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Introduction

In this paper we study some properties of periods of rational forms on a
regular elliptic surface B(r, o) of basic type and some related problems. (For
the theory of elliptic surfaces compare K. Kodaira and A. Kas [6]. We
mainly follow their notations.) It is known that such surfaces are suitable
completions of the affine surfaces defined by

@ V2=A4x—(rutt+ -+ utc)x—W4og_utF 4 oo doutoy),

where we denote by (u, x, ¥) the variables of the three dimensional affine space
C?®and by () =(t4, ***» 7o), (0)=(0gx_y, -+ , 0,) the parameters. We understand
by a period function W(r, o) of a rational form of the surface B(z, ¢) the holo-

morphic function of the parameters (z, ¢) of the form: W(z, o):j‘n )w(r, 0),

where the rational form W(z, o) on B(z, ¢) and the homology class I'(z, o) on
B(z, o) satisfy conditions of continuity with respect to the parameters (z, o).
Our chief object is to study certain properties of the period functions W(z, o).

We sketch our results briefly. After recalling some basic notions and
definitions of elliptic surfaces needed below, we study in the first chapter the
periods of rational 2-forms on the elliptic surface B,: y?=4x*—(u®*—1) in
details. These periods may be regarded as generalizations of Beta integrals:

jlup"l(u——l)q'ldu in the theory of hypergeometric functions (F. Klein [7]).
0

The study of these periods leads to power series expansions of the period
functions W(z, 0) at the point (3°, °)=((, ---,0), (0, ---,0,1)). We derive
some applications from these power series expansions: the determination of
the rank of ‘period maps’ of individual rational forms, etc.

We also know that these period functions are complete solutions of certain
partial linear differential equations [ of the second order. In the second chapter
we study the structure of [J and some related problems. In §4~§5, we find
a criterion of ‘regularity’ for systems of linear partial differential equations.
This elementary criterions means merely that the solutions are ‘regular’ if
and only if certain ordinary differential equations, which correspond to the
partial equations in question, are regular in the usual sense ([c.f.] Lemma 5.1).
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We investigate what an information about the behavior of the equations D
at the singular loci is obtained from the regularity condition above. The
subjects of these sections are independent of the other sections and are
inspired by a work of P. A. Griffiths concerning the behavior of periods at
the singular loci. (For the condition of regularity see also Géraud [2]). Next,
we investigate the coefficients of the system of linear partial differential
equations D. We find that these coefficients are expressed in terms of certain

matrices 2= (w;;) composed of the periods wwuf w; of rational 2-forms w,

along the 2-cycles y; on B. Instead of studying the matrices £ directly, we
examine the matrices X = 2°7-*!Q2 where [ denotes the intersection matrices
of ;. We obtain a formula which expresses the entries of the matrices X
in terms of the data of rational forms w; at the singular points of the singular
locus of the surfaces B. The process may be regarded as a generalization of
well-known Legendre’s relation in the theory of algebraic function of one
variable. ([c.f.] concluding remarks.)

The author expresses his hearty thanks to Professor K. Kodaira for en-
couragements and careful readings.

§0. Preliminaries.

First, we recall briefly some basic notions and definitions of elliptic surfaces
(for details, see K. Kodaira and A. Kas [6]). A compact complex analytic
surface S is called an elliptic surface when there exists a holomorphic mapping
¥:S—R of S onto a compact Riemann surface R such that, for any general
point u € R, C,=¥-%(u) is a non-singular elliptic curve. We call S an elliptic
surface over R. A fibre C, is called a singular fibre when C, is not an elliptic
curve. An elliptic surface S is called a basic elliptic surface if it contains a
holomorphic section over the base curve R. We use the symbol B to denote
a basic elliptic surface. It is known that a basic elliptic surface B is always
an algebraic surface (K. Kodaira [8)).

In what follows we restrict our consideration to basic elliptic surfaces
over a projective line Pl(C). Such a basic elliptic surface B has the following
normal form (A. Kas [6]): Let P$(C) (i=1,2) be projective planes with
homogeneous coordmates (xm x?, x§) (1=1, 2) and define an affine coordinate
of PP(C) by x=xP/x, y=x"/x>. We define a three dimensional complex
manifold W® by WP=PPxC?® (i=1,2) and form a manifold W,= W®

UW® (=1, 2, ---) by means of the transformation law

0.1 u=1, X0 = x®, APy = x| xPUsE = x|

where u, v are affine coordinates of the affine lines C™® (1=1,2). Let g, (u)
=l T e oty and hg (W) = utt b oy w14 o Louta, be
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two polynomials of respective degrees 4k and 6% in the variable u. Then the
basic elliptic surface B is defined by

(Y- () =AY —gusw) - (219) - (x9) —har () )’
in W@,
(Y- () = A —guelL/0) - v - (x?) - (P’
—he(L/V) - v - (xP)? in W,

0.2)

We denote the elliptic surface B by B* in order to indicate the degree k of
the transformation law

Define polynomials D*(u) and ﬁ’“(v), respectively, by D¥u) = g4 (u)—27 - h}(u)
and D*(w)=1v"*. D¥(1/v). If the polynomials D*(x) and D*(@) have no multiple
roots, then the surface B* is non-singular. In what follows we assume that
the polynomials D*(u), [*) have no multiple roots. Define a holomorphic
mapping ¥ : B*— P,(C) by

U, (xP)=u, in WP,

U, x®)=v, in W@,
Now we define an algebraic curve 4* in the surface B* by
0.4) =0, in W®(E=1,2).

We can easily verify the following facts:

0.3)

(0.5), ¥-'(u) is an elliptic curve if and only if D*(u) 0,
(0.5), 4% is the image of a cross section over the projective line P,(C).

We define an algebraic curve X* by x® =0 (=1, 2) and define a rational
2-form o@®*" whose polar locus is the curve X* by w@®” =u?x?/y")dx A du
in terms of the affine coordinate (u, x, ¥), where p, ¢, v are non-negative integers,
r=1 (mod 2), and 2(g-+1k+p+2=<32r+1)k. We know that the geometric
genus p,(B¥) of the surface B* is equal to £—1 (Kodaira [8]) and we can easily
verify that the holomorphic 2-forms wi@®? (p=0,1, --- , k—2) constitute a base
of holomorphic 2-forms on the surface B*.

In the sequel, to make explicit the dependence of the surface B* and the
curves 4% X* ... on the parameters (7)= (T, -+, To)s (0) =(0gx-1 -+ 5 Op), WE
write B¥(z, o), 4%z, o), X¥(z, o), --- for B¥, 4%, X*, -...

Chapter I. Power series expansions.

In this chapter, we shall examine the values of the periods of rational
2-forms on certain elliptic surfaces of Fermat type. These values may be

1
regarded as generalizations of Beta integrals: B(p, q):f u?-'(1—w)?'du in
0
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the theory of hypergeometric function of one variable (F. Klein p. 7.
Moreover we derive some applications from our results.

§1. Periods on an algebraic curve of Fermat type.

Let Cquny be the algebraic curve of Fermat type defined by
1.1 yr=xm—1.

In what follows we assume that (n, m)=1 or m=0 (mod n). Let G,={p, ¢
o, p™=1} and G,={o, ¢? .-, 6" =1} be two cyclic groups of order m and n
respectively, and define an isomorphism i(o*, ¢*) from the product G,XG, into
the group of biregular isomorphisms of the algebraic curve Cgy,»y by

12) (6, o), 3) = (Ch, 1),
<where Cm=exp H'—m_—‘—" Cn=exp Mn——l) .

Concerning the structure of the one dimensional homology group H,(Cun,ny Z),
we know the following (cf. N. Sasakura [127])

LEmMMA 1.1

(1) dim Hl(c(m,n): Z)= (n—l)(mO—Z),

(2) We can choose a Betti base of l-cycles: I';;=1";(m,n) (i=1, ---, n—1,
j=1, -« , my—2) such that

; =1,..,n—2 \V
1.3 T k, ! I s =] , ) ’
1.3 {iom,n(0%5 0D} L'y,,(m, 1)) sr1, 1M n)<k_ 1, e, me—2

’

where we mean by m, the number of the ramification points of the curve Cyp
considered as a ramified covering of the projective line P,(C).

Thus m,=m or m+1 according as m=0 (mod n) or (m, n)=1. The 1-
cycles I'; j(m, n) meet no ramification points of C,,. The symbol {i(o¥, 6D}y
means the operation of the automorphisms ¢(p", ¢*) on the 1-cycles on the curve
Cp,n- Define rational 1-forms o@2® on the curve C,, by ofy?=x?y""""dx
(where p, v, [ are integers p=>0, 1<v<n—1). From we obtain

1.4

(D0, 1) — FOGE—D (p+DG~-D (D0 1)
OELP =0 XL [ opad

msn
J.T’L',j(m’n) Fl,l(m,n)

Define the definite integrals B, (P, v, [) by

(15) %cm,n)(i); v, l) :f w%’:ﬁ’“ .

