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§1. Introduction.

The purpose of this paper is to improve and correct” the results of
author’s paper [3] For the convenience to the readers we restate here the
results of H. Grauert and J.P. Samuel in a form which fits in our discussion.
In the following Cr means the set of all rational points, of an algebraic curve,
over a field K.

THEOREM OF MANIN-GRAUERT ([1]). Let k be an algebraically closed field
of characteristic 0, K a function field over B and C a complete non-singular
algebraic curve, of genus=2, defined over K. Then the set of all rational points
Cx, of C, over K is infinite if and only if there exist an algebraic curve C’
defined over k and a birational isomorphism u:C—C’ defined over K. In this
case, Cx—u~*(CL) is a finite set.

THEOREM OF SAMUEL ([5)). Let k be an algebraically closed field of
characteristic p=0, K a function field over k and C be a complete non-singular
curve, of genus =2, defined over K. i) If C is not isomorphic to any algebraic
curve defined over a finite field, then Cy is infinite if and only if there exist an
algebraic curve C’ defined over k and a birational isomorphism u: C—C’ defined
over K. In this case, Cx—u~'(C}) is a finite set. ii) If C is isomorphic to an
algebraic curve C’ defined over a finite field F, with q elements and all the ele-
ments of Aut(C’) are defined over F,, then Cx is infinite if and only if there
exist a finite Galois extension K'/K, a birational isomorphism u:C—C’ defined
over K’, an injective homomorphism j: G(K'/K) — Aut (C’) such that j(s)=us-u"?
for all s in G(K'/K) and either (1) there exists an element z in Ck~—C} such
that j(s)z=2z* for all elements s of G(K'/K) or (2) (only when K'=K) Cj is
infinite. In this case there exists a finite set (x,);ey of points in Ck., with j(s)x;
=x for all s of G(K'/K), such that every point of Cx can be written either in
the form u-*(f™(xy) or (only when K'=K) u™'(x) with x € C;, where f is the

1) Proposition is not correct. The statement of Theorem 2 of is true only
in the cases of a) and b) i) of in this paper.
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Frobenius morphism: x—x% of C’.

We shall prove in this paper the following

THEOREM. Let k be an arbitrary field, K a function field over K (i.e. a
Jfinite type regular extension of k) and C a complete non-singular algebraic
curve, of genus=2, defined over K.

a) Let k be of characteristic 0. Then the set Cg is infinite if and only if
there exist an algebraic curve defined over k and a birational isomorphism
u: C—C’ defined over K and the set Cj 1is infinite. In this case, Cx—u~(C})
is a finite set.

b) Let k be of characteristic p=0. Then there are two cases.

i) Assume that C is not isomorphic to any algebraic curve defined over a
finite field. Then the set Cx is infinite if and only if there exist an algebraic
curve C’ defined over k and a birational isomorphism u: C—C’ defined over K
and the set C} is infinite. In this case Cx—u*(C}) is a finite set.

i) Assume that C is isomorphic to an algebraic curve C’ defined over a
finite field F, with q elements contained in k over which all the elements of
Aut (C") are defined. Then there exist a Galois extension K'/K, a birational
isomorphism u: C—C’ defined over K’, an injective homomorphism j:G(K'/K)
—Aut (C’). The set Cx is infinite if and only if either (1) there exists a point
z & Cp—Cl such that j(s) z=2z* for all s G(K'/K), where k' =k N\ K', with the
algebraic closure k of k, or (2) (only when K'=K - k') the set {x & C}|j(s)x = x*
Jor all se G(K'/K)} is infinite. At any rate, in this case there exists a finite
set (x);er of points of Ck such that every point of Cg can be written either in
the form u(f™(x,) or (only when K' =K - k') u~'(x) with x € C,,, where f is the
Frobenius morphism: x—x2 of C’.

Here we notice that in this paper “ genus” and “ non-singular” are used
all in the absolute sense.

