# On the equivalence problems associated with a certain class of homogeneous spaces By Noboru TANAKA (Received Sept. 19, 1964) #### Introduction The present paper, first of all, introduces the notion of an l-system on which our theory is based. An l-system L is defined to be a system of a real semi-simple Lie algebra $\mathfrak g$ and three subalgebras of $\mathfrak g$ satisfying certain conditions (Definition 1.1). To every l-system L we associate a homogeneous space $M_L = G/G'$ of a Lie group G over a closed subgroup G' of G (see § 1). It is remarkable that the homogeneous space $M_L = G/G'$ is a prolongation of a compact Riemannian symmetric space in the following sense (cf. Proposition 3.2): A maximal compact subgroup K of G acts transitively on $M_L$ , and the homogeneous space $M_L = K/K \cap G'$ is a compact Riemannian symmetric space. A recent work of T. Nagano [T] proves that, roughly speaking, any prolongation of a compact Riemannian symmetric space is locally isomorphic with a homogeneous space of the form $M_L = G/G'$ . Now let L be an l-system and let $M_L = G/G'$ be the corresponding homogeneous space. G being considered as a transformation group on $M_L$ , the linear isotropy group $\tilde{G}$ of G at the origin o of $M_L$ is a subgroup of the general linear group $GL(\mathfrak{m})$ of the tangent vector space $\mathfrak{m}$ to $M_L$ at o. In this way, to every l-system L there corresponds a representation $(\tilde{G},\mathfrak{m})$ . Therefore there can be defined the notion of a $\tilde{G}$ -structure: A $\tilde{G}$ -structure on a manifold M is a principal fiber bundle $\tilde{P}$ over the base space M with structure group $\tilde{G}$ which is a subbundle of the bundle of frames of M (Definition 5.1). The main purpose of the present paper is, for a given l-system L, to study conditions for the equivalence of two $\tilde{G}$ -structures. Our main results (Theorems 9.3, 9.4, 10.1 and 10.2) may be stated as follows: Under general hypotheses on L, to every $\tilde{G}$ -structure $\tilde{P}$ there is associated a system, called the normal connection of type (L), in such a way that the equivalence of two $\tilde{G}$ -structures can be characterized. The normal connection of type (L) is a Cartan connection corresponding to the homogeneous space $M_L = G/G'$ and is found to be a generalization of the normal conformal connection. It should be here noted that there also exists the notion of the normal connection of type (L) under a weaker hypothesis on L (Theorems 9.1 and 9.2), which just generalizes the notion of the normal projective connection. In § 1, we construct the homogeneous space $M_L = G/G'$ and study the fundamental properties of it. In § 2, we define the notion of an irreducible l-system (Definition 2.1). It is shown that an arbitrary l-system L is decomposed into a product of irreducible l-systems (Propositions 2.1 and 2.2) and that the set of all irreducible l-systems is devided into two classes called of type (R) and of type (C) (Definition 2.2). § 3 is devoted to the study of the duality which lies among l-systems. This leads to the investigation of the maximal compact subgroups of the group G. In § 4, it is shown that the set of all isomorphism classes of irreducible l-systems of type (C) is in a one to one correspondence with the set of all isomorphism classes of compact irreducible hermitian symmetric spaces. § 5, § 6 and § 7 are preliminary to the subsequent two sections. In § 8, it is proved that to every G-structure P on a manifold M there is associated a tensor field T of type $\binom{1}{2}$ on M called the torsion tensor field of P. This notion turns out to be a generalization of the notion of the Nijenhuis tensor field of an almost complex structure. § 9 is concerned with the construction of the normal connection of type (L), which will be carried out following the construction of the normal projective connection given in [9]. Hypotheses on L for the existence of the normal connection of type (L) will be stated in terms of an endomorphism $\Phi_L$ and an integer $\delta(L)$ (as for the cohomological interpretations of these hypotheses, see Appendix). The endomorphism $\Phi_L$ has an intimate relationship to the quadratic form which appears in the study of discrete subgroups of a Lie group, for example, in [11]. The integer $\delta(L)$ is the dimension of the first derived space associated with the representation $(\tilde{G}, m)$ . Finally in § 10, we study the endomorphism $\Phi_L$ and the integer $\delta(L)$ by using the results in § 2, § 3 and § 4 and show that hypotheses on L for the existence of the normal connection of type (L) are generally satisfied. Owing to the results in § 2, the problems will be reduced to the case where L is an irreducible l-system of type (C). #### Preliminary remark Throughout this paper, we always assume the differentiability of class $C^{\infty}$ , and by a manifold we shall mean a manifold satisfying the second countability axiom. R (resp. C) will denote the field of real numbers (resp. of complex numbers). # $\S$ 1. The groups G, G' and $\widetilde{G}$ DEFINITION 1.1. Let $\mathfrak g$ be a real semi-simple Lie algebra and let $\mathfrak m$ , $\mathfrak m^*$ and $\tilde{\mathfrak g}$ be three subalgebras of $\mathfrak g$ . The (ordered) system $L=(\mathfrak g,\mathfrak m,\mathfrak m^*,\tilde{\mathfrak g})$ is called an l-system if it satisfies the following conditions: - (l. 1) $g = m + m^* + \tilde{g}$ (direct sum of vector spaces); - (l. 2) Both m and m\* are abelian; - (l. 3) $[\tilde{g}, \mathfrak{m}] \subset \mathfrak{m}$ and $[\tilde{g}, \mathfrak{m}^*] \subset \mathfrak{m}^*$ ; - (l. 4) $[\mathfrak{m}, \mathfrak{m}^*] = \tilde{\mathfrak{g}}.$ Let $L_i = (\mathfrak{g}_i, \mathfrak{m}_i, \mathfrak{m}_i^*, \tilde{\mathfrak{g}}_i)$ (i = 1, 2) be an l-system. An isomorphism f of the Lie algebra $\mathfrak{g}_1$ onto the Lie algebra $\mathfrak{g}_2$ is called an isomorphism of $L_1$ onto $L_2$ if $f(\mathfrak{m}_1) = \mathfrak{m}_2$ , $f(\mathfrak{m}_1^*) = \mathfrak{m}_2^*$ (and hence $f(\tilde{\mathfrak{g}}_1) = \tilde{\mathfrak{g}}_2$ ). Let $\mathfrak g$ be a real Lie algebra, let $\mathfrak n$ be a subspace of $\mathfrak g$ and let $\mathfrak g$ be a subalgebra of $\mathfrak g$ . The system $S=(\mathfrak g,\mathfrak n,\mathfrak g)$ will be called an *infinitesimal (affine)* symmetric space or briefly an s-system if it satisfies the following conditions: - (s. 1) $\mathfrak{g} = \mathfrak{n} + \tilde{\mathfrak{g}}$ (direct sum); - (s. 2) $[\tilde{g}, \mathfrak{n}] \subset \mathfrak{n}$ ; - $(s. 3) [n, n] \subset \tilde{g}.$ We see from Def. 1.1 that 1), for any l-system $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$ , the system $S = (\mathfrak{g}, \mathfrak{m} + \mathfrak{m}^*, \mathfrak{g})$ forms an s-system. From now on, we shall consider a fixed l-system $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}})$ and denote by $\varphi$ the Killing form of $\mathfrak{g}$ . We have easily LEMMA 1.1. $$\varphi(\mathfrak{m}, \mathfrak{m}) = \varphi(\mathfrak{m}^*, \mathfrak{m}^*) = \varphi(\mathfrak{m} + \mathfrak{m}^*, \tilde{\mathfrak{g}}) = \{0\}$$ We put $$\langle \xi, \omega \rangle = \varphi(\xi, \omega)$$ for all $\xi \in \mathfrak{m}$ and $\omega \in \mathfrak{m}^*$ . PROPOSITION 1.1. (1) The bilinear mapping $m \times m^* \ni (\xi, \omega) \to \langle \xi, \omega \rangle \in \mathbf{R}$ gives a duality between the two vector spaces $\mathfrak{m}$ and $\mathfrak{m}^*$ , i.e., if $\xi \in \mathfrak{m}$ (resp. $\omega \in \mathfrak{m}^*$ ) and if $\langle \xi, \mathfrak{m}^* \rangle = \{0\}$ (resp. $\langle \mathfrak{m}, \omega \rangle = \{0\}$ ), then $\xi = 0$ (resp. $\omega = 0$ ). In particular, dim $\mathfrak{m} = \dim \mathfrak{m}^*$ . (2) The restriction of $\varphi$ to $\mathfrak{g}$ is non-degenerate. This follows immediately from Lemma 1.1 and the fact that $\varphi$ is non-degenerate. LEMMA 1.2. (1) If $\xi \in \mathfrak{m}$ (resp. $\omega \in \mathfrak{m}^*$ ) and if $[\xi, \mathfrak{m}^*] = \{0\}$ (resp. $[\mathfrak{m}, \omega] = \{0\}$ ), then $\xi = 0$ (resp. $\omega = 0$ ). (2) If $A \in \mathfrak{g}$ and if $[A, \mathfrak{m}] = \{0\}$ or $[A, \mathfrak{m}^*]$ <sup>1)</sup> Therefore, some of our results (in § 1-§ 4) essentially follow from Berger [1]. $= \{0\}, then A = 0.$ PROOF. (1) Suppose that a $\xi \in \mathfrak{m}$ satisfies the condition $[\xi, \mathfrak{m}^*] = \{0\}$ . We have $\langle [\xi, \tilde{\mathfrak{g}}], \mathfrak{m}^* \rangle = \varphi(\tilde{\mathfrak{g}}, [\xi, \mathfrak{m}^*]) = \{0\}$ , whence $[\xi, \tilde{\mathfrak{g}}] = \{0\}$ (Prop. 1.1, (1)). It follows that $\xi$ is in the center of $\mathfrak{g}$ (conditions (l. 1) and (l. 2)). Since $\mathfrak{g}$ is semi-simple, we have $\xi = 0$ . The second assertion can be similarly proved. (2) Suppose that an $A \in \tilde{\mathfrak{g}}$ satisfies the condition $[A, \mathfrak{m}] = \{0\}$ . We have $\langle \mathfrak{m}, [A, \mathfrak{m}^*] \rangle = \varphi([A, \mathfrak{m}], \mathfrak{m}^*) = \{0\}$ , whence $[A, \mathfrak{m}^*] = \{0\}$ . Since $\tilde{\mathfrak{g}} = [\mathfrak{m}, \mathfrak{m}^*]$ (condition (l. 4)), we get $[A, \tilde{\mathfrak{g}}] = \{0\}$ . If follows that A is in the center of $\mathfrak{g}$ and hence A = 0. The second assertion can be similarly proved. NOTATION. Let $\mathfrak{g}$ be a Lie algebra and let $\mathfrak{h}$ be a subalgebra of $\mathfrak{g}$ . $N(\mathfrak{h},\mathfrak{g})$ (resp. $C(\mathfrak{h},\mathfrak{g})$ ) will denote the normalizer (resp. the centralizer) of $\mathfrak{h}$ in $\mathfrak{g}$ . By Lemma 1.2, we have easily PROPOSITION 1.2. (1) $N(\mathfrak{m}, \mathfrak{g}) = \mathfrak{m} + \mathfrak{g}$ and $N(\mathfrak{m}^*, \mathfrak{g}) = \mathfrak{m}^* + \mathfrak{g}$ . (2) $C(\mathfrak{m}, \mathfrak{g}) = \mathfrak{m}$ and $C(\mathfrak{m}^*, \mathfrak{g}) = \mathfrak{m}^*$ , in other words, both $\mathfrak{m}$ and $\mathfrak{m}^*$ are maximal abelian subalgebras of $\mathfrak{g}$ . We shall denote by $A(\mathfrak{g})$ the group of all automorphisms of the Lie algebra $\mathfrak{g}$ . $\mathfrak{g}$ being semi-simple, the Lie algebra of $A(\mathfrak{g})$ may be identified with the Lie algebra $\mathfrak{g}$ in such a way that adaX = aX for all $a \in A(\mathfrak{g})$ and $X \in \mathfrak{g}$ . We prefer the notation adaX to the one aX. NOTATION. Let G be a Lie group and let $\mathfrak g$ be the Lie algebra of G. Given a subalgebra $\mathfrak h$ of $\mathfrak g$ , $N(\mathfrak h,G)$ (resp. $C(\mathfrak h,G)$ ) will denote the normalizer (resp. the centralizer) of $\mathfrak h$ in G, which is, by definition, the subgroup of G consisting of all the elements a such that $ada\mathfrak h=\mathfrak h$ (resp. adaX=X for all $X\in\mathfrak h$ ). The Lie algebra of $N(\mathfrak h,G)$ (resp. $C(\mathfrak h,G)$ ) coincides with $N(\mathfrak h,\mathfrak g)$ (resp. $C(\mathfrak h,\mathfrak g)$ ). We shall denote by $\widetilde{G}$ the intersection of the normalizer of $\mathfrak{m}$ in $A(\mathfrak{g})$ and that of $\mathfrak{m}^*$ in $A(\mathfrak{g})$ , i.e., $\widetilde{G}=N(\mathfrak{m},A(\mathfrak{g}))\cap N(\mathfrak{m}^*,A(\mathfrak{g}))$ . It follows from Prop. 1.2, (1) that the Lie algebra of $\widetilde{G}$ is identical with the Lie algebra $\widetilde{\mathfrak{g}}$ . Note that the group $\widetilde{G}$ may be characterized as the group of all automorphisms of L. We now define a representation $\rho$ of $\widetilde{G}$ on $\mathfrak{m}$ by $\rho(a)\xi=ada\xi$ for all $a\in\widetilde{G}$ and $\xi\in\mathfrak{m}$ and denote by the same letter $\rho$ the corresponding representation of $\widetilde{\mathfrak{g}}$ on $\mathfrak{m}$ ; we have $\rho(A)\xi=[A,\xi]$ for all $A\in\widetilde{\mathfrak{g}}$ and $\xi\in\mathfrak{m}$ . In the same manner as in Lemma 1.2, (2), we can prove Lemma 1.3. The representation $\rho$ of $\widetilde{G}$ on $\mathfrak{m}$ is faithful. By Prop. 1.1, (1), the vector space $\mathfrak{m}^*$ may be identified with the dual space of $\mathfrak{m}$ and, by Lemma 1.3, the group $\widetilde{G}$ (resp. the Lie algebra $\mathfrak{g}$ ) may be identified with a subgroup (resp. a subalgebra) of the general linear group $GL(\mathfrak{m})$ of $\mathfrak{m}$ (resp. the Lie algebra $\mathfrak{gl}(\mathfrak{m})$ of all endomorphisms of $\mathfrak{m}$ ). Under these identifications, we have the equalities: (1.1) $$ada\xi = a\xi, \quad ada\omega = {}^{t}a^{-1}\omega, \quad adaB = aBa^{-1},$$ $$[A, \xi] = A\xi, \quad [A, \omega] = -{}^{t}A\omega, \quad [A, B] = AB - BA$$ for all $a \in \widetilde{G}$ , $\xi \in \mathfrak{m}$ , $\omega \in \mathfrak{m}^*$ and $A, B \in \mathfrak{g}$ , where ${}^tA$ stands for the transpose of an endomorphism A of $\mathfrak{m}$ with respect to the duality between $\mathfrak{m}$ and $\mathfrak{m}^*$ . Let $\tilde{\varphi}$ be the Killing form of $\tilde{\mathfrak{g}}$ . Then a direct calculation gives LEMMA 1.4. $$\varphi(A, B) = \hat{\varphi}(A, B) + 2TrAB$$ for all $A, B \in \mathfrak{g}$ , where TrC is the trace of an endomorphism C of $\mathfrak{m}$ . Proposition 1.3. $$\widetilde{G} = N(\widetilde{\mathfrak{g}}, GL(\mathfrak{m}))$$ . PROOF. We have clearly $\tilde{G} \subset N(\tilde{\mathfrak{g}}, GL(\mathfrak{m}))$ . Take any $a \in N(\tilde{\mathfrak{g}}, GL(\mathfrak{m}))$ and define an automorphism $\hat{a}$ of $\mathfrak{g}$ (as a vector space) as follows: $\hat{a}\xi = a\xi$ , $\hat{a}\omega = ta^{-1}\omega$ and $\hat{a}A = aAa^{-1}$ for all $\xi \in \mathfrak{m}$ , $\omega \in \mathfrak{m}^*$ and $A \in \tilde{\mathfrak{g}}$ . We show that $\hat{a}$ , thus obtained, is an automorphism of the Lie algebra $\mathfrak{g}$ . By (1.1), it suffices to verify the equality: $\hat{a}[\xi, \omega] = [\hat{a}\xi, \hat{a}\omega]$ for all $\xi \in \mathfrak{m}$ and $\omega \in \mathfrak{m}^*$ . By Lemma 1.4, we have $\varphi(\hat{a}A, \hat{a}B) = \varphi(A, B)$ for all $A, B \in \tilde{\mathfrak{g}}$ . Hence, we have $\varphi(\hat{a}[\xi, \omega], \hat{a}A) = \varphi([\xi, \omega], A) = \langle [A, \xi], \omega \rangle = \langle [\hat{a}A, \hat{a}\xi], \hat{a}\omega \rangle = \varphi([\hat{a}\xi, \hat{a}\omega], \hat{a}A)$ for all $A \in \tilde{\mathfrak{g}}$ . It follows from Prop. 1.1, (2) that $\hat{a}[\xi, \omega] = [\hat{a}\xi, \hat{a}\omega]$ , which proves our assertion. We have clearly $a = \hat{a} \in \tilde{G}$ . COROLLARY. The identity transformation $E_L$ of $\mathfrak{m}$ is in the center of $\mathfrak{g}$ . Proposition 1.4. $$\langle \xi, \omega \rangle = 2 Tr[\xi, \omega]$$ for all $\xi \in \mathfrak{m}$ and $\omega \in \mathfrak{m}^*$ . PROOF. By Lemma 1.4 and Cor. to Prop. 1.3, we have $\varphi([\xi, \omega], E_L) = 2Tr[\xi, \omega]$ . We have $\varphi([\xi, \omega], E_L) = \langle \xi, [\omega, E_L] \rangle = \langle \xi, \omega \rangle$ . We shall denote by G' the normalizer of $\mathfrak{m}^*$ in $A(\mathfrak{g})$ , i.e., $G' = N(\mathfrak{m}^*, A(\mathfrak{g}))$ . By Prop. 1.2, (1), the Lie algebra of G' is given by $\mathfrak{g}' = \mathfrak{m}^* + \mathfrak{g}$ . We have clearly $\widetilde{G}$ , $\exp \mathfrak{m}^* \subset G'$ , where $\exp \mathfrak{m}^*$ denotes the