I'y,1(m,n)

With respect to definite integrals B, ,,(p, v, [), there are following two types

1) In [12], we treated the case where n=m. The other cases can be treated in
a similar manner.
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of recursion formulas (cf. N. Sasakura [12]).
1.6),  n(P+1)Bm,nD, v, D+m@—nl)Bemu(p+m, v, I4+1)=0.
1.6,  n(P+DBem,n(p, v, D—{n(p+1)+mu—nl—1)}Bem,ap+m, v, [)=0.
We know by an elementary calculation that
Bim,u(Po v, =1 #0  ({f po#m—1)
B Do vy —1)=0  (f p,=m—1).

(1.7

§2. Periods of rational 2-forms on an elliptic surface of Fermat type.

Let (7% 6% be a point on the affine space C**+'xC®+' with coordinate
& =qQ,--,0), =@Q,0,--,0, —1) and denote the basic elliptic surface cor-
responding to the point (7% 6% by B%,. The surface B¥, is defined in the affine
space C?® by

2.1) VE=4x*—(ut*—-1).

Denote the rational 2-forms wif?'g";’o) on the surface B, by wf”P. For the curves

of Fermat type Cg,,: 12=45°—1? and Ce,q ¢ ©° =0%*—1, we define a rational
map @ from the product Cg gy X Cer,e to the surface Bf, by

2.2) D*((s, 1), (v, W) = (u, x, y) = (v, sw?, tw®).

For a cyclic group G;= {0, 0% ---, 6*=1} of order six, we define an operation
(6% on the product Cg gy X Cep,s in the following manner :

(@) - (s, )XW, @) =5 5, (=D OX @, - @)
~. ~ 6k .
Define a subset C* of the product Ces X Cr,ey by C*= C(s,z)x{ccsk,s>— j\_Jl (& 0)}

~ A~ i
and define a subset B, of the surface BE, by B{‘O):B&)—le?lf"l(cgk). In the
=

subset C*, the rational map @* is a regular map with no ramification point
and the image @*(C*) coincides with B We know readily that @%((s, )X (v, w))
= Q¥(s’, )X @', ")) if and only if (¢)((s, )X, w))=((s’, ') X (@', @’)) for some
integer /. Thus we know that 5’“/G6 is biregularly equivalent to the open

2) Strictly speaking the elliptic curve: 2=4s3—1 is different from the curve Cg,:
y2=s2—1. However, the recursion formula and the formula (1.7) hold for t2=4s3—1.
Thus we use the same symbol C,, to denote the curve 12=4s3—1.

3) In the rational map @F is defined in terms of the affine coordinate (s, t)
x (v, ®). The map ¢* is extended (as a rational map) to Cis e X Cee,ey Such that the

6k
extended mapping is regular and unramified in Cqs,9 X{Cx,e0—\J ({fp» )}
=1 .



Periods of rational forms 643

manifold ﬁ{‘o).
Let H,(Bf) be the j-dimensional (rational) homology group of Bf. Com-

bining the exact sequence of relative cohomology groups concerning the pair
(B’S, @W"(C&)) and the Poincaré-Lefschetz duality theorem (cf. Spanier
=1
P. 239 and p. 296), we obtain an exact sequence of homology groups (cf. Hodge-
Atiyah
6% . T ~ i c 6% L
{2.5) — 1(j\=JlW“(C§k)) — Hy(Bf) — Hy(Bf) — Ho(},g}lf‘ (@h))

. 1
(BE) — Hy(B) — -
On the other hand the surface B! is regular and the curve ¥-*(¢{,) is topo-
logically a 2-sphere. Hence we obtain

.1 C e T ~
2.6) 0 — H(BY) — H(B) — @ Hy¥ (L) — H(Bf) — 0.

Let Z}Gfi)(é’“) and B;-GG’(@‘) be vector spaces (over @) composed of Gg-invariant
j-dimensional cycles and Gs-invariant j-dimensional boundary cycles, respec-
tively. Put HEo(C¥%=Z@o(C%/BEo(*%. Then we have HEo(C% = H/(BY.
Now we determine the structure of the homology groups H§G6>(6’“) and HEo(Ch).
Take C>-differentiable loops y; on the curve Cg,e surrounding the points
(Csk, 0) once in the positive direction. Then, as a Betti base of the set Cgy,e

-—U(Csk, 0), we can choose 1-cycles I'; ,(6k,6) (I=1,2,3,4,5, p=1,2,.--,6k—2)

and 1 cycles r; (j=1, ---, 6k—1).
Define G,-invariant 2-cycles I'yom (7=1,2,8,1=1,2,3,4,5, m=1,2, -,
6k—2) as follows:

@27 Lipm= 2 (0M)5L71,53, 2)X T (6k, 6))
oheGg
(The symbol (¢"), denotes the operation of ¢® on the cycles on the surface
Cez,5 X Ceoty0)-
Then we infer from that®
(2-8) Fl,l,m_Fz,l,m+F3,L,m:O ’
(29) Fj,l,m:Fj-l,l+1,m:['j—2,l+2,m:
On the other hand we have
(2.10) Z @, Dx79=0.
g G (3

Denote the fundamental class of the algebraic curve Ceq, by C and define
an (algebraic) 2-cycle 6, by 6,= LZ (094(Ca,0yX D) (Where p, is an arbitrary

st eGg

4) See [12], formula (2.9).
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point on the curve Cgyq). Now we infer from [(1.3) readily the following two
facts.

(2.11), Any Gginvariant 2-cycle on the set C* is homologous (rationally) to a
linear combination of the 2-cycles I';,, (=12 m=1,2,.--,6k—2)
and 4,.

(2.11), Among 2-cycles I';,, (j=1,2, m=1,2, ..., 6k—2) and 6, there is no
homological relation with rational coefficients.

Concerning the one dimensional case, put 7;= 3 (6)«(p,Xr;) (j=1,2,---,6k—1)

UZEIIS

(where p, is a point on C(3, 2)). Then we infer readily that

(2.12) the l-cycles 7; (=1, 2, ---,6k—1) are representatives of a base of the
homology group
H%(G*; Q) .

For any cycle y on C*, we denote by @%(y) the cycle on B which is the image
of the cycle y by the mapping @* Summing up the above results we obtain
the following

LeMMA 2.1. (1) The 2-cycles Ox(I";,,,») (U=1,2, m=1, 2, --- , 6k—2), D%(6,)
form a Betti base of 2-cycles on E’g.

(2) We have the exact sequence

o 1 c
2.13) 0 —— Hy(BE) — H,(BY) — Q (= c(H(B)) — 0.

@3) In the sequence (2.13), the kernel of the mapping c is represented by
the class (4%), where (4*%) denotes the fundamental homology class of the algebraic
curve A4*.

For the rational 2-form w2®7(0) on the elliptic surface B denote the
rational 2-form on Cg,s X Ceer,e, induced by the mapping @* by (@%)*(wp*7(0)).
Then we have

q pd
214) @ (R O) = s A ~sresciy

Put G = | wper(0). We have

Xf v dv.

R
(D Ty, m (6k,6)) WP HHD

0% ('), 1,m)

2.15 Eoar = R
@15 mi alg):sf(ol>*<r1,j(s,z>> t
Combining the formulas in the first section and the formula we can
express the definite integrals €24 in the following manner.

LEMMA 2.2. Let r=2741.

(@) If ¢q=2 (mod 3), we have

(2.16) Erert=0 (j=1,2 m=1,2,-,6k—2).
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™) If g=1 (mod 3), we have

(2.17)1 @pQZH—l 6- C(p+1>(m 1)2}3(8,2)((]’ 1, ;,)43(6,6_6’6)0)’ __5’ ,7_1ﬂwq‘_§_1,> ,

@17), G = 6(— LR ™ Bia (@ — 1, ABustos(p —5, F—1— T3 ).
(© If ¢=0 (mod 3), we have
(2.18),  G&L=6-(EM ™ DB, —1, 77)%(6k,—6)<p! 5 F+1—- gi\) ’

218), Gagr1=6- (—CDIE> ™ Bap(@: —L HBr-sn (2,5 FH1—5 ).

§3. Some applications. Power series expansions.

For the point (7, é,) in C**'x(C® take a sufficiently small spherical neigh-
bourhood A, of (7, &, in C***xC%. Let h(0) be a homology class on the
surface B%,. For any point (7, d, in the neighbourhood %, we denote by
h*(r, 6) the homology class on the surface B*7,, d,) corresponding to the cycle
h*0). Take any two dimensional homology class 7%(0) which belongs to the
image (1)(H,(Bt—X¥). Then we infer readily that the corresponding class
belongs to the image (1) (H,(B*(z, 0)—X*(z, 0))). We can verify that the definite

integrals: ‘f w®*”(r, o) are holomorphic functions in (z, ¢). Moreover we
h(t,0)

have
wP*"(z, 0)
a/afj jlh (r,0 o, 0) = fh(r o) aaéi N
3.D
0w (z, 0)
8/da; jhu a)wk”"”)(f, 0)= fh( T do,

In the formula (3.1), 0w'®%7/0r; and OdwP*"/do; are rational 2-forms

D+F 4+l D+J ~
; _”_yr_fz du A dx and ,;: uwa du Ndx on BY, ,, respectively. Let I' ; .(0)

be the homology class to which the 2-cycle I'y ;,.(0) belongs. Put We2i(z, o)
= §~ w7 (T, o).

