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§0. Introduction.

The Plancherel formula for connected real semisimple Lie groups has been
discussed by many mathematicians, Harish-Chandra, R. Takahashi [8], L.
Pukanszky [9(a) and (b)], K. Okamoto [5], B.D. Romm [6] and others. But
the explicit form of this formula has not yet been published for general case.
The purpose of this paper is to obtain the Plancherel formula for SU(p, q).
But the method employed here has certain generalities. Let us explain it.

First let us introduce some notations. Let G be a connected real semi-
simple Lie group with Lie algebra g. Let %, 5, -+, ), be a maximal set of
Cartan subalgebras of g which are not conjugate to each other under inner
automorphisms of G, and let H, be the Cartan subgroup of G corresponding
to b, i.e., the centralizer of §), in G. Denote by g° and )¢ the complexifications
of g and Y,, respectively. Introduce a lexicographic order in the set of all
roots of (g% bg), and denote by Py, S;r and S, the set of all positive, positive
real and positive singular imaginary roots, respectively. Every element h, of
). can be considered as a differential operator on H, by

hof ()= F(hexp (th) 1o (h H),

and, therefore, so is every element of the symmetric algebra S(Hg) of h. Let

L =1L, be the differential operator [ h, on H,, where h, is an element of
ac Py

h% such that Sp(ad h, ad k)= a(h) for all h < Y.
Let G® be a simply connected complex semisimple Lie group with Lie
algebra g¢° and Hf be the Cartan subgroup of G° corresponding to %f. Put

¢ =213 a. Then there exists unique complex analytic homomorphism
‘0 aEP, #
k

of Hf into C such that
Eexp hy=e2"  (hebp),
for A=a (e P;) and A=p,. Replacing G, if necessary, by a covering group

of it which covers G only finitely many times, we can assume that the in-
clusion mapping of g into g° can be extended to a homomorphism j of G into
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G. Denote the homomorphism &,0; also by &; and put for h e H,P
A¥h)y =&, (h) - TI A=),  dEh)y= TI A—&(M)™),
aEPy a<SE, 1
dFm)= TI A—Eh)Y,  ek(h)=sgn (4¥Hh)).
. (XES]C’R

Let H{, H{(I) and H{(R) be the subset of H, defined by 4%h)=+0, 4¥Hh)+0
and A47%(h) + 0, respectively.

Let dg and d,h be Haar measures on G and H,, respectively, and d,g an
invariant measure on G*=G/H,. It is known that there exist positive con-

stants «,, ay, ---, a, such that for any integrable function f on G
— qﬂ -1 o k 2
(M [ f@dg=2af {]  r(ehe Hdghlawl i,

where §=gH, € G* in the k-th term. Define for fe CX(G), alfunction K} on
Hg by

© Kih)y=ch(4"0) | f(ghg™drg  (he Hp,

where 4%(h) is the complex conjugate of 4*Ch). Let z be an invariant eigen-
distribution on G. Then there exists an analytic function n(g) on the set G’ of
all regular elements of G such that («, f):JG fl@)r(g)dg (feCy(G)). There-
fore putting

©) £¥(h) = ef(Md*(Wyr(h)y  (he Hy),

we obtain a real analytic function «*=«% on Hj} for every k. Then we see
that

@ @H=[ fomn@dg=Saf Kpeidh (e CFGY.

Note that, for the character = of a representation g—T(g) (g< G), the func-
tion #n(g) is independent of the choice of the Haar measure dg, because

(z, )= fgf(g)ﬂ(g) dg= Sp(fGT(g)f(g)dg) .

Now we come to the sketch of our method. The principal steps in it are
the following (I), (II) and (IID).

() To obtain explicitly the characters 7 of irreducible unitary representations
of G which may appear in the regular representation of G. Or rather, to obtain
the functions £*=Lk* on H} (0< k<q) corresponding to r.

(AD) To prove the following equality: for any fe CP(G) and any invariant
eigendistribution = on G,

1) In §1 of the present paper the function 4% is a little revised.
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®) S [ (LK) - LW+ KWL ) dih =0,

where s =2"'(dim G-—rank G).
We see that there existsja constant a,. such that L*s*=a,x* for every k
and therefore the equality (5) can be rewritten as

®) 0@ )= —(=1 e | LEKR) - ek,

where £*=Lg". In fact, L*= L} of S(§§) is invariant under the Weyl group
of (g% b%) and moreover there exists a Laplace operator D such that Kf,= L*K}
for every k. The constant a, is such that Dz =a,x.

Let us remark here the following facts. The function K} can be extended
to a continuous function on H/(I) which is indefinitely differentiable on the
closure of every connected component of HJ/(/). The function £* can be ex-
tended to an analytic function on Hj(R) which has a certain form on every
connected component of Hy(R). Therefore integrating by parts, the left hand
side of (5) can be rewritten as a sum of integrals on the boundaries Hi of
H/(I) and HF of H/(R) in H,. Here the integrands on HE are certain products
of the limits of derived functions of K} on Hi and the restrictions of derived
functions of «* on HI. Similarly the integrands on HF are certain products
of the restrictions of derived functions of K} on HfF and the limits of those
of ¥ on HE. On the other hand, almost all elements of Hf and HE are semi-
regular elements of non-compact type, that is, semisimple elements whose
centralizers in g are reductive Lie algebras of dimension rankg-+2. Take
an arbitrary semiregular element %, of HF (Hi resp.), then there exists only
one H, such that some conjugate element of 4, is contained in H} (HE resp.).
Therefore we see that, to prove the equality (5), it will be essential to obtain
some relations between the restrictions or the limits of derived functions of
K} (g% resp.) at h, and those of K} (#' resp.) at the conjugate element of A,
where h, is an arbitrary semiregular element of HE or Hi and the integers &
and [ are as above.

Let us return to the sketch of the method. By the formula (6), we may
consider that a.(r, f), as a function of the variable =, gives some integral
transformation of the functions LK}, LK}, ---, LKf In the following, we
assume that the Cartan subgroup H, is fundamental, i.e., the dimension of
the vector part of %, is minimum. We know from the results of Harish-
Chandra that for every &, the function LK} can be extended to a continuous
function on the whole H, and that there exists a non-zero constant ¢ such
that

) LK}e)=c f(e)
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for every fe Cy(G) [3(c) and (e)], where e is the identity element of G. Then
(I To express the value LK}(e) by means of the integral transformation
aln, ) of LK}, LK}, ---, LK}.
After solving this problem, we shall see, roughly speaking, that there
exist a set /I of characters z and a complex-valued measure g on it such
that

® LEY) = [ _aiw, Ndpix).
It follows from (7) and (8) that
) fo=] (= Hde'@,

where dy'(7) =c 'a.dpu(x). The measure p’ will be a positive measure on //.
Then, as a character = determines uniquely an equivalent class of irreducible
unitary representations, the formula (9) is essentially the Plancherel formula
for G and p’ is the Plancherel measure which is unique up to a positive
constant depending only on the normalization of the Haar measure dg on G.