abelian subgroup of $A(\mathfrak{g})$ generated by $\mathfrak{m}^*$ . LEMMA 1.5. $$G' = N(\mathfrak{g}', A(\mathfrak{g}))$$ . PROOF. We have clearly $G' \subset N(\mathfrak{g}', A(\mathfrak{g}))$ . Take any a in $N(\mathfrak{g}', A(\mathfrak{g}))$ . We have $\varphi(ada\mathfrak{m}^*, \mathfrak{g}') = \varphi(\mathfrak{m}^*, \mathfrak{g}') = \{0\}$ (Lemma 1.1). Hence, it follows from Lemma 1.1 and Prop. 1.1 that $ada\mathfrak{m}^* \subset \mathfrak{m}^*$ , i. e., $a \in G'$ . We have $$g = m + g'$$ (direct sum). Taking account of Lemma 1.5, we now define a homomorphism l of G' into $GL(\mathfrak{m})$ by $$(1.2) ada\xi \equiv l(a)\xi \bmod \mathfrak{g}'$$ for all $a \in G'$ and $\xi \in \mathfrak{m}$ . We shall denote by the same letter l the corresponding homomorphism of $\mathfrak{g}'$ into $\mathfrak{gl}(\mathfrak{m})$ , i. e., $$[X, \xi] \equiv l(X)\xi \mod \mathfrak{g}'$$ for all $X \in \mathfrak{g}'$ and $\xi \in \mathfrak{m}$ . We see easily that l(X) coincides with the $\mathfrak{g}$ -component of X in the decomposition $\mathfrak{g}' = \mathfrak{m}^* + \mathfrak{g}$ . Now it is clear that the restriction of $l(\mathfrak{g}' \to GL(\mathfrak{m}))$ to $\widetilde{G}$ is the identity transformation of $\widetilde{G}$ . We have $$ad(\exp \omega)\xi = \xi + [\omega, \xi] + \frac{1}{2}[\omega, [\omega, \xi]]$$ for all $\omega \in \mathfrak{m}^*$ and $\xi \in \mathfrak{m}$ , which implies that the group $\exp \mathfrak{m}^*$ is contained in the kernel of l. Proposition 1.5. $$l(G') = \tilde{G}$$ . PROOF. As we have seen above, the restriction of l to $\widetilde{G}$ is the identity transformation of $\widetilde{G}$ . Hence $l(\widetilde{G}) = \widetilde{G}$ . Therefore we have only to prove that $l(G') \subset \widetilde{G}$ . Take any a in G'. We have $\lceil adaA, \xi \rceil = ada\lceil A, ada^{-1}\xi \rceil \equiv ada(Al(a)^{-1}\xi) \equiv l(a)Al(a)^{-1}\xi \mod \mathfrak{g}'$ for all $\xi \in \mathfrak{m}$ and $A \in \mathfrak{g}$ . This implies that $l(a)Al(a)^{-1}$ coincides with the $\mathfrak{g}$ -component of adaA (in the decomposition $\mathfrak{g}' = \mathfrak{m}^* + \mathfrak{g}$ ) for all $A \in \mathfrak{g}$ . Therefore, $l(a) \in \widetilde{G}$ by Prop. 1.3. LEMMA 1.6. Let $a \in G'$ be in the kernel of l. (1) $ada\omega = \omega$ for all $\omega \in \mathfrak{m}^*$ . (2) If we put $\omega = adaE_L - E_L$ , then we have $\omega \in \mathfrak{m}^*$ and $$ada\xi - \xi \equiv [\omega, \xi] \mod \mathfrak{m}^*$$ for all $\xi \in \mathfrak{m}$ . PROOF. (1) By Lemma 1.1, we have $\langle \xi, ada\omega \rangle = \varphi(ada^{-1}\xi, \omega) = \langle \xi, \omega \rangle$ for all $\xi \in \mathfrak{m}$ , whence $ada\omega = \omega$ . (2) It follows from the proof of Prop. 1.5 that $adaA \equiv A \mod \mathfrak{m}^*$ for all $A \in \mathfrak{g}$ . Hence $\omega \in \mathfrak{m}^*$ . Since $E_L$ is in the center of $\mathfrak{g}$ , we get $[E_L, ada^{-1}\xi] \equiv \xi \mod \mathfrak{m}^*$ . Therefore we have $[\omega, \xi] = ada[E_L, ada^{-1}\xi] - \xi \equiv ada\xi - \xi \mod \mathfrak{m}^*$ . Proposition 1.6. The kernel of l is equal to $exp m^*$ . PROOF. As we have seen above, the group $\exp \mathfrak{m}^*$ is contained in the kernel of l. Take any $a \in G'$ in the kernel of l. By Lemma 1.6, we can find an $\omega \in \mathfrak{m}^*$ such that $ada\xi - \xi \equiv [\omega, \xi] \mod \mathfrak{m}^*$ for all $\xi \in \mathfrak{m}$ . If we put $b = (\exp(-\omega))a$ , then we have easily $adb\xi \equiv \xi \mod \mathfrak{m}^*$ for all $\xi \in \mathfrak{m}$ . Let us prove that $adb\xi = \xi$ for all $\xi \in \mathfrak{m}$ . We set $\gamma(\xi) = adb\xi - \xi$ , which is in $\mathfrak{m}^*$ . We have $adb[\xi, \xi'] = [\xi, \gamma(\xi')] - [\xi', \gamma(\xi)] = 0$ . Hence we get $\langle \xi, \gamma(\xi') \rangle = \langle \xi', \gamma(\xi) \rangle$ by Prop. 1.4. On the other hand, we have $adb^{-1}\xi' = \xi' - \gamma(\xi')$ by Lemma 1.6, (1). Hence we have $\langle \xi', \gamma(\xi) \rangle = \varphi(\xi', adb\xi - \xi) = \varphi(\xi', adb\xi) = \varphi(adb^{-1}\xi', \xi) = \varphi(\xi' - \gamma(\xi'), \xi) = -\langle \xi, \gamma(\xi') \rangle$ . Consequently, we have $\gamma = 0$ , i.e., $adb\xi = \xi$ for all $\xi \in \mathfrak{m}$ . By Lemma 1.6 (1), we have $adb\omega = \omega$ for all $\omega \in \mathfrak{m}^*$ . It follows that adbX = X for all $X \in \mathfrak{g}$ , which means b = e, i.e., $a = \exp \omega$ , where e is the identity element of $A(\mathfrak{g})$ . PROPOSITION 1.7. Every element of G' is uniquely expressed in the form $a \exp \omega$ , where $a \in \widetilde{G}$ and $\omega \in \mathfrak{m}^*$ . PROOF. Take any $a \in G'$ . Since $l(G') = \widetilde{G} \subset G'$ and since the restriction of l to $\widetilde{G}$ is the identity transformation of $\widetilde{G}$ , we see that $l(a)^{-1}a$ is in the kernel of l, i. e., of the form $\exp \omega$ with an $\omega \in \mathfrak{m}^*$ (Prop. 1.6). Hence $a = l(a) \exp \omega$ . It remains to prove the uniqueness. Suppose that an $a \in G'$ is expressed as l exp l with a l is expressed and l exp l with a l exp l and hence l and l exp l is equality means that l is uniquely determined by l and hence by l. Finally, let $A(\mathfrak{g})^{\circ}$ be the connected component of the identity of $A(\mathfrak{g})$ that is just the adjoint group of $\mathfrak{g}$ . We set $G = A(\mathfrak{g})^{\circ} \cdot \widetilde{G}$ , which is an open subgroup of $A(\mathfrak{g})$ . The homogeneous space $M_L = G/G'$ will be called associated with the l-system L. Since $G/G' = A(\mathfrak{g})^{\circ}/G' \cap A(\mathfrak{g})^{\circ}$ , the space $M_L$ is connected. By (1.2) and Prop. 1.5, we see that the group $\widetilde{G}$ may be identified with the linear isotropy group of G/G' and that the homomorphism l may be identified with the homomorphism of the isotropy group G' of G/G' onto the linear isotropy group $\widetilde{G}$ . Later on, we shall see that $M_L$ is compact and the action of G on $M_L$ is effective. EXAMPLE. Let $P^m(K)$ be the m-dimensional projective space over a field K, where $K = \mathbf{R}$ or $\mathbf{C}$ . The group G of all projective transformations of $P^m(K)$ acts transitively on $P^m(K)$ and hence the space $P^m(K)$ may be represented by a homogeneous space G/G', G' being the isotropy group of G at a point o of $P^m(K)$ . Now, with the projective space $P^m(K)$ there is associated an l-system L as follows: The Lie algebra $\mathfrak g$ of G may be identified with the Lie algebra $\mathfrak g(m+1,K)^{2^{\flat}}$ . Therefore every element of $\mathfrak g$ is uniquely expressed as $$M(\xi, \omega, A) = \begin{pmatrix} -\frac{1}{m+1} TrA & \omega \\ \xi & A - \frac{1}{m+1} TrA \end{pmatrix}.$$ where $$\xi = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_m \end{pmatrix}$$ , $\omega = (\omega_1, \cdots, \omega_m)$ , $A = (A_{ij})_{1 \leq i, j \leq m}$ . Setting $\tilde{\xi} = M(\xi, 0, 0)$ , $\tilde{\omega} = M(0, \omega, 0)$ and $\tilde{A} = M(0, 0, A)$ , we have $M(\xi, \omega, A)$ <sup>2)</sup> For the classical groups and their Lie algebras, we use the notations given in C. Chevalley, Theory of Lie groups I. $=\tilde{\xi}+\tilde{\omega}+\tilde{A},\ [\tilde{\xi},\tilde{\xi}']=[\tilde{\omega},\tilde{\omega}']=0,\ [\tilde{A},\tilde{A}']=[\tilde{A},A'],\ [\tilde{A},\tilde{\xi}]=\widetilde{A\xi},\ [\tilde{A},\tilde{\omega}]=-\widetilde{\omega}\widetilde{A}$ and $[\tilde{\xi},\tilde{\omega}]=\widetilde{\xi}\omega+\omega\xi$ . Let m (resp. m\*, resp. $\tilde{\mathfrak{g}}$ ) be the subalgebra of $\mathfrak{g}$ consisting of all elements $\tilde{\xi}$ (resp. $\tilde{\omega}$ , resp. $\tilde{A}$ ). Then we see from the above consideration that the system $L=(\mathfrak{g},\mathfrak{m},\mathfrak{m}^*,\tilde{\mathfrak{g}})$ forms an l-system. An l-system which is isomorphic with the l-system L, will be called of type $P^m(K)$ . One notes that the homogeneous space $P^m(K)=G/G'$ may be regarded as the homogeneous space associated with the l-system L. ### § 2. Decomposition of an l-system LEMMA 2.1. Let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}})$ be an l-system and let $\mathfrak{h}$ be an ideal of $\mathfrak{g}$ . Then we have $$\mathfrak{h} = (\mathfrak{h} \cap \mathfrak{m}) + (\mathfrak{h} \cap \mathfrak{m}^*) + (\mathfrak{h} \cap \tilde{\mathfrak{g}})$$ and the system $(\mathfrak{h}, \mathfrak{h} \cap \mathfrak{m}, \mathfrak{h} \cap \mathfrak{m}^*, \mathfrak{h} \cap \mathfrak{g})$ forms an l-system. PROOF. Take any $X \in \mathfrak{h}$ and express it as $\xi + \omega + A$ , where $\xi \in \mathfrak{m}$ , $\omega \in \mathfrak{m}^*$ and $A \in \mathfrak{g}$ . We have $[E_L, X] = \xi - \omega$ and $[E_L, [E_L, X]] = \xi + \omega$ . Since $[E_L, \mathfrak{h}]$ , $[E_L, [E_L, \mathfrak{h}]] \subset \mathfrak{h}$ , it follows that $\xi, \omega \in \mathfrak{h}$ and hence $A \in \mathfrak{h}$ . The second half of Lemma 2.1 can be easily proved by considering the complementary ideal of $\mathfrak{h}$ in $\mathfrak{g}$ . Let $L_i = (\mathfrak{g}_i, \mathfrak{m}_i, \mathfrak{m}_i^*, \tilde{\mathfrak{g}}_i)$ $(1 \leq i \leq s)$ be an l-system. If we set $\mathfrak{g} = \mathfrak{g}_1 \times \cdots \times \mathfrak{g}_s$ , $\mathfrak{m} = \mathfrak{m}_1 \times \cdots \times \mathfrak{m}_s$ , $\mathfrak{m}^* = \mathfrak{m}_1^* \times \cdots \times \mathfrak{m}_s^*$ and $\tilde{\mathfrak{g}} = \tilde{\mathfrak{g}}_1 \times \cdots \times \tilde{\mathfrak{g}}_s$ , then we see that the system $(\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}})$ forms an l-system, which will be called the product of $L_1, \cdots, L_s$ and denoted by $L_1 \times \cdots \times L_s$ . By Lemma 2.1, we get PROPOSITION 2.1. Let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$ be an l-system and let $\mathfrak{g} = \mathfrak{g}_1 + \cdots + \mathfrak{l}_s$ be the decomposition of $\mathfrak{g}$ into simple ideals. We set $\mathfrak{m}_i = \mathfrak{g}_i \cap \mathfrak{m}, \mathfrak{m}_i^* = \mathfrak{g}_i \cap \mathfrak{m}^*$ and $\mathfrak{g}_i = \mathfrak{g}_i \cap \mathfrak{g}$ . Then the systems $L_i = (\mathfrak{g}_i, \mathfrak{m}_i, \mathfrak{m}_i^*, \mathfrak{g}_i)$ are l-systems and the given l-system L is isomorphic with the product $L_1 \times \cdots \times L_s$ . Given an l-system $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$ , we shall denote by $(\mathfrak{g}, \mathfrak{m})$ the (identity) representation of $\mathfrak{g}$ on $\mathfrak{m}$ . PROPOSITION 2.2. Let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$ be an l-system. A necessary and sufficient condition that the representation $(\mathfrak{g}, \mathfrak{m})$ is irreducible is that $\mathfrak{g}$ is simple. PROOF. Necessity follows from Prop. 2.1. Sufficiency is proved as follows: Take any $\mathfrak{g}$ -stable subspace $\mathfrak{m}'$ of $\mathfrak{m}$ and set $\mathfrak{g}' = \mathfrak{m}' + \lceil \lfloor \mathfrak{m}', \mathfrak{m}^* \rceil, \mathfrak{m}^* \rceil + \lceil \mathfrak{m}', \mathfrak{m}^* \rceil$ . We see easily that $\mathfrak{g}'$ is an ideal of $\mathfrak{g}$ . Therefore we have $\mathfrak{m}' = \{0\}$ or $\mathfrak{m}$ according as $\mathfrak{g}' = \{0\}$ or $\mathfrak{g}$ . DEFINITION 2.1. An l-system $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}})$ is called irreducible if the representation $(\tilde{\mathfrak{g}}, \mathfrak{m})$ is irreducible. DEFINITION 2.2. An irreducible l-system $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}})$ is called of type (R) (resp. of type (C)) if the representation $(\tilde{g}, \mathfrak{m})$ is of first class (resp. of second class). In general, let $(\mathfrak{g}, V)$ be a real representation, i.e., V is a real vector space and $\mathfrak{g}$ is a subalgebra of $\mathfrak{gl}(V)$ . $V^c$ denoting the complexification of V, $\mathfrak{g}$ may be regarded as a (real) subalgebra of the complex Lie algebra of all complex endomorphisms of $V^c$ . Assuming that the representation $(\mathfrak{g}, V)$ is irreducible, we say that $(\mathfrak{g}, V)$ is of first class (resp. of second class) if the complex representation $(\mathfrak{g}, V^c)$ is irreducible (resp. reducible) [3]. Let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}})$ be an l-system. We shall denote by $\widetilde{C}$ (resp. $\widetilde{\mathfrak{c}}$ ) the center of the group $\widetilde{G}$ (resp. the Lie algebra $\tilde{\mathfrak{g}}$ ). By Prop. 1.3, we have $\widetilde{\mathfrak{c}} = C(\tilde{\mathfrak{g}}, \mathfrak{gl}(\mathfrak{m}))$ and $\widetilde{C} \subset C(\tilde{\mathfrak{g}}, GL(\mathfrak{m})) \subset \widetilde{G}$ . This being said, we have PROPOSITION 2.3. The notation being as above, we assume that L is irreducible. (1) If L is of type (R), then $\tilde{c}$ consists of all the elements $\lambda E_L$ , where $\lambda \in \mathbf{R}$ . (2) If L is of type (C), then there is an element $I_L$ of $\tilde{c}$ such that $I_L^2 = -E_L$ and such that $\tilde{c}$ consists of all the elements $\lambda E_L + \mu I_L$ , where $\lambda$ , $\mu \in \mathbf{R}$ . Moreover, $I_L$ is unique up to the factor -1. (3) $\tilde{C} = C(\tilde{g}, GL(\mathfrak{m})) = \tilde{c} \cap GL(\mathfrak{m})$ . We shall now show that an irreducible l-system of type (C) is really "complex". LEMMA 2.2. Let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}})$ be an l-system. Then we have $$A \cdot [\xi, \omega] = [[A, \xi], \omega] = -[\xi, [A, \omega]]$$ for all $A \in \tilde{\mathfrak{c}}$ , $\xi \in \mathfrak{m}$ and $\omega \in \mathfrak{m}^*$ . PROOF. We have $A \cdot [\xi, \omega] \cdot \xi' = [A, [[\xi, \omega], \xi']] = [A, [\xi, [\omega, \xi']]] = [[A, \xi], [\omega, \xi']] = [[A, \xi], \omega] \cdot \xi'$ for all $\xi' \in \mathfrak{m}$ . Hence $A \cdot [\xi, \omega] = [[A, \xi], \omega]$ . The second equality is clear. By Lemma 2.2, we have PROPOSITION 2.4. Let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$ be an irreducible l-system of type (C). (1) $I_L \cdot \mathfrak{g} = \mathfrak{g}$ . (2) $\mathfrak{g}$ is given a complex structure as follows: $\sqrt{-1} \xi = [I_L, \xi]$ , $\sqrt{-1} \omega = -[I_L, \omega]$ and $\sqrt{-1} A = I_L \cdot A$ for all $\xi \in \mathfrak{m}$ , $\omega \in \mathfrak{m}^*$ and $A \in \mathfrak{g}$ . (3) $\mathfrak{g}$ is a complex Lie algebra with respect to this complex structure, so that $\mathfrak{m}$ , $\mathfrak{m}^*$ and $\mathfrak{g}$ are complex subalgebras of $\mathfrak{g}$ . Finally, let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$ be an l-system and let $\mathfrak{g}^c, \mathfrak{m}^c, \mathfrak{m}^{*c}$ and $\mathfrak{g}^c$ be the complexifications of $\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*$ and $\mathfrak{g}$ respectively. If we consider $\mathfrak{g}^c, \mathfrak{m}^c, \mathfrak{m}^{*c}$ and $\mathfrak{g}^c$ as real Lie algebras, we find that the system $(\mathfrak{g}^c, \mathfrak{m}^c, \mathfrak{m}^c, \mathfrak{g}^c)$ forms an l-system, which will be called the *complexification* of L and denoted by $L^c$ . By Prop. 2.3, we have PROPOSITION 2.5. If L is an irreducible l-system of type (R), then the complexification $L^c$ of L is irreducible of type (C). #### § 3. The duality The following