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\S 1. Introduction.

Consider a Kowalevskaja type system of partial differential equations

$\underline{\partial u}(\partial\frac{t,x)}{t}=L_{t}u\equiv\sum_{k=1}^{n}A_{k}(t, x)\frac{\partial u}{\partial x_{k}}+B(t, x)u$ , (1.1)

where $u(t, x)$ is an $m$ dimensional unknown vector function of $t\in R^{1}$ and
$x=(x_{1}, \cdots, x_{n})\in R^{n}$ and $A_{k}(t, x)$ ($k=1,$ $\cdots$ , n) and $B(t, x)$ are $m\times m$ matrices.
We assume that the components of $A_{k}$ and $B$ are functions of $t$ and $x$ which
are analytic in $x$ .

In order to state the hypotheses to be imposed on $A_{k}$ and $B$ more exactly,
however, we need to introduce some notations. For an $n$ dimensional vector
$x=$ $(x_{1}$ , $\cdot$ .. , $x_{n})$ we put $\Vert x\Vert=1_{\Leftarrow}i\leqq n\max_{<}|x_{i}|$ and for a positive number $\beta$ we denote

by $\Omega_{\beta}$ the strip domain in the complex $n$ dimensional space $C^{n}$ defined by

$\Omega_{\beta}=$ { $x+iy|x,$ $y\in R^{n}$ and $\Vert y\Vert<\beta$ }.

We assume that the components of the matrices $A_{k}$ and $B$ are complex valued
functions of $(t, z)\in[0, T)\times\Omega_{\beta}$ for some $T>0$ and $\beta>0$ which are regular
analytic in $z$ for any fixed $t$ .

The purpose of this paper is to prove the following
THEOREM. Let $T$ and $\beta$ be any positive numbers. Suppose that the com-

ponents of $A_{k}$ are bounded in $[0, T$ ) $\times\Omega_{\beta}$ and uniformly continuous in $(t, z)$

there and that the components $b_{ij}(t, z)$ of $B$ satisfy in $[0, T$ ) $\times\Omega_{\beta}$ the inequalities

$|b_{ij}(t, x+iy)|\leqq B_{0}e^{aIIxII}$ (1.2)

for some positive constants $B_{0}$ , $a$ and $e^{-aNx||}b_{ij}(t, z)$ are uniformly continuous in
$(t, z)$ there. Let $v_{i}(t, x)$ ($i=1$ , $\cdot$ .. , n) be functions of $(t, x)\in(O, T)\times R^{n}$ which
are measurable in $x$ for any $t$ and satisfy

$|v_{i}(t, x)|\leqq C\exp(ce^{a||x||})$ ($i=1,$ $\cdots$ , n) (1.3)
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almost everywhere for some positive constants $C,$ $c$ and $a^{1)}$ . Then, if
$u(t, x)=D_{x}^{q}v(t, x)$ , (1.4)

where $q=$ $(q_{1}$ , $\cdot$ .. , $q_{n})$ is any multi-index, $D_{x}^{q}=\partial^{q_{1}+\cdots+q_{n}}/\partial x_{1}^{q_{1}}\ldots\partial x_{n}^{q_{n}}$ and $v(t, x)$

$=$ $(v_{1}(t, x)$ , $\cdot$ , $v_{n}(t, x))$ is a distribution solution2) for $0<t<T$ of the Cauchy
problem for the equation (1.1) with the homogeneous initial condition

$u(0, x)=0$ , (1.5)

then $u(t, x)=0$ as a distribution on the x-space for any $t\in(O, T)$ .
The above result is an improvement on that of M. Yamamoto’s [2], [3]

in a slightly imcomplete sense. Our result improves the theorem of Yamamoto
in that we relax the boundedness condition on $B$ in [2], [3] and that we
establish the uniqueness of solutions in a wider class of distributions than in
[2], [3] (only solutions of form $(1.3)-(1.4)$ with $q=0$ were considered in [2],

[3]). The above mentioned improvement is, however, incomplete in that the
uniformity of the continuity in $(t, z)$ of $A_{k}$ and $B$ were not assumed in [2], [3].

The above theorem is regarded also as an improvement on a theorem in
an earlier paper [5] (Theorem 5.1) of the author’s, where on $A_{k}$ and $B$ more
restrictive and less natural conditions than in the above theorem were imposed.
Note however, that the problem of the speed of propagation is not discussed
in the present paper unlike in [5].

The remaining part of this paper is divided into four sections. From \S 2
to \S 4 are the preparations for \S 5, where the proof of the theorem is completed.

In closing the introduction the author wishes to express his warmest thanks
to Professor M. Nagumo, Dr. Y. Komura and Dr. S. Yosida for their valuable
suggestions and constant encouragements.

\S 2. Function spaces.

In this section we shall introduce various function spaces which will play
important roles in this paper and discuss the interrelations among them.

1. A notation. Suppose that $E,$ $F$ are topological spaces (or pseudo topo-
logical spaces in the sense that only the concepts of the convergence of the
sequences of elements are introduced in them) such that $E\subset F$, that $E$ is dense
in $F$ and that $F$ induces a (pseudo) topology on $E$ which is the same as or
weaker than the original topology of $E$ . In such a case we shall write

$E\prec F$ .

1) The $a’ s$ in (1.2) and (1.3) may be different, but there is no loss of generality
in assuming that they coincide with each other.

2) We shall define in \S 3 the exact meaning of a distribution solution of the Cauchy
problem.
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If $E$ is a linear (pseudo) topological space, then we shall denote by $E^{\prime}$ the
dual space of $E,$ $i$ . $e$ . the totality of all continuous linear functionals on $E$ . If
two linear (pseudo) topological spaces $E$ and $F$ satisfy the relation $E\prec F$ , we
can regard $F^{\prime}$ as a subset of $E^{\gamma}$ by means of an obvious identification mapping.