Let us now expiain how we can pass these three steps for G=SU(p, q).
There is no essential difference to treat G=U(p, q) instead of SU(p, q).
Therefore in §§1-4 of the present paper we treat U(p, q¢) for the sake of
simplicity and obtain in §3 the Plancherel formula for U(p, ¢). The one for
SU(p, g) is deduced from it in §5 Put G=G,,=Ulp, ¢ (p=¢) and let
Hy, H,, ---, H, be certain Cartan subgroups of G such that the dimension of
the vector part of %), is equal to 2 (0 k<Z¢).

Step I. This is the content of §1. The characters = of all irreducible
unitary representations of discrete series (i.e., square-integrable ones) are
essentially determined in [3(f)] as the tempered invariant eigendistributions
on G which have a certain given form on the compact Cartan subgroup H,.
Thus the function £°=«2 on H, corresponding to = is known. The function
£* =k on another Cartan subgroups H, (or more exactly on H;(R)) is calcu-
lated explicitly in [4(d), §107. We say that this series of representations is
of type 0.

We can construct as follows another series of representations which is
called generally the continuous principal series. Let G=NAK be an Iwasawa
decomposition of G, where N is nilpotent and K is a maximal compact sub-
group of G. Let K, be the centralizer of Ain K. Take a unitary character
of A and an irreducible unitary representation of K,, and consider the rep-
resentation M of R = AK, which is naturally obtained from them. Inducing
M from R to G, we obtain a unitary representation 7% of G. T is “in
general ” irreducible [1]. The character = of T¥ is obtained in [3(g)] (cf.
also [4(e)]). The functions «* on H) corresponding to = are such that £°=0,
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k'=0, .-, x77'=0 and £2+#0. Therefore we say that this series is of type gq.

Let » be an integer such that 1<r<g¢g—1. Let us construct a series of
representations called of type ». Take a certain subgroup A, of A of dimen-
sion 7. Then the centralizer R of A, in G is isomorphic to the product
Gp-r,q-rXG,,,. Consider a representation M of R which is obtained naturally
from a representation of G,_, .., of type 0 and a one of G,, of type . By
a process described in detail in [4(e)], we can construct a so-called induced
representation T¥ of G. The character = of T¥ can be calculated by
2 in [4(e)] and it is an invariant eigendistribution on G for which #*=0,
=0, , k" 1=0, k%0, .-, 2+ 0. It is proved that T¥ is a direct sum of
a finite number of irreducible unitary representations of G (Lemma 1.5). Thus
we obtain the characters of irreducible unitary representations or of a certain
direct sum of them (Theorem I). We see in §3 that these representations
appear actually in the Plancherel formula for G.

Step II. This is the content of §2. Asis remarked above, we must study
the relations between the restrictions or the limits of derived functions of
KPFs (£7s resp.) on semiregular elements of non-compact type of the boundaries
HI and HE of H,(I) and Hi(R) in H, (0<k=<g). This has been done in [4(e)]
and the results necessary for the proof of the equality (5) are summalized in
for K}s and in for £s. Note that any semiregular
elements of non-compact type of H and of HE., are conjugate to elements
of Hy v, = Hy N Hyy, and therefore the left hand side of (5) can be rewritten
as a sum of integrals on Hys,, where £=0,1,2, .. ,g—1 (see §2). Using
Lemmas 2.1 and 2.2, we can prove the equality (5) (Theorem 2).

Step III. This is the content of §3. The integral transformation a.(x, /)
is essentially a mixed Fourier-Laplace transformation of LK}, LK}, -+, LK}
with respect to certain co-ordinates on H,, Hy, ---, H,. Asis remarked before,
the function LK} on H;(I) can be extended to a continuous function on the
whole H, which is not in general differentiable on H, but indefinitely dif-
ferentiable on the closure of every connected component of H,(I) 0=k =<q).
Therefore the principal part of this step is, in a word, to obtain the inverse
transformation of Fourier-Laplace transformation of continuous and piecewise
differentiable functions on a product of tori and a Euclidian space.
Lemmas and which are rather classical, solve this problem in the case
of lower dimensions. We can generalize without difficulty these lemmas to
the case of higher dimensions. Using them and discussing the convergence
of certain integro-summations, we can pass the step III. Thus we obtain the
Plancherel formula for G=G, ,= U(p, ¢) (Theorem 3).

The contents of §§1-3 are already explained above. Let us mention

briefly the contents of other sections. In §4 a positive constant y in the
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Plancherel formula in is calculated for a certain normalization of
the Haar measure dg on G. In §5 we define a mapping of C(SU(p, ¢)) into
Cy(U(p, q)) which naturally imbeds the former in the latter. Using this im-
bedding, the Plancherel formula for SU(p, ¢) is deduced from that for U(p, q)
(Theorem 4). In Appendix some spherical functions on U(p, ¢) are calculated.
The formal degrees of the square-integrable representations corresponding to
these spherical functions are calculated in §4 and they determine the constant
y mentioned above.

The method employed here may be applied without any essential change
for Sp(p, q), SO(2p, 1) and SO*(2n)®. In fact, for instance, the characters of
all square-integrable irreducible unitary representations of these groups are
obtained explicitly as in [4(e)] from the results of [3(f)]. The Plancherel
formula for SO(Zp, 1) has been obtained in [4(a) and (b)].

§1. The characters of some irreducible unitary representations.

Let p and ¢ be integers such that p=¢=1 and put n=p-+q. Let U(p, q)
be the group of all matrices of order n which satisfy

. oy 1 Je=[v 1]

q

where g*="'g and 1, is the identity matrix of order p. Denote by SU(p, ¢q)
the subgroup of U(p, g) defined by det g—=1.