lemma is a generalization of Prop. 1.3. The proof (which is omitted) is analogous to that of Prop. 1.3. LEMMA 3.1. Let $L_i = (\mathfrak{g}_i, \mathfrak{m}_i, \mathfrak{m}_i^*, \mathfrak{g}_i)$ (i = 1, 2) be an l-system. Let f' be an isomorphism of $\mathfrak{g}_1$ onto $\mathfrak{g}_2$ and let f'' be an isomorphism of $\mathfrak{m}_1$ onto $\mathfrak{m}_2$ . If $f''[A, \xi] = [f'A, f''\xi]$ for all $A \in \mathfrak{g}_1$ , and $\xi \in \mathfrak{m}_1$ , there exists a unique isomorphism f of $L_1$ onto $L_2$ such that fA = f'A and $f\xi = f''\xi$ for all $A \in \mathfrak{g}_1$ and $\xi \in \mathfrak{m}_1$ . Hereafter we shall study a fixed l-system $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$ and use the notations in the previous sections. We shall say that the l-system $L^* = (\mathfrak{g}, \mathfrak{m}^*, \mathfrak{m}, \mathfrak{g})$ is the dual of L and that an isomorphism $\theta$ of L onto $L^*$ is involutive if $\theta$ is an involutive automorphism of $\mathfrak{g}$ . Moreover an involutive isomorphism $\theta$ of L onto $L^*$ will be called a \*-isomorphism if $\theta$ is the involutive automorphism of $\mathfrak{g}$ associated with a certain Cartan decomposition of $\mathfrak{g}$ , or equivalently if the quadratic form $\mathfrak{g} \ni X \to \varphi(X, \theta X) \in \mathbf{R}$ is negative definite. PROPOSITION 3.1. There exists at least one \*-isomorphism $\theta$ of L onto $L^*$ . PROOF. By Prop. 2.1, we may assume without loss of generality that L is irreducible. The representation $(\mathfrak{F},\mathfrak{m})$ being irreducible, the Lie algebra $\mathfrak{F}$ is reductive: $\mathfrak{F} = \mathfrak{F} + [\mathfrak{F},\mathfrak{F}]$ (direct sum) and the Lie algebra $[\mathfrak{F},\mathfrak{F}]$ is semi-simple. By Prop. 2.3 and the theorem of E. Cartan, Mostow and Iwasawa [8], we can find an involutive automorphism $\theta'$ of $\mathfrak{F}$ and a negative definite inner product (,) on $\mathfrak{m}$ which satisfy the following conditions: The quadratic form $\mathfrak{F} = A \rightarrow \tilde{\varphi}(A, \theta'A) \in \mathbf{R}$ is negative semi-definite and $$(3.1) (A\xi, \xi') + (\xi, \theta' A \cdot \xi') = 0$$ for all $A \in \mathfrak{F}$ and $\xi, \xi' \in \mathfrak{m}$ . It follows from Lemma 1.4 that the quadratic form $\mathfrak{F} \ni A \to \varphi(A, \theta'A) \in \mathbf{R}$ is negative definite. We now define an isomorphism $\theta''$ of $\mathfrak{m}$ onto $\mathfrak{m}^*$ by $\langle \xi, \theta'' \xi' \rangle = (\xi, \xi')$ for all $\xi, \xi' \in \mathfrak{m}$ . From (3.1), we get $\theta''[A, \xi] = [\theta'A, \theta''\xi]$ for all $A \in \mathfrak{F}$ and $\xi \in \mathfrak{m}$ . Therefore by Lemma 3.1, there is a unique isomorphism $\theta$ of L onto $L^*$ such that $\theta A = \theta'A$ and $\theta \xi = \theta''\xi$ for all $A \in \mathfrak{F}$ and $\xi \in \mathfrak{m}$ . Since we have $\theta^{-1}A = \theta'A$ and $\theta^{-1}\xi = \theta''\xi$ for all $A \in \mathfrak{F}$ and $\xi \in \mathfrak{m}$ , it follows from Lemma 3.1 that $\theta$ is involutive. It remains to prove that $\theta$ is a \*-isomorphism. Every $X \in \mathfrak{F}$ can be uniquely expressed as $\xi + \theta \xi' + A$ , where $\xi, \xi' \in \mathfrak{m}$ and $A \in \mathfrak{F}$ . We have $\varphi(X, \theta X) = (\xi, \xi) + (\xi', \xi') + \varphi(A, \theta A)$ . Since both the inner product (,) and the quadratic form $\mathfrak{F} \ni A \to \varphi(A, \theta A)$ are negative definite, this equality means that the quadratic form $\mathfrak{F} \ni A \to \varphi(X, \theta X) \in \mathbf{R}$ is also negative definite. Let $\theta$ be an involutive isomorphism of L onto $L^*$ . We shall denote by $\mathfrak{g}_{\theta}$ the eigen space of the involutive automorphism $\theta$ of $\mathfrak{g}$ corresponding to the eigen value 1. $\mathfrak{g}_{\theta}$ is, as usual, a subalgebra of $\mathfrak{g}$ and, putting $\mathfrak{g}_{\theta} = \mathfrak{g} \cap \mathfrak{g}_{\theta}$ and $\mathfrak{m}_{\theta} = (\mathfrak{m} + \mathfrak{m}^*) \cap \mathfrak{g}_{\theta}$ , we find that the system $(\mathfrak{g}_{\theta}, \mathfrak{m}_{\theta}, \tilde{\mathfrak{g}}_{\theta})$ forms an s-system and that dim $\mathfrak{m}_{\theta} = \dim \mathfrak{m}$ . Noting that $\theta$ is an element of $A(\mathfrak{g})$ , we have $ad\theta \tilde{G} = \tilde{G}$ and $ad\theta G = G$ , where $ad\theta a = \theta a\theta^{-1}$ for all $a \in A(\mathfrak{g})$ . We shall denote by $G_{\theta}$ the subgroup of G consisting of all fixed points $(\in G)$ of $ad\theta$ . The Lie algebra of $G_{\theta}$ is given by $\mathfrak{g}_{\theta}$ . We put $\tilde{G}_{\theta} = G_{\theta} \cap \tilde{G}$ . Then we have easily $\tilde{G}_{\theta} = G_{\theta} \cap G'$ and PROPOSITION 3.2. (1) The homogeneous space $G_{\theta}/\tilde{G}_{\theta}$ is an affine symmetric homogeneous space, and is naturally an open submanifold of G/G'. (2) If $\theta$ is a \*-isomorphism, $G_{\theta}/\tilde{G}_{\theta}$ is a compact Riemannian symmetric homogeneous space, and $G_{\theta}/\tilde{G}_{\theta} = G/G'$ . PROOF. (1) Let $\alpha$ be the involutive automorphism of $\mathfrak{g}$ associated with the s-system $(\mathfrak{g}, \mathfrak{m}+\mathfrak{m}^*, \tilde{\mathfrak{g}})$ , $\alpha$ being an element of $A(\mathfrak{g})$ . We have $ad\alpha \tilde{G} = \tilde{G}$ and $ad\alpha G = G$ . Since $\theta\alpha = \alpha\theta$ , it follows that $ad\alpha G_{\theta} = G_{\theta}$ . Let H be the subgroup of $G_{\theta}$ consisting of all fixed points $(\in G_{\theta})$ of $ad\alpha$ . Then we have $\tilde{G}_{\theta} \subset H$ and we see that the Lie algebra of H coincides with that of $\tilde{G}_{\theta}$ , i. e., $\tilde{\mathfrak{g}}_{\theta}$ . Hence $G_{\theta}/\tilde{G}_{\theta}$ is an affine symmetric homogeneous space with respect to the involution: $G_{\theta} \ni a \to ad\alpha a \in G_{\theta}$ . We have $\dim G_{\theta}/\tilde{G}_{\theta} = \dim \mathfrak{m}_{\theta} = \dim \mathfrak{m}$ and $\tilde{G}_{\theta} = G_{\theta} \cap G'$ , which indicates that $G_{\theta}/\tilde{G}_{\theta}$ is naturally an open submanifold of G/G'. (2) Since the quadratic form $\mathfrak{g} \ni X \to \varphi(X, \theta X) \in \mathbf{R}$ is negative definite, we know that $G_{\theta}$ is compact. Therefore $G_{\theta}/\tilde{G}_{\theta}$ is a compact Riemannian symmetric homogeneous space. Since $G_{\theta}/\tilde{G}_{\theta}$ is an open and closed submanifold of G/G' and since G/G' is connected, we get $G_{\theta}/\tilde{G}_{\theta} = G/G'$ . REMARK 1. If L is an irreducible l-system of type (C) and if $\theta$ is a \*-isomorphism, then $G_{\theta}/\tilde{G}_{\theta}$ can be proved to be a compact hermitian symmetric homogeneous space and G to be the group of all complex automorphisms of $G_{\theta}/\tilde{G}_{\theta}$ , cf. § 4. REMARK 2. Let $\theta$ be an involutive isomorphism of L onto $L^*$ . We define the $dual\ \theta^*$ of $\theta$ , being again an involutive isomorphism of L onto $L^*$ , as follows: $\theta^*X = -\theta X$ if $X \in \mathfrak{m} + \mathfrak{m}^*$ and $\theta^*X = \theta X$ if $X \in \mathfrak{g}$ . We have $\mathfrak{m}_{\theta} + \mathfrak{m}_{\theta *}$ (direct sum) = $\mathfrak{m} + \mathfrak{m}^*$ and $\widetilde{G}_{\theta} = \widetilde{G}_{\theta *}$ . Under the hypothesis that $\theta$ is a \*-isomorphism, $G_{\theta *}/\widetilde{G}_{\theta}$ may be regarded as the non-compact form of $G_{\theta}/\widetilde{G}_{\theta}$ . Finally we shall prove the uniqueness of \*-isomorphisms. Hereafter, the symbol $G^{\circ}$ will denote the connected component of the identity of a Lie group G. If $\theta$ is a \*-isomorphism of L onto $L^{*}$ , we know that $G^{\circ}_{\theta}$ is a maximal compact subgroup of the adjoint group $A(\mathfrak{g})^{\circ} = G^{\circ}$ of $\mathfrak{g}$ . Lemma 3.2. Let $\theta$ be a \*-isomorphism of L onto $L^*$ . Then $\tilde{G}_{\theta}^{\circ}$ is a maximal compact subgroup of $\tilde{G}^{\circ}$ . PROOF. Let (,) be the positive definite inner product on m defined by $(\xi, \xi') = -\langle \xi, \theta \xi' \rangle$ for all $\xi, \xi' \in \mathfrak{m}$ and denote by ${}^ta$ the transpose of an endomorphism a of m with respect to this inner product. Then we have ${}^ta^{-1}$ $=ad\theta a \in \widetilde{G}$ for all $a \in \widetilde{G}$ , and $\widetilde{G}_{\theta}$ consists of all elements $a \in \widetilde{G}$ such that $a={}^ta^{-1}$ . Lemma 3.2 follows from these and the fact that $\widetilde{G}=N(\mathfrak{g},GL(\mathfrak{m}))$ is an algebraic subgroup of $GL(\mathfrak{m})$ , cf. [6]. PROPOSITION 3.3. Let $\theta_i$ (i=1,2) be a \*-isomorphism of L onto $L^*$ . Then there exists an $a \in \widetilde{G}^{\circ}$ such that $a\theta_1 a^{-1} = \theta_2$ . PROOF. By Prop. 2.1, we may assume without loss of generality that L is irreducible. By Lemma 3.2, $\tilde{G}_{\theta_i}^*$ is a maximal compact subgroup of $\tilde{G}^\circ$ . Hence we can find an $a \in \tilde{G}^\circ$ such that $ada\tilde{G}_{\theta_1}^\circ = \tilde{G}_{\theta_2}^\circ$ or equivalently $ada\tilde{g}_{\theta_1} = \tilde{g}_{\theta_2}$ . Since $a\theta_1a^{-1}$ is again a \*-isomorphism of L onto $L^*$ and since $\tilde{g}_{a\theta_1a^{-1}} = ada\tilde{g}_{\theta_1}$ , we may assume that $\tilde{g}_{\theta_1} = \tilde{g}_{\theta_2}$ . It follows from Prop. 1.1 that $\theta_1A = \theta_2A$ for all $A \in \tilde{g}$ . We now put $u = \theta_1^{-1}\theta_2$ , which is an element of $\tilde{G}: \theta_1(u\xi) = \theta_2\xi$ for all $\xi \in \mathfrak{m}$ . We see easily that u is in the center C of $\tilde{G}$ . Therefore by Prop. 2.3, (3), u is of the form $\lambda E_L$ ( $\lambda \neq 0$ ) or $\lambda E_L + \mu I_L$ (( $\lambda, \mu$ ) $\lambda \neq 0$ ) according as L is of type (L) or of type (L). But we have L0 for all L1 is of type (L2), L3, with a L3 in either case. Finally we set L4 is of the form L4 is an anti-automorphism of L4 (see Prop. 4.1). It follows that L4 is of the form L5 with a L5 in either case. Finally we set L5 m and consequently L6 is an element of L6. Then we have L6 in either case. Finally we set L6 m and consequently L8 is an anti-automorphism of L9. # § 4. Classification of irreducible l-systems of type (C) PROPOSITION 4.1. Let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$ be an irreducible l-system of type (C) and let $\theta$ be a \*-isomorphism of L onto $L^*$ . The notation being as in § 3, we have: (1) $\mathfrak{g}_{\theta}$ is a simple compact real form of $\mathfrak{g}$ , where $\mathfrak{g}$ should be regarded as a complex Lie algebra as in Prop. 2.4; (2)<sup>3)</sup> $\mathfrak{g}_{\theta}$ is a real form of $\mathfrak{g}$ ; (3) $I_L$ is in the center of $\mathfrak{g}_{\theta}$ ; (4)<sup>4)</sup> $\mathfrak{m}_{\theta}$ is a real form of $\mathfrak{m}+\mathfrak{m}^*$ , more precisely, $\mathfrak{m}$ (resp. $\mathfrak{m}^*$ ) consists of all elements $X - \sqrt{-1} [I_L, X]$ (resp. $X + \sqrt{-1} [I_L, X]$ ), where $X \in \mathfrak{m}_{\theta}$ . PROOF. (1) Since the quadratic form $\mathfrak{g}\ni X\to \varphi(X,\theta X)\in \mathbf{R}$ is negative definite, $\theta$ is an anti-automorphism of $\mathfrak{g}$ and hence $\mathfrak{g}_{\theta}$ is a compact real form of $\mathfrak{g}$ . By Prop. 2.2, $\mathfrak{g}_{\theta}$ is a simple Lie algebra. (2) is clear, because $\theta \tilde{\mathfrak{g}}=\tilde{\mathfrak{g}}$ . (3) We have $\theta E_L=-E_L$ and $I_L=\sqrt{-1}\,E_L$ . Since $\theta$ is an anti-automorphism, we get $\theta I_L=I_L$ , i. e., $I_L\in \tilde{\mathfrak{g}}_{\theta}$ . $I_L$ is clearly in the center of $\tilde{\mathfrak{g}}_{\theta}$ . (4) Take any $\xi\in \mathfrak{m}$ and set $X=\xi+\theta\xi$ ( $\in\mathfrak{m}_{\theta}$ ). We have $[I_L,X]=\sqrt{-1}\,\xi-\sqrt{-1}\,\theta\xi$ , whence $\xi=\frac{1}{2}(X-\sqrt{-1}\,[I_L,X])$ and $\theta\xi=\frac{1}{2}(X+\sqrt{-1}\,[I_L,X])$ . Since $\dim_R\mathfrak{m}_{\theta}=\dim_R\mathfrak{m}$ , we get (4). We shall say that an s-system $S = (\mathfrak{g}_0, \mathfrak{m}_0, \tilde{\mathfrak{g}}_0)$ is simple (resp. compact) if $\mathfrak{g}_0$ <sup>3)</sup> and 4) By Prop. 2.4, m, m\* and $\mathfrak{g}$ are complex subalgebras of $\mathfrak{g}$ . is simple (resp. compact). A simple compact s-system $S = (\mathfrak{g}_0, \mathfrak{m}_0, \mathfrak{g}_0)$ will be called *hermitian* if the center of $\mathfrak{g}_0$ is not trivial. The notation being as in Prop. 4.1, we find from Prop. 4.1 that the system $S = (\mathfrak{g}_{\theta}, \mathfrak{m}_{\ell}, \mathfrak{g}_{\theta})$ is a simple compact hermitian s-system. PROPOSITION 4.2. Let $S = (\mathfrak{g}_0, \mathfrak{m}_0, \tilde{\mathfrak{g}}_0)$ be a simple compact hermitian s-system and set $\mathfrak{g} = \mathfrak{g}_0^C$ and $\tilde{\mathfrak{g}} = \tilde{\mathfrak{g}}_0^C$ . There are complex subalgebras $\mathfrak{m}$ and $\mathfrak{m}^*$ of $\mathfrak{g}$ satisfying the following conditions: (1) If we consider $\mathfrak{g}$ , $\mathfrak{m}$ , $\mathfrak{m}^*$ and $\tilde{\mathfrak{g}}$ as real algebras, then the system $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}})$ forms an irreducible l-system of type (C); (2) The conjugation $\theta$ of $\mathfrak{g}$ with respect to $\mathfrak{g}_0$ gives a \*-isomorphism of L onto $L^*$ such that $S = (\mathfrak{g}_{\theta}, \mathfrak{m}_{\theta}, \tilde{\mathfrak{g}}_{\theta})$ . For a proof of Prop. 4.2, see Helgason [2]. To each irreducible l-system of type (C), $L=(\mathfrak{g},\mathfrak{m},\mathfrak{m}^*,\mathfrak{g})$ , we now associate a fixed \*-isomorphism $\theta$ of L onto $L^*$ , and we set $S=(\mathfrak{g}_{\theta},\ m_{\theta},\ \mathfrak{g}_{\theta})$ which is a simple compact hermitian s-system. In virtue of Props. 