T'k;5,m
THEOREM 3.1. We have the following power series expansion of the holo-
morphic functions WEi(t, o) at the point (z, 04):

32 Wizt +(z, o)

— (D@27 +D( SO ; ; g ;
— 2 Ckx,)]?m (ZOJ s bygs Jos vt :]ek—l)rg)o ot Ty (O-O]O)
{0, »iqp 20
JorrsJok—12Z0

J1 Jek—1
XOp o Ogg=1
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where
(3.3) CEEIO(i, v Ty oy 5 Foes)
AR 1 AR 11“}; [T A/B
XA{@r+1)@2r+3) - Cr+-142G,+ - +jer-)}
X G
where

p p+2111+2771]m, §=q+21, F=2r+14+204+2in.

m

For any holomorphic 2-form w@*(z, ), we define a holomorphic mapping
7f from %, into a (12k—5)-dimensional projective space P,,,_;(C) by
(34) 7]11;(7’ 0) == (W;cploli)(f’ 0)’ MR W]}?f,%}%)_z(f', G)’ o I(cz,,206116) 2(Tv 0))

Let I, be the intersection matrix with respect to the homology classes
r k,;,m(T> 0). Obviously the matrix I, does not depend on the parameters (z, o).
We have the following bilinear equality (cf. Hodge [4]):

(35) 77%071'(7:’ 0-)15[];1 'tv%c)z(tr O)ZO, (ply pzzoy 1y o k'_l)-
Let Q, be a quadric in Py,,_5(C) defined by
3.6) (X)-Uet-4X)=0,

where (X)=(X,, ---, X1sx-) iS a homogeneous coordinate of P,,,_(C). From
the bilinear equality [(3.5) we know that the image 7%, is contained in Q.
Now we calculate the rank of the mapping 73%.
THEOREM 3.2. The rank of the mapping 7% in N, is equal to 10k—2.
PrOOF. Define a (10k+2)x(12k—4) matrix Q2 .(z, 0) =[oZF(z, 0)1=1,.108+2]
inJthe following manner : mehr

3.7, o (r, 0) = Wikl (m=1,2,..-,6k—2),
OB am(T, 0)= Wi, ~ (m=1,2,...,6k-2),

@Du o= Tr e
oaente, )= Tg H(Th

GBDyw B (z, 0) = ﬁgﬁ%i; ml Z ilk 2+ > -6,kl—0§+2> ’
Wlian(e, o) = gl B (T2 IS - J0EEY

Define a (6k—2)-vector ¢{» by
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38, (P = (L, G G, o, L),

Moreover define 6kx(6k—2) matrix L{® and (4k+1)X(6k—2) matrix L{B by

(1, Cé’,;"—l ’ C%}g’*” , e, Cé%k—g)(pﬂ) -~
(3Br:q L(()?z):'%‘ 1: CBH, OpD ., (D@D ,

- i’ CBFOeH, CIPHORD L CEk-D ekt |

~ 1, Cg,;H , Cgl(cpﬂ) L, e, Céflic’c—&(p—)-l) B
@8« Lik :*%7 1’ Cpived, (3prirn L (R @HtD

L i: CEFe, CRpTITD L. LGP |

Finally define a number B{, (6kx6k)-diagonal matrix B{} and (4k+1)x(4k+1)-
diagonal matrix B{® by

(3'9)0 B(()p) = 2><6><B3,2(0’ _1’ O)XB<sk~e,e)(p: _1’ O) s

(" Beer,ex(P» —5, 0) h

B 3 (p-l_ly _5; 0)
B9,  BE=2x6xB,,0, —1, 1)x eh®

L Boso(D4+-6k, —5, 0) ]

rB(alc,s)(p’ -5, 0) 7

B(Gk,G)(p+11 —5: 0)
(3.9),c B =2X6XB,,(1, —1, )X .

L Bgr,e(0+4k, —5, 0) ]
Then, by Theorem 1, we have
B X1, Eg-, O
(3.10) £.0)=| B X L& | X
B@R X LR 0 Eg-

where we denote by E;_, the (6k—2)x(6k—2) unit matrix. Now, from the
formula (1.7) and the equation [3.10), we infer that rank Q2(0)=10~£—1.

REMARK. By a result of A. Kas and a simple calculation, we know that
the systems of basic elliptic surfaces Bk(r, ) essentially depend on 10k—2
parameters. This fact and Theorem 2 show that the periods of any holo-
morphic 2-form w@P"Y(zr, o) describe the structure of the basic elliptic surfaces
B¥(z, ) in the neighbourhood %,.

We continue the arguments of the previous page. Define

(6%)* X (12k—4) matrix Q0,0(7, 0) (= 0ff?*(z, 0))
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(6% X (4k-+1)) x (12k—4) matrix QFa.u(z, 0) (= W@ ®(z, 6))

and (4k+1)*x (12k—4) matrix 2F.,x(c, 6) (= 05> ?(z, 0))
in the following manner :
aZW(Z;;LOyl)
Gllaw  0ff0G, )= g EE",
2 (D01
ORfE (e, =TGR (=12, -, 62=2),
GZW(p;r?.l)
B 1), wREY (T, 0) = “"’8713‘0.]_ s
2 (0, 1)
(1 ) = Tyl B (n=1,2, -, 6k-2),
a2W(p7h0,1)
(3-12)«),2) wé&j’?{rfo’m(f, 0)= *azba]* ,
2 (0, 1)
BB (7, 7) = %%%T m=1,2, -, 6k—2).

Define a matrix £%.,(z, o) by
2p.(z, o)
22.0,0(7, 0)
28.4,0(z, 0)
Q2.0,9(z, 0)

Then by a similar calculation as in the proof of we have
THEOREM 3.3.

(3.149) The rank of the matrix 2f.(z, 0) is equal to 12k—4 .

B.13) Rz, 0) =

It is well known that a 2-cycle y, on an algebraic surface S is algebraic
if and only if w®*=0 for all holomorphic two forms w? on the surface S

T2
(Lefschetz [107], Kodaira-Spencer [97]), so the Picard number o(B(z, ¢)) of the
surface B(z, o) is equal to 2 for general values of the parameters (z, o).

5) As is seen from the process of the proof of Theorem 2.2 and the fact (3.14),
the essential part of Theorem 2.2 and Theorem 2.3 lies in whether or not the systems
of rational forms with poles on X(z, ¢) in question are cohomologically independent
when considered as C~-differentiable 2-forms in S(z, 6) —X(z, ¢). It will be probably
done by some modifications of the method of Hodge-Atiyah [5] or that of Griffiths 3],
though the polar divisor X(z, ¢) is not an ample divisor. However we hope that the
power series expansion gives some other information than the one obtained coho-
mological independence mentioned above.
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Chapter II. A system of linear partial differential equation.

In this chapter, we discuss a system of certain partial differential equ-
ations of the second order whose solutions are the period functions WL (z, o).
This may be regarded as a generalization of Hypergeometric differential
equations of one and several variables (cf. F. Klein and Appell et Kampe

de Feriet [1]).

§4. Some algebraic preparations.

In this section we discuss somewhat general situation than in the previous
chapter. Let 9% be a connected domain in the n-dimensional affine space C7,
and let ® be an analytic set of codimension one in the domain 2. Letting
B=N-—D, we denote by 7,(B) the fundamental group of the domain B. Let
f be a multivalued holomorphic function defined on B. Let § be an N-dimen-
sional linear space (over the complex number field C) composed of multivalued
hotomorphic functions defined on B. For any element n x,(B), we denote
by (z) the operation of the element = on the linear space §. We assume that
F is invariant under the operation () for any = €z ,(8). Let f}, -, fxEF
be a base of the vector space %, and define an N-dimensional vector | by
f=(fy, -, fy). For any partial differential operator D, ;,=0""n/0zi ...
0zin, put D= Dy i = Dig,in f1s 5 Diyyyinfn).  Let © be a set of pairs
of indices ({;, m;) (i=1, 2, ..., N—(n+1)). For the sake of simplicity, we denote
by D; the differential operator 0/dz; (j=1, ---, n) and by D, »,, the differential
operator 0°/0z,,0z,, with (;, m;) € @.

Define an NX N matrix F(z) by

- _
Dy

@l) F@z)=| D,

D]

L D@N—n—l’mN—n—l)T ]

Now we assume that
4.2) det F(z2) =0 in B.