We wish to obtain the Plancherel formula for SU(p, ¢). But it is con-
venient to treat U(p, g¢) first. From the Plancherel formula for U(p, q), the
one for SU(p, q¢) can be obtained immediately (see §5). Therefore we treat
U(p, q) in §§1-4. Let us begin with stating some results in [4(d), §§1 and 10]
without proofs. Let R and C denote the field of real and complex numbers,
respectively.

1. Put G=U(p, q). The following ¢+1 Cartan subgroups H,, H,, ---, H,
of G form a maximal set of Cartan subgroups which are not conjugate to
each other under inner automorphisms of G. For 0<k<gq, let H,= H; H{,
and H; and H;f be the subgroups of G consisting of all matrices of the follow-
ing form, respectively :

2) Here we use the notation of “S. Helgason, Differential geometry and symmetric
spaces, Academic Press, 1962, p. 340.”
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1, 07
chi, shi,
ch tk—l sh tk—l
chit, sht,
d.2)  Hi: sht, chi,
shi,., chi;_,;
sh t; chi,
L 0 Lok

(12/) H,;‘ d(eiél’l, eiSOZ, e, eiS"p—k, gwk’ ewk—l, e, gwl, ewl, e, gwk—l’ gwk’ giél’q—k,

-, ei¢'2’ eisbl) s
where all ¢, ¢;, 0,, p;€ R, chit=2""(c4e"), sht=2""e'—e"), i=+/—1, the
blank of the above matrix must be filled up by 0, and d(a,, a,, -+, a,) denote the
diagonal matrix with diagonal elements a,, a,, -+, a,.

Let A = H, be the product of the above two matrices. We take as the
co-ordinates of A

(13) <@1r @27 Tty (pp—lcy Zyy Boy 2ty By wp wzs ] wq—k’ Z_qy Bogy ttvy ka) s

where
D,=1p;, A=j=p—Fk), UV=ip, 1<1<q—k),

Zj:tj—Jr@j, Z_j:_fj:—tj+@j and @1:101 (lé]é k)

Let x=(xy, x, *--, x,) be the co-ordinates of 4 e H, and put

A4 L= TI_(e—e), dyty=1T0—e), c(h)=sgn (d5(h).

1sjd=n

Let X;=0/0x; and X=(X,, X,, -, X,), where

o _1 0 o _ 1 a
00, i dp; ov, i da¢,
) o 1,9 ,1 0 P 1 6 1 &
=Gt a, = Can i)
Let us consider the polynomial
(1.6) L(yi Yoo s V)= T1I (¥;—w0)

1=jl=n

of n variables and put
LOO=_TI_(X;/—X).

1=jU=sn
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Then this is a differential operator on H, corresponding to the product of all
positive roots of (G, H,) with respect to a certain lexicographic order, and
this will be denoted simply by L if there is no danger of misunderstanding.

Let H; and Hj(R) be the subsets of H, defined by 4%h)+ 0 and 4d%(h)+#0,
respectively. Let W, be the Weyl group of (G, Hy), i.e.,, the group of all
inner automorphisms of G which make H, stable. W, contains (i) all permu-
tations of the components @, @,, ---, @,_, of the co-ordinates of he H,, (ii)
all permutations of the components ¥, ¥, ---, ¥',_;, (iii) all permutations of
the pairs (z, z_)), 2y, 2_5), =+ , (Z&, 2-1), and (iv) for any j (1 =<j=k), the per-
mutation of z; and z_; that is, the transformation induced by t¢;— —t;.
Conversely W, is generated by the transformations in (i) - (iv). Define e(w)
and ¢’(w) for w € W, by

a.n ek (wh)d¥(wh) = e(w)ek (W) A*(h) , ek(wh) = ¢ (w)ek (h) (he Hy).
If a function f on H, satisfies that for any o € Wy,
flohy=¢ew)f(hy  (f(wh)=¢'(w)f(h) resp.),

then f is skew-symmetric (symmetric resp.) with respect to (p—Fk) variables
O, 1<j<p—Fk) and also to (g—k) variables ¥, 1<[<g—Fk), symmetric
(symmetric resp.) with respect to k pairs (z;, 2.;) 1=<j=<k), and even (odd
resp.) with respect to every ¢; (1 <j=<k), and vice versa.

2. An element ge G is called regular if the rank of Ad(g) is the maxi-
mum of those of Ad(g’) (g’ G). Let G’ be the subset of G of all regular
elements. Then G’ N\ H,=H,. The character = of any irreducible unitary
representation of G is an invariant eigendistribution (of all Laplace operators)
on G and therefore is essentially a locally summable function on G which is
equal to an analytic function on G’ [3(e)]. Put

1.8) £"(h) = e (h) A*(h)z(h) (he Hy).

Then £*(h) can be extended to an analytic function on H;(R) [3(e), or 4(d), §5].
And 7 is completely determined by the functions «* on H,(R) for 0<k=<q.
Let us describe the characters of all square-integrable irreducible unitary
representations of G [4(d), §107.

Let ¢=(cy, ¢y, -, ¢,) be a row of integers such that ¢, =¢,= - =¢,. Let
I={i, i, -, i,} be asubset of p elements of I,={1,2, .-, n}, and J={J,, J,,
-+, Jq} the complement of [ in [,. Let us assume that

i1<iz<"'<ip! j1<jz<"'<jq'

Let a=(a,, ay, ---, ay) and B8=(B,, Bs -+, Bx) be arbitrary rows of & elements
of I and J, respectively. And the sets of all components of a and j are
denoted respectively by
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a={a,, ay - ,ay} and B={By Bo =, Pi} .
Define

Ty =ty lpy J1s Jos " lg

5[:(_1)pqsgn(l’ 2’ :p)p+lx p+2; Tty T’L)’

s(a ﬁ I ]):Sgn (il’ i2r tt ip—kr ip—k—!—l; ip—k—'-z; Tty ip )
y Py 4y . .

st ’
11, 1g, ot )lp—-ky a; , Qg o, G
% sgn ]}’Jf’ ’.]';J—k’]q—k+19]q—k+2’ , ]q>’
Jis Jos o :]q—kr ﬁl s ﬁz y "ty ‘Bk

where if, 13, - , i) and Jji, J3, - Jh-x are the elements of /—a& and J—j respec-
tively® lined up as

<G e <Tpgp,  J<T< o <Joi o

Let us denote the exponent exp (a) by e(a) for the sake of brevity. For
any two different integers a, b in I,, define a function of z=t+ifeC as
follows :