3.3, 4.1 and 4.2, we arrive at the following conclusion: The assignment $L \to S$ gives a one-to-one correspondence between the set of all isomorphism classes of irreducible l-system of type (C) and the set of all isomorphism classes of simple compact hermitian s-systems. Here is the list of classification of simple compact hermitian s-systems and hence of irreducible l-systems of type (C). | Type of S (or L) | 90 | $\widetilde{\mathfrak{g}}_{ heta}$ | |--------------------------------|-----------------------|---------------------------------------------------------------------| | $I_{m, m'} \ (m \ge m' \ge 1)$ | $\mathfrak{gu}(m+m')$ | $\mathfrak{gu}(m) \times \mathfrak{gu}(m') \times \mathbf{R}$ | | $II_m \ (m \ge 3)$ | €0(2 m, <b>R</b> ) | $\mathfrak{u}(m)$ | | $III_m \ (m \ge 2)$ | §p(m) | $\mathfrak{u}(m)$ | | $IV_m \ (m \ge 3)$ | §o(m+2, <b>R</b> ) | $\mathfrak{So}(m,\ m{R}) imes\mathfrak{So}(2,\ m{R})$ | | V | €6 | $\mathfrak{go}(10, \mathbf{R}) \times \mathfrak{go}(2, \mathbf{R})$ | | VI | e <sub>7</sub> | $e_6 \times \mathfrak{SO}(2, \mathbf{R})$ | One notes that an irreducible l-system of type $I_{m,1}$ means an l-system of type $P^m(C)$ . PROPOSITION 4.3. Let L be an irreducible l-system of type (R). Then L is of type $P^m(\mathbf{R})$ if and only if $L^c$ is of type $I_{m,1}$ . PROOF. This follows easily from Lemma 3.1. # $\S$ 5. $\widetilde{G}$ -structures Throughout this and subsequent four sections, we shall study a fixed l-system $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}})$ and use the notations and identifications given in § 1. We set $n = \dim \mathfrak{m}$ . Let M be a manifold of dimension n. The bundle of frames of M, F, is a principal fiber bundle over the base space M with the general linear group $GL(n, \mathbf{R})$ of degree n as structure group. If we identify the two groups $GL(n, \mathbf{R})$ and $GL(\mathfrak{m})$ with respect to a fixed base of $\mathfrak{m}$ , the principal fiber bundle F may be defined as follows: The point-set of F is the totality of all isomorphisms of $\mathfrak{m}$ onto $T_p(M)$ , where p runs over M; the action of $GL(\mathfrak{m})$ on F is given by $F \times GL(\mathfrak{m}) \ni (x, a) \to xa = x \circ a \in F$ ; the projection $\pi_F$ of F onto M is defined by $\pi_F(x) = p$ if x maps $\mathfrak{m}$ onto $T_p(M)$ . Considering the (identity) representation of $\widetilde{G}$ on $\mathfrak{m}$ , we give the following definition. DEFINITION 5.1. Let M be an n-dimmensional manifold. A $\tilde{G}$ -structure on M is a principal fiber bundle $\tilde{P}$ over the base space M with structure group $\tilde{G}$ which is a subbundle of the bundle of frames of M, F. Let $\widetilde{P}$ be a $\widetilde{G}$ -structure on a manifold M and let $\widetilde{\pi}$ be the projection of $\widetilde{P}$ onto M, $\widetilde{\pi}$ being the restriction of $\pi_F$ to $\widetilde{P}$ . The *basic form* $\widetilde{\theta}$ of $\widetilde{P}$ is, by definition, the m-valued 1-form on $\widetilde{P}$ defined by $\widetilde{\theta}(X) = x^{-1}\widetilde{\pi}X$ for all $x \in \widetilde{P}$ and $X \in T_x(\widetilde{P})$ . NOTATION. Let P be a principal fiber<sup>5)</sup> bundle over a manifold M with a Lie group G as structure group. $R_a$ (resp. $A^*$ ) will denote the right translation (resp. the vertical vector field) on P corresponding to an $a \in G$ (resp. an $A \in \mathfrak{g}$ ), $\mathfrak{g}$ being the Lie algebra of G. PROPOSITION 5.1. (1) Let X be a tangent vector to $\tilde{P}$ at $x \in \tilde{P}$ . $\tilde{\theta}(X) = 0$ if and only if X is vertical, i. e., of the form $A_x^*$ with a (unique) $A \in \tilde{\mathfrak{g}}$ . (2) $R_a^* \tilde{\theta} = a^{-1} \hat{\theta}$ for all $a \in \tilde{G}$ . DEFINITION 5.2. Let $\tilde{P}_i$ (i=1,2) be a $\tilde{G}$ -structure on a manifold $M_i$ and let $\tilde{\theta}_i$ be the basic form of $\tilde{P}_i$ . An isomorphism of $\tilde{P}_1$ onto $\tilde{P}_2$ is a bundle isomorphism $\varphi$ of $\tilde{P}_1$ onto $\tilde{P}_2$ such that $\varphi^*\tilde{\theta}_2=\tilde{\theta}_1$ . A homeomorphism f of $M_1$ onto $M_2$ is called a $\tilde{G}$ -homeomorphism of $M_1$ onto $M_2$ if it is covered by an isomorphism $\varphi$ of $\tilde{P}_1$ onto $\tilde{P}_2$ . PROPOSITION 5.2. The notation being as in Def. 5.2, every $\tilde{G}$ -homeomorphism f of $M_1$ onto $M_2$ is covered by a unique isomorphism $\varphi$ of $\tilde{P}_1$ onto $\tilde{P}_2$ . Assuming that a $\tilde{G}$ -structure is given on a manifold M, let us define the notion of a tensor field on M in terms of the $\tilde{G}$ -structure. <sup>5)</sup> As for a principal fiber bundle, we use the notations and terminologies given in [5]. NOTATION. $\mathcal{T}_s^r(\mathfrak{m})$ will denote the vector space of all tensors of type $\binom{r}{s}$ on $\mathfrak{m}$ , i. e., $\mathcal{T}_s^r(\mathfrak{m}) = (\otimes^r \mathfrak{m}) \times (\otimes^s \mathfrak{m}^*)$ . Given vector spaces $V_1, \cdots, V_l$ and $V, \mathcal{L}(V_1, \cdots, V_l; V)$ will denote the vector space of all multi-linear mappings of $V_1 \times \cdots \times V_l$ into V. We may naturally identify $\mathcal{L}(\mathfrak{m}^*, \cdots, \mathfrak{m}^*, \mathfrak{m}, \cdots, \mathfrak{m}; \mathcal{T}_s^r(\mathfrak{m}))$ (with $\mathfrak{m}^*$ p times and $\mathfrak{m}$ q times) with $\mathcal{T}_{s+q}^{r+p}(\mathfrak{m})$ ; for example, $\mathcal{L}(\mathfrak{m}; \mathfrak{m}) = \mathfrak{gl}(\mathfrak{m})$ = $\mathfrak{m} \otimes \mathfrak{m}^*$ and $\mathcal{L}(\mathfrak{m}, \mathfrak{m}; \mathbf{R}) = \mathcal{L}(\mathfrak{m}; \mathfrak{m}^*) = \mathfrak{m}^* \otimes \mathfrak{m}^*$ . The group $GL(\mathfrak{m})$ linearly acts on $\mathcal{T}_s^r(\mathfrak{m})$ through the mapping $GL(\mathfrak{m}) \times \mathcal{T}_s^r(\mathfrak{m}) \ni (a, X) \to X^a \in \mathcal{T}_s^r(\mathfrak{m})$ , where $(\xi_1 \otimes \cdots \otimes \xi_r \otimes \omega_1 \otimes \cdots \otimes \omega_s)^a = (a\xi_1) \otimes \cdots \otimes (a\xi_r) \otimes (^t a^{-1}\omega_1) \otimes \cdots \otimes (^t a^{-1}\omega_s)$ for all $\xi_1, \cdots, \xi_r \in \mathfrak{m}$ and $\omega_1, \cdots, \omega_s \in \mathfrak{m}^*$ . DEFINITION 5.3. Let $\widetilde{P}$ be a $\widetilde{G}$ -structure on a manifold M. A tensor field of type $\binom{r}{s}$ on M is a mapping $\Phi$ of $\widetilde{P}$ into $\mathcal{T}_s^r(\mathfrak{m})$ satisfying the equality $$\Phi_{xa} = (\Phi_x)^{a-1}$$ for all $x \in \widetilde{P}$ and $a \in \widetilde{G}$ . As is clear, this definition of a tensor field on M is equivalent to the usual one. EXAMPLES. (1) A tensor field of type $\binom{1}{0}$ (a vector field) on M is a mapping X of $\widetilde{P}$ into $\mathfrak{m}$ such that $X_{xa}=a^{-1}X_x$ . (2) A tensor field of type $\binom{0}{1}$ (a 1-form) on M is a mapping E of $\widetilde{P}$ into $\mathfrak{m}^*$ such that $E_{xa}={}^taE_x$ . (3) A tensor field of type $\binom{1}{1}$ on M is a mapping U of $\widetilde{P}$ into $\mathfrak{gl}(\mathfrak{m})$ such that $U_{xa}=a^{-1}U_xa$ . (3) We define a mapping $\Psi_L$ of $\mathfrak{m}\otimes\mathfrak{m}^*$ into $\widetilde{\mathfrak{g}}\subset\mathfrak{gl}(\mathfrak{m})$ by $\Psi_L(\xi,\omega)=[\xi,\omega]$ for all $\xi\in\mathfrak{m}$ and $\omega\in\mathfrak{m}^*$ , which is a tensor of type $\binom{2}{2}$ on $\mathfrak{m}$ . We have $\Psi_L^a=\Psi_L$ for all $a\in\widetilde{G}$ , i. e., $$a \cdot [a^{-1}\xi, {}^t a\omega] \cdot a^{-1} = [\xi, \omega]$$ for all $\xi \in \mathfrak{m}$ and $\omega \in \mathfrak{m}^*$ . This means that the constant mapping $\widetilde{P} \ni x \to \Psi_L$ $\in \mathcal{I}^2_{\mathfrak{I}}(\mathfrak{m})$ is a tensor field of type $\binom{2}{2}$ on M. It can be shown that $\widetilde{G}$ consists of all elements $a \in GL(\mathfrak{m})$ leaving $\Psi_L$ invariant. In what follows, we shall consider a fixed $\tilde{G}$ -structure $\tilde{P}$ on a manifold M. Definition 5.4. An affine connection in $\tilde{P}$ is a linear mapping B of $\mathfrak{m}$ into the vector space $\mathfrak{X}(\tilde{P})$ of all vector fields on $\tilde{P}$ satisfying the conditions: (B. 1) $\tilde{\theta}(B(\xi)) = \xi$ for all $\xi \in \mathfrak{m}$ , $\tilde{\theta}$ being the basic form of $\tilde{P}$ ; (B. 2) $R_aB(\xi)=B(a^{-1}\xi)$ for all $a\in \widetilde{G}$ and $\xi\in\mathfrak{m}$ . By condition (B. 1) and Prop. 5.1, 1, we get Lemma 5.1. Let B be an affine connection in $\tilde{P}$ . Every tangent vector X <sup>6)</sup> Therefore, we see that a $\widetilde{G}$ -structure $\widetilde{P}$ on a manifold M is a tensor structure on M defined by a suitable tensor field of type $\binom{2}{2}$ on M. to $\widetilde{P}$ at $x \in \widetilde{P}$ is uniquely written in the form $B(\xi)_x + A_x^*$ , where $\xi \in \mathfrak{m}$ and $A \in \mathfrak{g}$ . Let B be an affine connection in $\widetilde{P}$ . By Lemma 5.1, we can find, for each $x \in \widetilde{P}$ and $\xi$ , $\xi' \in \mathfrak{m}$ , a unique pair $(T_x(\xi, \xi'), R_x(\xi, \xi'))$ of elements of $\mathfrak{m}$ and $\mathfrak{g}$ respectively as follows: $$[B(\xi), B(\xi')]_x = B(T_x(\xi, \xi'))_x + R_x(\xi, \xi')_x^*.$$ The elements $T_x(\xi,\xi')$ and $R_x(\xi,\xi')$ are bilinear and anti-symmetric with respect to the two variables $\xi$ and $\xi'$ . By condition (B. 2), the mappings $T: \widetilde{P} \ni x \to T_x \in \mathcal{L}(\mathfrak{m},\mathfrak{m};\mathfrak{m})$ and $R: \widetilde{P} \ni x \to R_x \in \mathcal{L}(\mathfrak{m},\mathfrak{m};\mathfrak{g})$ are tensor fields of type $\binom{1}{2}$ and of type $\binom{1}{3}$ on M respectively, i.e., $T_{xa}(\xi,\xi') = a^{-1}T_x(a\xi,a\xi')$ and $R_{xa}(\xi,\xi') = a^{-1}R_x(a\xi,a\xi')a$ . The tensor field T and R are called the torsion and curvature tensor fields of R respectively. The Ricci tensor field of R is, by definition, the tensor field $R^*: \widetilde{P} \ni x \to R_x^* \in \mathcal{L}(\mathfrak{m};\mathfrak{m}^*)$ of type $\binom{0}{2}$ on R defined by $R_x(\xi,\xi') = \mathbb{E}[R_x(\xi,e_i),\omega^i]$ for all $\xi \in \mathbb{E}$ , where $R_x(\eta,\xi)\xi'$ of $\mathbb{E}[R_x(\xi,e_i),\omega^i]$ for all $\xi \in \mathbb{E}[R_x(\xi,e_i),\omega^i]$ is a base of $\mathbb{E}[R_x(\xi,e_i),\omega^i]$ for all $\xi \in \mathbb{E}[R_x(\xi,e_i),\omega^i]$ and R is the dual base of R and R are called the torsion field R of type R on R and R are called the torsion field R are called the torsion and R are called the torsion field R and R are called the torsion field R are called the torsion and R and R are called the torsion $$\nabla_{\varepsilon} \Phi_{xa} = (\nabla_{a\varepsilon} \Phi_{x})^{a-1}$$ . This indicates that the mapping $abla \Phi : \widetilde{P} \ni x \to abla \Phi_x \in \mathcal{L}(\mathfrak{m}; \mathcal{T}_s^r(\mathfrak{m})) = \mathcal{T}_{s+1}^r(\mathfrak{m})$ is a tensor field of type $\binom{r}{s+1}$ on M, which is called the covariant derivative of $\Phi$ . The following proposition will be usefull in our later arguments. PROPOSITION 5.3. (1) Let $B_i$ (i=1,2) be an affine connection in $\widetilde{P}$ and let $T_i$ be the torsion tensor field of $B_i$ . Then there is a unique tensor field $U: \widetilde{P} \ni x \to U_x \in \mathcal{L}(\mathfrak{m}; \widetilde{\mathfrak{g}})$ of type $\binom{1}{2}$ on M such that (5.1) $$B_2(\xi)_x = B_1(\xi)_x + U_x(\xi)_x^*$$ for all $x \in \tilde{P}$ and $\xi \in \mathfrak{m}$ . In this case, we have $$T_2(\xi, \xi') = T_1(\xi, \xi') + U(\xi)\xi' - U(\xi')\xi$$ for all $\xi, \xi' \in \mathfrak{m}$ . (2) If $B_1$ is an affine connection in $\widetilde{P}$ and if U is a tensor field of type $\binom{1}{2}$ on M, then the linear mapping $B_2$ of $\mathfrak{m}$ into $\mathfrak{X}(\widetilde{P})$ defined by (5.1) is an affine connection in $\widetilde{P}$ . # $\S$ 6. G'-bundles DEFINITION 6.1. Let $\tilde{P}$ be a $\tilde{G}$ -structure on a manifold M. We say that a system $(P,\tilde{l})$ is a G'-bundle associated to the $\tilde{G}$ -structure $\tilde{P}$ , if P is a principal fiber bundle over the base space M with structure group G' and if $\tilde{l}$ is a base preserving bundle homomorphism of P onto $\tilde{P}$ corresponding to the homomorphism l of G' onto $\tilde{G}$ . Let $\widetilde{P}$ be a $\widetilde{G}$ -structure on a manifold M and let $(P, \overline{l})$ be a G'-bundle associated to $\widetilde{P}$ . The m-valued 1-form $\theta = \overline{l} * \theta$ will be called the *basic form* of $(P, \overline{l})$ , $\widehat{\theta}$ being the basic form of $\widetilde{P}$ . By Prop. 5.1, we have PROPOSITION 6.1. (1) Let X be a tangent vector to P at $z \in P$ . $\theta(X) = 0$ if and only if X is vertical, i.e., of the form $A_z^*$ with a (unique) $A \in \mathfrak{g}'$ . (2) $R_a^* \theta = l(a)^{-1}\theta$ for all $a \in G'$ . We show that to each $\tilde{G}$ -structure $\tilde{P}$ on a manifold M there is associated at least one G'-bundle, say $(P,\bar{l})$ . Indeed, the $\tilde{G}$ -structure $\tilde{P}$ and the injection of $\tilde{G}$ into G' give rise to a principal fiber bundle P over the base space M with structure group G' in such a way that $\tilde{P}$ is a subbundle of P. Furthermore, there is a unique homomorphism $\bar{l}$ of P onto $\tilde{P}$ subject to the condition $\bar{l}(x)=x$ at each $x=\tilde{P}$ . DEFINITION 6.2. Let $\widetilde{P}_i$ (i=1,2) be a $\widetilde{G}$ -structure on a manifold $M_i$ , let $(P_i,\overline{l}_i)$ be a G'-bundle associated to $\widetilde{P}_i$ and let $\theta_i$ be the basic form of $(P_i,\overline{l}_i)$ . An isomorphism of $(P_1,\overline{l}_1)$ onto $(P_2,\overline{l}_2)$ is a bundle isomorphism $\varphi$ of $P_1$ onto $P_2$ such that $\varphi*\theta_2=\theta_1$ . PROPOSITION 6.2. The notation being as in Def. 6.2, let $\varphi$ be a bundle isomorphism of $P_1$ onto $P_2$ . Then $\varphi$ is an isomorphism of $(P_1, \bar{l}_1)$ onto $(P_2, \bar{l}_2)$ if and only if there is a (unique) isomorphism $\tilde{\varphi}$ of $\tilde{P}_1$ onto $\tilde{P}_2$ such that $\tilde{\varphi} \circ \bar{l}_1 = \bar{l}_2 \circ \varphi$ . PROOF. First suppose that $\varphi$ is an isomorphism of $(P_1, \bar{l}_1)$ onto $(P_2, \bar{l}_2)$ . There is a unique bundle isomorphism $\tilde{\varphi}$ of $\tilde{P}_1$ onto $\tilde{P}_2$ such that $\tilde{\varphi} \circ \bar{l}_1 = \bar{l}_2 \circ \varphi$ . Since $\varphi^*\theta_2 = \theta_1$ , we have $\bar{l}_1^*\tilde{\theta}_1 = \bar{l}_1^*(\tilde{\varphi}^*\tilde{\theta}_2)$ . Hence $\tilde{\theta}_1 = \tilde{\varphi}^*\tilde{\theta}_2$ . The converse is easy. PROPOSITION 6.3. The notation being as in Def. 6.2, let $\tilde{\varphi}$ be an isomorphism of $\tilde{P}_1$ onto $\tilde{P}_2$ . Then there is at least one isomorphism $\varphi$ of $(P_1, \bar{l}_1)$ onto $(P_2, \bar{l}_2)$ such that $\bar{l}_2 \circ \varphi = \tilde{\varphi} \circ \bar{l}_1$ . PROOF. By Prop. 1.7 the homogeneous space $G'/\tilde{G}$ is homeomorphic with the vector space $\mathfrak{m}^*$ . Therefore we can find at least one bundle homomorphism $h_i$ of $\tilde{P}_i$ into $P_i$ (corresponding to the injection of $\tilde{G}$ into G') such that $\bar{l}_i \circ h_i = 1$ (the identity transformation of $\tilde{P}_i$ ). Hence there is a unique bundle isomorphism $\varphi$ of $P_1$ onto $P_2$ such that $\varphi \circ h_1 = h_2 \circ \tilde{\varphi}$ . We have clearly $\bar{l}_2 \circ \varphi$ $\tilde{\varphi} \circ \bar{l}_1$ . Let $\widetilde{P}$ be a $\widetilde{G}$ -structure on a manifold M and let $(P,\overline{l})$ be a G'-bundle associated to $\widetilde{P}$ . We shall say that a bundle homomorphism h of $\widetilde{P}$ into P (corresponding to the injection of $\widetilde{G}$ into G') is admissible if it satisfies the condition $\overline{l} \circ h = 1$ . By the proof of Prop. 6.3, there is at least one admissible homomorphism of $\widetilde{P}$ into P. PROPOSITION 6.4. (1) The notation being as above, let $h_i$ (i=1,2) be an admissible homomorphism of $\tilde{P}$ into P. Then there exists a unique 1-form $F: \tilde{P} \to \mathfrak{m}^*$ on M such that $$(6.1) h_2(x) = h_1(x) \cdot \exp F_x$$ at each $x \in \widetilde{P}$ . (2) If $h_1$ is an admissible homomorphism of $\widetilde{P}$ into P and if $F: \widetilde{P} \to \mathfrak{m}^*$ is a 1-form on M, then the mapping $h_2$ of $\widetilde{P}$ into P defined by (6.1) is an admissible homomorphism of $\widetilde{P}$ into P. PROOF. (1) At each $x \in \widetilde{P}$ , $h_1(x)$ and $h_2(x)$ lie in the same fiber of P. Hence there is a unique $\tau \in G'$ such that $h_2(x) = h_1(x)\tau$ . Since $\overline{l} \circ h_1 = \overline{l} \circ h_2 = 1$ , we have $x = x \cdot l(\tau)$ , i.e., $l(\tau) = e$ . By Prop. 1.6, $\tau$ is of the form $\exp F_x$ with a unique $F_x \in \mathfrak{m}^*$ . We must