2. The spaces 9 and 9. We denote by 9 the totality of all infinitely
differentiable complex valued functions on $R^{n}$ with compact supports and by
9 the totality of all infinitely differentiable complex valued functions on $R^{n}$

all whose partial derivatives are bounded on $R^{n}$ . These two function spaces
are those which play fundamental roles in L. Schwartz’ distribution theory and
we introduce the same (pseudo) topologies in these spaces as in the distribution
theory. In particular, we shall say that a sequence of elements $\varphi_{j}(x)(j=1,2, \cdots)$

of $\mathscr{D}$ converges to $0$ in $\mathscr{D}$ as $ j\rightarrow\infty$ , if and only if for any multi-index $q$ the
functions $D^{q}\varphi_{j}(x)(j=1,2, \cdots)$ are uniformly bounded on $R^{n}$ and the sequence
$D^{q}\varphi_{j}(x)$ converges to $0$ as $ j\rightarrow\infty$ uniformly on any compact subset of $R^{n}$ .
According to L. Schwartz’ theory we shall call an element of the space 9’ a
distribution (on $R^{n}$).

The following lemma is what was proved in Yamanaka [5] and is neces-
sary in this paper, too.

LEMMA 2.1. Let $F$ be a locally convex linear topological space consisting

of infinitely differentiable functions on $R^{n}$ such that $9\prec F$ and which satisfies
the following two conditions:

[2.1] If $\varphi(x)\in F$ and $\psi(x)\in \mathscr{D}$ , then $\varphi(x)\psi(x)\in F$ ;
[2.2] If $\varphi(x)\in F$ and if $\psi_{j}(x)\in \mathscr{D}(j=1, 2, )$

converges to $0$ in S3 as $ j\rightarrow\infty$ , then $\varphi(x)\psi_{j}(x)$ converges to $0$ as $ j\rightarrow\infty$ in $F$.
Next let $E$ be a linear subspace of $F$ satisfying the following three condi-

tions:
[2.3] $E$ is non-trivial, $i$ . $e$ . $E$ contains at least one element $\varphi(x)\not\equiv 0$ ;
[2.4] If $\varphi(x)\in E$ and $h\in R^{n}$ , then $\varphi(x-h)\in E$ ;
[2.5] If $\varphi(x)\in E$ and $\sigma\in R^{n}$ , then $\varphi(x)e^{i(x,\sigma)}\in E$ ,

where $(x, \sigma)=x_{1}\sigma_{1}+\cdots+x_{n}\sigma_{n}$ .
Under the above mentioned conditions the linear subspace $E$ is dense in $F$.
For the proof see [5], \S 2, 3 (pp. 70-73).

3. The space $\mathscr{D}_{\alpha,a}$ . Let $a$ be a positive constant and let $\alpha$ be a real
constant. We denote by $\mathscr{D}_{\alpha,a}$ or simply by $\mathscr{D}_{\alpha}$ (The letter $a$ may be omitted,

since its value is fixed arbitrarily. On the contrary $\alpha$ is a parameter whose
value always moves.) the totality of all infinitely differentiable functions on
$R^{n}$ such that for any multi-index $q$ and for any $\alpha^{\prime}$ with $\alpha^{\prime}<\alpha$

$\sup_{x--R^{n}}|D^{q}\varphi(x)’|\cdot\exp(e^{a(||x||+\alpha^{\prime})})<\infty$ .

We can regard the space $9_{\alpha}$ as a $K\{M_{p}\}$ type space in the sense of GePfand
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and \v{S}ilov [6]. In fact, if we put

$M_{p}(x)=\exp(e^{a(||x||+\alpha-1/p)})$ (2.1)

for $p=1,2,$ $\cdots$ , then the two spaces $\mathscr{D}_{\alpha,a}$ and $K\{M_{p}\}$ obviously coincide with
each other as simple sets. Therefore we introduce into the space $9_{a}$ the
topology of the space $K\{M_{p}\}$ defined by (2.1). In other words, the topology
of the space $\mathscr{D}_{\alpha}$ is defined by the countable system of norms

$\Vert\varphi\Vert_{(p)}=\sup_{q1^{x_{1}\subset_{1}R}\leqq^{n}p}|D^{q}\varphi(x)|\cdot\exp(e^{a(||xN+\alpha-1/p)})$ $(p=1, 2, )$
,

where $q=$ $(q_{1}, \cdots , q_{n})$ and $|q|_{1}=q_{1}+\cdots+q_{n}$ . Moreover, note that the functions
$M_{p}(x)$ defined by (2.1) clearly satisfy the condition for the perfectness

$\lim_{|x|\rightarrow\infty}\frac{M_{p}(x)}{M_{p+1}(x)}=0$ . (2.1)

Hence (see [6], Vol. 2, p. 123), the space $9_{\alpha}$ contains the space 9 as a dense
subset. It is clear that $\mathscr{D}_{\alpha}$ induces on 9 a topology which is weaker than the
original one of 9. Hence we have the relations $9\prec \mathscr{D}_{\alpha}$ and $(9_{a})^{\prime}\subset 9^{\prime}$ .
Further, if $u(x)$ is a measurable function on $R^{n}$ such that for some $\alpha^{\prime}<\alpha$

$|u(x)|\leqq C\exp(e^{a(||x||+\alpha^{\prime})})$ , (2.2)

then the functional on 9 defined by

$\int_{R^{n}}u(x)D^{q}\varphi(x)dx$ $(\varphi(x)\in 9)$

is clearly continuous with respect to the topology of $\mathscr{D}_{\alpha}$ . Hence, a distribution
of the form $D^{q}u(x)$ , where $u(x)$ is a measurable function satisfying an in-
equality of form (2.2), is an element of the space $(9_{\alpha})^{\gamma}$ . It is also clear that,
if $u(t, x)$ is a measurable function of $x\in R^{n}$ with a parameter $t$ satisfying an
inequality of the form

$|u(t, x)|\leqq C\exp(e^{a(||x||+\alpha^{\prime})})$

independently of $t$ , then the distribution $D_{x}^{q}u(t, x)$ on $R^{n}$ runs through a bounded
set of the space $(9_{\alpha})^{\prime}$ as the parameter $t$ moves.