1.9 &(z; c; a, b)y=sgn(a—b)e{—|c,—c;| || +(cotcp)i0} s
Then &(z;c; a,b)=—E&(z;c; b, a) and
—e(Cqz—Cp2) if a<b and t<0,

1.y §(z;c5a,b)=
e(—CoZ--¢y2) if a>b and t<0.
Let M= {m,, m,, --- , m,} be a subset of I, and let us assume that m, <m,<
..o < m,. Define for y,, y,, -, v, =C,
(1.10) D(yy, Yoy =+ s ¥y €5 M)Y=|y%, y%2, o, 3 ]y=y1,--~,yr’

where a;= Cmj (1<j=<7) and the right hand side denotes the r X determinant
whose j-th row is y, y%2, ...,y 1 <7< 7).
With these notations, define for he H,(R) 0 kL),

(L.11) k% (h)=¢; Zg e(a, B, I, [)D(e?1, 92, ... | P2k ; ¢; [—@)
X D(e¥1, e¥2, ..., e¥a%; c; J—B)X ﬁé(zj; c;aj By,
=1
where « and 8 run over all rows of %k elements of I and / respectively and
?;, V¥, z; are the components of the co-ordinates of 4. And put
1.12) mr(h) = (R (M)A M) () (he H).

Then r;, defines an invariant eigendistribution on G. And if ¢, > ¢, > - >¢,,
this distribution is the character of a square-integrable irreducible unitary
representation of G. Conversely the character of any such representation is

3) I—a denotes the set of elements of I not in a.
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equal to some =x;, for which ¢; > ¢, > --- > ¢, [4(d), §107°. Put
K,cc:;’fllc,c (Oék_S_Q): ﬂc:EﬂI,c’
I

where [ runs over all subset of p elements of I,.
Let &, be the symmetric group of order n. Define for a#( ., 0(2)’" 0(”)>

ac :(CO‘(D’ Caeayr *** s Co'(n)) .
And put

ﬁ,;c =sgn (G)E’g ’ Ty =8gn (0)7, .

As is easily seen, £f=0 and n,=0 if L(c)= TII (c;—¢;)=0.

1=j<i=n

Now take any row of integers c¢={(c,, ¢,, -, ¢,) and define for h € H,(R),

(1.13) mm=3 3 [T n e(as®,) H e(beas¥)

aesp 1€8q
X ]1;[1 sgn (te{—| Gop-r+p—brcg-rrp |11
-I—(Cla(p—k+j>+br<q—k+j>)@j}] ,
where a;,= ¢y (1!<p) and b, = ¢j, 1=1<q). Put k= @77’},0. Then

(L.14) 7iy= 2 8%h;ze)  (he Hi(R),

where

A15)  &h; o) = ’;’[‘Ilke(cj@j) "ij: e(cp W)

k
X H1 sgn (¢)e{ — | Cp-rsj—Cn-rrsl |15 +(CporsjtCnrsr)O;} .
i

LEMMA 1.1. For any ¢ and I such that c,=c,= -+ = ¢y,
(1.16) Lyh=(=DPLOrs,  O0=k=g),
and for any c,

(1.16) Lng = (—1)PIL(c)x§ O=k=<q.

Proor. First remark that
Pk qg—k
L5"(h ;0= L(C) I]1: e(Cj @1) %[[1 e(Cp.H wl)
= pn

k
ng SEN (Cp-k4j— Cp-k+1)€1— | Cpmia i Cnoraj] | 5] +(Cp-k+j+cn-k+j)@j} ’

4) The function 4¥(h) in this paper is different from the one in [4(d)] by the
factor (—1)9¢-b/22, And the definition of ¢; is a little changed accordingly.
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where we put sgn (0)=1. Therefore if L(c)=0, the assertion of the lemma
is evident. Now let us assume that L(c)#0. Define a function { on H.(R)
as follows:

C(h) - Iealw’ eaZw! Tt %p=i0 | O=01,,0p-k X ]ebl'F’ o elar? | V=¥1,¥q-k

x T sgn (d_;—de{— |dy=d-;| |1;] +(d;+d-)83)
where
(ay, @y, -+, Qp_y, dy, dyy o+, dig, by, gy oo bggy dyy ooy dog) =(Cqy €55 =+ 5 Ca) -
Note that
Loh)=ew)lh) (we Wy, Lxo)y=sgn(n)l() (r€ Sq).
Then we know that
(LOwh) =)L) (v W),

and we obtain easily that L{= L(c)y%., where I={1,2,---,p}. On the other
hand, as is easily seen, L?{=(L(c))*¢. Therefore Ly%,.=L(c){. The equalities
of the lemma can be easily obtained from this one, taking into account that

L(oo)kk, = L(c)k¥ 0OZLkrZq 08, Q.E.D.
LEMMA 1.2. Let N;, M; 1=<j=n) be 2n integers. Then

(1.17) > =3 > oY,
M= ;=N c=Sp Mg(j)éﬂj§NU(j)
(1=j=n) (1=7=n)

where the first sum runs over all ¢ such that M;<c;<N; for 1<j<n.

PrOOF. This is easy to prove.

3. A unitary representation of G is called of type » if its character =
is identically zero on H,, H,, ---, H,_,, and not on H, (x is of height r in the
terminology of [4(d), §6]). The square-integrable irreducible unitary repre-
sentations are all of type 0. In this subsection, let us give the characters of
a series of irreducible unitary representations of type ¢. This series of rep-
resentations is called in general the continuous principal series.

Let c=(cy, ¢y -+, ¢p-y) be a row of integers such that ¢, =c¢,= -+ =c¢p-q.
Let m,, m,, ---, m, be integers and let ip,, ip,, -+, ip, G=+/—1, p; € R) be pure
imaginary numbers. Put

d;j=27"(m;+1ip;), d ;=27 (m;—ip) (A=j=9),
d:(dv dz: AR dq: d-—l’ d—z: Tt d—q) and X:(C, d) .
An invariant eigendistribution 7, on G is given as follows. Put as before

wy(h) = ek (M AXWymy(h)  (he Hp).
Then
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gih)=0 for 0<k=gq—1,
(1.18)
£I(h) = (—1)Pet271eatD | ge10 pe20 .. g0p~qﬂ)|¢p=mh._,’¢p_q
q . .
X 2 1L e(mey® p{eipscyt ) +e(—ipacpt )} ]
o‘&sq Jj=1