prove that the mapping $F: \widetilde{P} \ni x \to F_x \in \mathfrak{m}^*$ is a 1-form on M. We have $\exp F_{xa} = a^{-1}(\exp F_x)a = \exp(ada^{-1}F_x)$ for all $x \in \widetilde{P}$ and $a \in \widetilde{G}$ , whence $F_{xa} = {}^t a F_x$ . (2) can be analogously proved. We here state a lemma concerning a tensor field on a manifold with a $\widetilde{G}$ -structure. LEMMA 6.1. Let $\tilde{P}$ be a $\tilde{G}$ -structure on a manifold M and let $(P, \bar{l})$ be a G'-bundle associated to $\tilde{P}$ . If $\tilde{\Phi}: \tilde{P} \to \mathcal{T}_s^r(\mathfrak{m})$ is a tensor field of type $\binom{r}{s}$ on M, then the mapping $\Phi = \tilde{\Phi} \circ \bar{l}: P \to \mathcal{T}_s^r(\mathfrak{m})$ satisfies the equality: $$(6.2) \Phi_{za} = (\Phi_z)^{l(a)^{-1}}$$ for all $z \in P$ and $a \in G'$ . Conversely, every mapping $\Phi: P \to \mathcal{I}_s^r(\mathfrak{m})$ satisfying (6.2) induces a unique tensor field $\tilde{\Phi}: \tilde{P} \to \mathcal{I}_s^r(\mathfrak{m})$ of type $\binom{r}{s}$ on M such that $\Phi = \tilde{\Phi} \circ \tilde{l}$ . Lemma 6.1 enables us to define a tensor field of type $\binom{r}{s}$ on M to be a mapping $\Phi: P \to \mathcal{I}_s^r(\mathfrak{m})$ satisfying (6.2). Example (the prototype of G'-bundles). Let us consider the homogeneous space $M_L = G/G'$ . As usual, G may be considered as a principal fiber bundle over the base space $M_L$ with structure group G': The action of G' on G is given by the mapping $G \times G' \ni (z, a) \to za \in G$ , where za stands for the product of z and a in the group G, and the projection $\pi$ of G onto $M_L$ is defined by $\pi(z) = zo$ , o being the origin of $M_L$ , i.e., the coset G' of G/G'. The group G acts on the bundle of frames F of $M_L$ as follows: $(zx)\xi = z(x\xi)$ for all $z \in G$ , $x \in F$ and $\xi \in \mathfrak{m}$ , where z in the right side should be confounded with the transformation on $M_L$ induced by z. Now we have $\mathfrak{g}=\mathfrak{m}+\mathfrak{g}'$ (direct sum). This being said, we define an isomorphism $x_0$ of $\mathfrak{m}$ onto $T_0(M_L)$ by $x_0\xi=\pi\xi_e$ for all $\xi\in\mathfrak{m}$ , where $\xi_e$ means the value at e taken by the left invariant vector field $\xi$ on G. Note that we are identifying $\mathfrak{g}$ with the Lie algebra of all left invariant vector fields on G. $x_0$ being a point of F, let $\bar{l}$ be the mapping of G into F defined by $\bar{l}(z)=zx_0$ for all $z\in G$ . Lemma 6.2. The mapping $\overline{l}$ is a base preserving bundle homomorphism of G into F corresponding to the homomorphism l of G' into $GL(\mathfrak{m})$ . PROOF. We first show that $ax_0 = x_0l(a)$ for all $a \in G'$ . In fact, we have $(ax_0)\xi = a(\pi\xi_e) = \pi((ada\xi)_e) = \pi((l(a)\xi)_e) = (x_0l(a))\xi$ for all $\xi \in \mathfrak{m}$ , whence $ax_0 = x_0l(a)$ . It follows that $\overline{l}(za) = \overline{l}(z)l(a)$ for all $z \in G$ and $a \in G'$ . Moreover we have $\pi_F(\overline{l}(z)) = \pi_F(zx_0) = \pi(z)$ for all $z \in G$ , $\pi_F$ being the projection of F onto $M_L$ . Lemma 6.2 indicates that the image $\tilde{P}_L$ of G by $\tilde{l}$ is a $\tilde{G}$ -structure on $M_L$ and that the system $(G, \tilde{l})$ is a G'-bundle associated to $\tilde{P}_L$ . PROPOSITION 6.5. Let $\theta$ be the basic form of $(G, \bar{l})$ . Then we have $\theta(\xi) = \xi$ for all $\xi \in \mathfrak{m}$ . PROOF. Let $\tilde{\pi}$ be the projection of $\tilde{P}_L$ onto $M_L$ and let $\tilde{\theta}$ be the basic form of $\tilde{P}_L$ . Since $\theta = \tilde{l}^*\tilde{\theta}$ , we have $\tilde{l}(z)\theta(\xi_z) = \tilde{l}(z)\hat{\theta}(\tilde{l}(\xi_e)) = \tilde{\pi}(\tilde{l}\xi_z) = \pi\xi_z = z(\pi\xi_e) = (zx_0)\xi = \tilde{l}(z)\xi$ for all $z \in G$ and $\xi \in \mathfrak{m}$ , whence $\theta(\xi_z) = \xi$ . #### $\S$ 7. Connections of type (L) For all $a \in G'$ and $\xi \in \mathfrak{m}$ , we shall denote by $D(a, \xi)$ the $\mathfrak{g}'$ -component of $ada\xi$ in the decomposition: $\mathfrak{g} = \mathfrak{m} + \mathfrak{g}'$ . We have $ada\xi = l(a)\xi + D(a, \xi)$ . DEFINITION 7.1. Let $\tilde{P}$ be a $\tilde{G}$ -structure on a manifold M and let $(P, \tilde{l})$ be a G'-bundle associated to $\tilde{P}$ . A connection of type (L) in $(P, \tilde{l})$ is a linear mapping C of $\mathfrak{m}$ into the vector space $\mathfrak{X}(P)$ of all vector fields on P satisfying the following conditions: - (C. 1) $\theta(C(\xi)) = \xi$ for all $\xi \in \mathfrak{m}$ , $\theta$ being the basic form of $(P, \bar{l})$ ; - (C. 2) $R_aC(\xi) = C(l(a)^{-1}\xi) + D(a^{-1}, \xi)^*$ for all $a \in G'$ and $\xi \in \mathfrak{m}$ . EXAMPLE (the prototype of connections of type (L)). Let us consider the $\tilde{G}$ -structure $\tilde{P}_L$ on the hemogeneous space $M_L = G/G'$ and the G'-bundle $(G, \bar{l})$ associated to $\tilde{P}_L$ . We define a linear mapping $C_L$ of $\mathfrak{m}$ into $\mathfrak{X}(G)$ by $C_L(\xi) = \xi$ for all $\xi \in \mathfrak{m}$ . By Prop. 6.5, $C_L$ satisfies condition (C. 1). We have $R_a \xi = ada^{-1} \xi$ , showing that $C_L$ satisfies condition (C. 2). Hence $C_L$ is a connection of type (L) in $(G, \bar{l})$ . The notation being as in Def. 7.1, we study the fundamental properties of a connection of type (L). I. From condition (C.1) and Prop. 6.1, (1), we get LEMMA 7.1. Every tangent vector X to P at $z \in P$ is uniquely written in the form: $C(\xi)_z + A_z^*$ , where $\xi \in \mathfrak{m}$ and $A \in \mathfrak{g}'$ . For each $X \in \mathfrak{g}$ , we define a vector field $X^*$ on P by $X^* = C(\xi) + A^*$ if $X = \xi + A$ , $\xi \in \mathfrak{m}$ and $A \in \mathfrak{g}'$ . The mapping $\mathfrak{g} \ni X \to X^* \in \mathcal{X}(P)$ is linear and we have Proposition 7.1. - (1) The mapping $X \to X_z^*$ gives an isomorphism of $\mathfrak g$ onto $T_z(P)$ at each $z \in P$ ; - (2) $\theta(X^*) \equiv X \mod \mathfrak{g}' \text{ for all } X \in \mathfrak{g};$ - (3) $R_a X^* = (ada^{-1}X)^*$ for all $X \in \mathfrak{g}$ and $a \in G'$ ; - (4) $[A^*, X^*] = [A, X]^*$ for all $X \in \mathfrak{g}$ and $A \in \mathfrak{g}'$ . This is easy from conditions (C.1), (C.2) and Lemma 7.1. By Lemma 7.1, we can find, for each $z \in P$ and $\xi, \xi' \in \mathfrak{m}$ , a unique pair $(S_z(\xi, \xi'), K_z(\xi, \xi'))$ of elements of $\mathfrak{m}$ and $\mathfrak{g}'$ respectively as follows: $$[C(\xi), C(\xi')]_z = C(S_z(\xi, \xi'))_z + K_z(\xi, \xi')_z^*$$ or equivalently $$[\xi^*, \xi'^*]_z = (S_z(\xi, \xi') + K_z(\xi, \xi'))_z^*$$ . The elements $S_z(\xi, \xi')$ and $K_z(\xi, \xi')$ are bilinear and anti-symmetric with respect to the two variables $\xi$ and $\xi'$ . LEMMA 7.2. Let $a \in G'$ , $\xi$ , $\xi' \in \mathfrak{m}$ and $z \in P$ . Then we have $$S_{za}(\xi, \xi') + K_{za}(\xi, \xi') = ada^{-1}S_z(l(a)\xi, l(a)\xi') + ada^{-1}K_z(l(a)\xi, l(a)\xi')$$ . PROOF. We have $$\begin{split} R_{a^{-1}} \cdot & [\xi^*, \, \xi'^*]_{za} = [R_{a^{-1}}\xi^*, \, R_{a^{-1}}\xi'^*]_z = [(ada\xi)^*, \, (ada\xi')^*]_z \\ &= [(l(a)\xi)^* + D(a, \, \xi)^*, \, (l(a)\xi')^* + D(a, \, \xi')^*]_z \\ &= (S_z(l(a)\xi, \, l(a)\xi') + K_z(l(a)\xi, \, l(a)\xi') + [D(a, \, \xi), \, l(a)\xi'] \\ &+ [l(a)\xi, \, D(a, \, \xi')] + [D(a, \, \xi), \, D(a, \, \xi')])_z^* \,. \end{split}$$ We have $$ada[\xi, \xi'] = [ada\xi, ada\xi'] = [l(a)\xi + D(a, \xi), l(a)\xi' + D(a, \xi')]$$ $$= [D(a, \xi), l(a)\xi'] + [l(a)\xi, D(a, \xi')] + [D(a, \xi), D(a, \xi')]$$ $$= 0.$$ Hence we get $$(7.1) R_{a-1} \cdot [\xi^*, \xi'^*]_{za} = (S_z(l(a)\xi, l(a)\xi') + K_z(l(a)\xi, l(a)\xi'))_z^*.$$ On the other hand, we get $$(7.2) R_{a-1} \cdot [\xi^*, \xi'^*]_{za} = (adaS_{za}(\xi, \xi') + adaK_{za}(\xi, \xi'))_z^*.$$ Lemma 7.2 follows immediately from (7.1) and (7.2). We define, at each $z \in P$ , a linear mapping $S_z^*$ of m into $\tilde{g}$ by $S_z^*(\xi)$ $=\sum_i [S_z(\xi,e_i),\omega^i]$ for all $\xi\in\mathfrak{m}$ , where $(e_i)$ is a base of $\mathfrak{m}$ and $(\omega^i)$ is the dual base of $(e_i)$ . Moreover, we denote by $W_z(\xi,\xi')$ the $\mathfrak{g}$ -component of $K_z(\xi,\xi')$ in the decomposition: $\mathfrak{g}'=\mathfrak{m}^*+\mathfrak{g}$ , and define, at each $z\in P$ , a linear mapping of $\mathfrak{m}$ into $\mathfrak{m}^*$ by $W_z^*(\xi)=\sum_i [W_z(\xi,e_i),\omega^i]$ for all $\xi\in\mathfrak{m}$ , $(e_i)$ and $(\omega^i)$ being just as above. It is clear that $S_z^*$ and $W_z^*$ are well defined. PROPOSITION 7.2. Let $a \in G'$ , $\xi$ , $\xi' \in \mathfrak{m}$ and $z \in P$ . (1) $$S_{za}(\xi, \xi') = l(a)^{-1}S_z(l(a)\xi, l(a)\xi');$$ (2) Assume that $S_w = 0$ at each $w \in P$ . Then, $$W_{za}(\xi, \xi') = l(a)^{-1}W_{z}(l(a)\xi, l(a)\xi')l(a);$$ (3) Assume that $S_w^* = 0$ at each $w \in P$ . Then, $$W_{za}^*(\xi) = {}^t l(a) W_z^*(l(a)\xi)$$ . PROOF. There is a unique element $\omega$ of $\mathfrak{m}^*$ such that $a = l(a) \cdot \exp \omega$ (Prop. 1.6). Then we have, from Lemma 7.2, $$\begin{split} S_{za}(\xi,\,\xi') + W_{za}(\xi,\,\xi') &\equiv l(a)^{-1} S_z(l(a)\xi,\,l(a)\xi') \\ &- \lceil \omega,\,l(a)^{-1} S_z(l(a)\xi,\,l(a)\xi') \rceil + l(a)^{-1} W_z(l(a)\xi,\,l(a)\xi') l(a) \bmod \mathfrak{m}^* \,. \end{split}$$ (1) and (2) are immediate from this equality. We have $$W_{za}(\xi, \xi') = -[\omega, l(a)^{-1}S_z(l(a)\xi, l(a)\xi')] + l(a)^{-1}W_z(l(a)\xi, l(a)\xi')l(a)$$ and hence it follows that $$\begin{split} W_{za}^*(\xi) &= -\, \sum_i \, \big[ \big[ \omega, \, l(a)^{-1} S_z(l(a)\xi, \, l(a)e_i) \big], \, \omega^i \big] \\ &+ \sum_i \, \big[ \, l(a)^{-1} W_z(l(a)\xi, \, l(a)e_i) l(a), \, \omega^i \big] \\ &= - \big[ \omega, \, adl(a)^{-1} \, \sum_i \, \big[ \, S_z(l(a)\xi, \, l(a)e_i), \, {}^tl(a)^{-1} \omega^i \big] \big] \\ &+ adl(a)^{-1} \, \sum_i \, \big[ \, W_z(l(a)\xi, \, l(a)e_i), \, {}^tl(a)^{-1} \omega^i \big] \, . \end{split}$$ Since $(l(a)e_i)$ forms a base of $\mathfrak{m}$ and $(l(a)^{-1}\omega^i)$ is the dual base of $(l(a)e_i)$ , we get $$W_{za}^*(\xi) = -[\omega, adl(a)^{-1}S_z^*(l(a)\xi)] + {}^tl(a)W_z^*(l(a)\xi) = {}^tl(a)W_z^*(l(a)\xi).$$ Prop. 7.2, (1) shows that the mapping $S:P\ni z\to S_z\in\mathcal{L}(\mathfrak{m},\mathfrak{m};\mathfrak{m})$ is a tensor field of type $\binom{1}{2}$ on M (see Lemma 6.1), which will be called the torsion tensor field of C. It follows that the mapping $S^*:P\ni z\to S_z^*\in\mathcal{L}(\mathfrak{m};\mathfrak{g})$ is a tensor field of type $\binom{1}{2}$ on M. Similarly, Prop. 7.2, (2) (resp. (3)) means that the mapping $W:P\ni z\to W_z\in\mathcal{L}(\mathfrak{m},\mathfrak{m};\mathfrak{g})$ (resp. $W^*:P\ni z\to W_z^*\in\mathcal{L}(\mathfrak{m};\mathfrak{m}^*)$ ) is a tensor field of type $\binom{1}{3}$ (resp. of type $\binom{0}{2}$ on M under the condition that S=0 (resp. $S^* = 0$ ). II. Let us fix an admissible homomorphism h of $\widetilde{P}$ into P. PROPOSITION 7.3. There exists a unique pair (B, J) of an affine connection B in $\widetilde{P}$ and a tensor field $J: \widetilde{P} \ni x \to J_x \in \mathcal{L}(\mathfrak{m}; \mathfrak{m}^*)$ of type $\binom{0}{2}$ on M such that (7.3) $$h \cdot B(\xi)_x = C(\xi)_z + J_x(\xi)_z^*$$ for all $x \in \widetilde{P}$ and $\xi \in \mathfrak{m}$ , where z = h(x). PROOF. First we make a general remark: Let X be a tangent vector to P at $z \in P$ . Then, $\bar{l}X = 0$ if and only if X is of the form $\omega_z^*$ with a unique $\omega \in \mathfrak{m}^*$ . Uniqueness: By (7.3), we have $\tilde{l} \circ h \cdot B(\xi)_x = \tilde{l} \cdot C(\xi)_z + \tilde{l} \cdot J_x(\xi)_z^* = \tilde{l} \cdot C(\xi)_z$ . Since $l \circ h = 1$ , this means that B and hence J are uniquely determined by C. Existence: First we define a linear mapping B of m into $\mathfrak{X}(\widetilde{P})$ by $B(\xi)_x$ $= \overline{l} \cdot C(\xi)_z$ for all $x \in \widetilde{P}$ and $\xi \in \mathfrak{m}$ , where z = h(x). By condition (C.1), we have $\tilde{\theta}(B(\xi)_x) = \theta(C(\xi)_z) = \xi$ , showing that B satisfies condition (B.1). By condition (C. 2), we get $R_a \cdot B(\xi)_x = R_a \circ \tilde{l} \cdot C(\xi)_z = \tilde{l} \circ R_a \cdot C(\xi)_z = \tilde{l} \cdot C(a^{-1}\xi)_{za} = B(a^{-1}\xi)_{xa}$ for all $a \in \tilde{G}$ . Hence B satisfies condition (B. 2). Thus B is an affine connection in $\widetilde{P}$ . Next we have $l \cdot (h \cdot B(\xi)_x - C(\xi)_z) = B(\xi)_x - B(\xi)_x = 0$ . Hence, $h \cdot B(\xi)_x$ $-C(\xi)_z$ is of the form $J_x(\xi)^*_z$ with a unique $J_x(\xi) \in \mathfrak{m}^*$ . It is clear that $J_x(\xi)$ is linear with respect to the variable $\xi$ . We must prove that the mapping $J: \widetilde{P} \ni x \to J_x \in \mathcal{L}(\mathfrak{m}; \mathfrak{m}^*)$ is a tensor field of type $\binom{0}{2}$ on M. For all $a \in \widetilde{G}$ , we have $R_a \circ h \cdot B(\xi)_x = h \circ R_a \cdot B(\xi)_x = h \cdot B(a^{-1}\xi)_{xa} = C(a^{-1}\xi)_{za} + J_{xa}(a^{-1}\xi)_{za}^*$ and $R_a \circ h \cdot B(\xi)_x = R_a \cdot C(\xi)_z + R_a \cdot J_x(\xi)_z^* = C(a^{-1}\xi)_{za} + (ada^{-1}J_x(\xi))_{za}^*$ . It follows that $J_{xa}(a^{-1}\xi) = ada^{-1}J_x(\xi) = {}^taJ_x(\xi)$ , which proves that J is a tensor field of type $\binom{0}{2}$ on M. The affine connection B and the tensor field J in Prop. 7.3 will be called induced from C by h. Let z be a point of P and set $x = \overline{l}(z)$ . Since z and h(x) lie in the same fiber of P, there is a unique $a \in G'$ such that z = h(x)a. Since $x = \overline{l}(z) = x \cdot l(a)$ , we have l(a) = e, i.e., a is of the form $\exp \omega$ with a unique $\omega \in \mathfrak{m}^*$ . In what follows, B (resp. J) will denote the affine connection (resp. the tensor field) induced from C by h. PROPOSITION 7.4. The notation being as above, we have (7.4) $$C(\xi)_z = R_a \circ h \cdot B(\xi)_x - (J_x(\xi) + D(a^{-1}, \xi))_z^*$$ for all $z \in P$ and $\xi \in \mathfrak{m}$ . PROOF. We put y = h(x). By (7.3), we have $R_a \circ h \cdot B(\xi)_x = R_a \cdot C(\xi)_y + R_a \cdot J_x(\xi)_y^* = C(\xi)_z + D(a^{-1}, \xi)_z^* + (ada^{-1}J_x(\xi))_z^* = C(\xi)_z + (J_x(\xi) + D(a^{-1}, \xi))_z^*$ . As for the affine connection B, we shall use the notations in § 5. LEMMA 7.3. Let $x \in \widetilde{P}$ , $\xi$ , $\xi' \in \mathfrak{m}$ and set z = h(x). We have $$T_{x}(\xi, \xi') + J_{x}(T_{x}(\xi, \xi')) + R_{x}(\xi, \xi')$$ $$= S_{z}(\xi, \xi') + K_{z}(\xi, \xi') + [J_{x}(\xi), \xi'] + [\xi, J_{x}(\xi')] + V_{\varepsilon}J_{x}(\xi') - V_{\varepsilon}J_{x}(\xi).$$ PROOF. For all $\xi \in \mathfrak{m}$ , we define a vector field $H(\xi)$ on P by $H(\xi)_w = (\xi + J_y(\xi))_w^*$ at each $w \in P$ , where $y = \overline{l}(w)$ . Since $\overline{l} \circ h = 1$ , (7.3) means that $H(\xi)$ is h-related to $B(\xi)$ , i. e., $h \cdot B(\xi)_x = H(\xi)_x$ at each $x \in \widetilde{P}$ , where z = h(x). It follows that $[H(\xi), H(\xi')]$ is also h-related to $[B(\xi), B(\xi')]$ , i. e., $$(7.5) h \cdot [B(\xi), B(\xi')]_x = [H(\xi), H(\xi')]_z.$$ First we have (7.6) $$h \cdot [B(\xi), B(\xi')]_x = h \cdot B(T_x(\xi, \xi'))_x + h \cdot R_x(\xi, \xi')_x^*$$ $$= H(T_x(\xi, \xi'))_z + R_x(\xi, \xi')_z^*$$ $$= (T_x(\xi, \xi') + J_x(T_x(\xi, \xi')) + R_x(\xi, \xi'))_z^*.