For an arbitrary differential operator D,,,.;,, we define single valued holo-
mm’phic f’LLT’LCiZOTLS A(()I), A}D (]:1, ttt n)) A%LI;,mZ) (7':1) Sty N——(n—i_l)) in the
following manner :

6) We assume that N=n41 in this section.
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A[()I)
(4.3) 'Daj="F(@)| AP
Then, obviously, we obtain the following easy
PROPOSITION 4.1. For an arbitrary function f<$ and a differential operator
Dy,,.,iny we obtain the following (uniquely determined) differential equation

44D D f= 2 A‘“""”'”)Dai,manr%Aé“”"’iN’(Z)DijrAé“"""'N)(Z)f-
i=1

(3,mg)ES

§5. A criterion on the behavior of the solutions at the singular divisors.

In this section, let the situation be the same as in the beginning of the
section 4, except the following two differences. First we restrict the domain
A and the divisor ® to those defined by A= {(z, -+, z,) €C"; |z;| <e;, With
sufficiently samll ¢;}, D= {(z,, -+, z,) €A; z,=0}. Secondly we omitIthe con-
dition: N=n+1. For the generator r of the fundamental group =, (A—D), we
denote by p,, -+, p, the eigenvalues of the transformation (z) (of the linear
space ). For a base (F,, ---, Fy) of the linear space %, we define a matrix
W(zy, -+ 5 zn) by

’ F, F, Fyv 7

OF,/0z, , 0F/0z, ,-, 0Fy/dz

GL W 2)=|  gp/az , 0°F/62 -, 0°F/oz
| Y1, /0211, 9V-1F, [0z, - , 0V Fy [0zt

Hereafter we assume that

(5.2) det W(z,, -+, 2,) #0 in the open domain ¥—D.
We write functions Fy(z,, 25, -+, 2n), -+ » Fn(21, 2 -+, 2,) a8 Fy(21; 2y =+ 5 Z0)»
eoy Fy(zy; 2 -+, 2,) when we consider (z,, ---, 2, as parameters and z, as
the variable. Then obviously the assumption (5.2) implies that F,(z,; z,, -+, Z5),
o, Fy(zy; 2, -+, 2z,) are linearly independent as functions of the variable z,.
We define single-valued holomorphic functions Py_,, -+, P, in the open domain
A—D by

PN—1 . FfN—l), F§N~2)’ ., F1 -1 Ff”’
53 Py =) :

lDO F%v—x)’ F%V—2)’ o, Fy F%V)

oN

where FM =

T 0z
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Let D,,..,, be?the ordinary differential equation in the variable z,
defined by

6.4 dvF/dzy
= Py_, - d¥F[dz) 4Py, - ¥ 2F/dz} 2+ --. +- P, - dF/dz,+P,F .
We denote the linear space § by ®w,,..,» When we consider (z,, -+, z,) as

parameters. Then it follows from [(5.3) that the linear space ,,.,.,, coincides
with the linear space of the solutions of the differential equation [5.4). Consider
the following condition (R) imposed on the linear space :

¢ There are (sufficiently small) positive numbers (g}, --- , &) and
a sufficiently large, positive number L such that the condition
® | 69 lim |z,|% | f] =0,

lz1]
arg 21: bounded

holds for any functions f= @ uniformly in the parameter
( (2, -+, 2n) With |z <ef.

Let the Laurent expansions of the holomorphic functions Py_,, ---, P, be
(5.6) P;= % Pjq - 2%, where p; ’s are holomorphic in (z,, -+, z,) .
g=-—oo

If the condition (R) is true, we infer (from a well known theorem on linear
ordinary differential equations [E. Picard [117]]) that

R) Py_. -z, Py.,-2}, ---, P,- 2z} are holomorphic in (z,, ---, z,) .

Conversely, assume that the condition (®) on the functions P, (j =0, -,
N—1) holds. First we prove the following

PROPOSITION 5.1. There is a positive integer M which is independent of the
parameters (z,, --- , z,) such that
G.7) N N R EALE

lz1 -0
arg z1: bounded

for all the solutions f(21)<zz,.-.,zn> of the ordinary differential equation (5.4).
PrOOF. The determining equation for the equation (5.4) has the following
form

5.8 Py (@) + plo—=1)(0—2) -+ (o—(N—1))
= 3Py e 2P0 —1) - (p—(N=)+D).

Since the coefficients Py_j;_;(2,, -+, z,) are holomorphic in the parameters

(zy, =+, z,) there exist a positive number L and (sufficiently small) positive
numbers (e, -, ey) such that all the roots p(z,, -+, z,) of the equation (5.8)

satisfy |p(z,, -, 2,)] <[ for |z|<e (i=1,-+,n). Let f(z, -, 2,) be a root
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of the equation |(5.8) whose real part Re g(z,, --- , z,) is maximal. The equation
(5.4) has the solutions of the following form:

(5.9 F @) anpomy = 2807 - G(@) gy »

where 5(21)<z2,._.,zn) is a holomorphic function of the variable z, and @(O)(zz,...,zm
# 0.
For any solution f(2;)u,,..., 0f the equation we define a function

2@ esyiny BY g=d(f/F)dz;, Then the function g,,..,,, is a solution of the
ordinary differential equation (of order N—1):

N-1 a? g(zl)(zz, 4Zn)

(5.10) EOR dzf =0,
where

_ d¥-@rDE No1 i di-arn f
GO Re=(ygrn) g — 2, (i) P e

Write the determining equation (Py_,) of the equation in the following
form

(G12)  (Py-p: plei—1b - (o~ (N—2))
ZEZTN—kj,j(Zz: e, Zp)t P1(Pl”‘1) (Pf“(N‘].)—Z) .

Then we infer from the equations and (5.11) that the coefficients yy-;-j,;
are expressed as polynomials of the roots g, .,, and the holomorphic func-
tions rN_l_j,j(zz, -+, 2,). There exist a positive number L, and positive numbers
(ey’, -+« , €'y such that the roots p,(z,, ---, 2,) of the determining equation (5.12)
satlsfy the inequality: |p,(z,, -+, 2n)| < L for |z;| <. Letting p,(2,, -+, Zn)
be a root of the equation (5.12) whose real part is maximal, we have two

linearly independent solutions £, F, of the equation of the following
forms:

~

(5.13) F(Zl><zz, ) =20 1(21)(z2,~~-,zn)’
P s, = Fuz) - [ 28 Colzs,mn»

where 51(21)@2,...,3”) and 52(21)(z2,...,2n) are holomorphic in the variable z, and
G, #0 (=1, 2). Repeating these procedures, we obtain N linearly independ-
ent solutions FNl(zl)(ZZ,.,.,zn,, e, FN(Zl)(zz,-~-,zn) of the equation of the following
forms:

.14 Fi(2) ey = 282770 - G1(Z D) 2oymy »

al — 501¢ >,
F2<Zl)(zz,---,zn = j 2{12n GZ(Zl)(zz, ,zn)dzlr

Fy(z)apyyemy = F 3(21)(zz,~-,zn)dzl ’
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where 5i(zl)(zz,...,zm are holomorphic in the variable z, and the roots g(z,, -, Z.),
01(Zas -+ Z0)y Pn-1(2y -+, Z,) are bounded in the domains |z;|<g&; for some
positive numbers &,. g.e.d.

Now we prove the following

PROPOSITION 5.2. The determining equation (5.8) is independent of the
parameters (z,, -+ , Zy).

PrOOF. In order to prove this proposition, it is enough to prove that

(5.15)  the coeflicients Py_,,-4(2s, -+, 21), Py-9,-2(Z5s === s Zn)y ===y Po,-n(Zay ==+, Zn)
are independent of the parameters (z,, ---, 2z,).

We prove the assertion (5.15) by induction on the dimension of the linear
space $.
(I) Put N=1 and let f, be a base of the space . Then f, satisfies the
of

following differential equation : o = P,. f,. By the previous Proposition 5.1,
1

the function f, can be expanded in the following form:

(.16) fO:Z’l}b(fO,O"*_fl,oZl’f‘ S o LRt DI
where the coefficients f,,, f1,0, --- are holomorphic in the variables (z,, ---, z,)

and the function f,, is not identically equal to 0. The exponent i, satisfies
log 2,= p,, where p, is an eigenvalue of the operation (z) on the space .
Now the function P, is expressed in the form:

of
P :77672177:;_Qg;fo.o"f“(fozo“ﬂofl,.o)fdf
’ 7 z2:(fo,ot )
So we have: P, _;=p, for all values (z,, -+, z,).