= (—1)Pet2 12t | o180 o020 ...  oCP-q0|

Xl 2 ﬁ {e(dacj)zj+d—a<j>z—j)+e(d-amzj'[‘da(j)z—j)}:I-

aEé’q =1

Let us show that =, is in general the character of an irreducible unitary
representation of G of type ¢, if ¢;>¢,> -+ >cp-4. Let Q be the subgroup
of G consisting of all elements of the form

@ 0
6 1.1
where a = U(p—q), the unitary group of order p—g. Put R=QH, Then
R is the centralizer of H; in'G. This is a reductive Lie group and H, is a

Cartan subgroup of it. Let M be a finite-dimensional irreducible unitary
representation of R whose character is given for he H, as

p—q N9 lecm . gcl’-'qﬁl q N L g PR
" 0 . ) ’ 0] mi@j,tejt
<jH:16 J> T (e0i—g0) X(;[IZIe J) j];[le i8ig*iti
1si<i=Sp—q
where @, z,=1,+0,, z_,= —1,+6, are the components of the co-ordinates of
h. Consider the induced representation 7% of G defined in [4(e), §1]. This
is unitary. Moreover this is irreducible if p,, p,, -« , p, are all non-zero and
different from each other [1, Théoréme 7; 2]. Even if not so, T is a direct
sum of a finite number of irreducible unitary representations [1, p. 1937.
Taking into account that
p—q a2, q n-1
ef(do(h) = (—Lysare- s (T 003" ({1evs)

=1 =1

x l—I (ea)j_eml)X' 1—[ (e*;“(zj—:cl)_e‘—;—(xj—xl)) ,
1=j<U=p—q 1
where (x,, x,, ---, x,) is the co-ordinates of s, we see from [4(e), Theorem 2]
that the character of T is exactly z,®.
We denote sometimes «¥ and =, by «¥, and x4 respectively. Define for
0E Sp_q

K%eq =sgn (o)kk,, Toe,a = SEN (O, q .

5) As is well known, the character of this representation T¥# has been calculated
in [3(g)]. But a constant factor is left uncalculated there.
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If II (c;j—c)=0, then £¥;=0 and =, ,=0.
154<1Zp—q

Let c=(cy, ¢y -+, €p-4) be an arbitrary row of integers and d =(d,, d,, --- , d,,
d_y, -, d_,) be as before. Define for 2 e H,,

(1.19) 8k ; 1) = d%h; ¢, d)

=T e(c;0)) T {e(dyz+d- sz )—eld-szr+die- )}

=Tl e(c; 0)- T elm, 6, elipsty—e(—ipit)}
And put
(1.20) W =ni = 2 X d4h;oc, d),

ESp—q ‘L‘ESQ

Where Td:(dr(l), dT(Z)’ Tty dr(q): d-‘!‘(l)’ Ty d—r(q))' Then we Obtail’l the following
lemma.

LEMMA 1.3.

(2) Lyyhy=(=Drexs=laeDLeg(h)  (h€ Hy),

where L(X)=L(cy, €3y *** , Cp-gq» Ay, Ay, -+ , dg, d_y, -+ ,d_y).
(b) Let M;, N; A<j<p—q) be integers, then

(L.21) S =2 { N %8k},
Mi=c;=N; 0ESy—q ~ Mg(f)=cy=Ng(j) 1€S8g
(1=j=p—0q) (=sj=p—q)

ProOF. This is proved analogously as Lemmas 1.1 and 1.2.

4. Now suppose that 1<r<g—1. Let us consider a series of unitary
representations of G of type ». Our purpose is to express explicitly the
characters of these representations.

Let Q, Q' be the subgroups of G consisting respectively of all matrices
of the form

p B 1,.,, 0 0
0 1, 0 0
0 4], 0 1r |

where «, B, 7, 6 and ¢ are matrices of type (p—nr)X(p—r), (p—r)X(g—7),
(q—7r)X(p—"), (q—7)X(g—7) and 27X 2r, respectively. @ (resp.Q’) is isomorphic
to U(p—r, g—r) (resp. U(r, 7).

Let c={(cy, ¢y +++ » Cnypy) be a row of integers such that ¢, =c,= - =¢popr
and I be a subset of (p—7) elements of [, ,.,={1,2,.-,n—2r}. Let =, be
the invariant eigendistribution on ‘@ defined by the analogous formula as
(1.11) and (1.12). Let moreover m = (m,, m,, ---, m,) be a row of integers and
0 =(py P2 -+ » pr) @ row of real numbers. Put as before
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dj:2”1(mj+ipj) , d_j:2‘1(mj—~ipj), d:(dl, dZ, see dr’ d-—l! LA LN d-r)
(i=+—1).
Let 7, be the invariant eigendistribution on @’ defined by the analogous
formula as (1.18).

As is proved in [4(d), § 7], we can define an invariant eigendistribution
Trea=(—1D)"7.Qmy on G from =;, on @ and =z, on Q' by the following
formula. Put as before

£fe,a(h) = b (WA W) 7 1) (R E H).
Then for 7 e H,(R),
1.22)  K4,4)=0 for 0=k<r;

k — C )
(1-22/) /fl,c,d(h) == (_1) pamr ;;1:9 ICE(Z‘,(D, 252y "7 Rarys B-gc1)s R—a(2)r **°» Z~a(r)>
0SSy
()< -<g(r)
o(r+1)<-<g(k)

KEET(Dyy s Ppotr Zocranys s Zatiens T 19 s & qoier ooty s Z-ae)s
for »< k< ¢, where o runs over all ¢ €S, such that
oD <o@)< - <a(r), o(r+)<or+2)< --- <oa(k).

Put X =(c, d) and denote z;,, and £%., also by =;, and &%, respectively.
And define

Ty =Te¢q= ;”I,x ’ KY=Kkq= ;ﬁ’f,aﬁ
Tge,q — SEN (U)ﬂc,d ’ "'ch,d =sgn (0)’55@ (0 S 'Sn—zr) ’

where the sums run over all subsets I of (p—r) elements of [,_,,.
Define for h e H,,

(1.23) &%k X) =% ; ¢, d)
=TT ete;0)- T ey ¥ TLelm; Ol eipsty)—e(—ip )

k—r
X Hl sgn (Ljene{— | Cprarij—Cnor-taj] [ Lisr | F(CprrjtCror-r47) Ojar} -
=

Let us call z=(z,, 25, -*+ , 24, Z_1, Z_g, -+ , Z-3) the z-part of the co-ordinates of
he H,. For o 8, define 02=1_(2,uy 2oy " » Zockyr Z-acy *** s Z-ory)- And oh
be the element of H, such that the z-part of its co-ordinates is oz and the
other part of its co-ordinates is equal to that of 4. In this manner, S; is -

6) As is mentioned before, the function 4%(h) in this paper is different from the
one in [4(d)] by the factor (—1)2@+n/2,  Accordingly this formula is different from the

one in [4(d), §7] by the constant factor (—1)@+n7,
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contained in W,. Define

(1.24) = 3 > Soh; e, d)  (he Hy.
TE€ESp—2r 0ESE
o(r+1)<o(r+2)<~<a (k)

Then we obtain the following lemma analogous as Lemma 1.3
LEMMA 14.