$$ Let f be any function defined on a neighborhood U of z. We have $$(H(\xi')f)(w) = (\xi' + J_y(\xi'))_w^* f$$ at each $w \in U$ , where $y = \overline{l}(w)$ . Since $\overline{l} \cdot H(\xi)_z = B(\xi)_x$ , it follows easily that $H(\xi)_z H(\xi') f = (\nabla_z I_x(\xi'))_z^* f + (\xi + I_x(\xi))_z^* ((\xi' + I_x(\xi'))^* f)$ . From this and an analogous equality, we get (7.7) $$[H(\xi), H(\xi')]_z = (V_{\xi}J_x(\xi') - V_{\xi'}J_x(\xi))_z^*$$ $$+ [(\xi + J_x(\xi))^*, (\xi' + J_x(\xi'))^*]_z$$ $$= (S_z(\xi, \xi') + K_z(\xi, \xi') + [\xi, J_x(\xi')]$$ $$+ [J_x(\xi), \xi'] + V_{\xi}J_x(\xi') - V_{\xi'}J_x(\xi))_z^* .$$ Lemma 7.3 follows from (7.5), (7.6) and (7.7). Proposition 7.5. The notation being as in Lemma 6.1, we have $$\hat{S} = T;$$ (2) Assume that S=0. Then, $$\widetilde{W}(\xi, \xi') = R(\xi, \xi') - [J(\xi), \xi'] + [J(\xi'), \xi]';$$ (3) Assume that $S^* = 0$ . Then, $$(\widetilde{W}^*)(\xi) = R^*(\xi) - \frac{1}{2}J(\xi) + \sum_i [[J(e_i), \xi], \omega^i],$$ where $(e_i)$ is a base of m and $(\omega^i)$ is the dual base of $(e_i)$ . PROOF. First note that W (resp. $W^*$ ) is a tensor field on M under the condition that S=0 (resp. $S^*=0$ ). (1) and (2) are immediate from Lemma 7.3. Let us prove (3). From 7.3, we get $(\widetilde{W}^*)(\xi) = R^*(\xi) - \sum_i [[J(\xi), e_i], \omega^i] + \sum_i [[J(e_i), \xi], \omega^i]$ . But, for all $\xi' \in \mathfrak{m}$ , we have $\langle \xi', \sum_i [[J(\xi), e_i], \omega^i] \rangle$ $$\begin{split} &= \sum_{i} \varphi( [\xi', J(\xi)], [e_{i}, \omega^{i}] ) = \sum_{i} \langle [\xi', J(\xi)] e_{i}, \omega^{i} \rangle = Tr[\xi', J(\xi)]. \quad \text{Since} \quad Tr[\xi', J(\xi)] \\ &= \frac{1}{2} \langle \xi', J(\xi) \rangle \text{ (Prop. 1.4), we get } \sum_{i} [[J(\xi), e_{i}], \omega^{i}] = \frac{1}{2} J(\xi). \end{split}$$ III. PROPOSITION 7.6. Let $h_i$ (i=1,2) be an admissible homomorphism of $\tilde{P}$ into P and let $B_i$ be the affine connection in $\tilde{P}$ induced from C by $h_i$ . Let F be the 1-form on M defined by (6.1). Then we have $$B_2(\xi)_x = B_1(\xi)_x + [F_x, \xi]_x^*$$ for all $x \in \widetilde{P}$ and $\xi \in \mathfrak{m}$ . PROOF. Let x be a point of $\widetilde{P}$ . If we set $z = h_2(x)$ and $a = \exp F_x$ , then we have $x = \overline{l}(z)$ and $z = h_1(x) \cdot a$ . Hence from Prop. 7.4, we get (7.8) $$C(\xi)_z = R_a \circ h_1 \cdot B_1(\xi) - (J_x(\xi) + D(a^{-1}, \xi))_z^*,$$ J being the tensor field on M induced from C by $h_1$ . We have $$\bar{l} \circ R_a \circ h_1 = 1$$ , $l(D(a^{-1}, \xi)) = -[F_x, \xi]$ and $B_2(\xi)_x = \bar{l} \cdot C(\xi)_z$ . Therefore by applying l to the both sides of (7.8), we obtain the desired equality. We shall denote by $\mathfrak{A}(C)$ the family of affine connections in $\widetilde{P}$ which are induced from C by all admissible homomorphisms of $\widetilde{P}$ into P. PROPOSITION 7.7. Each affine connection in $\mathfrak{A}(C)$ is induced from C by a unique admissible homomorphism of $\widetilde{P}$ into P. PROOF. Suppose that an affine connection B in $\widetilde{P}$ is induced from C by two admissible homomorphisms, say $h_1$ and $h_2$ , of $\widetilde{P}$ into P. Let F be the 1-form on M defined by (6.1). Then by Prop. 7.6, we have $[F_x, \xi] = 0$ for all $x \in \widetilde{P}$ and $\xi \in \mathfrak{m}$ . Therefore we get F = 0 (Prop. 1.2, (2)). # § 8. The torsion tensor field of a $\widetilde{G}$ -structure Let $\widetilde{P}$ be a $\widetilde{G}$ -structure on a manifold M. Given a tensor field $T:\widetilde{P}\to \mathcal{L}(\mathfrak{m},\mathfrak{m};\mathfrak{m})$ of type $\binom{1}{2}$ on M, we define a new tensor field $T^*:\widetilde{P}\to \mathcal{L}(\mathfrak{m};\mathfrak{g})$ of type $\binom{1}{2}$ on M by $T_x^*(\xi) = \sum_i [T_x(\xi,e_i),\omega^i]$ for all $\xi\in\mathfrak{m}$ and $x\in\widetilde{P}$ , where $(e_i)$ is a base of $\mathfrak{m}$ and $(\omega^i)$ is the dual base of $(e_i)$ . THEOREM 8.1. Let $\tilde{P}$ be a $\tilde{G}$ -structure on a manifold M. Then there exists a unique tensor field $T: \tilde{P} \to \mathcal{L}(\mathfrak{m}, \mathfrak{m} : \mathfrak{m})$ of type $\binom{1}{2}$ on M satisfying the following conditions: (1) $$T^* = 0$$ ; (2) There exists at least one affine connection B in $\tilde{P}$ whose torsion tensor field is equal to T. DEFINITION 8.1. Let $\widetilde{P}$ be a $\widetilde{G}$ -structure on a manifold M. The tensor field $T: \widetilde{P} \to \mathcal{L}(\mathfrak{m}, \mathfrak{m}; \mathfrak{m})$ of type $\binom{1}{2}$ on M whose unique existence is assured by Th. 8.1, is called the torsion tensor field of the $\widetilde{G}$ -structure $\widetilde{P}$ . The proof of Th. 8.1 is preceded by several lemmas. Let $\mathcal{I}$ be the subspace of $\mathcal{L}(\mathfrak{m},\mathfrak{m};\mathfrak{m})$ consisting of all elements T such that $T(\xi,\xi')=-T(\xi',\xi)$ for all $\xi,\xi'\in\mathfrak{m}$ . We set $\mathcal{E}=\mathcal{L}(\mathfrak{m};\mathfrak{g})$ and define a linear mapping $\Delta$ of $\mathcal{E}$ into $\mathcal{I}$ by $\Delta(U)(\xi,\xi')=U(\xi)\xi'-U(\xi')\xi$ for all $U\in\mathcal{E}$ and $\xi,\xi'\in\mathfrak{m}$ . Furthermore we define a linear mapping $\Delta^*$ of $\mathcal{I}$ into $\mathcal{E}$ by $\Delta^*(T)(\xi)=\sum_i [T(\xi,e_i),\omega^i]$ for all $T\in\mathcal{I}$ and $\xi\in\mathfrak{m}$ , where $(e_i)$ is a base of $\mathfrak{m}$ and $(\omega^i)$ is the dual base of $(e_i)$ . $\mathcal{I}$ (resp. $\mathcal{E}$ ) is clearly a $\widetilde{G}$ -stable subspace of $\mathcal{L}(\mathfrak{m},\mathfrak{m};\mathfrak{m})$ (resp. $\mathcal{L}(\mathfrak{m};\mathfrak{gl}(\mathfrak{m}))$ ). We have easily LEMMA 8.1. Let $T \in \mathcal{I}$ , $U \in \mathcal{E}$ and $a \in \widetilde{G}$ . (1) $$\Delta(U^a) = \Delta(U)^a;$$ (2) $$\Delta^*(T^a) = \Delta^*(T)^a.$$ Let $\theta$ be a fixed \*-isomorphism of L onto $L^*$ . We define positive definite inner products (,) on $\mathfrak{m}$ , $\mathcal{I}$ and $\mathcal{E}$ respectively as follows: $(\xi,\xi')=-\langle \xi,\theta\xi'\rangle$ for all $\xi,\xi'\in\mathfrak{m}$ ; $(T,T')=\frac{1}{2}\sum_{i,j}(T(e_i,e_j),T'(e_i,e_j))$ for all $T,T'\in\mathcal{I}$ , where $(e_i)$ is an orthonormal base with respect to the inner product (,) on $\mathfrak{m}$ ; $(U,U')=-\sum_i \varphi(U(e_i),\theta U'(e_i))$ for all $U,U'\in\mathcal{E}$ , $(e_i)$ being just as above. LEMMA 8.2. $$(T, \Delta(U)) = (\Delta^*(T), U)$$ for all $T \in \mathcal{I}$ and $U \in \mathcal{E}$ . PROOF. $$\begin{split} (T, \Delta(U)) &= -\frac{1}{2} \sum_{i,j} \langle T(e_i, e_j), \theta \Delta(U)(e_i, e_j) \rangle \\ &= -\frac{1}{2} \sum_{i,j} \varphi(T(e_i, e_j), [\theta U(e_i), \theta e_j] - [\theta U(e_j), \theta e_i]) \\ &= \sum_{i,j} \varphi([T(e_i, e_j), \theta e_j], \theta U(e_i)) \\ &= -\sum_i \varphi(\Delta^*(T)(e_i), \theta U(e_i)) \\ &= (\Delta^*(T), U) \,. \end{split}$$ We put $\Theta = \Delta^* \circ \Delta$ . Then we have easily, from Lemma 8.2, LEMMA 8.3. (1) $$\Theta(\mathcal{E}) = \Delta^*(\mathcal{I});$$ (2) $$\Theta^{-1}(0) = \Delta^{-1}(0)$$ ; (3) $$\mathcal{E} = \Theta^{-1}(0) + \Theta(\mathcal{E}) \quad (direct sum).$$ PROOF OF THEOREM 8.1. We first prove uniqueness. Let B (resp. B') be an affine connection in $\tilde{P}$ and let T (resp. T') be the torsion tensor field of B (resp. B'). Assuming that $T^* = T'^* = 0$ , we must prove T = T'. By Prop. 5.3, we can find a tensor field $U: \widetilde{P} \to \mathcal{E}$ of type $\binom{1}{2}$ on M such that $T' = T + \Delta(U)$ . Since $\Delta^*(T) = T^* = \Delta^*(T') = T'^* = 0$ , we have $\Theta(U) = 0$ . Therefore by Lemma 8.3, (2), we get $\Delta(U) = 0$ , whence T = T'. Let us now prove existence. We see from the proof of Lemma 3.2 that the group $\widetilde{G}_{ heta}$ is a (maximal) compact subgroup of $\widetilde{G}$ and that the homogeneous space $\widetilde{G}/\widetilde{G}_{\theta}$ is homeomorphic with a euclidean space. Hence there is at least one affine connection, say B', in $\tilde{P}$ , cf. [5]. Denoting by T' the torsion tensor field of B', we can find, at each $x \in \widetilde{P}$ , a unique element $U_x$ of $\Theta(\mathcal{E})$ such that $\Delta^*(T_x') = \Theta(U_x)$ (Lemma 8.3). For all $x \in \widetilde{P}$ and $a \in \widetilde{G}$ , we have $\Delta^*(T'_{xa}) = \Theta(U_{xa}) = \Theta(U_x^{a-1})$ and $U_x^{a-1} \in \Theta(\mathcal{E})$ (Lemma 8.1), whence $U_{xa} = U_x^{a-1}$ . This means that the mapping $U: \tilde{P} \ni x \to 0$ $U_x \in \Theta(\mathcal{E})$ is a tensor field of type $\binom{1}{2}$ on M. Therefore by Prop. 5.3, there is an affine connection B in $\tilde{P}$ whose torsion tensor field is given by T = T' - $\Delta(U)$ . We have $T^* = \Delta^*(T) = \Delta^*(T') - \Theta(U) = 0$ , completing the proof of Th. 8.1. REMARK. The notion of the torsion tensor field of a $\tilde{G}$ -structure generalizes the notion of the Nijenhuis tensor field of an almost complex structure. In fact, let L be an irreducible l-system of type $I_m$ , i. e., of type $P^m(C)$ . In this case, the associated representation $(\tilde{G}, \mathfrak{m})$ is equivalent to the representation $(GL(m, C), C^m)$ , and it can be proved that the torsion tensor field of a $\tilde{G}$ -structure coincides with the Nijenhuis tensor field of the corresponding almost complex structure. # $\S$ 9. Normal connections of type (L) Let $\widetilde{P}$ be a $\widetilde{G}$ -structure on a manifold M. We introduce an equivalence relation in the set of all affine connections in $\widetilde{P}$ as follows: Let $B_i$ (i=1,2) be an affine connection in $\widetilde{P}$ . $B_1 \sim B_2$ if and only if there is a 1-form $F: \widetilde{P} \to \mathfrak{m}^*$ on M such that (9.1) $$B_2(\xi)_x = B_1(\xi)_x + [F_x, \xi]_x^*$$ for all $x \in \widetilde{P}$ and $\xi \in \mathfrak{m}$ . One notes that the 1-form F in (9.1) is uniquely determined by $B_1$ and $B_2$ (cf. Prop. 7.7) and that, given an affine connection $B_1$ in $\widetilde{P}$ and a 1-form F on M, the linear mapping $B_2$ of $\mathfrak{m}$ into $\mathfrak{X}(\widetilde{P})$ defined by (9.1) is an affine connection in $\widetilde{P}$ (Prop. 5.3). Moreover since $\lceil \lceil \omega, \xi \rceil, \xi' \rceil$ =[[ $\omega$ , $\xi'$ ], $\xi$ ] for all $\xi$ , $\xi' \in \mathfrak{m}$ and $\omega \in \mathfrak{m}^*$ , it follows from Prop. 5.3 that if $B_1 \sim B_2$ , then the torsion tensor fields of the two connections coincide. DEFINITION 9.1. We say that two affine connections $B_1$ and $B_2$ in $\tilde{P}$ are mutually L-equivalent if $B_1 \sim B_2$ . Let $\mathfrak A$ be a class of mutually L-equivalent affine connections in $\tilde{P}$ . The torsion tensor field T of $\mathfrak A$ is defined to be the torsion tensor field of some affine connection in $\mathfrak A$ . The class $\mathfrak A$ is called admissible if $T^*=0$ or equivalently if T coincides with the torsion tensor field of $\tilde{P}$ . From Props. 6.4, 7.5 and 7.6, we get PROPOSITION 9.1. Let $(P, \overline{l})$ be a G'-bundle associated to $\widetilde{P}$ and let C be a connection of type (L) in $(P, \overline{l})$ . The family $\mathfrak{A}(C)$ of affine connections in $\widetilde{P}$ induced from C forms a class of mutually L-equivalent affine connections in $\widetilde{P}$ . The class $\mathfrak{A}(C)$ is admissible if and only if $S^*=0$ . DEFINITION 9.2. Let $\widetilde{P}_i$ (i=1,2) be a $\widetilde{G}$ -structure on a manifold $M_i$ and let $\mathfrak{A}_i$ be a class of mutually L-equivalent affine connections in $\widetilde{P}_i$ . An isomorphism $\widetilde{\varphi}$ of $\widetilde{P}_1$ onto $\widetilde{P}_2$ is called an isomorphism of $(\widetilde{P}_1,\mathfrak{A}_1)$ onto $(\widetilde{P}_2,\mathfrak{A}_2)$ if $\widetilde{\varphi}\mathfrak{A}_1=\mathfrak{A}_2$ . A homeomorphism f of $M_1$ onto $M_2$ is called a homeomorphism of $(M_1,\mathfrak{A}_1)$ onto $(M_2,\mathfrak{A}_2)$ if there is a (unique) isomorphism $\widetilde{\varphi}$ of $(\widetilde{P}_1,\mathfrak{A}_1)$ onto $(\widetilde{P}_2,\mathfrak{A}_2)$ which covers f. Now let us define an endomorphism $Q_L$ of $\mathcal{L}(\mathfrak{m}; \mathfrak{m}^*)$ by $$Q_L(J)(\xi) = \sum\limits_i \left[ \left[ J(e_i), \, \xi ight], \, \pmb{\omega}^i ight]$$ for all $J \in \mathcal{L}(\mathfrak{m}; \mathfrak{m}^*)$ and $\xi \in \mathfrak{m}$ , where $(e_i)$ is a base of $\mathfrak{m}$ and $(\omega^i)$ is the dual base of $(e_i)$ . LEMMA 9.1. $$Q_L(J^a) = Q_L(J)^a$$ for all $J \in \mathcal{L}(\mathfrak{m}; \mathfrak{m}^*)$ and $a \in \widetilde{G}$ . Furthermore we define an endomorphism $\Phi_L$ of $\mathcal{L}(\mathfrak{m};\mathfrak{m}^*)$ to be $$\Phi_L(J) = \frac{1}{2}J - Q_L(J)$$ for all $J \in \mathcal{L}(\mathfrak{m}; \mathfrak{m}^*)$ . From now on (Th. 9.1-Prop. 9.4), we assume that the endomorphism $\Phi_L$ is an automorphism. THEOREM 9.1. Let $\tilde{P}$ be a $\tilde{G}$ -structure on a manifold M, let $\mathfrak{A}$ be an admissible class of mutually L-equivalent affine connections in $\tilde{P}$ and let $(P, \bar{l})$ be a G'-bundle associated to $\tilde{P}$ . The notation being as in §7, there exists a connection C of type (L) in $(P, \bar{l})$ satisfying the condition: (9.2) $$\mathfrak{A}(C) = \mathfrak{A}, \quad S^* = 0 \quad and \quad W^* = 0.