(II) Now suppose that the assertion is verified in the case where dim &
< N—1 and consider the case in which dim=N. Let g, be an eigenvalue
of the operation (7) on the space & Moreover let f be a function in the
space & such that

(6.17) (75)(]?1) =0, 'f1 .
By the Proposition 5.2, we can write the function f; in the form:
(6.18) flzz?l : (f0,1+f1,121+ ‘}‘fm,xzfn‘i_ )

where the functions fo,pfl,l, ..., are holomorphic in the variables (z,, ---, z,)
and the function fo,l is not identically equal to zero. The exponent A, satisfies
the relation: log i, =p,. Let ®, be the divisor defined by

(5'19) D f0,1+f1,121+ +]7m,121m+ e =0,
Let ®, be the subdivisor of the divisor ® defined by ®,=®ND,. Take a
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point P in the divisor ® which does not belong to the subdivisor ®,. Take a
sufficiently small neighbourhood U, of the point P in the space of the variables
(2, -+, 2,) such that the neighbourhood U, has no common point with the

divisor ®,. For such a neighbourhood Up, we define a linear space ®p by

putting @P:{gz aa?( fI); fe %} Define an ordinary differential equation
1

(of order n—1 depending on parameters z,, ---, z,)

Noly  de.f
q=0 a leq

(5.20) =0,

where the coefficients R, are defined by
di—(q+1)f

dN-ta+n f N-1

~ N A i
620 Re=(y_(g1y) g =2, (ioqrp) Proagrer

Then the linear space of the solutions of the equation (5.20) coincides with
®p. By the assumption (®), the meromorphic function R /Ry_, is expanded
at the point P=(0, z,(p), -+ , z,(p)) in the following form

©-22) Ry/Ry= glrll.;x {FotFiz izt -},
(q:O, 1: Tty N—Z),

where the coefficients 7, 72, 74, --- are holomorphic in the variables (z,—z,(})),
cooy (2,—2,(P)). Especially the first term #¢ has the following form:

(56.23) Fe= (N—g+l)> co+(p—1) - (0—(N—g—2))

N-1 3
=2 (iguny) * Pimar-o0o=1) -+ (o——g=2),
(g=0, -, N=2).

On the other hand, by the assumption of the induction we know that the
terms 7¢ are independent of the variables (z,, .-, z,). Hence we conclude
that the functions Py_,,_y, -+, P;,-v-1, are independent of the variables (z,,
-+, Z,). Finally by the equations [5.4), we see that P, _y is also independent
of the variables (z,, ---, z,). Thus we conclude that the functions Py_, _,,
«+, Pi,_w-1y Po,-y are constant on the divisor ®, while the functions Py_;_,,
-y Py,_(y-1y» Po,-y are holomorphic on the divisor D. q.e.d.
By means of this proposition we can speak of ‘the characteristic roots’
of the determining equations of the family of the differential equations
Dy, eny depending on the parameters (z,, -+, 2,). Denote by g, the root of
the determining equation whose real part Re g, is maximal among the
roots of the equation (5.8 Take a non-vanishing holomorphic function &,
on the divisor ® and define in a usual manner holomorphic functions A, (z,,
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vy Zn); Tty hn,o(zzr Tty Zn) by
(5.29) {#1(ﬂ1“1) (ﬂx’—(n—l))—‘lll(ﬂl"l) (#1‘(“"2))PN—1,—1 PO,—N}hl,O
= {.ul(/'ll——l) (#1_(”'_2))PN—1,0+ﬂ1(ﬂ1—1) (ﬂ1_(n—3))PN—2,-1
+ +ho * Po,—(n—n}ho,ox Tt

Define a holomorphic function H, (of the variables (z,, .-, z,) by H,=(h,,
+hyezit o Fhgezft o) and put ¥y(zy, o, Z) =20 H(Zi5 2, 0+ 5 Z,).  Then
the function y,(z,; z,, ---, 2,) is a solution of the differential equation D,_... >
Define a differential equation D) ..., by

(5.25) po_ . Spa. @ _g
: (200 . = q dzt ’
where
drlatby,  No di-@ivy,
( - - —
Pl (N—(q+l)) dZ" g+ i=§r1( (q+1)> Zi GRS I

Then we infer readily that the determining equation of the differential equa-

tion (2.25) does not depend on the parameters (z,, ---, z,). Repeating these

procedures, we obtain a series consisting of N holomorphic functions H,, H,, H,,
, Hy-, such that

(5.26) H; = (ho,ithyizitRoi2i+ oo +Hhplt+ o)

where the functions A, k4, -+, Ay, are holomorphic in the variables (z,, -+, z,,)
and £,,(0)#0. Moreover we obtain a series of exponents g, -+, ¢y such that
the functions

(5°27) yl(zl; 2oyttt Zn) :Z{“ : Hl »

Vo215 2oy o0 5 Zn) =D 'fzfm - Hydz,

............

Y21 2y o0y Zn) =Yn-y - jsz - Hydz,

form a base of the space of the solutions of the ordinary differential equation
Dypszny Now, for the base Fy, .-, Fy of the linear space &, the functions
Fi(zy; 25y oy 2), -, Fy(zy; 2, -+, 2,) form a base of the space of the solutions
of the equations Dg,,...,» Thus there is a NXN matrix Cg,,. ,,, depending
on the parameters (z,, ---, z,) such that

M1 F,
5.28) Comm| | | =]
In . Fy

holds. The matrix Cg,,. ,,, are determined by
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[y /07y, -, 0V /02 )
(5.29) Cogpmpnr* |
L Yn» 0Yn/0zy, -+, 0V YN /02) T ]
[ F,, 8F,/0z, - , 8¥-1F,/82)"")

L FN) aFN/aZI, cee aN—'lFN/ava_l J

By the equation [(5.29), the entries c; (2, -, 2z,) 0of the matrix Cg,,.. ., are

holomorphic in (z,, -+, z,). Thus for any function f(z,, z,, --+ , 2,) in the space
%, we can find a set of holomorphic functions d,(z,, -+, z,), -+ , dy(2s =+, Zn)
in the parameters (z,, ---, z,) such that

N
(530) f(zl; Zgy vt :Zn):}:{dj(zzi ’Zn>'yj'

=

On the other hand, there exists a positive number I such that

(5.31) lim  [z[7]y,=0  (j=1-,N)

arg z1: bounded
hold uniformly in |z,| <&, -+, |2,| <&, where &, ..., &y are sufficiently small
positive numbers.

We reformulate these results briefly in the following form:

LEMMA 5.1. If the coefficients P; defined by (5.3) of the differential equation
Dy,eny Satisfy the condition (R), then the linear space  is ‘regular’ in the
sense that it satisfies the condition (R).

REMARK. In a recent result of P. A. Griffiths, it has been discussed that
the period functions of the rational forms are ‘regular’ in the sense that they
satisfy the condition (R). The above criterion of ‘regularity ’ is inspired by
his result.

Now we examine what conditions are imposed on the coefficients A§t'»,
Afi-w of the systems of partial differential equations (4.4) by the assumption
(5.2). We assume that the singular locus is defined by the equation z,=0 and
for a certain value i, the pair of index (1,1, is contained in the set p=
{y, my), --+} (cf. §4). Then we can express the derivatives 0%F/dzf (k=2, ---)
in the following form :

_ 0°F OF | py
oz ;B?gmi . *amz’mj—‘—%‘, B - 0z, +B{F.

The coefficients Bi®,,, B, Bf satisfy the following recursion formulas:

7) Note that the matrix C,...,,, does not depend on the variable z.
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oB®
& _ lipmg a mjs »1) k. (1, p)
<5'32)(li,mi) B£1,+13z)1, S 2 sz mj Az/'ml +§ Bk AL,’ m g

- 0z,
(5.32) B = 2sz m; o Afami 4 aaBi +Z BE. AP G+0,1),
(5_32)(1) B(k-H) — ZB - A(l],m],1)+ 8631 +Z Bk A<1 p)+Bk
0B

(5.32)y Byt = 3 Blym, - A0 5 5By g

The expressions A;%7#7, ... are determined by

s ey OF
(533 0°F (021,02 92, = B A"+ 5, 5

‘l‘Z; ALimpD . ,SE_FASLJ»,mJ-,:)F.

Moreover the coefficients Af:%., --- are determined by

o*F =S ALD _O0°F EA(I N aaF

(534 iz, = > i g, e

+A§OF

Besides the matrix W,,..,» We define matrices W, «--, Wy, by
o0VF, [0z} , ..., 0VFy/0z)
oF,/0z, ,--, 0Fy/0z
(5.35) W,= ,
OV-1F,/0z)"1, -+ , 0N 'Fy /02!
i F, R Fy )
o0F,/0z, ,--, 0Fy/0z
v, Wyoy=
OV-2F, [0z~ «+ , 0N 2Fy/02)?
O¥F,J0zf , ., ONFy/0z) |

Then we can express the matrices W, Wy, ---, Wy_, in the following form:
(5.36) W=B-F&Z), We=B,: F(), -+, Wy_.,=By_,- F(2),

where the matrix F(z) is defined by the equation and B, By, ---, By_, are
defined as follows:
B®w, -, B® ..., B®

(5.37) B= ,

B;{\,T;Li)’ cee BiN-—l), e, B(()N*l)
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' (N N. N,
Bl1.m1 y "0y 1( ): R B;N), B(() )

[¢3] [¢] 1 1
Bl1.m1:"‘: l)y st 7B§z) ’B((J)
(N—1 1 1 1)
L le,m1)! "ty §) y "ty Bi) ’ B(()
~ ()]
Bl1.m1; cety Bi(» y "ty BE)O)

By-,=

(N—2 (N—2 -
Bll'ml)’ e, BXN >, e, B(()N 2

L Bis o, B, ., B
Thus the coefficients Py_,, ---, P, are expressed as follows:

(5.38) Py_,=det Wy_,/det W=det By.,/det B,

P,=det W,/det W=det B,/det B.