() Lo = (—1ypesarse e (gt
where
LX) =L(cy, €y +++ 5 Cpopy Ayy Aoy o+ Ay Cppogregy *++ 5 Crmgry Ay, =+, d_y)
(b) Let M;, N; 1=<j=<n—2r) be n—2r integers. Then

(1.25) S 7= 3 { = > 9%oh; ze,dy}.
Mj=c;=N; t€ESp—2r ~ M (j)Sc;EN(j) IES
(1=j=n—2r) a=j=n—2r) or+1)<<o(k)

Proor. This can be proved by a simple calculation.

If ¢,>cy> - >cCpyy, the distribution =;., is the character of a rep-
resentation of G which is a direct sum of a finite number of irreducible
unitary ones. Let us prove this fact.

Put R =QQ’. This is the centralizer of the subgroup of H; defined by
ty=t,=--=t, and t,.,=t4,= -+ =1,=0. R is a reductive Lie group and
{H,, H,,,, ---, H;} is a maximal family of its Cartan subgroups containing
H.NQ’ which are not conjugate to each other under inner automorphisms
of R. Let M be an irreducible unitary representation of R whose character
w is as follows: if g R is conjugate to h € H, for some £ (*< k=< q),

n(g)=rmn(h)

7 -n4-27
:(H€@7> ﬂ:a‘,(zll Zoy mtt 3 Bypy By *°° :Z—'r)
=1

p—k q—k k ) -7
><< 1T % - Eem cTI €99) 7r @y, Py o s Doty Zrass -+ » Zir
j=1 =

j=r+l
w‘l’ ey, Wq_k, Zopon s Zo) s
and if otherwise, n(g)=0.

Let T¥ be the induced representation of M defined in [4(e), §1]. Then
its character can be obtained easily by [4(e), Theorem 2] and we see that
Tr.eq 1S exactly the character of 7% The detailed proof is ommitted here
because it is only a simple calculation.

LEMMA 1.5. The unitary representation T¥ of G is a direct sum of a finite
number of irreducible ones with the same infinitesimal character.

Proor. We know that for our group G there exist only a finite number
of linearly independent invariant eigendistributions on G having a given
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infinitesimal character [4(d), §8]. We know also that (1) the character of
any irreducible unitary representation of G is an invariant eigendistribution
on G, (2) two such representations are unitary equivalent if and only if they
have the same character, (3) the characters of a finite number of non-
equivalent irreducible unitary representations are linearly independent [3(a)],
and (4) the character of any irreducible constituent of 7% has the same in-
finitesimal character as that of =;,., Therefore we see that the equivalent
classes of irreducible constituents of 7% is only finite.

On the other hand, T has the following property. Let U be a maximal
compact subgroup of G. Let & be an arbitrary equivalent class of finite-
dimensional irreducible representations of U and let d(®) be the dimension
of @. Then there exists a constant N such that the restriction of 7% on U
contains irreducible constituents of class @ at most Nd(®) times for any 9
[4(e), §2]. (Moreover we can take N=1 for any such T%)

The assertion of the lemma follows immediately from these facts. Q.E.D.

REMARK. It has not yet been proved that for a semisimple Lie group,
the induced representations T in [4(e), § 1] (see also [1, § 7]) are “in general”
irreducible, when M is irreducible. A partial result is found in “F. Bruhat,
C.R., 240 (1955), pp. 2196-2198”. For the group G=U(p, 1) (p =1), the char-
acters of all quasi-simple irreducible (not necessarily unitary) representations
are calculated in [4(c)] except for a few representations with singular in-
finitesimal characters. (The characters of all quasi-simple irreducible rep-
resentations of SO(p, 1) (p=4) are given in [4(a)].)

Thus we obtained the following theorem.

THEOREM 1. Suppose that ¢, > cy> -+ > Cpopy, (0=<r=q). Then for any I
and d=(d,, dy, --- , d,, d_y, d_,, -+, d_}), the distribution ;.4 is the character of
a unitary representation of G which is a direct sum of a finite number of
wrreducible unitary ones. In particular, (1) if r=gq, the unitary representation
corresponding to mr.q is “in gemeral” irreducible, that is, irreducible if
P10z PqLI\Im(pL—‘pm):,tO, where p,= @) d,—d.) for 1<1=<q, and @) if

r=0, it is always irreducible and moreover square-integrable.

§2. Some properties of an invariant eigendistribution on G.

Let dg be a fixed Haar measure on G. Let dy2 be a Haar measure on
H, defined as
2.0 dih=de, do, - doy_ d, dep, -+ depy_y dt, dt, --- dt, d6, db, - db;,

where ¢;, ¢, t,, 0, are the components of the co-ordinates of he H,. Let
g—Z be the natural mapping of G onto G*=G/H, and let d;g be a left
invariant measure on G*. We denote d;h and d,g by dh and dZ respectively
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if there is no danger of confusion. As is proved in [3(e), p. 4937, there exist

(g+1) positive constants «a,, a,, ---, a, such that for any integrable function
fon G,

[ f@dg=Zamf {[ flehg™dgfidmidn  (@=gHy.

Let C3(G) denote the set of all indefinitely differentiable functions on G
which vanish outside some compact sets. Define for any f< C(G) a function
Kfon Hy O=k=¢q) by

@2) Kihy=cimdn)|_ f(ghg™Hdg  (he Hy),
where A4%(h) is the complex conjugate of 4%h) and g=gH,. Then
23) [ f@ydg= S | Kimehdtdh  (f&C3G)).
G k=0 Hy,
Let H,(I) be the subset of H, defined by

p—k qg—k

IT II(e%e ¥t —1)=0.