The author wishes to express his hearty thanks to Professor Y. Kawada
for his valuable advice and encouragement and to Professor S. Koizumi who
kindly informed the author of the useful by which the proof became
very clear and short.

§2. Several Lemmas.

LEMMA 1 (Koizumi). Let C and C’ be complete non-singular algebraic
curves, of same genus g =2, defined over a field k and ¢ be a birational isomor-
phism from C to C’. Then o is defined over a finite separably algebraic exten-
sion of k.

ProoF. Let (J, ¢) and (J/, ¢’) be the Jacobian varieties of C and C’ re-
spectively, where J and /' are defined over k2 and ¢ and ¢’ are defined over a
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finite separably algebraic extension of k. Then there exist a birational iso-
morphism h:J—J’ and a point a of J/ such that hA-¢=¢’-0+a. By Chow’s
(p. 26, [2]), h is defined over a finite separably algebraic extension
of k. We have h(¢(C))=¢'(C)+a. For the O-divisor @' = ¢'(C")+ --- +¢'(C")
on J/, we have O, =0'+a=¢'(C")+ --- +¢'(C")+h(e(C)). Since h(¢(C)) and ¢'(C")
are defined over a finite separably algebraic extension (= k’) of k, the divisor
0,—0’ is rational over k’. Hence by Corollary 2 of Theorem 32 [7], a is
rational over k’. Therefore, o =(¢’)'.(h-¢p—a) is defined over a finite separ-
ably algebraic extension of k. Q.E.D.

LEMMA 2. Let k be a field, k, a finite separably algebraic extension of k
and K be an algebraic function field over k (i.e. a finite type regular extension
of k). Let C, and C, be complete non-singular algebraic curves, of genera=2,
defined over k, and K respectively and f be a birational isomorphism from C,
to C, defined over k,-K. In this case, there exists a complete non-singular
algebraic curve C, defined over k, which is birationally isomorphic to C, (resp.
C,) over k, (resp. K) compatibly with f.

Proor. Let (o,7) be a pair of isomorphisms of 2, over k. Then (o, 7)
can be considered as a pair of isomorphisms of %,- K over K. The birational
isomorphism f,,=(f")™*-f°: Cf—CT is defined over a finite separably algebraic
extension of 2 by Lemma 1. Clearly we have 1) f.,-f,,=/: for a triple
(0,7, p) of isomorphisms of k, over & and 2) [,y = (/r,»)® fOr every automor-
phism @ of the separably algebraic closure of k. Therefore, by the Theorem
of Weil (p. 12 [2]), there exist a complete non-singular algebraic curve C,
defined over k and a birational isomorphism f,: C,—C, defined over k, such
that fr,=/7-(f1)"'. Since we have (f)*-f°=f1-(f1)", we get (f-f)°
=(f-f)". Hence the birational isomorphism f.f,:C,—C, is defined over K.
Thus our Lemma is proved. Q.E.D.

LEMMA 3. Let k be a field, k, a purely inseparable extension of k and K
be an algebraic function field over k. Let C, and C, be complete non-singular
algebraic curves defined over k, and K respectively and f be a birational iso-
morphism from C, to C, defined over k,- K. In this case there exists a complete
non-singular algebraic curve C, defined over k, which is birationally isomorphic
to C, (resp. C,) over k, (resp. K) compatibly with f.

Proor. Let T be a model of the function field K/k and ¢, ¢/, t” be the
independent generic points of T over %k such that 2()=K. We extend the

k
generic specialization { <>t to the generic specialization (¢, C,=C,, f=/f, C)

S, Cp, for C). Then f, is a birational isomorphism from C, to C, and
foe=fo-fit: C,—C, is a birational isomorphism defined over &,(f, ) and over
k(t, t") by Lemma 1. Clearly we have f,. . «fy,.=f;.,. Therefore, by Weil's
Theorem (p. 12, [2]), there exist a complete non-singular curve C, defined
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over k and a birational isomorphism g,: C,—C, = C, defined over k(f)= K such
that f.,=/fn -fi'=4gu-g7% On the other hand the birational isomorphism
fi!-g; is defined over k,- K. Hence, by [Lemma 1, f*.g,: C,—C, is defined
over k,. Thus Lemma is proved. Q.E.D.