Now we give an example in a simple case, namely, in the case in which
dim =4 and the number of the variables are two. In this case, the system
of differential equations (4.4) are expressed in the form:

QZE‘— (2,2) ;_Qi]i* z @@»2) ,af_ (@1
022 = A 02,02, XA 0z; A

J=1

(5.39)

LEMMA 5.2. For any positive integer m,, there is a system of differential
equations D, of type (5.39) satisfying the following two conditions:

(5.40) The space Fn, of the solutions of the equation D, is ‘ regular’
in the semse that the condition (R) is satisfied.

(5.41) The coefficient A{® of the equation D, is expressed in the form
ALD — ayta,2+a,2"+ -
i) Zm0

and a,(0) 0.

, where aJz,) are holomorphic in z,,

Proor. Take four holomorphic functions f,, f,, f,, f, in the following
manner :

(5.42), i=1, f.=z,
(5.42), fo= 20 fust-Fszrt o Fa0F )
fi= 2 Joutfuzit o+ no2l0F ).
Now we impose the following conditions on the functions f; and f,:

(5.43), P3P4(Ps—P4) +0, fos fo4 +0,
(543)2 fos: Tt fmo—l,a and f04: Tt fmo—1,4 are constants,
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Uns o

(543)3 82‘2 : fm04 ——’azz—‘ . fmoa +0 at z,=0.

Then the coefficients AP, APY (j=1, 2), A{"P are determined by

0°F,/0z} 0°F,/02,0z,, 0F,/0z,, 0F;/0z,, F; | [ A{%P
0°F,/0z} D e AbD
(5.44) R I I :
0%F,/02} D e AgD
0°F,/07%} 0°F,/02,0z,, OF,/0z,, 0F,/0z,, F, | |_ A{""

The assertion of the theorem is easily verified by the relation (5.44).

REMARK. The example shows that in order to determine the coefficients
of a differential equation such as (4.4), some other informations about the
behavior of the functions are needed. We shall examine the behavior in the
following sections.

§6. A bilinear equality between rational 2-forms (without residues) on
the surface B ,,.

We begin with a general situation. Let V™ be a compact complex mani-
fold of complex dimension n and let W™ ! be a non-singular divisor of V™
Fix a positive definite Hermitian metric ds* on the manifold V" For any
sufficiently small positive number ¢, denote the tubular neighbourhood of
radius ¢ by N, (W?®*1). Denote N(W*H—W"?! by N. Let »" be a mero-
morphic n-form on the manifold V" whose polar locus is the divisor W?"-1.
‘We assume that " has no residue around W"*, ie, | w"=0 for any

Tn
n-cycle contained in the open manifold N.. By de Rham’s theorem n-form "

is a derived form considered as a C=-differentiable form in N,. Take a C~-
differentiable (n—1)-form ¥™-* in N, such that

(6.1) d¥»'=w*, in N..

Take a series of positive numbers ¢, <e¢, <e;<e,<e. Define a C»-differen-

tiable function y in N, such that

y=1 in N.—N.

(62) { i
r=0 in N,.

Define a C=-differentiable (n—1)-form ¥ by ¥ =y-¥"' Then we have o"
=d¥ in N.—N.,, Now we define a closed C~-differentiable n-form & by

b= in Vn_—Neg
(6.3) [

&=d¥ in N,,.
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Recall the following exact sequence of homology groups (Hodge-Atiyah [5].
loc. cit.)

1 C
64) - — H,_, VA= W) s B (V™) s Hyo (W) ——

Choose a base {r,, ---, 75 Tpr1 -+ » Toy} Of the homology group H.(V™) such
that 7,, -, 75 form a base of the subspace i (H,(V*—W™"%). Denote by I the
intersection matrix with respect to the base {7, ---, 7s,}. Let o}, o} be two
meromorphic n-forms having the divisor W?*-! as polar loci. We assume of
and w? to have no residues along W™, Denote by @7 (i=1, 2) the correspond-
ing C>-differentiable n-forms in the construction (6.1)—(6.3). Denote by w;,;
(=12, j=1,-,b, the periods of the n-form w? on the homology classes.
7; U=1-.,p8 and by &,; (=1,2, j=1, ---, b,) the periods of the n-form &7
on the homology classes 7; (j=1, ..., b,). Define the vector #; by 7;=(&,»
-, @;5,). We note that

(6.5 w;,; =&;,; (j=1,--,p).

The well-known bilinear equality asserts that
(6.6) oIt gy = apAay.
yn
From the equation (6.6), we obtain
67) P07 Tu= [ @ aap = @D AETY).

REMARK. In the case of an algebraic curve, we obtain the following well-
known relation from the formulas (6.1)—(6.7) in the following manner. Let
P, .--, Py be points of the algebraic curve V! and let w!, w, be two rationak

1-forms on the curve V' which are regular in V‘——JQP,-. For each point P;,
let w;= ( E af, - t‘l>dt- (i=1, 2) be the expansion of the 1-forms w; in terms of
the local coordmatet at the point P;, From the assumption we have a{_;=0.
The integral qfi,,-:fwi of the l-form on NJ(P)) is Ufi,qu; af,/q+1 -t

Obviously, we have d¥, ;=w; in N (P;). Choosing a suitable C>-function y;
N(P;) satisfying the equations corresponding to (6.2), we define 1-forms
@; (j=1,2) as above. Then the expression:

f(d@rm)/\(m)_(j d(lﬁl/\de)_—f Yfi/\wz)

-}

=2rv/=1 3 _f X A% g -

q%'l

(Z3ir0) - (Fenor)e

lejl=e
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Thus, for a Betti base {y,, -, 75} of V' and the corresponding intersection

matrix I, we obtain
N o Cl(~1) a(fl)
tr-1,¢ — 1.y Zhatiady
()77 () ].42275‘/ 1 Aq‘: g+1
which is an well-known formula in the theory of algebraic functions of one
variable.

Now we consider the surface B= B(z, ¢) and the curve X = X(z, ¢) intro-
duced in §0. We have the exact sequence corresponding to [6.3):

T Z* C
6.3y wo —— H(X) — H(B—X) — Hy(B) — H(X) — 0.

We know that the dimension of the image: 1,H,(B—X) is by,(B)—1.

For 2-cycles 7,, ---, 74, Which represent, together with the algebraic cycle
4, a base of the subgroup ix(H,(B—X)), we define the intersection matrix ;.
We note that the matrix I, is non-singular. Let »; and w, be two 2-forms
whose polar loci are the divisor X. Then we have the following bilinear
equality :
©8) 70 =] ¥, ndl,,

N (X)
where the vectors 7; (i=1,2) and the 1-forms ¥, and ¥, have the same
meaning as before. Our task is to express the integralf ( AV, Ad¥T, in terms
N (X)

of the data of rational 2-forms w; (j=1, 2) at the singular locus X=X ,,.
Define a divisor T on the surface B by
12x*—gw)=0, in %,,
(6.9 ‘
12(]6 /)Z“gl(v) = 0 ’ m ?Iv ’
where we put W, =W,NB, N,=W,nB and x’'=x/u*, g@) :g(— 11}) - vk,

Define a regular function ¢ in N, by ¢t=12x*—g(u). Hereafter we assume that
(6.10) the curves X and T intersect transversely at the points p,e X\ T
(j=1,2,--,12k)®. Then, we can choose local coordinates of the surface B
in the tubular neighbourhood N, (X) in the follcwing manner :

For points p& T, we choose (4, ) as local coordinates.
For points p = T, we choose (¢, ) as local cocrdinates.

By a simple calculation, we have the following transformation law :

8) This condition is equivalent to the following two equivalent conditions.
(i) Every singular fibre has only one ordinary double point.
(ii) The discriminant D(u) has no multiple roots.
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ou _ 48xy ou _ ¢t
.11 9y — S ot T S’
where S=24x —g%— x+~gz— —%—‘g— .S is a regular function in the space 9,.

We note that the function S does not vanish at the points p;, (€ X\ T) under
the assumption (6.10). Define three systems of algebraic curves Ly, Ly and
Ly on B by

(6.12)7 Ly:u=1,
(6.12)7 Ly: 12x*—g(u) =1,
(6.12)7 Ly:y=3.