$$ PROOF. We fix an affine connection B in $\mathfrak A$ and an admissible homomor- phism h of $\widetilde{P}$ into P. Since $\Phi_L$ is assumed to be an automorphism, we can find, at each $x \in \widetilde{P}$ , a unique linear mapping $J_x$ of $\mathfrak{m}$ into $\mathfrak{m}^*$ such that $$(9.3) R_x^* = \Phi_L(J_x),$$ where $R^*$ is the Ricci tensor field of B. It follows from Lemma 9.1 that the mapping $J: \tilde{P} \ni x \to J_x \in \mathcal{L}(\mathfrak{m}; \mathfrak{m}^*)$ is a tensor field of type $\binom{0}{2}$ on M. Using h, B and J thus obtained, we define a linear mapping C of $\mathfrak{m}$ into $\mathcal{L}(P)$ by (7.4). From Prop. 6.1 and conditions (B.1) and (B.2), we infer that C satisfies conditions (C.1) and (C.2), i. e., C is a connection of type (L) in ( $P, \tilde{l}$ ). It is clear that B (resp. J) coincides with the affine connection (resp. the tensor field), induced from C by h. Hence $\mathfrak{N}(C) = \mathfrak{N}$ . Since $\mathfrak{N}$ is admissible, we see from Prop. 7.5, (1) that $S^* = 0$ . Finally from (9.3) and Prop. 7.5, (3), we get $W^* = 0$ . DEFINITION 9.3. Let $\tilde{P}$ be a $\tilde{G}$ -structure on a manifold M and let $\mathfrak{A}$ be an admissible class of mutually L-equivalent affine connections in $\tilde{P}$ . We say that a system $(P, \bar{l}, C)$ is a normal connection of type (L) associated to $\mathfrak{A}$ , if $(P, \bar{l})$ is a G'-bundle associated to $\tilde{P}$ and if C is a connection of type (L) in (P, l) satisfying condition (9.2). DEFINITION 9.4. Let $\widetilde{P}_i$ (i=1,2) be a $\widetilde{G}$ -structure on a manifold $M_i$ and let $(P_i,\overline{l}_i,C_i)$ be a normal connection of type (L) associated to a certain admissible class of mutually L-equivalent affine connections in $\widetilde{P}_i$ . An isomorphism $\varphi$ of $(P_1,\overline{l}_1)$ onto $(P_2,\overline{l}_2)$ is called an isomorphism of $(P_1,\overline{l}_1,C_1)$ onto $(P_2,\overline{l}_2,C_2)$ if $\varphi C_1=C_2$ . Theorem 9.2°. Let $\tilde{P}_i$ (i=1,2) be a $\tilde{G}$ -structure on a manifold $M_i$ , let $\mathfrak{A}_i$ be an admissible class of mutually L-equivalent affine connections in $\tilde{P}_i$ and let $(P_i, \bar{l}_i, C)$ be a normal connection of type (L) associated to $\mathfrak{A}_i$ . If $\tilde{\varphi}$ is an isomorphism of $(\tilde{P}_1, \mathfrak{A}_1)$ onto $(\tilde{P}_2, \mathfrak{A}_2)$ , there corresponds to $\tilde{\varphi}$ a unique isomorphism $\varphi$ of $(P_1, \bar{l}_1, C_1)$ onto $(P_2, \bar{l}_2, C_2)$ which induces $\tilde{\varphi}$ i.e., $l_2 \circ \varphi = \tilde{\varphi} \circ l_1$ . Conversely every isomorphism $\varphi$ of $(P_1, l_1, C_1)$ onto $(P_2, l_2, C_2)$ induces a unique isomorphism $\tilde{\varphi}$ of $(\tilde{P}_1, \mathfrak{A}_1)$ onto $(\tilde{P}_2, \mathfrak{A}_2)$ . PROOF. First suppose that there is given an isomorphism $\tilde{\varphi}$ of $(\tilde{P}_1, \mathfrak{A}_1)$ onto $(\tilde{P}_2, \mathfrak{A}_2)$ . We take a fixed affine connection $B_1$ in $\mathfrak{A}_1$ and set $B_2 = \tilde{\varphi}B_1$ . Since $\tilde{\varphi}\mathfrak{A}_1 = \mathfrak{A}_2$ , $B_2$ belongs to $\mathfrak{A}_2$ . Since $\mathfrak{A}_i = \mathfrak{A}(C_i)$ , it follows from Prop. 7.7 that the affine connection $B_i$ is induced from $C_i$ by a unique admissible homomorphism $h_i$ of $\tilde{P}_i$ into $P_i$ . By the proof of Prop. 6.3, there is a unique bundle isomorphism $\varphi$ of $P_1$ onto $P_2$ such that $\varphi \circ h_1 = h_2 \circ \tilde{\varphi}$ . We have $\tilde{l}_2 \circ \varphi = \tilde{\varphi} \circ \tilde{l}_1$ and hence $\varphi$ is an isomorphism of $(P_1, \tilde{l}_1)$ onto $(P_2, \tilde{l}_2)$ . Let $J_i$ be the tensor <sup>7)</sup> This allows us to speak of "the" normal connection of type (L) associated to a $\widetilde{G}$ -structure $\widetilde{P}_{\bullet}$ field on $M_i$ induced from $C_i$ by $h_i$ . Since $B_i = \tilde{\varphi}B_i$ and since $\Phi_L$ is an automorphism, we have $(J_2)_{\widetilde{\varphi}(x)} = (J_1)_x$ at each $x \in \widetilde{P}_1$ (Prop. 7.5, (3)). Therefore, it follows from Prop. 7.4 that $\varphi C_1 = C_2$ , which shows that $\varphi$ is an isomorphism of $(P_1, \bar{l}_1, C_1)$ onto $(P_2, \bar{l}_2, C_2)$ . Let us now prove the uniqueness of $\varphi$ . Let $\varphi'$ be a second isomorphism of $(P_1, \bar{l}_1, C_1)$ onto $(P_2, \bar{l}_2, C_2)$ such that $\bar{l}_2 \circ \varphi' = \tilde{\varphi} \circ \bar{l}_1$ . We put $h_2 = \varphi' \circ h_1 \circ \tilde{\varphi}^{-1}$ , being an admissible homomorphism of $\tilde{P}_2$ into $P_2$ . Then we have $B_2(\xi)_y = \tilde{\varphi} \cdot B_1(\xi)_x = \tilde{\varphi} \circ \tilde{l}_1 \cdot C_1(\xi)_z = \tilde{l}_2 \circ \varphi' \cdot C_1(\xi)_z = \tilde{l}_2 \cdot C_2(\xi)_w$ at each $y \in \widetilde{P}_2$ , where $x = \widetilde{\varphi}^{-1}(y)$ , $z = h_1(x)$ and $w = h'_2(y)$ . This means that the affine connection $B_2$ is induced from $C_2$ by $h'_2$ . Hence we have $h'_2 = h_2$ by Prop. 7.7. Since $\varphi' \circ h_1 = h_2 \circ \tilde{\varphi} = \varphi \circ h_1$ , we get $\varphi' = \varphi$ . Now suppose that there is given an isomorphism $\varphi$ of $(P_1, \bar{l}_1, C_1)$ onto $(P_2, \bar{l}_2, C_2)$ . By Prop. 6.2, $\varphi$ induces a unique isomorphism $\tilde{\varphi}$ of $\tilde{P}_1$ onto $\tilde{P}_2$ . We take any affine connection $B_1$ in $\mathfrak{A}_1$ and denote by $h_1$ the corresponding admissible homomorphism of $\widetilde{P}_1$ into $P_1$ . If we put $h_2 = \varphi \circ h_1 \circ \tilde{\varphi}^{-1}$ , being an admissible homomorphism of $\tilde{P}_2$ into $P_2$ , then we have $(\tilde{\varphi}B_1(\xi))_y = \tilde{\varphi} \cdot B_1(\xi)_x = \tilde{\varphi} \circ \tilde{l}_1 \cdot C(\xi)_z = \tilde{l}_2 \circ \varphi \cdot C_1(\xi)_z = \tilde{l}_2 \cdot C_2(\xi)_w$ at each $y \in \widetilde{P}_2$ , where $x = \widetilde{\varphi}^{-1}(y)$ , $z = h_1(x)$ and $w = h_2(y)$ . This means that the affine connection $\tilde{\varphi}B_1$ in $\tilde{P}_2$ is induced from $C_2$ by $h_2$ . Thus $\tilde{\varphi}B_1 \in \mathfrak{A}_2$ . Therefore $\tilde{\varphi}\mathfrak{A}_1 \subset \mathfrak{A}_2$ and hence $\tilde{\varphi}\mathfrak{A}_1 = \mathfrak{A}_2$ . Let $\widetilde{P}$ be a $\widetilde{G}$ -structure on a manifold M and let $\mathfrak{A}$ be a class of mutually L-equivalent affine connections in $\widetilde{P}$ . We denote by $G(M,\mathfrak{A})$ the group of all transformations of $(M,\mathfrak{A})$ . PROPOSITION 9.2. The notation being as above, we assume that M is connected and that the class $\mathfrak A$ is admissible. Then the group $G(M, \mathfrak A)$ is a Lie group of dimension $\leq \dim \mathfrak g$ with respect to the natural topology. PROOF. By Th. 9.1, there is associated to $\mathfrak A$ a normal connection $(P,\overline{l},C)$ of type (L). By Th. 9.2 and Prop. 5.2, $G(M,\mathfrak A)$ may be identified with the group of all automorphisms of $(P,\overline{l},C)$ ; the notation being as in §7, $G(M,\mathfrak A)$ consists of all transformations $\varphi$ of P satisfying the equalities: $\varphi X^* = X^*$ , $R_a \circ \varphi = \varphi \circ R_a$ for all $X \in \mathfrak g$ and $a \in G'$ . Therefore by Prop. 7.1, (1) and a theorem of S. Kobayashi [4], $G(M,\mathfrak A)$ becomes a Lie group of dimension $\subseteq \dim \mathfrak g$ in such a way that it is a Lie transformation group on P and hence on M. Let us now consider the $\widetilde{G}$ -structure $\widetilde{P}_L$ on the homogeneous space $M_L = G/G'$ , the G'-bundle $(G, \overline{l})$ associated to $\widetilde{P}_L$ and the connection $C_L$ of type (L) in $(G, \overline{l})$ which have been observed in § 6 and § 7. We have $[C_L(\xi), C_L(\xi')] = [\xi, \xi'] = 0$ for all $\xi, \xi' \in \mathfrak{m}$ . Hence the system $(G, \overline{l}, G_L)$ forms a normal connection of type (L) associated to the admissible class $\mathfrak{A}_L = \mathfrak{A}(C_L)$ . Proposition 9.3. We have naturally $G = G(M_L, \mathfrak{A}_L)$ . PROOF. For all $a \in G$ , we denote by $L_a$ (resp. $T_a$ ) the left translation on G (resp. the transformation of $M_L$ ) induced by a. Now let a be any element of G. We have $L_aX=X$ for all $X\in\mathfrak{g}$ . Hence we see that $L_a$ is an automorphism of $(G,\overline{l},C_L)$ . Since $L_a$ induces the transformation $T_a$ of $M_L$ , it follows from Th. 9.2 that $T_a$ is a transformation of $(M_L,\mathfrak{A}_L)$ , i.e., $T_a\in G(M_L,\mathfrak{A}_L)$ . Since $T_a$ is covered by a unique automorphism of $(G,\overline{l},C_L)$ , we deduce that the homomorphism $G\ni a\to T_a\in G(M_L,\mathfrak{A}_L)$ is injective. Thus we have proved $G\subset G(M_L,\mathfrak{A}_L)$ . Conversely we shall prove $G(M_L,\mathfrak{A}_L)\subset G$ . We take any element f of $G(M_L,\mathfrak{A}_L)$ . By Th. 9.2, f is induced by a unique isomorphism $\varphi$ of $(G,\overline{l},C_L)$ . We have $\varphi X^*=X^*$ for all $X\in\mathfrak{g}$ . Since $X^*=X$ , there is a unique element a of G such that $\varphi=L_a$ . Consequently we get $f=T_a$ , which proves our assertion. PROPOSITION 9.4. Let $U_i$ (i=1,2) be a connected open set of $M_L$ . Every homeomorphism f of $(U_1, \mathfrak{A}_L)$ onto $(U_2, \mathfrak{A}_L)$ is extended to a unique transformation of $M_L$ of the form $T_a(a \in G)$ . The proof of Prop. 9.4 is entirely similar to that of Prop. 9.3 and therefore it is omitted. REMARK. Prop. 9.3 implies that the action of G on the homogeneous space $M_L = G/G'$ is effective under the hypothesis that $\Phi_L$ is an automorphism. However this hypothesis is unnecessary, as is seen from the proof of Th. 9.2. The following discussions will be concerned with the equivalence problems associated with $\widetilde{G}$ -structures. The notation being as in § 8, we put $$\delta(L) = \dim \Delta^{-1}(0)$$ . For each $\omega \in \mathfrak{m}^*$ , let $\widetilde{\omega}$ be the element of $\mathcal{E}$ defined by $\widetilde{\omega}(\xi) = [\omega, \xi]$ for all $\xi \in \mathfrak{m}$ . Since $[[\omega, \xi], \xi'] = [[\omega, \xi'], \xi]$ for all $\xi, \xi' \in \mathfrak{m}$ , it follows from Prop. 1.2, (2) that the assignment $\omega \to \widetilde{\omega}$ gives an injective linear mapping of $\mathfrak{m}^*$ into $\Delta^{-1}(0)$ . Hence we have Lemma 9.2. $\delta(L) \ge n = \dim \mathfrak{m}$ , and the equality holds good if and only if the mapping $\omega \to \widetilde{\omega}$ gives an isomorphism of $\mathfrak{m}^*$ onto $\Delta^{-1}(0)$ . From Prop. 5.3 and Lemma 9.2, we get PROPOSITION 9.5. Assume that $\delta(L) = n$ . Every $\tilde{G}$ -structure $\tilde{P}$ on a manifold M admits a unique admissible class, say $\langle P \rangle$ , of mutually L-equivalent affine connections. Hereafter we assume that $\Phi_L$ is an automorphism and that $\delta(L) = n$ . DEFINITION 9.5. Let $\widetilde{P}$ be a $\widetilde{G}$ -structure on a manifold M. We say that a system $(P, \overline{l}, C)$ is a normal connection of type (L) associated to $\widetilde{P}$ if it is a normal connection of type (L) associated to the unique class $\langle P \rangle$ . THEOREM 9.3. To every $\tilde{G}$ -structure $\tilde{P}$ on a manifold M there is associated at least one normal connection $(P, \bar{l}, C)$ of type (L). Theorem 9.4. Let $\widetilde{P}_i$ (i = 1, 2) be a $\widetilde{G}$ -structure on a manifold $M_i$ and let $(P_i, \bar{l}_i, C_i)$ be a normal connection of type (L) associated to $\tilde{P}_i$ . If $\tilde{\varphi}$ is an isomorphism of $\tilde{P}_1$ onto $\tilde{P}_2$ , there corresponds to $\tilde{\varphi}$ a unique isomorphism $\varphi$ of $(P_1, \bar{l}_1, C_1)$ onto $(P_2, \bar{l}_2, C_2)$ which induces $\tilde{\varphi}$ . Conversely, every isomorphism $\varphi$ of $(P_1, \bar{l}_1, C_1)$ onto $(P_2, \bar{l}_2, C_2)$ induces a unique isomorphism $\tilde{\varphi}$ of $\tilde{P}_1$ onto $\tilde{P}_2$ . Ths. 9.3 and 9.4 follow from Ths. 9.1 and 9.2 respectively. Given a $\tilde{G}$ -structure $\tilde{P}$ on a manifold M, we shall denote by G(M) the group of all $\tilde{G}$ -transformations of M. Prop. 9.2 yields PROPOSITION 9.6. The notation being as above, we assume that M is connected. Then the group G(M) is a Lie group of dimension $\leq \dim \mathfrak{g}$ with respect to the natural topology. Props. 9.3 and 9.4 yield Proposition 9.7. $G = G(M_L)$ . Proposition 9.8. Let $U_i$ (i=1,2) be a connected open set of $M_L$ . Every $\tilde{G}$ -homeomorphism f of $U_1$ onto $U_2$ is extended to a unique transformation of $M_L$ of the form $T_a(a \in G)$ . EXAMPLES. (1) Let L be an l-system of type $P^m(R)$ . If $m \ge 2$ , the endomorphism $\Phi_L$ is an automorphism (Th. 10.1). The normal connection of type (L) is nothing but the normal projective connection of degree m. (2) The m-dimensional Möbius space gives rise to an l-system L such that the complexification $L^c$ of L is irreducible of type $IV_m$ [10]. If $m \ge 3$ , the endomorphism $\Phi_L$ is an automorphism and $\delta(L) = n$ (Ths. 10.1 and 10.2). The normal connection of type (L) is nothing but the normal conformal connection of degree m. # § 10. The endomorphism $\Phi_L$ and the integer $\delta(L)$ THEOREM 10.1. Let L be an l-system and let $L \cong L_1 \times \cdots \times L_s$ be a decomposition of L into irreducible l-systems. Then $\Phi_L$ is an automorphism if and only if none of $L_i$ is of type $P^1(\mathbf{R})$ or $P^1(\mathbf{C})$ . In general, let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$ be an l-system. We identify $\mathcal{L}(\mathfrak{m}; \mathfrak{m}^*)$ and $\mathfrak{m}^* \otimes \mathfrak{m}^*$ as follows: $(\omega \otimes \omega') \xi = \langle \xi, \omega' \rangle \omega$ for all $\omega, \omega' \in \mathfrak{m}^*$ and $\xi \in \mathfrak{m}$ . The duality $\langle , \rangle$ between $\mathfrak{m}$ and $\mathfrak{m}^*$ yields a duality $\langle , \rangle$ between $\mathfrak{m} \otimes \mathfrak{m}$ and $\mathfrak{m}^* \otimes \mathfrak{m}^*$ , and the endomorphism $Q_L$ is then defined by $$\langle \xi \otimes \xi', Q_L(\omega \otimes \omega') \rangle = \varphi(\lceil \xi, \omega \rceil, \lceil \xi', \omega' \rceil)$$ for all $\xi, \xi' \in \mathfrak{m}$ and $\omega, \omega' \in \mathfrak{m}^*$ . LEMMA 10.1. Let $L_i$ $(1 \le i \le s)$ be an l-system and let L be the product of $L_1, \dots, L_s$ . Then $\Phi_L$ is injective if and only if each $\Phi_{L_i}$ is injective. PROOF. We set $L_i = (\mathfrak{g}_i, \mathfrak{m}_i, \mathfrak{m}_i^*, \tilde{\mathfrak{g}}_i)$ and $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}})$ and identify $\mathfrak{g}_i$ with an ideal of g. We have $\mathfrak{m}^* \otimes \mathfrak{m}^* = \sum_{i,j} \mathfrak{m}_i^* \otimes \mathfrak{m}_j^*$ (direct sum). Lemma 10.1 follows from the following facts: (1) $Q_L(\mathfrak{m}_i^* \otimes \mathfrak{m}_i^*) \subset \mathfrak{m}_i^* \otimes \mathfrak{m}_i^*$ and $Q_L(\mathfrak{m}_i^* \otimes \mathfrak{m}_j^*) = \{0\}$ $(i \neq j)$ ; (2) $Q_{L_i}$ is identical with the restriction of $Q_L$ to $\mathfrak{m}_i^* \otimes \mathfrak{m}_i^*$ . LEMMA 10.2. Let L be an l-system and let $L^c$ be the complexification of L. Then $\Phi_L$ is injective if and only if $\Phi_{L^c}$ is injective. PROOF. Setting $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$ , we have $L^c = (\mathfrak{g}^c, \mathfrak{m}^c, \mathfrak{m}^{*c}, \mathfrak{g}^c)$ . We identify $\mathfrak{m}^{*c} \bigotimes \mathfrak{m}^{*c}$ with a subspace of $\mathfrak{m}^{*c} \bigotimes \mathfrak{m}^{*c}$ as follows: $$\omega \otimes \omega' = \frac{1}{2} (\omega \otimes \omega' - (\sqrt{-1} \ \omega) \otimes (\sqrt{-1} \ \omega'))$$ for all $\omega$ , $\omega' \in \mathfrak{m}^{*c}$ . Furthermore we define an injective linear mapping $\rho$ of $\mathfrak{m}^* \otimes \mathfrak{m}^*$ into $\mathfrak{m}^{*c} \otimes \mathfrak{m}^{*c}$ by $\rho(\omega \otimes \omega') = \omega \otimes \omega'$ . We have $\mathfrak{m}^{*c} \otimes \mathfrak{m}^{*c} = \rho(\mathfrak{m}^* \otimes \mathfrak{m}^*) + \sqrt{-1} \rho(\mathfrak{m}^* \otimes \mathfrak{m}^*)$ (direct sum). Now Lemma 10.2 is an immediate consequence from the followings: (1) $Q_{L^C}(\mathfrak{m}^{*c} \otimes \mathfrak{m}^{*c}) \subset \mathfrak{m}^{*c} \otimes \mathfrak{m}^{*c}$ ; (2) $Q_{L^C}$ restricted to $\mathfrak{m}^{*c} \otimes \mathfrak{m}^{*c}$ is complex linear; (3) $Q_{L^C} \circ \rho = \rho \circ Q_L$ . Let $L=(\mathfrak{g},\mathfrak{m},\mathfrak{m}^*,\mathfrak{g})$ be an irreducible l-system of type (C). By Prop. 2.4, $\mathfrak{g}$ becomes a complex Lie algebra in such a way that $\mathfrak{m},\mathfrak{m}^*$ and $\mathfrak{g}}$ are complex subalgebras of $\mathfrak{g}$ . Let us identify $\mathfrak{m}^* \otimes \mathfrak{m}^*$ with a subspace of $\mathfrak{m}^* \otimes \mathfrak{m}^*$ as above. Then we have easily $Q_L(\mathfrak{m}^* \otimes \mathfrak{m}^*) \subset \mathfrak{m}^* \otimes \mathfrak{m}^*$ . Now take a \*-isomorphism $\theta$ of L onto $L^*$ and let $S=(\mathfrak{g}_{\theta},\mathfrak{m}_{\ell},\mathfrak{g}_{\theta})$ be the corresponding simple compact hermitian s-system. We have $\mathfrak{g}=\mathfrak{g}_{\theta}^C$ , $\mathfrak{g}=\mathfrak{g}_{\theta}^C$ and $\mathfrak{m}+\mathfrak{m}^*=\mathfrak{m}_{\theta}^C$ (Prop. 4.1). Let $\varphi_{\theta}$ be the Killing form of $\mathfrak{g}_{\theta}$ and let $\langle , \rangle_{\theta}$ be the positive definite inner product on $\mathfrak{m}_{\theta}$ defined by $\langle X,Y\rangle_{\theta}=-\varphi_{\theta}(X,Y)$ for all $X,Y\in\mathfrak{m}_{\theta}$ ; the inner product $\langle , \rangle_{\theta}$ on $\mathfrak{m}_{\theta}$ gives rise to a positive definite inner product $\langle , \rangle_{\theta}$ on $\mathfrak{m}_{\theta}\otimes\mathfrak{m}_{\theta}$ . This being said, we define an endomorphism $P^{8}$ of $\mathfrak{m}_{\theta}\otimes\mathfrak{m}_{\theta}$ by $$\langle X \otimes X', P(Y \otimes Y') \rangle_{\theta} = \varphi_{\hat{\theta}}([X, Y], [X', Y'])$$ for all $X, X', Y, Y' \in \mathfrak{m}_{\theta}$ , cf. [11]. It is shown that P is self-adjoint with respect to the inner product $\langle , \rangle_{\theta}$ . Now the endomorphism P is naturally extended to a complex endomorphism $P^c$ of $(\mathfrak{m}_{\theta} \otimes \mathfrak{m}_{\theta})^c = \mathfrak{m}_{\theta}^c \otimes \mathfrak{m}_{\theta}^c$ . Then we can $$[[X_h, X_k], X_j] = \sum_i R_{ijhk} X_i.