Also, as a further consequence of the relation (2.1), we have the following
fact (see [6], Vol. 2, Chap. 2, \S 2, 3):

A sequence $\varphi_{j}(x)(j=1, 2, )$ of elements of the space $\mathscr{D}_{\alpha}$ converges to $0$

in $\mathscr{D}_{\alpha}$ as $ j\rightarrow\infty$ , if and only if the set $\{\varphi_{j}(x)\}$ of elements of $\mathscr{D}_{\alpha}$ is bounded with
respect to the topology of $\mathscr{D}_{\alpha}$ and the sequence of functions $D^{q}\varphi_{j}(x)(j=1,2, \cdots)$

converges to $0$ as $ j\rightarrow\infty$ uniformly on any compact subset of $R^{n}$ for any multi-
index $q$ .

From this fact we further conclude that
if $\psi_{j}(x)(j=1, 2, )$ is a sequence of elements of the space $\mathscr{D}$ and converges
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to $0$ in $\mathscr{D}$ as $ j\rightarrow\infty$ , then for any $\varphi(x)\in \mathscr{D}_{\alpha}$ the sequence $\varphi(x)\psi_{j}(x)(j=1, 2, )$

converges to $0$ in $\mathscr{D}_{\alpha}$ as $ j\rightarrow\infty$ .
Thus the space $\mathscr{D}_{\alpha}$ satisfies the conditions [2.1] and [2.2] of Lemma 2.1.
4. Continuous families of Banach spaces. Let $\Lambda$ be a (finite or infinite)

real interval whose left end is open and let there correspond to each $\lambda\in\Lambda$ a
Banach space $\tilde{\Phi}_{\lambda}$ with a norm $\Vert\varphi\Vert_{\lambda}$ in such a way that, if $\lambda,$ $\mu\in\Lambda$ and $\lambda\leqq\mu$ ,
then $\tilde{\Phi}_{1}\subset\tilde{\Phi}_{\lambda}$ and $\Vert\varphi\Vert_{\lambda}\leqq\Vert\varphi\Vert_{/1}$ for any $\varphi\in\tilde{\Phi}_{t}$ . Then for each $\lambda\in\Lambda$ we put

$\Phi_{\lambda}=\bigcap_{\lambda_{/}<\lambda}\tilde{\Phi}_{\lambda^{}}$
(2.3)

and introduce into the linear space $\Phi_{\lambda}$ the topology that is the weakest among
those for which all the inclusion mappings $\Phi_{\lambda}\rightarrow\tilde{\Phi}_{\lambda},$ $(\lambda^{\prime}<\lambda, \lambda^{\prime}\in\Lambda)$ are con-
tinuous. In other words, $\Phi_{\lambda}$ is a locally convex linear topological space for
which the family of the countable subsets

$U_{n}=\{\varphi\in\Phi_{\lambda}|\Vert\varphi\Vert_{\lambda- 1/n}<\frac{1}{n}\}$ $(n=1,2, )$

form a fundamental system of neighbourhoods of the origin. The completeness
of the space $\Phi_{\lambda}$ follows directly from the completeness of the spaces $\tilde{\Phi}_{\lambda’}$ and
the relation (2.3). Hence $\Phi_{\lambda}$ is what Bourbaki calls a Fr\’echet space or what
Gel’fand and \v{S}ilov call a countably normed space (except that the condition
of the concordance of norms is not necessarily satisfied).

5. The space $\tilde{A}_{\alpha.a}^{\beta}$ and $A_{\alpha.a}^{\beta}$ . Let $\alpha$ be a real constant and let $\beta,$ $a$ be
two positive constants. For a regular function $\varphi(z)$ on the complex $m$ dimen-
sional strip domain $\Omega_{\beta}$ we define a norm $||\varphi\Vert_{\alpha.a}^{\beta}$ (or simply $\Vert\varphi\Vert_{a}^{\beta}$) by

$\Vert\varphi\Vert_{\alpha.a}^{\beta}=\sup_{z\in\Omega_{\beta}}|\varphi(z)|\exp(e^{a(||x||+\alpha)})$

and we denote by $\tilde{d}_{\alpha.a}^{\beta}$ (or simply by $\tilde{d}_{\alpha}^{\beta}$) the totality of all regular functions
$\varphi(z)$ on $\Omega_{\beta}$ for which the norm $||\varphi\Vert_{\beta.a}^{\alpha}$ take finite values. It can be shown that
the space $\tilde{d}_{\alpha.a}^{\beta}$ is non-trivial, if and only if $\alpha\beta<\pi/2$ . For the proof of this
fact see Mandelbrojt [1], chap. II, 2, $i$ .

It is clear that $\tilde{d}_{\alpha.a}^{\beta}$ becomes a Banach space with respect to the norm
$\Vert\varphi\Vert_{\alpha,a}^{\beta}$ and also that, if $\alpha^{\prime}\leqq\alpha$ and $ 0<\beta^{\prime}\leqq\beta$ , then

$=f\tilde{l}_{\alpha,a}^{\beta}\subset\tilde{d}_{\alpha’ a}^{\beta^{r}}$ and $\Vert\varphi\Vert_{\alpha^{\prime}’.a}^{\beta}\leqq\Vert\varphi\Vert_{\alpha.a}^{\beta}$ $(\varphi(z)\in\tilde{d}_{\alpha.a}^{\beta})$ .

Hence we can constract a family of countably normed spaces $\{A_{\alpha.a}^{\beta}\}$ from the
family of Banach spaces $\{\tilde{d}_{\alpha.a}^{\beta}\}$ , just like the construction of $\Phi_{\lambda}$ from $\tilde{\Phi}_{\lambda}$ in
the preceding subsection, by putting

$d_{\alpha.a}^{\beta}$ (or $d_{\alpha}^{\beta}$) $=$
$\bigcap_{\alpha,0<^{\prime}\beta^{<}<^{\alpha}\beta}\tilde{d}_{\alpha,a}^{\beta^{\prime},}$

.