For any point pe X, let {(p) and #(p) denote, respectively, the values at p of
the rational functions ¢ and u. For any point p, let #(p) and u(p) denote,
respectively, the values at p of the rational functions ¢ and wu.

Let ¢ be a sufficiently small positive number and define open subsets L,(p)
of L.y, and L,(p) of L,., as follows:

t Li(p)={Q € Ly, ; dis(Q, p) <o},
(6.13),, L(P)=1{Q € Luy,; dis(Q, p) <4} .

For the points p,e XN\ T (j=1, ---, 12k), we take a small ‘spherical’ neigh-
bourhood B = {pje X: dis(p;, pp <A} (=1,2,3,4; 2, <A, <4,<2) in X
such that the following conditions are satisfied:

12k
(6107  LyqgpN Lig, =20 for all points ¢, ¢, € X— U BP, q,+¢,,
j=1

12k
618  Liyqpn Lig,=0 for all points ¢,, ¢, = UBP, ¢, #4,,

GILY  The set Ly(p, d), pe X— ;Q B, and the set L7(p, ),

12k
pe \U BY, are simply connected.
i=1

Let X,=X—\U%B} and define open connected sets N, and N, (j=1, ---, 12k)

j=1
in the surface B by

6.15) No=\U Ly, N;j=\U Liy,-
pEX] pe%{
By the conditions (6.14); and (6.14)7, we can define a complex mapping Proj,
= Pr, from the open set N, onto the set X, and Proj’ = Pr{” from the open
set N; onto By by
(6.16), Pr,(Q)=p, where p is the point on X such that L, (p)
contains the point Q (e N,),
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(6.16), Prid(Q)=p, where p is the point on X such that L.(p)
contains the point Q (& Nj).

Take a sufficiently small positive number ¢ such that the following conditions
are satisfied :

6.17) The tubular neighbourhood N,(X) of the curve X (with

12k
radius ¢) is contained in the union \U N;U N,
=t

(6.18) The tubular neighbourhood N (BY—BV) of BVBP—BY is
contained in the intersection:

(U Ln{ Y L.

pepid-mid penih -2}
For the rational 2-form w®®?*+V = (uPx?/y**dx A\ du, we have the following
transformation law :

(6.19) @ P LD = (P x 7 dy A du = uPx9/y*"S)dy A dt.

Define holomorphic 1-forms ¥ {»>%?"+V in the neighbourhood N,® and ¥ a2+
in the neighbourhood N, by

Cu, )
(6.20), WPt — (J‘ v uPx 1)yt dy) du,

¢y
(6.20), g raered = ( U urxfyrs dy) dt,

where the first and the second integrations are extended over differentiable
paths in L,(p) and L,(p), respectively. Then, obviously, we have

(6.21) AU P12+ = p(P,0,27+1D jn the neighbourhood N,
(6.22) AW P02+ = P92+ i the neighbourhood N;.

We note that the 1-forms ¥ (P92 and ¥ »2*+ are single-valued in view of
((6.20), and (6.20); We know by [(6.2I) and [6.22) that the 1-form ¥ —¥; is a
closed holomorphic 1-form in the neighborhood N (B§—B).1

Now we prove the following

PROPOSITION 6.1. The 1-form ¥ —¥; is a derived 1-form.

PrOOF. The one dimensional homology group Hl(Ng(%gﬁ—%gﬁ); Z) of the
neighbourhood Ne(%gﬁ—%éﬁ) is isomorphic to the direct sum Z@ Z. Define

two closed arcs y{” (=1, 2) in the neighbourhood N(BY—2¢) in the following
manner :

9) ](IQ-':NQ—.X, N]—:NJ_X,
10) N.(B§” —B§") = N.(BY ~Bf") — X .
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(6.23), i y=y9, u = u(t,e?av=19, 0) 1z6=0),

(6.23), s u=ul,  y=lyl-eV0 (126020,

where the numbers u,, ¥,, ¥,, f, are chosen such that

(6.24), the C~-differentiable curve y{ is contained in the
neighbourhood N (B¢ —BP),

(6.24), the C=-differentiable curve y{ is contained in the

neighbourhood N (B — B,

and where u(t,e?»¥=16,0) denotes the value at the point (f,e?¥=1¢,0) of the
rational function u(t, y) of (¢, y).
Now the 1-form u?x?/y*"t du on the algebraic curve L; is regular in the

neighbourhood of the point p,: (¥, )=(7, 0). So, we have .S‘T(j)upxq/y”t du=10
1y
for all the values j where y? denotes the l-cycle: y=37, u = u(t,e?=v =19, 0)

(1=6=0). Consequently, we obtain L< S WP =,
1

We note that the projection Pr, induces a biregular isomorphism Pr{”
from the neighbourhood B(p,, ) of the algebraic curve Lj onto X (=L,).
The closed C~-differentiable curve y{” on the curve L, is mapped (diffeo-
morphically) onto the C>-differentiable curve 7y on the algebraic curve X

(=Ly-
The integral jrm Y2t g expressed in the following manner :
2

(6.25) jréﬁ Y §paereDd — Léj) (I <y1,t)upx 2/ S dy) dt

= § (Lme,;{; wrxt/ySdt)dy.

Because of the transformation laws we conclude in a similar manner as

above that Lm ¥;=0. g.e. d.
2
Put o
f;p,q,21‘+l):f Y (wép’q’zr—#l)_’w‘}p,q,zr+1)) .

From [Proposition 6.1, we know that f; is a single valued holomorphic function

in the neighbourhood Ns(%gf)—%gﬁ). Choose a series of positive numbers
2, < 0P <ol <o <o <ol <ol <A,. Define a C=-differentiable function X
in the neighbourhood N (B¢ —2¢) such that

y;=1, in the neighbourhood N.(BY —BY),

(6.26) {
x;=0, in the neighbourhood N(B{) and in the set X—N(B).
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Define a C>-differentiable 1-form ¥ §?%*+" in the neighbourhood N,(Bf"—B§")
by

(627) if](,iﬂ,q,Z’r—H) — d(x . f;p,q,27+1))

and define a C-differentiable 1-form ¥®%2*" in the neighbourhood N.(X)
by

Frjaeren — Pamrn, in the set: N(X)— \J NBY),
(6.28) =1

UGl = PInGEHD L Y (PG40 in the set: N (BY).
Then we have the following identity in the neighbourhood N.(X):

(6.29) AW Pa,2r+1) — (P27 +1)

Take a series of positive numbers ¢, ¢, ¢4, &, &, & such that 0<e, <g, <eg
< g, <& <éeg and define a C~-function y in the whole surface B by

{ y=1, in the open set N_(X)—N.,(X),
2 =0, in the set N,(X), and in the set B—N.(X).

(6.30)

Finally, we define a closed C>-differentiable 2-form &‘®%*+b by

@GP — ()P, 0,27+D i the set B"ng(X>y
(6.31) [ _
@PHED = d(y - TPo2D) ip the set N, ,(X).

Let @‘?u22i+D (7=1, 2) be rational 2-forms on the surface B with polar
locus X and let @‘P#10%+ (3==1, 2) be closed C~-differentiable 2-forms corre-
sponding to the rational 2-forms @‘?#9:%:*D by means of the above construc-
tion. We mean by C=-differentiable 1-forms ¥ @ue,2ri+d (j=1,2) the 1-forms
corresponding to the rational 2-forms @‘##?%:%7¢tD (7=1,2) by the formula
(6.28). For any tubular neighbourhood N, (X) of X, we choose a C»-differenti-
able retract p: N(X)— X and, for any subset B of X, we define

7(B) = p~ ' (B) NINLX),
where 0N.(X) denotes the boundary of N, (X). Then we have

(6.32) y &PLAL2TLHD A G(P2,02,272+D) — . AU P1a1,2r1+D A JU (P2ya2,270+ D)
B €3

:f P (P1,91,2r1+D A U (P2,02,272+ D)
Teg(X)

_ (___Dj‘ AT @101,2r140 A P P2gazj2raeD |
Tey )

From the equations (6.20),, (6.22);, (6.28) and [(6.30), we infer that d¥ Putu2ritd
= P02t (j=1,2) at any point Q €r.,(X). From the equations (6.20),,
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and (6.28) we see that ¥Putu2rith = P Pi,airetd (1=1,2) at any point Q &€ 7.,(X)
NNLX)—NLB(p;; 05)). So we have

(6.33) j FPLILEIED A G (Payaz2rarD
B

12k

‘f P (P1,a1,2r1+D) A )(P3y08y272+ D)
J=1Y 753 (B{pj;524))
Finally, from the equations (6.28) and [(6.30), we infer that @Patu?rith —df,
+ ¥ punrrtd (=1, 2) at any point Q € 7 (BP). So we have

12k

(6.34) D T P1,a1,271+D A ()(P2,92,272+D

i=t Teg (!Bij) )