$$ Then $R_{ijhk}$ may be considered as the components of the curvature tensor field of the (compact irreducible hermition) symmetric space $M_L = G_\theta/\widetilde{G}_\theta$ . If $f = \sum\limits_{i,j} f_{ij} X_i \otimes X_j$ , we get $$P(f) = \sum_{i,j} \left( \sum_{h,k} R_{ihjk} f_{hk} \right) X_i \otimes X_j.$$ <sup>8)</sup> Let $X_1, \dots, X_n$ be an orthonormal base of $\mathfrak{m}_\theta$ with respect to the inner product $<,>_{\theta}$ . Set prove that $P^{\sigma}$ leaves $\mathfrak{m}^* \otimes \mathfrak{m}^*$ stable and that $Q_L$ and $P^{\sigma}$ coincide on $\mathfrak{m}^* \otimes \mathfrak{m}^*$ . LEMMA 10.3. Let L be an irreducible l-system of type (C). Then $\Phi_L$ is injective except the case when L is of type $I_{1,1}$ . PROOF. We first remark that L is of type $I_{1,1}$ if and only if $\dim \mathfrak{g}_{\theta}=3$ . Let $P^*$ be the restriction of $P^c$ to $\mathfrak{m}^* \underset{c}{\otimes} \mathfrak{m}^*$ . Then we see from the above argument that $\Phi_L$ is injective if and only if $-\frac{1}{2}$ — is not an eigen value of $P^*$ . If $\dim \mathfrak{g}_{\theta}=3$ , we have easily $\Phi_L=0$ . If $\dim \mathfrak{g}_{\theta}\geq 3$ , we infer from [11] that the maximal eigen value of P and hence of $P^*$ is smaller than $-\frac{1}{2}$ —, from which follows that $\Phi_L$ is injective. Theorem 10.1 follows from Lemmas 10.1, 10.2, 10.3 and Props. 2.1, 2.2, 2.5, 4.3. Now we give our attention to the integer $\delta(L)$ . Given an *l*-system $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \tilde{\mathfrak{g}}), n(L)$ will denote the dimension of $\mathfrak{m}$ . THEOREM 10.2. Let L be an l-system and let $L \cong L_1 \times \cdots \times L_s$ be a decomposition of L into irreducible l-systems. We assume that each $L_i$ is of classical type. Then $\delta(L) = n(L)$ if and only if none of $L_i$ is of type $P^m(\mathbf{R})$ or $P^m(\mathbf{C})$ $(m \ge 2)$ . LEMMA 10.4. Let $L_i$ $(1 \le i \le s)$ be an l-system and let L be the product of $L_1, \dots, L_s$ . Then $\delta(L) = n(L)$ if and only if $\delta(L_i) = n(L_i)$ for each i. PROOF. $\delta(L) = \sum_{i} \delta(L_i)$ , $n(L) = \sum_{i} n(L_i)$ and $\delta(L_i) \ge n(L_i)$ . LEMMA 10.5. Let L be an l-system and let $L^c$ be the complexification of L. Then $\delta(L) = n(L)$ if and only if $\delta(L^c) = n(L^c)$ . PROOF. $\delta(L^c) = 2\delta(L)$ and $n(L^c) = 2n(L)$ . A direct calculation gives LEMMA 10.6. Let L be an irreducible l-system of type (C). Assuming that L is of classical type, we have $\delta(L) = n(L)$ except the case when L is of type $I_{m,1}$ $(m \ge 2)$ or $III_3$ . Since $III_3 \cong I_{3,1}$ , Th. 10.2 follows from Lemmas 10.4, 10.5, 10.6 and Props. 2.1, 2.2, 2.5, 4.3. REMARK. Let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$ be an l-system. Set $\mathcal{E}' = \mathcal{L}(\mathfrak{m}; \mathfrak{m}^*)$ and denote by $\mathcal{I}'$ the subspace of $\mathcal{L}(\mathfrak{m}, \mathfrak{m}; \mathfrak{g})$ consisting of all elements W such that $W(\xi, \xi') = -W(\xi', \xi)$ for all $\xi, \xi' \in \mathfrak{m}$ . Define linear mappings $\Delta'$ of $\mathcal{E}'$ into $\mathcal{I}'$ and $\Delta'^*$ of $\mathcal{I}'$ into $\mathcal{E}'$ respectively as follows: $\Delta'(J)(\xi, \xi') = [J(\xi), \xi'] - [J(\xi'), \xi]$ for all $J \in \mathcal{E}'$ and $\xi, \xi' \in \mathfrak{m}$ ; $\Delta'^*(W)(\xi) = \sum_i [W(\xi, e_i), \omega^i]$ for all $W \in \mathcal{I}'$ and $\xi \in \mathfrak{m}$ , where $(e_i)$ is a base of $\mathfrak{m}$ and $(\omega^i)$ is the dual base of $(e_i)$ . Then we have $$\Phi_L = \Delta'^* \circ \Delta'$$ . Now take a \*-isomorphism $\theta$ of L onto $L^*$ and define positive definite inner products (,) in $\mathcal{E}'$ and $\mathcal{I}'$ respectively as follows: $(J, J') = -\sum_i \langle \theta J(e_i), J'(e_i) \rangle$ for all $J, J' \in \mathcal{E}'$ where $(e_i)$ is an orthonormal base of $\mathfrak{m}$ with respect to the inner product (,) introduced in § 8, i.e., $\langle e_i, \theta e_j \rangle = -\delta_{ij}$ ; $$(W, W') = -\frac{1}{2} \sum_{i,j} \varphi(W(e_i, e_j), \theta W'(e_i, e_j))$$ for all W, $W' \in \mathcal{I}'$ , $(e_i)$ being just as above. Then, analogously to Lemma 8.2, we get $$(W, \Delta'(J)) = (\Delta'^*(W), J)$$ for all $W \in \mathcal{I}'$ and $J \in \mathcal{E}'$ , from which follows that (1) $$\Phi_L^{-1}(0) = \Delta^{\prime -1}(0),$$ (2) $$(\Phi_L(J), J) = (\Delta'(J), \Delta'(J)) \ge 0.$$ We mention that we can give a direct proof of Th. 10.1 by using (1). ### Appendix # The cohomology group associated with an l-system As we have observed in the text, the operators $\Delta$ , $\Delta^*$ , $\Theta$ , $\Delta'$ , $\Delta'^*$ , $\Phi_L$ and the integer $\delta(L)$ play very important roles in the construction of the normal connections of type (L). In this appendix, we shall give cohomological interpretations of these operators and integer<sup>9)</sup>. Let $L = (\mathfrak{g}, \mathfrak{m}, \mathfrak{m}^*, \mathfrak{g})$ be an l-system. We use the notations and identifications given in the text. Put $\mathcal{I}(\mathfrak{m}) = \sum_{r,s} \mathcal{I}_s^r(\mathfrak{m})$ (for the definition of $\mathcal{I}_s^r(\mathfrak{m})$ , see § 5). Then the group $\widetilde{G}(\subset GL(\mathfrak{m}))$ linearly acts on $\mathcal{I}(\mathfrak{m})$ through the mapping $\widetilde{G} \times \mathcal{I}(\mathfrak{m}) \ni (a, X) \to X^a \in \mathcal{I}(\mathfrak{m})$ (§ 5). Note that $\mathfrak{m}, \mathfrak{m}^*, \mathfrak{g}(\subset \mathfrak{gl}(\mathfrak{m}))$ and hence $\mathfrak{g}$ are $\widetilde{G}$ -stable subspaces of $\mathcal{I}(\mathfrak{m})$ . For each integer p, define a subspace $\mathfrak{g}_p$ of $\mathfrak{g}$ as follows: $\mathfrak{g}_p = \mathfrak{m}(p=-1)$ , $= \tilde{\mathfrak{g}}(p=0)$ , $= \mathfrak{m}^*$ (p=1) and = 0 $(p \neq -1, 0, 1)$ . Then the family $(\mathfrak{g}_p)$ satisfies the followings: (1) $$g = \sum_{p} g_{p}$$ (direct sum), $$[\mathfrak{g}_p,\,\mathfrak{g}_q]\subset\mathfrak{g}_{p+q}.$$ (1) and (2) mean that $\mathfrak{g}$ is a graded Lie algebra. By utilizing the family $(\mathfrak{g}_p)$ thus obtained, we shall define the cohomology group $H(L) = \sum_{p,q} H^{p,q}(L)$ associated with the l-system L. Let $C^{p,q}(L)$ be the vector space of all $\mathfrak{g}_{p-1}$ -valued q-forms on $\mathfrak{m} = \mathfrak{g}_{-1}$ and <sup>9)</sup> We owe to the referee these cohomological interpretations. put $$C(L) = \sum_{p,q} C^{p,q}(L)$$ . Then, $C^{p,q}(L)$ and hence C(L) are $\widetilde{G}$ -stable subspaces of $\mathcal{I}(\mathfrak{m})$ : $(c^a)(x_1, \cdots, x_q) = (c(a^{-1}x_1, \cdots, a^{-1}x_q))^a$ for all $c \in C^{p,q}(L)$ , $a \in \widetilde{G}$ and $x_1, \cdots, x_q \in \mathfrak{m}$ . More precisely, $C^{0,q}(L)$ (resp. $C^{1,q}(L)$ , resp. $C^{2,q}(L)$ ) is a $\widetilde{G}$ -stable subspace of $\mathcal{I}_q^1(\mathfrak{m})$ (resp. $\mathcal{I}_{q+1}^1(\mathfrak{m})$ , resp. $\mathcal{I}_{q+1}^0(\mathfrak{m})$ ), and $C^{p,q}(L) = 0$ ( $p \neq 0, 1, 2$ ). Now define coboundary operator $\partial: C(L) \to C(L)$ to be $\partial C^{p,q}(L) \subset C^{p-1,q+1}(L)$ and $$(\partial c)(x_1, \dots, x_{q+1}) = \sum_{i=1}^{q+1} (-1)^i [c(x_1, \dots, \hat{x}_i, \dots, x_{q+1}), x_i]$$ for all $c \in C^{p,q}(L)$ and $x_1, \dots, x_{q+1} \in \mathfrak{m}$ . We have easily LEMMA 1. $\partial(c^a) = (\partial c^a), c \in C(L), a \in \widetilde{G}.$ LEMMA 2. $\partial^2 = 0$ . PROOF. Take any $c \in C^{p,q}(L)$ and $x_1, \dots, x_{q+2} \in \mathfrak{m}$ . Then we have $$\begin{split} (\partial^2 c)(x_1, \, \cdots, \, x_{q+2}) &= \sum_i \, (-1)^i \big[ (\partial c)(x_1, \, \cdots, \, \hat{x}_i, \, \cdots, \, x_{q+2}), \, x_i \big] \\ &= \sum_{j < i} \, (-1)^{i+j} \big[ \big[ c(x_1, \, \cdots, \, \hat{x}_j, \, \cdots, \, \hat{x}_i, \, \cdots, \, x_{q+2}), \, x_j \big], \, x_i \big] \\ &+ \sum_{j > i} \, (-1)^{i+j-1} \big[ \big[ c(x_1, \, \cdots, \, \hat{x}_i, \, \cdots, \, \hat{x}_j, \, \cdots, \, x_{q+2}), \, x_j \big], \, x_i \big] \\ &= \sum_{j < i} \, (-1)^{i+j} \big[ \big[ c(x_1, \, \cdots, \, \hat{x}_j, \, \cdots, \, \hat{x}_i, \, \cdots, \, x_{q+2}), \, x_j \big], \, x_i \big] \\ &+ \sum_{i < i} \, (-1)^{i+j-1} \big[ \big[ c(x_1, \, \cdots, \, \hat{x}_j, \, \cdots, \, \hat{x}_i, \, \cdots, \, x_{q+2}), \, x_i \big], \, x_j \big] \,. \end{split}$$ Since $[\mathfrak{m}, \mathfrak{m}] = 0$ , we get $(\partial^2 c)(x_1, \dots, x_{q+2}) = 0$ . As usual, to the complex $(C(L) = \sum_{p,q} C^{p,q}(L), \partial)$ there is associated the cohomology group $H(L) = \sum_{p,q} H^{p,q}(L)$ : $$H^{p,q}(L) = \partial^{-1}(0) \cap C^{p,q}(L)/C^{p+1,q-1}(L)$$ . We can easily verify that $H^{p,q}(L) = 0$ ( $p \neq 0$ , 1, 2), $H^{0,0}(L) = \mathfrak{m}$ , $H^{1,0}(L) = H^{2,0}(L)$ = 0 and $H^{0,1}(L) = \mathfrak{gl}(\mathfrak{m})/\tilde{\mathfrak{g}}$ (Lemma 1.2). We now define the (formal) adjoint operator $\partial^*: C(L) \to C(L)$ of $\partial$ to be $\partial^*C^{p,q}(L) \subset C^{p+1,q-1}(L)$ and $$(\partial^* c)(x_1, \dots, x_{q-1}) = (-1)^q \sum_{i=1}^n [c(x_1, \dots, x_{q-1}, e_i), \omega^i]$$ for all $c \in C^{p,q}(L)$ and $x_1, \dots, x_{q-1} \in \mathfrak{m}$ , where $(e_i)$ is a base of $\mathfrak{m}$ and $(\omega^i)$ is the dual base of $(e_i)$ . It is evident that $\partial^* c$ is well defined. We get easily LEMMA 3. $\partial^*(c^a) = (\partial^*c)^a$ , $c \in C(L)$ , $a \in \widetilde{G}$ . Let us now show that $\partial^*$ is really the adjoint operator of $\partial$ with respect to a certian positive definite inner product (,) on C(L). Take any \*-isomorphism $\theta$ of L onto $L^*$ and define a positive definite inner product (,) on $\mathfrak{g}$ by $(x,y)=-\varphi(x,\theta y)$ for all $x,y\in\mathfrak{g}$ . This being said, we define a positive definite inner product (,) on $C^{p,q}(L)$ by $$(c, c') = \frac{1}{q!} \sum_{i_1, \dots, i_q} (c(e_{i_1}, \dots, e_{i_q}), c'(e_{i_1}, \dots, e_{i_q}))$$ for all $c, c' \in C^{p,q}(L)$ , where $(e_i)$ is an orthonormal base of $\mathfrak{m}$ with respect to the inner product (,). The inner products (,) on $C^{p,q}(L)$ naturally give rise to a positive definite inner product (,) on C(L). LEMMA 4. $\partial^*$ is the adjoint operator of $\partial$ with respect to the inner product (,) on $C(L):(\partial c, c')=(c, \partial^*c'), c, c' \in C(L)$ . PROOF. Let $c \in C^{p,q}(L)$ and $c' \in C^{p-1,q+1}(L)$ . Then we get $$\begin{split} (\partial c,\,c') &= -\frac{1}{(q+1)!} \sum_{i_1,\cdots,i_{q+1}} \varphi((\partial c)(e_{i_1},\,\cdots,\,e_{i_{q+1}}),\,\theta\cdot c'(e_{i_1},\,\cdots,\,e_{i_{q+1}})) \\ &= -\frac{1}{(q+1)!} \sum_{i_1,\cdots,i_{q+1}} \sum_{j} (-1)^j \varphi([c(e_{i_1},\,\cdots,\,\hat{e}_{i_j},\,\cdots,\,e_{i_{q+1}}),\,e_{i_j}],\,\theta\cdot c'(e_{i_1},\,\cdots,\,e_{i_{q+1}})) \\ &= \frac{(-1)^{q+1}}{(q+1)!} \sum_{j} \sum_{i_1,\cdots,\hat{i}_j,\cdots,i_{q+1}} \sum_{j} \varphi(c(e_{i_1},\,\cdots,\,\hat{e}_{i_j},\,\cdots,\,e_{i_{q+1}}),\\ &\qquad \qquad \qquad \theta[c'(e_{i_1},\,\cdots,\,\hat{e}_{i_j},\,\cdots,\,e_{i_{q+1}},\,e_{i_j}),\,\theta e_{i_j}]) \\ &= \frac{1}{q+1} \sum_{j_j} \sum_{i_1,\cdots,\hat{i},\cdots,i_{q+1}} (c(e_{i_1},\,\cdots,\,\hat{e}_{i_j},\,\cdots,\,e_{i_{q+1}}),\,(\hat{o}^*c')(e_{i_1},\,\cdots,\,\hat{e}_{i_j},\,\cdots,\,e_{i_{q+1}})) \\ &= (c,\,\hat{o}^*c')\,, \end{split}$$ where we have used the fact that $(-\theta e_i)$ is the dual base of $(e_i)$ . An important consequence of Lemma 4 is that there is defined the notion of a harmonic form in C(L). We put $\square = \partial^* \partial + \partial \partial^*$ (Laplace Bertrami operator). Then a form in $\square^{-1}(0) = \mathcal{H} = \sum_{p,q} \mathcal{H}^{p,q}$ is called harmonic. As usual we get $\mathcal{H}^{p,q} = \partial^{-1}(0) \cap \partial^{*-1}(0) \cap C^{p,q}(L)$ and the orthogonal decompositions: $$C^{p,q}(L) = \mathcal{H}^{p,q} + \Box C^{p,q}(L),$$ $$= \mathcal{H}^{p,q} + \partial C^{p+1,q-1}(L) + \partial^* C^{p-1,q+1}(L),$$ $$\partial^{-1}(0) \cap C^{p,q}(L) = \mathcal{H}^{p,q} + \partial C^{p+1,q-1}(L).$$ Therefore we get $H^{p,q}(L) = \mathcal{H}^{p,q}$ . Relations between our previous notations and cohomology: (A) $$\mathcal{E} = C^{1,1}(L)$$ , $\mathcal{I} = C^{0,2}(L)$ , $\Delta = \partial \mid C^{1,1}(L)$ , $\Delta^* = \partial^* \mid C^{0,2}(L)$ , $\Theta = \partial^* \partial \mid C^{1,1}(L)$ (§ 8); (B) $$\mathcal{E}' = C^{2,1}(L)$$ , $\mathcal{I}' = C^{1,2}(L)$ , $\Delta' = \partial \mid C^{2,1}(L)$ , $\Delta'^* = \partial^* \mid C^{1,2}(L)$ , $\Phi_L = \partial^* \partial \mid C^{2,1}(L) = \square \mid C^{2,1}(L)$ (§ 9 and § 10); - (C) $\tilde{\omega} = -\partial \omega$ , $\omega \in \mathfrak{m}^* = C^{2,0}(L)$ , $\delta(L) = \dim (\partial^{-1}(0) \cap C^{1,1}(L))$ , $n(L) = \dim \partial C^{2,0}(L)$ (§ 9 and § 10); - (D) $R^* = \partial^* R$ , $S^* = \partial^* S$ , $W^* = \partial^* W$ , $T^* = \partial^* T$ (§ 5, § 7 and § 8). Finally we add PROPOSITION. (1) $\Phi_L$ is an automorphism if and only if $H^{2,1}(L) = 0$ . (2) $\delta(L) = n(L)$ if and only if $H^{1,1}(L) = 0$ . PROOF. (1) follows from (B) and the fact that $H^{2,1}(L) = \mathcal{H}^{2,1}$ . (2) is immediate from (C). Mathematical Institute Nagoya University #### **Bibliography** - [1] M. Berger, Les espaces symétriques non compacts, Ann. Ec. Norm. Sup., 74 (1957), 85-177. - [2] S. Helgason, Differential geometry and symmetric spaces, Academic Press, 1962. - [3] N. Iwahori, On real irreducible representations of Lie algebras, Nagoya Math. J., 14 (1959), 59-83. - [4] S. Kobayashi, Theory of connections, Annali di Math., 43 (1957), 119-194. - [5] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Interscience Publishers, 1963. - [6] S. Murakami, On the automorphisms of a real semi-simple Lie algebra, J. Math. Soc. Japan, 4 (1952), 103-133. - [7] T. Nagano, Transformation groups on compact symmetric spaces, to appear. - [8] Séminaire "Sophus Lie", Théorie des algèbres de Lie, Topologie des groupes de Lie, Paris, 1955. - [9] N. Tanaka, Projective connections and projective transformations, Nagoya Math J., 12 (1957), 1-24. - [10] N. Tanaka, Conformal connections and conformal transformations, Trans. Amer. Math. Soc., 92 (1959), 168-190. - [11] A. Weil, On discrete subgroups of Lie groups, II, Ann. of Math., 75 (1962), 578-602.