The topology of the space $d_{\alpha}^{\beta}$ is defined by the countable system of norms
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$\Vert\varphi\Vert_{\alpha-1}^{\beta-1}/pp$ ( $p=p_{0},$ $p_{0}+1$ , $\cdot$ .. ; $p_{0}$ being a natural number such that $\beta-1/p_{0}>0$).

Now let us compare two spaces $\mathscr{D}_{\alpha,a}$ and $A_{\alpha’ a}^{\beta}$ with $\alpha\leqq\alpha^{\prime}$ . Of course we
can regard $A_{\alpha}^{\beta}$ as a subset of $\mathscr{D}_{\alpha,a}$ . It is easily verified that the topology of
$cA_{\alpha}^{\beta}$ is stronger than the one which is induced by $9_{cr,a}$ (see Lemma 5.3).
By that lemma we see that for any natural number $p$ there exists a natural
number $p^{\gamma}$ and a positive constant $C_{pp}$ , such that $\Vert\varphi\Vert_{(p)}\leqq C_{pp},\Vert\varphi||_{\alpha^{\prime}-1/p^{\prime}}^{\beta-1/p^{\prime}}$ for any
$\varphi\in d_{\alpha,a}^{\beta_{f}})$ . As already mentioned, for any $a>0$ we can take a positive number
$\beta$ for which $A_{\alpha}^{\beta}$ is non-trivial. For such a pair of values of $a$ and $\beta$ , there-
fore, the condition [2.3] of Lemma 2.1 is satisfied. It is almost self-evident
that $d_{\alpha’}^{\beta}$ satisfies the conditions [2.4] and [2.5]. Also we already know that
the space $\mathscr{D}_{\alpha,a}$ satisfies the conditions [2.1] and [2.2]. Hence all the conditions
necessary in order to apply Lemma 2.1 are now satisfied and we conclude
that

a non-trivial space $d_{\alpha,a}^{\rho,}$ is dense in the space $\mathscr{D}_{o,a}$ with $\alpha\leqq\alpha^{\prime}$ and accord-
ingly the relations

$d_{\alpha}^{\beta}\prec \mathscr{D}_{a,a}$ and $(9_{\alpha,a})^{\gamma}\subset(A_{\alpha’.a}^{\beta})^{\prime}$

hold.

\S 3. Classical solution, weak solution and distribution solution of the
Cauchy problem.

1. Conventional notation and phraseology. Let $\Phi$ be a set. If $\varphi=(\varphi_{j})$

is a vector of length, say, $m$ whose components $\varphi_{j}$ belong to $\Phi$ , then we say
that $\varphi$ is a vector (of length m) in $\Phi$ and write simply $\varphi\in\Phi$ . If $\Phi$ is a
function space, then we call a vector in $\Phi$ a function vector in $\Phi$ . By analogy
we shall also use such expressions as a functional vector, a distribution vector
etc. In general, if all components $\varphi_{j}$ of $\varphi=(\varphi_{j})$ have a common property $P$,
then we say that the vector $\varphi$ has the property $P$. Let $\Phi$ be a linear topo-
logical space and let $\Phi^{r}$ be the dual space of $\Phi$ . We denote the scalar product
of $u\in\Phi^{\gamma}$ and $\varphi\in\Phi$ by $\langle u, \varphi\rangle$ . For a vector $u=(u_{j})\in\Phi^{\prime}$ and a vector
$\varphi=(\varphi_{j})\in\Phi$ we put $\langle u, \varphi\rangle=\sum_{j}\langle u_{j}, \varphi_{j}\rangle$ .

2. Classical solution of the Cauchy problem. We say that $u(t, x)$ is a
classical solution for $0\leqq t<T$ of the Cauchy problem $(1.1)-(1.5)$ , if and only
if $u(t, x)$ is a function vector of length $m$ which is continuous with respect to
$(t, x)$ on $[0, T$ ) $\times R^{n}$ , is continuously differentiable with respect to $t$ and $x$ on
$(0, T)\times R^{n}$ and actually satisfies (1.1) (for $(t,$ $x)\in(O,$ $T)\times R^{n}$) and (1.5) (for
$x\in R^{n})$ .

3. Weak solution and distribution solution of the Cauchy problem. For
a function vector $\varphi(x)$ of length $m$ which is defined and differentiable on $R^{n}$

we put
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$L_{t}^{*}\varphi(x)=-\sum_{k=1}^{n}\frac{\partial({}^{t}A_{k}(t,x)\varphi(x))}{\partial x_{k}}+{}^{t}B(t, x)\varphi(x)$ ,

where ${}^{t}A_{k}(t, x)$ and ${}^{t}B(t, x)$ are the transposed matrices of $A_{k}(t, x)$ and $B(t, x)$

respectively.
Now let $\Phi$ be a linear topological space consisting of complex valued func-

tions on $R^{n}$ such that, if $\varphi(x)$ is a function vector in $\Phi$ of length $m$ , then
$ L_{\iota}^{*}\varphi(x)\in\Phi$ . We say that

$u(t, x)$ is a weak solution for $0<t<T$ of the Cauchy problem $(1.1)-(1.5)$

with respect to the space $\Phi$ , if and only if $u(t, x)$ is a functional vector $\in\Phi^{\prime}$

of length $m$ for each $t,$ $0<t<T$ , and for any function vector $\varphi(x)\in\Phi$ of length $m$

$\frac{d}{dt}\langle u(t, x), \varphi(x)\rangle=\langle u(t, x), L_{t}^{*}\varphi(x)\rangle$ $(0<t<T)$ (3.1)

and
$\lim_{t\rightarrow 0}\langle u(t, x), \varphi(x)\rangle=0$ . (3.2)

In particular, since the matrices $A_{k}(t, x)$ and $B(t, x)$ are in the $C^{\infty}$ class
with respect to $x$ , a weak solution of the problem $(1.1)-(1.5)$ with respect to
the space 9 is defined. We call a weak solution with respect to 9 a distri-
bution solution. It is clear that any classical solution is a distribution solution.