12k
— 2 df}p1,¢11,2?‘1+1> A W' P2,92,272tD

j=1 723("35‘7))

12k
= [§P1791,271+D) (P2, 02,272+ D)
> 7 .

j=1 2_53‘/0}8‘(‘]‘%

Now we know that 2-form f{P1,91,271+Dg)(P2,92,272+0 ig holomorphic in the neigh-
bourhood N.(B(p;; 2)—B(p;; 4,)) and z,0B(p;; 4,)) forms a Betti base of
two cycles on the neighbourhood N.(B(p,; A,)—B(p;; 2,)). We summarize the
above results in the following

LEMMA 6.1. Let §7; (CB(p;:8;) be a C-closed curve which surrounds the
point p; (€ XN\T) once, where 5; is a sufficiently small positive number. Let
g be a sufficiently small positive number. Then we have

(6'35) 5‘ (T)(})l,ql’27‘1+l) /\6(1)2,(12,27‘2+1)
B

12k
=3 _ f}m,(n,27‘1+1>w(p2,QZ,272+1)

=147 ()
(: %5‘ B w(p1,q1,21’1+1)f;p2,q2,272+1)> .
=195 (r )

Now we shall obtain the explicit values of the integrals [6.35). We know
that the holomorphic function u(y, ) and x(y,f) are even functions in the
variable y, i.e., u(y, ) =u(—y, 1), x(y, )= x(—y,t) in view of the equation (6.9).
By a simple calculation we find that the partial derivatives 0%/0y?, 0%/0y?
@=0,1,2,-.-) are rational functions in the variables (y, u, x) whose denomi-
nators are powers of S. Hence we can express the function u?x%/S by means
of the coordinates (y, t) in the neighbourhood N.(B(p;; 1,) in the form

(6.36) wPx1)S = 3 Tme(Dy
1=0
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~

where the coefficients [2(t) = [0%/0y*(uPx9/S)]proi7 ' are rational functions
on the curve X which are regular in the sets: B(p;; 4,). Thus the 1-form
¥ 0,2+ g expressed in the form

o 7(17»11)(;3)
(D,q,27+1) — __CPEFNY a2 T
(6.37) w‘qu + —{jgo Z(f_r)+l(y i_)}dl"’
We express the function #Px?/t in the neighbourhood N.(B—B{) in terms
of the coordinates (y, u) in the form
(6.38) uPxt/t= 3 o)y ,
7=0

where the coefficients ##?(u) = [0 /3y* (u?x?/t)Jpro;w are rational functions
on the curve X which are regular in the set B(p;; A,)—p;. Moreover we
obtain

(6.39) wipnr={3 T(W?ii;%gl (y=7) Ldu.

We expand the derivatives ou/dy and odu/dt in the following forms (cf.

(6.11))
(6.40) 0u/dy=y( L mas™),  oufot=t( 5, 05) .
By the equations [(6.39) and [(6.40), we have

gy ()

(6.41) PEED = [fz:;o 2(f—7)7—i:1_( YET-1EDY ]

[oe] N f [o'e} . f
X[ (2 pa®07) dy-+1( Z 5osttp*) dt ]
Now we write the 1-form ¢{®%*"+D—¢P:92+ in the following form

(642) ¢(§p,q,2r+1)__¢;p’q’2r+l)

where the coefficients a{z**0, pZe¥+D are rational functions on the curve X.
Recall that the 1-form ¢{P@2r+D—gh (P02t g closed and has no period on any
1-cycles in the neighbourhood N(BY—B§). Hence we have

(6.43), 0aBe IV /ot = (I-+1)bH a2,
(6.43), ajpgr i =0,

6.43) J‘~ bEeriv()dt =0 for any l-cycles 7, in the set BY(p;; 2,)—p;.
7j

11) The symbol [927/3y2 (uPx%/S) Jproj7 denotes the value of [82//9y%/ (u?x2/S)] at
the point Projf(x, y, u).
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Thus we obtain
(t,y)
(644) f:;_p.q.?r-i—l) — j‘ (gb(()p.q.2r+1) ___¢§p.q.2r+1))
= — 2a@P )/ @s+1) -y 2 a0/ @s+ 1) -
Now we expand the rational 2-form @‘?%**? at the point p; in terms of

the coordinate (¢, y) in the form
(6.45) WP AEY — P 1/y2S dy A dit

= (S Tzpayr)dy ndt.
/=0

Let @ ?6%:2 D (=1 2) be 2-forms and let afPj@-¥ito(y), l< w1(t) be the rational
functions on X corresponding to the forms @'?%%%"*Y by means of the equa-
tions (6.44) and (6.45). Also we denote by &'?#2,27+b closed C=-differentiable
2-forms corresponding to the forms @'?#%?"#*Y in the process (6.9)-(6.31).
Then we have the following

THEOREM 6.1.

(646) j é‘j(l’ly‘llyzﬁ'l“l) A G 5(P2,q2,272+1>
B
=214/ —1-3 j g 90 P2 a2V
7= 123 2]—'279 T(p]
=27/ —1 . 2 j [; DgPran iy
J=12s+ 2f—21‘1 /(p]

where 7(p;) denotes a l-cycle in the set B(p;; A,)—p; which surrounds the point
p; once in the positive direction.

Now we shall obtain the values of the integral (6.46) for the cases:
r=0,1,2. These values are necessary in order to know the coefficients of
the systems of the differential equations. First we have

647, Ipo=ur.x9S,

| uPx?

o =y M G w40 g g )

_ _ 1S,2 /
(6AT), 71, =(—48)x/S, nz:_ilz%. {J.f_(,g.ﬁxg;ﬁ’ﬁitl_%r},

6.47), mPo =u? . x4/t My=uP[t* {q-t xT1—24. x11} .

~

From these tables we obtain'®

12) Ao the expansion of rational 2-form %2+ (= l/yZT(Z‘,l(?’ D . y2 ) dy Adi)
r=0

does not contain terms of odd degrees in the variable y, we need only the terms
agp @ of even degrees in y in order to determine the values (6.46).
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648, =0 (=0,  aper=—48 25
. 1
649, ap=0 Gs-D), ager=18 A"
. 1
(6.48), aBer =0 (i<-2), aPg® =16- jlft,‘};‘; '

From the tables (6.48),-(6.48),, we obtain the following
COROLLARY TO THEOREM 6.1.

(6.49,0) J‘B‘Bépl"h’l) N @F2aP =0,

(6.49) 0,1, j‘B;)(m,qhn A @GP0 = (),

— 12%
(6.49) 0.5, j’B(;(m,ql,n A P22 = _16% 27/ —1 )2]§1 uptes L x et/ S

2% u7}1+p2x qjl+q2+1

(6,49)(1’1) f FP1ALD A F(P292,% :48(27r\/:1‘)2 N ]2 ~ =/
B j=1 2

Finally, we shall explain the connection between the bilinear equality and
the determination of coefficients of (partial) linear differential equations of
periods functions W®%s. Let W2,(z, o) (= W¥*»(z, 0)) be the period func-
tions of the rational forms w®®" (j=1, .-, 12k—4) and let »#(z, o) be the
vector defined by 7&(z, o)=(W#>"(z, 0)) (j=1,---,12k—4). For the differential
operator D =20/dz;, -+, 0°/07y, 00, -+ let Dy =[DWPJjc1,106-s- We infer
from that the matrix

7]kp<7’ 0)
a a i kp ’

(6.50) 2p(c, 0)= [0enite, o)
0%/07,00 j(n(z, o))

is of rank (12k—4). Write the differential operator D, ({=1, 2, ..., 12k—5) for
0/dt;, -++, 0*/d7,00;, --- such that

(6.51) det 0.

Dypposni?

13) The bilinear equality between rational 2-forms are available in more general
situations now. We shall discuss in later.



670 N. SAsAKURA

We write the matrix in by 2. For any differential operator D define
functions C,, C; (j=1,2, .-, 6k—5) by

[
(6.52) [[Dn¢]="02¢ .

C;p,k)

Now consider the systems D@ of the partial linear differential equations:
12k—5

(6.53) D-F=C@®.F+ > CPPDF
J=1

and let & be the linear space composed of the solutions of ®. Then we infer
from §4 and that period functions W constitutes the complete solutions
of ©®P. Moreover we know by that the differential operators D;
in are chosen such that the order of D;<2.

On the other hand, by means of Cramer’s rule, functions C, C; are ex-
pressed as follows :

(6.54) Co=det d,/det @p, C,=detd;/det D¢ -,

where 4, 4;, ---, which are determined by Cramer’s rule, are composed of
periods functions. We know that A4,'1°'-‘'4,, 4,1*-'4,--- are expressed as
rational functions of (z, ¢) explicitly by the procedure of §6. Thus the argu-
ments of §6 enable us to investigate the coefficients C,, Cj, ---, in detail.
These are what we call the connection between the differential equations

of period function and bilinear relation.'®
University of Tokyo
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