L).$$

Therefore we get $H^{p,q}(L) = \mathcal{H}^{p,q}$.

Relations between our previous notations and cohomology:

(A)
$$\mathcal{E} = C^{1,1}(L)$$
, $\mathcal{I} = C^{0,2}(L)$, $\Delta = \partial \mid C^{1,1}(L)$, $\Delta^* = \partial^* \mid C^{0,2}(L)$, $\Theta = \partial^* \partial \mid C^{1,1}(L)$ (§ 8);

(B)
$$\mathcal{E}' = C^{2,1}(L)$$
, $\mathcal{I}' = C^{1,2}(L)$, $\Delta' = \partial \mid C^{2,1}(L)$, $\Delta'^* = \partial^* \mid C^{1,2}(L)$, $\Phi_L = \partial^* \partial \mid C^{2,1}(L) = \square \mid C^{2,1}(L)$ (§ 9 and § 10);

- (C) $\tilde{\omega} = -\partial \omega$, $\omega \in \mathfrak{m}^* = C^{2,0}(L)$, $\delta(L) = \dim (\partial^{-1}(0) \cap C^{1,1}(L))$, $n(L) = \dim \partial C^{2,0}(L)$ (§ 9 and § 10);
 - (D) $R^* = \partial^* R$, $S^* = \partial^* S$, $W^* = \partial^* W$, $T^* = \partial^* T$ (§ 5, § 7 and § 8). Finally we add

PROPOSITION. (1) Φ_L is an automorphism if and only if $H^{2,1}(L) = 0$. (2) $\delta(L) = n(L)$ if and only if $H^{1,1}(L) = 0$.

PROOF. (1) follows from (B) and the fact that $H^{2,1}(L) = \mathcal{H}^{2,1}$. (2) is immediate from (C).

Mathematical Institute Nagoya University

Bibliography

- [1] M. Berger, Les espaces symétriques non compacts, Ann. Ec. Norm. Sup., 74 (1957), 85-177.
- [2] S. Helgason, Differential geometry and symmetric spaces, Academic Press, 1962.
- [3] N. Iwahori, On real irreducible representations of Lie algebras, Nagoya Math. J., 14 (1959), 59-83.
- [4] S. Kobayashi, Theory of connections, Annali di Math., 43 (1957), 119-194.
- [5] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Interscience Publishers, 1963.
- [6] S. Murakami, On the automorphisms of a real semi-simple Lie algebra, J. Math. Soc. Japan, 4 (1952), 103-133.
- [7] T. Nagano, Transformation groups on compact symmetric spaces, to appear.
- [8] Séminaire "Sophus Lie", Théorie des algèbres de Lie, Topologie des groupes de Lie, Paris, 1955.
- [9] N. Tanaka, Projective connections and projective transformations, Nagoya Math J., 12 (1957), 1-24.
- [10] N. Tanaka, Conformal connections and conformal transformations, Trans. Amer. Math. Soc., 92 (1959), 168-190.
- [11] A. Weil, On discrete subgroups of Lie groups, II, Ann. of Math., 75 (1962), 578-602.