4. Relation between the concepts of weak solutions with respect to dif-
ferent spaces. Suppose that the concepts of weak solutions with respect to
two spaces $\Phi$ and $\Phi_{1}$ such that $\Phi\prec\Phi_{1}$ are defined. The following proposition
gives a sufficient condition in order that a weak solution with respect to $\Phi$ is
at the same time a weak solution with respect to $\Phi_{1}$ .

PROPOSITION 3.1. Suppose that $\Phi_{1}$ is a countably normed space and suppose
that $L_{t}^{*}\varphi(x)$ depends continuously both on $\varphi(x)$ and $t,$ $0\leqq t<T$, with respect to
the topology of $\Phi_{1}$ . Then, if $u(t, x)$ is a weak solution for $0<t<T$ of the
Cauchy problem $(1.1)-(1.5)$ with respect to $\Phi$ and if $u(t, x)$ stays in a bounded
set of $\Phi^{\gamma}$ as $t$ moves in $(0, T)$ , then $u(t, x)$ is a weak solution for $0<t<T$ of
the problem $(1.1)-(1.5)$ with respect to $\Phi_{1}$ , too.

PROOF. Take a function vector $\varphi(x)\in\Phi_{1}$ of length $m$ arbitrarily. We can
take a sequence $\varphi_{j}(x)(j=1, 2, )$ of function vectors $\in\Phi$ which converges to
$\varphi(x)$ as $ j\rightarrow\infty$ in $\Phi_{1}$ . Since $L_{t}^{*}\varphi(x)$ depends continuously on $\varphi(x)$ in $\Phi_{1},$ $L_{\ell}^{\star}\varphi_{j}(x)$

converges to $L_{\iota}^{*}\varphi(x)$ as $ j\rightarrow\infty$ in $\Phi$ . And since the weak solution $u(t, x)$ belongs
to $\Phi_{1}^{\prime}$ , we have

$\lim_{j\rightarrow\infty}\langle u(t, x), \varphi_{j}(x)\rangle=\langle u(t, x), \varphi(x)\rangle$ (3.3)

and

$\lim_{j\rightarrow\infty}\frac{d}{dt}\langle u(t, x), \varphi_{j}(x)\rangle=\lim_{j\rightarrow\infty}\langle u(t, x), L_{t}^{\star}\varphi_{j}(x)\rangle$

$=\langle u(t, x), L_{t}^{*}\varphi(x)\rangle$ . (3.4)
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Further, since $u(t, x)$ is in a bounded set of $\Phi_{1}^{\prime}$ for $0<t<T$ and since the
initial and strong topologies coincide with each other in the countably normed
space $\Phi_{1}$ , the convergence in (3.4) is uniform with respect to $t,$ $0<t<T$ . It
is also easily seen that

$(d/dt)\langle u(t, x), \varphi_{j}(x)\rangle=\langle u(t, x), L_{t}^{*}\varphi_{j}(x)\rangle$

is continuous with respect to $t$ as a consequence of the continuous dependence
on $t$ of $L_{t}^{*}\varphi_{j}(x)$ in $\Phi_{1}$ . Hence we can apply the termwise differentiation theorem
in the calculus and conclude that the limit function $\langle u(t, x), \varphi(x)\rangle$ of the se-
quence $\langle u(t, x), \varphi_{j}(x)\rangle$ is differentiable with respect to $t,$ $0<t<T$ and

$\frac{d}{dt}\langle u(t, x), \varphi(x)\rangle=\langle u(t, x), L_{t}^{*}\varphi(x)\rangle$ . (3.5)

Next let us examine the limit relation (3.2). Let $\varphi(x)$ and $\varphi_{j}(x)(j=1,2, \cdots)$

be the same as above. Since $u(t, x)$ is a weak solution with respect to $\Phi$ , we
have for $j=1,2,$ $\cdots$

$\lim_{t\rightarrow+0}\langle u(t, x), \varphi_{j}(x)\rangle=0$ . (3.6)

On the other hand $u(f, x)$ is in a bounded set of $\Phi_{1}^{\prime}$ and a bounded set of the
dual space $\Phi_{1}^{\prime}$ of a countably normed space $\Phi_{1}$ is equi-continuous. Hence for
any given positive number $\epsilon$ we can find a neighbourhood $U$ of the origin of
the space $\Phi_{1}$ such that $\psi(x)\in U$ implies $|\langle u(t, x), \psi(x)\rangle|<\epsilon$ for $0<t<T$. For
the given element $\varphi(x)$ of $\Phi_{1}$ and for the above chosen neighbourhood $U$ take
an index $j$ such that $\varphi(x)-\varphi_{j}(x)\in U$ and fix it. For this $j$ we can take a posi-
tive number $\tau$ such that, if $ 0<t<\tau$ , then $|\langle u(t, x), \varphi_{j}(x)\rangle|<\epsilon$ , because of (3.6).

Therefore $ 0<t<\tau$ implies

$|\langle u(t, x), \varphi(x)\rangle|\leqq|\langle u(t, x), \varphi(x)-\varphi_{j}(x)\rangle|+|\langle u(t, x), \varphi_{j}(x)\rangle|<2\epsilon$ .
This shows that (3.2) holds for any $\varphi(x)\in\Phi_{1}$ . q. e. d.

REMARK. We can relax the hypotheses in the above proposition that $\Phi_{1}$

is a countably normed space. It will suthce for our purpose to assume that
$\Phi_{1}$ is a tonnele space in Bourbaki’s sense. In that case we only have to replace
in the proof the word sequence by the word filter.