Jj=1 =1

We use in this section the following notations. Let A(h) be a function on
H,(I). If h tends to an element 2, of rank n—1™ in such a manner that
©p-x=0, Pg-r—0—0, then the limit of A(h) is denoted by

A(ho)l@p_k"bq'k)a(a’g_m = _A(ho) ! @Pp-kyPg-1)=0,0~0) »

where ¢,_, ¢,-r are the components of the co-ordinates of 4= H;(I). For a
function B(h) on H{/(R), the analogous notation B(h,)|**="" is used to denote
the limit of B(h), as A tends to Ak, in such a manner that {,——0. And denote
by @;, ¥, 2z Z-m, tn and O, the differential operators 0/0@;, 4/0¥;, 0/0zy,
0/0z_,, 0/0t, and 0/00,, respectively.

LEMMA 2.1. Every K}f (f= Cy(G), 0= k=q) has the following properties.

(1) K} on Hj can be extended to an indefinitely differentiable function on
H,(I). The restriction of the extended function on any connected component
of H,(I) may be considered as an indefinitely differentiable function on its
closure®.

2) K}wh)=e@K}h) (we Wi, he H(I)).

7) An element g=G is called semi-regular if the endomorphism Ad(g) of the Lie
algebra g of G is semisimple and the centralizer 3, of g in g is of dimension rank g+2
(cf. [3(d), p. 554]). An element h,eH; is semi-regular if and only if the rank of &,
is n—1 (as an nxn matrix).

8) At the boundary of the closure, the differentiations must be considered appro-
priately (see [3(d), p. 573]).
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In the following, let v and s be two non-negative integers.
{(Pp—yPqg—x)=0-0,0)
6)) (@;—kws—k“wZ—k@i;—k)K}C(h) =0

(Pp-kr¥Pq-k)=(6+0,0)
@Z—sz—kak(h) l @p-Fy Pq-K=0=0,0) @;—k wz—-k K}c(h) ] @p—ty ¢'q_k)=(0,0¢0).

@) zpzt K (h)| be=0 = 27 2% K}“(h) | fe=0,
G) ita(p—k)(g— RO T KFh)

Pp—trPq—1=Op+1-0,05+ D

(Pp-ksPg-1=Ok+1+0,0 £ +1)
= gy (B+1)200 25 JCFH(R) | R0,
where h & H, N\ Hy., and is of rank n—1.
Proor. (1), (2), (3) and (4) are shown in [4(d), § 2] (see also [3(c) and (e)]).
Now let us prove (5). This is a slight extension of [4(d), Proposition 17.
Put ’

@p—k:6k+l+7]1 ¢q—k:0k+1_7], Y:'”?, Y‘—:a/aY:fla/aﬁ.
Then we know from [4(d), §4] that for 0 =< m < +oo,
a(p—Rg— R Y K FR) 5238 = o (k1R KFH(R) R0

The equalities (5) follow immediately from these. Q.E.D.
Let us now summalize the elementary properties of an invariant eigen-
distribution = on G. Put as before

£5(h) = ef(MAd*(Wr(h),  &§%(h) = Lk"(h) (he H).

Then for m=my, &%h)= +LQ)7E

LEMMA 2.2. The functions k% &* and 7t (0=k=<q) have the jollowing
properties.

(1) «®h) on Hj can be extended to an analytic function on H,(R). The
restriction of the extended function on any connected component of H,(R) can
be expressed as a linear combination of products of polynomial functions and
exponential functions of xi, X,, =+, X, Where (x;, Xy, -, X,) 1S the co-ordinates
of h. The functions &% and 7% have the same properties.

() £"wh) = e(W)K™(h), EXwh) = ¢ (W)E*(R), Nilwh)=—¢'(w)yi(h)

(w Wy, he H,(R)).

(3) Let r and s be arbitrary non-negative integers. Then

(24) <@§—kw3—k+ wZ—k@sp~k)Ek(h) | €p-tr $0-2=Ck+1,0%+0
= — (25412851 201 254D EF () | e1=70 0=k<g),
where he H, N\ Hyyy, and is of rank n—1. The analogous relations hold between
7% and 7.
PrOOF. (1) and (2) are shown in [4(d), §2]. The equalities (3) are im-

mediate consequences of [4(d), Theorem 1’]. In fact, it asserts that for
0<7< oo,
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(@ =T ) KF(h) | -t $0-= Ol 0ka) = —(z5, | — 27 YEFHI(R)|th+1=0

Since @, ;=20 +Y), ¥, 1 =2"YOk.,—Y), the above equalities are equi-
valent to
Y2m+llik(h) ] 9=0 —t,%’ﬁfrllfk“(/’t) I trg1=-0 (O é m< —I—OO) .

Therefore for 0= m, m’ < +oo,
(@7 U, —Um @ e (h) | $r-br $a-=Ok+1,0k+D
= — (2121 — 22 DR P () | =70

Taking into account the explicit form of thz differential operators L on H,
and H,., the equalities for & =Lk* and &*'= Le**' may be easily
obtained from the above ones.

Now if L(X) 0, then »%= +£(L(X))'€* where &*= Lg¥. Therefore, in this
case, the analogous equalities as for »% and p¥*' are immediate con-
sequences of [2.4]. We assert that the same equalities hold even if L(X)=0.
This is proved by a simple calculation. Thus the assertion (3) is completely
proved. Q.E.D.

REMARK. We can define the invariant eigendistribution =z,,, even if
d;+d_;j=1ip; (1=j=r) are not pure imaginary but complex and define 7%, in
the analogous fashion so as to hold Lk%,,;=en%,., for 0=k =g (¢=+1), then
the analogous lemma holds also for these 7%, .

We call X=(c, d) of type r if c=(cy, €y -+, Cu_pr) and d=(d,, d,, -+~ , d,,
d_yy -+, d ).

THEOREM 2. For any invariant eigendistribution = on G, define g*h) as in
(18) for 0<k<q. Then for any fe Cg(G),

(=1 e, f(g)n(g)dg= 3 auf , LEFn)- Lkt d,

where a, is a constant such that L**=a.k* 0=k =<q). And for any X =(c, d)
of type r 0=r=9),

L) [, f(@) (@) dg= B e[ LKKR -7k b,

where &, = (—1)Xn=V/2(_1)Pa+prire-1/2,
To prove this theorem, it needs a rather complicated calculation. We

divide the calculation into four parts.
(i) Put &*=Lk* 0<k=<gq). Denote by dh the Haar measure on Hj,i,

= H, N Hy,, defined as
dh=dp, dp, - Aoy dpy depy --+ A,y dt, dt, -+ dt, dO, --- Oy dO,y.,,

where
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@, 9, -, (pp—k—u 21 250 s 2y Opr, U, Uy v wq—«k—}: 2oy Zogy oty Zogy Opay)

is the co-ordinates of h & Hy gy = Hpsq|'*+1=° considered as an element of
Hyy.y.