Unifying the and we get

LEMMA 4. Let k be a field, k, a finite algebraic extension of Bk and K a
Sfunction field over k. Let C, and C, be the complete non-singular algebraic
curves, of genera=2, defined over k, and K respectively and f be a birational
isomorphism from C, to C, defined over k,- K. In this case, there exists a com-
plete non-singular algebraic curve C, defined over k, which is birationally iso-
morphic to C, (resp. C,) over k, (resp. K) compatibly with f.

§3. The proof of Theorem.

Let us prove the written in the introduction.

a) and b) i). We prove the cases a) and b) i) at the same time. In these
cases we have only to prove the necessity. Let 2 be the algebraic closure of
k. Since Cgx (DCy) is infinite set, by [Theoreml of Manin-Grauert for the case
a) and of Samuel i) for the case b) i), there exist a complete non-
singular algebraic curve C, defined over 2 and a birational isomorphism u:C
—C, defined over %k-K. Since C, and u, are defined over finitely generated
field over the prime field, we may replace £ by a finite algebraic extension &,
of k. Then, by there exist a complete non-singular algebraic curve
C’ defined over k and a birational isomorphism u:C—C’ defined over K. In
this case Cr.x—Cf is a finite set and Cx—Cj is a subset of CL x—C;. Thus
we can conclude that C4—C; is a finite set. Q.E.D.

b) ii). By [Lemma 1|, the birational isomorphism u, we write, from C to C’
is defined over a finite Galois extension K’ of K, If we put j(s)=u*-u"! for
the element s of the Galois group G(K’/K) of the extension K’/K, then j de-
fines a homomorphism j:G(K'/K)—Aut(C’). If j is not injective, we can
replace K’ by the elementwise fixed subfield of K’ under the kernel of j, and
then ; will be injective. Then we have Cx= {u~!(x)|x < Cf, j(s)x=x* for all
seGU/K)}. In fact (u™'(x)* = )~ (x*) = (u?)1(j(8)x) = ()= (us - u=*(x)=u"'(x)
for x € Cg with j(s)x = x* and for y=u"'(x) € Cg, j($)x = u* - u~*(x) = u*(¥)=u*(y*)
=w(y)*=x°. When we have K’ k’. K with k' =£ n K, the set {x = Cj|j(s)x
=x*=1x for all se G(K'/K)} is a finite set, because the set of fixed points of
non-trivial automorphism of C’ is finite. Therefore, if C, is infinite there
exists a point z € Cx—Cj. such that j(s)z =2z° for all s G(K’/K). Conversely,
for such a point z, all f*z) (n>0) are distinct and satisfy the condition
JE(f™2) = (f"2))* for all s G(K'/K). Therefore, the existence of such a
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point z implies the infiniteness of Cy. (b) ii) (1)). The assertion b) ii) (2) is
trivial by the above discussions. Now we show the last assertion. By the
of Severi (p. 73 and the finiteness of Aut(C’), there are only
finitely many points (x;);e; in Ck with j(s)x; = x§ (for all s € G(K’'/K)) such
that k(x;) @ K’% If a point z e Ck —Cj. satisfies j(s)z =2z° (for all s e G(K'/K)),
then we have j(s)(@7 ™) =% "™)® and RCkE™C K/, kET™ ¢ K'? for some
integer n. Hence we have z?7"=x; for some i/, i.e. z=x=f"x,). If we
recall the finiteness of Cx "\ u~!(C}) in the case K’+#k/-K, we can conclude
our last assertion. Q.E.D.

University of Tokyo
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