5. Weak solution with respect to the space $\mathscr{D}_{\alpha}$ and distribution solution.
Under the conditions on $A_{k}(t, x)$ and $B(t, x)$ in Theorem, it is easy to see
that $L_{t}^{*}\varphi(x)$ is defined for $\varphi(x)\in \mathscr{D}_{\alpha,a}$ and $0\leqq t<T$ and depends continuously
on $\varphi(x)$ and $i$ in $\mathscr{D}_{\alpha,a}$ . Further we know that $9\prec 9_{\alpha,a}$ . Hence, by virtue of
Prop. 3.1 we obtain the following

PROPOSITION 3.2. Supp $ose$ that $A_{k}(t, x)$ and $B(t, x)$ satisfy the conditions in
Theorem. Then, if $v(t, x)=(v_{j}(t, x))$ is a function vector of length $m$ which is
measurable in $x$ for $0<t<T$ and satisfies an inequality of the form

$\Vert v(t, x)\Vert\leqq C\exp(e^{a(||x||+\alpha^{\prime})})$ $(\alpha^{\prime}<\alpha)$
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almost everywhere with $re$spect to $x$ for $0<t<T$ and if $u(t, x)=D_{x}^{q}v(t, \chi)$ where
$q$ is any multi-index is a distribution solution for $0<t<T$ of the Cauchy pro-
blem $(1.1)-(1.5)$ , then $u(t, x)$ is a weak solution for $0<t<T$ of the problem
$(1.1)-(1.5)$ with respect to $\mathscr{D}_{\alpha,a}$ , too.

\S 4. Strong solutions of the Cauchy problem, Holmgren’s principle.

1. Let $\Phi$ be a linear topological space consisting of complex valued func-
tions on $R^{n}$ , let $I$ be a real interval and let $t_{0}$ be a real number $\in I$. We say
that a function vector $\varphi(t, x)=(\varphi_{1}(t, x),$ $\cdots$ , $\varphi_{m}(t, x))$ whose components are com-
plex valued functions of $(t, x)\in I\times R^{n}$ is a strong solution on $I$ of the Cauchy
problem

$\left\{\begin{array}{l}\frac{\partial\varphi}{\partial t}=-L_{t}^{\star}\varphi,\\\varphi(l_{0},x)=\varphi_{0}(x)\end{array}\right.$

$(4.1’)(4.1)$

with respect to the space $\Phi$ , if and only if $\varphi(t, x)$ is a function vector $\in\Phi$ for
any $t,$ $t\in 1$, which depends continuously on $t$ in $\Phi$ , satisfies $(4.1^{\prime})$ and

$\underline{\partial\varphi}(\partial\frac{t,x)}{t}=$

$\lim_{h,t\dashv h^{\neg}\in^{0}I}\frac{\varphi(t+h,x)-\varphi(t,x)}{h}=-L_{c}^{\star}\varphi$ ,

where the limit is taken in the sense of the topology of $\Phi$ .
Between the existence of strong solutions of the Cauchy problem $(4.1)-(4.1^{\prime})$

with respect to $\Phi$ and the uniqueness of the weak solution of the Cauchy
problem $(1.1)-(1.5)$ with respect to $\Phi$ there is the following remarkable relation
called Holmgren’s principle.

PROPOSITION 4.1. Suppose that $\Phi$ and $\Phi_{(1)}$ are linear topological spaces
consisting of complex valued functions on $R^{n}$ satisfying the relation $\Phi\prec\Phi_{(1)}$ .
Let $\Phi_{(0)}$ be a subset of $\Phi$ which is dense in $\Phi_{(1)}$ (but not necessarily in $\Phi$). Then,

if there exists a positive number $\tau$ such that for any real interval $[t_{1}, t_{0}]$ with
$|t_{0}-t_{1}|<\tau$ and $[t_{1}, t_{0}]\subset[0, T$ ) and for any function vector $\varphi_{0}(x)\in\Phi_{(0)}$ the Cauchy
problem $(4.1)-(4.1^{\prime})$ has a strong solution on $[t_{1}, t_{0}]$ with $re$spect to $\Phi$ , then the
only weak solution for $0<t<T$ of the Cauchy problem $(1.1)-(1.5)$ with respect
to $\Phi_{(1)}$ is $u(t, x)\equiv 0$ .

The above proposition being only a slight modification of a theorem of

Gel’fand and $\check{S}ilov’ s$ ([6], Vol. 3, chap. 2, \S 3, 2), the reader is requested to
consult with [6], Vol. 3 for its proof.

2. A sufficient condition for the existence of strong solutions. Let $\{\tilde{\Phi}_{\lambda}\}_{\lambda\in\Lambda}$

be a continuous family of Banach spaces such as discussed in \S 2, 4. We
suppose that $\tilde{\Phi}_{\lambda}$ consists of complex valued functions on $R^{n}$ . From $\{\tilde{\Phi}_{\lambda}\}$ we
construct a continuous family of countably normed spaces $\{\Phi_{j}\}$ by means of
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(2.3). For a function vector $\varphi(x)=(\varphi_{1}(x), \cdot.. , \varphi_{m}(x))\in\Phi_{\lambda}$ we put

$\Vert\varphi\Vert_{\lambda}=\max_{<1\leqq i_{R}m}\Vert\varphi_{i}\Vert_{\lambda}$
,

$\Vert\varphi_{i}\Vert_{\lambda}$ being the norm of $\varphi_{j}(x)$ in the space $\Phi_{\lambda}$ .
Let $L_{t}^{\star}$ be a linear operator matrix from $\tilde{\Phi}=\bigcup_{\lambda}\tilde{\Phi}_{\lambda}$ into itself for any $t$,

$0<t<T$ , such that if $\lambda<\mu$ and $\lambda,$ $\mu\in\Lambda$ , then $L_{t}^{*}$ is a bounded linear operator
matrix from $\tilde{\Phi}_{/t}$ into $\Phi_{\lambda}$ . (Note, accordingly, that $L_{t}^{*}$ is a continuous linear
operator matrix from $\Phi_{\lambda}$ into itself for any $\lambda\in\Lambda.$) We suppose further that,
for any $\varphi\in\tilde{\Phi}_{fJ},$ $ L_{t}^{*}\varphi$ depends continuously on $t$ in $\tilde{\Phi}_{\lambda}$ with $\lambda<\mu$ and

$\Vert L_{t}^{*}\varphi\Vert_{\lambda}\leqq\frac{C}{\mu-\lambda}\Vert\varphi\Vert_{/J}$ (4.3)

for some constant $C$ which is independent of $\lambda,$

$\mu$ and $\varphi$ .
PROPOSITION 4.2. Let $\lambda,$

$\mu$ be any number such that $\lambda,$ $\mu\in\Lambda$ and $\lambda<\mu$ .
Put $\Phi=\Phi_{\iota}\backslash $, and $\Phi_{(0)}=\Phi_{t}$ . Under the above mentioned conditions on the operator
matrix $L_{t}^{*}$ the Cauchy problem $(4.1)-(4.1^{\prime})$ has a strong solution with respect to
$\Phi$ for any $\varphi_{0}\in\Phi_{(0)}$ , and any $t_{0}\in(0, T)$ on any t-interval I such that $t_{0}\in I$

$\subset[0, T)$ and $|I|<(\mu-\lambda)/Ce,$ $|I|$ being the length of $I$.
For the proof see [4].

\S 5. Proof of the Theorem.

Now let $u(t, x)$ be a distribution solution in the sense explained in \S 3 for
$0<t<T$ of the Cauchy problem $(1.1)-(1.5)$ which is of the form $(1.3)-(1.4)$ . For
the constant $c$ in (1.3) take a constant $\alpha$ such that $e^{a\alpha}>c$ . Then it follows
from Prop. 3.2 that $u(t, x)$ is also a weak solution of the Cauchy problem with
respect to the space $9_{a,a}$ . In order to prove our theorem, therefore, it is
enough to establish the uniqueness of the weak solution of the Cauchy problem
with respect to $\mathscr{D}_{\alpha,a}$ .

On the other hand, if we put $\Phi_{(1)}=\mathscr{D}_{\alpha,\alpha},$ $\Phi=_{\infty}l_{\alpha,a}^{\beta}$ and $\Phi_{(0)}=d_{\alpha’.a}^{\beta^{l}}$, where
$\alpha^{\prime}-\alpha=\beta^{\prime}-\beta>0$ and $A_{\alpha^{\prime}}^{\beta^{\prime}}$ is nontrivial, then it follows from the discussions in
\S 2, 5 that these three spaces $\Phi_{(0)},$ $\Phi$ and $\Phi_{(1)}$ satisfy the hypotheses in Prop.
4.1. In order to establish the uniqueness of the weak solution of the Cauchy
problem $(1.1)-(1.5)$ with respect to $\mathscr{D}_{\alpha,a}$ , therefore, it is enough to show the
existence of a strong solution of the Cauchy problem $(4.1)-(4.1^{\gamma})$ with respect
to the space $d_{\alpha,a}^{\beta}$ . Let us show the existence of a strong solution by means
of Prop. 4.2. For this purpose it is necessary to prepare the following three
lemmas.

LEMMA 5.1. If $A_{k}(t, x)$ ($k=1,$ $\cdots$ , n) satisfy the hypotheses in Theorem,
then for any $\varphi(x)=(\varphi_{j}(x))\in C-f\tilde{l}_{\alpha.a}^{\beta}$ the products ${}^{t}A_{k}(t, x)\varphi(x)$ are again in $\tilde{d}_{\alpha}^{\beta}|$

depend continuously on $t$ in $\tilde{d}_{a}^{\beta}$ and there exists a positive constant $C_{A}$ not
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depending on $\varphi(x)$ such that

$\Vert {}^{t}A_{k}(t, x)\varphi(x)\Vert_{\alpha}^{\beta}\leqq C_{A}\Vert\varphi H_{\alpha}^{\beta}$ $(k=1, \cdots n)$ . (5.1)

This is almost self-evident.
LEMMA 5.2. If $b_{ij}(t, x)s$ satisfy the hypotheses in Theorem and if $\alpha<\alpha^{\prime}$ ,

then for any $\varphi(x)\in\tilde{d}_{\alpha’.a}^{\beta}{}^{t}B(t, x)\varphi(t\in[0, T))$ is in $\tilde{A}_{\alpha}^{\beta}$ , depends continuously
on $t$ in $\tilde{d}_{\alpha}^{\beta}|$ and

$\Vert {}^{t}B(t, x)\varphi\Vert_{\alpha}^{\beta}\leqq\frac{mB}{\alpha’}0\frac{a^{-1}e^{-aa}}{-\alpha}\Vert\varphi\Vert_{a}^{\beta,}$ . (5.2)

PROOF. Suppose $\varphi(z)\in\tilde{d}_{\alpha}^{\beta}$ . For $z\in\Omega_{\beta}$ we have
$\Vert\varphi(z)\Vert\leqq\Vert\varphi\Vert_{\alpha}^{\beta}\exp(-e^{a(||x||+\alpha^{\prime})})$ .

From this inequality and (1.2)

$\Vert {}^{t}B(t, z)\varphi(z)\Vert\leqq mB_{0}\Vert\varphi\Vert_{\alpha}^{\beta},$ $\exp(-e^{a(||x\Vert+\alpha^{\prime})}+a\Vert x\Vert)$

$\leqq mB_{0}\Vert\varphi\Vert_{\alpha}^{\beta},$ $\exp(-e^{a(\Vert x||+\alpha)}-(e^{a\alpha^{\prime}}-e^{a/\iota})e^{a\rceil|x||}+a\Vert x\Vert)$ . (5.3)

But, if we put $p=e^{a\alpha^{\prime}}-e^{a\alpha}$ and $s=a\Vert x\Vert$ in the easily provable inequalitv

$-pe^{s}+s<-\log p$ ( $p>0,$ $s$ –real) ,

we obtain from (5.3)

$\Vert {}^{t}B(t, z)\varphi(z)\Vert\leqq mB_{0}\Vert\varphi\Vert_{\alpha}^{\beta},$ $\exp(-e^{a(||x\Vert+\alpha)}-\log(e^{ac\backslash }’-e^{aa}))$

$=\frac{mB_{0}\Vert\varphi\Vert_{\alpha^{}}^{\beta}}{e^{\alpha \mathfrak{a}^{\prime}}-e^{a\alpha}}\exp(-e^{a(||x||+\alpha)})$

$\leqq\frac{mB_{0}\Vert\varphi\Vert_{\alpha^{\prime}}^{\beta}}{(\alpha’-\alpha)ae^{aa}}\exp(-e^{\alpha(||x||+\alpha)})$ ,

from which (5.2) is obtained directly. The fact that ${}^{t}B(t, x)\varphi$ depends con-
tinuously on $t$ in $\tilde{d}_{\alpha}^{\beta}|$ is also easily proved by using (1.2) and the uniform con-
tinuity of $e^{-a|x_{||}}|b_{ij}(t, z)$ . $q$ . $e$ . $d$ .

LEMMA 5.3. If $\alpha^{\prime}-\alpha=\beta^{\prime}-\beta>0$ , then for any $\varphi(x)\in\tilde{d}_{\alpha}^{\beta^{\prime}}$, $\frac{\partial\varphi(x)}{\partial x_{i}}$

($i=1,2,$ $\cdots$ , n) is in $\tilde{d}_{\alpha}^{\beta}$ and

$\Vert\frac{\partial\varphi}{\partial x_{i}}\Vert_{\alpha}^{\beta}\leqq\frac{1}{\alpha^{\prime}-\alpha}\Vert\varphi\Vert_{\alpha^{\prime}}^{\beta^{\prime}}$ $(i=1, \cdots n)$ . (5.4)

PROOF. We shall prove the lemma for the case $n=1$ only, since the proof
for the general case is quite similarly performed except for some notational
complications.

Suppose $\varphi(x)\in\tilde{A}_{\alpha}^{\theta^{\prime}},$ . For $z\in\Omega_{\beta}$ , we have
$|\varphi(z)|\leqq\Vert\varphi\Vert_{\alpha}^{\beta^{\prime},}\exp(-e^{a(|x|+\alpha^{\prime})})$ . (5.5)

Using (5.5) we shall estimate the absolute value of the derivative $\varphi^{\prime}(z)=\varphi^{\prime}(x+iy)$

on the segment $AB=\{x+iy|x=x^{0}, |y|\leqq\beta\}$ , where $x^{0}$ is an arbitrary real
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Fig. 5.1.

number, in the complex plane (see Fig. 5.1). Consider a rectangle CDEF as
shown in Fig. 5.1 drawn around the segment $AB$ . The distance from each
point of $AB$ to the boundary of the rectangle CDEF is equal to $\beta^{\prime}-\beta=\alpha^{\prime}-\alpha$ .
Therefore, if we put

$ M=\sup$ { $|\varphi(z)||z\in the$ interior of the rectangle} ,

then we have, by Cauchy’s integral formula,

$|\varphi^{\prime}(z)|\leqq\frac{M}{\alpha^{\prime}-\alpha}$ $(z\in AB)$ . (5.6)

But, if $z=x+iy$ is in the interior of the rectangle, then $|x|>|x^{0}|-(\alpha^{\prime}-\alpha)$ .
Hence we obtain from (5.5)

$M\leqq\Vert\varphi\Vert_{\alpha^{\prime}}^{\beta},$ $\exp(-e^{a(|x0|-(\alpha^{r}-\alpha)+\alpha^{\prime})})$

$=\Vert\varphi\Vert_{\alpha^{\prime}}^{\beta},$ $\exp(-e^{a(|x0|+\alpha)})$ . (5.7)

Combining (5.7) with (5.6) and considering the arbitrariness of $x^{0}$ we have $for_{R}^{aej\ddagger}$

any $z=x+iy\in\Omega_{\beta}$

$|\varphi^{\prime}(z)|\leqq\frac{1}{\alpha^{\prime}-\alpha}\Vert\varphi\Vert_{\alpha^{\prime}}^{\beta^{\prime}}\exp(-e^{a(|x|+\alpha)})$ ,

from which (5.4) is obtained directly. $q$ . $e$ . $d$ .
From the above three lemmas we conclude that, if $\alpha^{f}-\alpha=\beta^{\prime}-\beta>0$ and

$\varphi(x)\in\tilde{d}_{\alpha’,a}^{\beta}|$ then $ L_{t}^{\star}\varphi$ is in $c\tilde{\Lambda}_{\alpha}^{\beta}$ for $0\leqq t<T$, depends continuously’ on $t$ in $\tilde{d}_{\alpha}^{\beta}|$

and
$\Vert L_{t}^{\star}\varphi\Vert_{\alpha}^{\beta}\leqq\frac{nC_{A}+mB_{0}a^{-1}e^{-a\alpha}}{\alpha-\alpha}\Vert\varphi\Vert_{\alpha}^{\beta^{\prime}},$ .

Now for the given $\alpha,$
$\alpha^{\prime},$ $\beta$ and $\beta^{\prime}$ such that $\alpha^{\prime}-\alpha=\beta^{\prime}-\beta>0$ set
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$\tilde{\Phi}_{\hat{\Lambda}}=\tilde{d}_{\alpha^{\prime}+\lambda}^{\beta,+\lambda}$ $(0\leqq\lambda\leqq\alpha^{\prime}-\alpha)$

and $C=nC_{A}+mB_{0}a^{-1}e^{-a\alpha}$ . Then for any $\lambda,$

$\mu$ such that $ 0\leqq\lambda<\mu\leqq\alpha^{\prime}-\alpha$ we
have the inequality (4.3), where $\Vert\varphi\Vert_{\lambda}=\Vert\varphi\Vert_{\alpha^{\prime}}^{\beta},I_{\lambda}^{\lambda}$ . Therefore the operator matrix
$L_{t}^{*}$ completely satisfies the hypotheses in Prop. 4.2. Hence the Cauchy
problem $(4.1)-(4.1^{\prime})$ has a strong solution with respect to $\Phi=d_{\alpha.a}^{\beta}$ for any $\varphi_{0}$

$\in\Phi_{(0)}=_{=^{1}}\tilde{4}_{\alpha^{1},a}^{\beta^{\prime}}$ and any $t_{0}\in(O, T)$ on any t-interval $I$ such that $t_{0}\in I\subset[0, T$ )
and $|I|<(\alpha^{\prime}-\alpha)/(Ce)$ .

By the discussions at the beginning of this section the proof of Theorem
is now completed.
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