Denote by 9(H,) the set of all polynomials of the differential operators
D, Dy, Dy iy2y, 20 26 Ty s gty 220, =+, z2_, on Hy. For a fixed k&, let
X=X, X,, -+, X,) be as in §1, that is, X, =0, X,=0,, ---, X, =2z For
any oS, define 0X=(X, Xs " » Xsey)- Then ¢ induces naturally a
transformation on 9(H,). Since (o7)(j)=r<(0(j)), we see that (¢7)X=ad(zX)
and (o7)(P) =0(z(P)) for any P € 9(H,). Every element of W, induces naturally
a permutation of the differential operators X,, X,, ---, X,, and therefore we
may consider that W, is contained in the transformation group S, of D(H,).
Let sgn (o) be as usual. Let p% (o}, ¢%, 8% resp.) be the transformation on
9D(Hy) induced by the permutation of @; and @,_, (¥, and ¥',_y, pairs (2, z_,)
and (zy, z_¢), zn and z_,, resp.). Here p%_, o, and ¢f are the identity trans-
formation. In the following, we omit the upper suffices # and denote them
only by p;, 0, etc. Hence sgn(p,)=—1 if 1<j<p—Fk, and sgn(o,-x) =1,
when they are considered on 9(H,).

Let « (8 resp.) be the transformation on all @(H,) such that 0=k <gq
(0= k=g resp.) which permutes @, , and ¥, , (z; and z_, resp.) on D(H).
Let y be the transformation on all @(H,) such that 0<%k <g¢ which maps
every 9D(Hy) onto 9D(Hy,) by replacing @,_, and ¥ _; by 2y, and z_,_, T€-
spectively. Then ya=fr®.

Taking into account Lemmas 2.1 (1) and 2.2 (1) and then integrating by
parts, we obtain for 1=<r < +4oo and A, Be< 9(H)),

§ 1@ AKF® - BEU—(—1y AKF() - 0388} do,

— i—lmzzl (,_,l)m—lqti:’): [@g—mAka(h) . @;n—lBSk(h)]‘PF{bl—o

Wj=¢1+0
T —k j=¢1-0
=i 3 (S [ AKEn) | s dpBekRy e
m=1 (=1 ¢j=dr+o

It¥ollows from Lemmas 2.1 (2) and 2.2 (2) that

ej=¢i-0

§ e T op s

¢j=¢l+0

N

X QU e (R)dg,dp, -+ do; - dey_xddidd, - Ay s

2.t 2 p=-0
—=sgn (pjal)j0 jo O Wm, K KRy o

9) 7a and By are not defined on P(Hy).
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~ ~
X@Zlékw;nfkék(h)lvgodﬂoldsoz dﬁDp—k—ldSDp—dem d¢q—k—1d¢q—kd0k+1 ’

where we put ¢, ;=04.,+7 and ¢, ,=0,.,—», and (fg\op_k means that do,_,
is omitted. Put E(h)= @p ¥ K}(h), then

E(h)]v=—0 — E(h)|<sop-1c,¢q-1c>=<01c+1—0,01c+1+0> — E(h)](sop-k,¢q-k>=<97c+1—0,01c+1) ]

Thus we obtain at last the following equality :
J. A@AKKR) - BEHiy—(—1y AK}() - D5BEXh)}dh
k
. 7 qQ—k
=i B (=" 33 sgn (p,01)

%J

Analogously we obtain that

50,0 DKFD|" X O3t p,0(BYEHR) |7 dh .
1

Hi o+ 7=40

[ {W5AKK®R) - BE*(hy—(—1y AKKR) - U3BER)) dh
Hy,
= —i 3 (=" S sen (puo)
%

=—0
Tipow (KD XUl (BEw)|"dh.
p=t

Hy k+1
Because

Ort1,0%41-0 Orp1-0,0%41)

= (D;;—k WZ—kak(h)

Ok+1,05+140)

O U KF(h)

Ok 41+0,0k+1)

=—0
= —@;_ W KK o
=+

where (044, 0x.1—0) means that (¢, x, ¢q-r) = (Oks1, Ors—0) and so on.
Put

RL(A, B, 1)
= 'S sgn (o) [ (DG DKFE) - p BEW—(—1y pDEF®R) - Do BEM)} dh,
Ri(A, B, r)

—ac g sen @) [ (F1o AKHR):- o BEW—(— 1o KKK - Ui o BEW) dh,

and
Rz (A, B, )= Ry (A4, B, r)—R{(a(4), a(B), 7) .

Then if o(4)=+A, 6,(B)=+B, 0,(AB)=sgn (¢)AB (1 << q—F),
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Ri(4, B, 7)
= i@ (p—B)g—k) X (" |

k,k+

O AKHR) dh;
1

"0 @ BER)
n=+0

and if p;,(A)=+A, p;(B)=+B, p,(AB)=sgn (0)AB 1=j=p—k),
R{(A, B, )
= —ia(p—Ba-B X O U AKK)

m= Hy,g+1
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Therefore if A and B fulfill that
25  o(A)=+A, o(B)=+B, o (AB)=sgn(e)AB; p,a(A)=+a(A),

0;a(B)=+a(B), pa(AB)=sgn(p)a(AB) (1=j=p—k 1=l=q—Ph),
then we obtain
(2.6) Ri(A, B, 1)

=i~ (p—k)g—k) 3 (— "
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g=+0
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x| oppAKKHE) dh

Hy g+1
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7==0
=
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Le41=0
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X (2 (B)+ 222, Br(B)E*(h) dh .

Because it follows from Lemmas 21 and 2.2 that for any A e 9(H,),

AK(h)

"= al DK

==
b
=10

(A+a(A)EXh)

= —gasaem| T
and

ila(p—R)(g—R)AKF(h)

0 lg41=—0
= e Dy (RE|

7==
7=+

where h e H,\ Hy,., is of rank n—1.
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(ii) Let A, Be 9(Hi.y). As Kft'(h) and &%*'(h) are even and odd in every
t; 1 <£j=<k+1), respectively,

f :OAK}““(h) - BE¥(hydt,
== _: BAAKF(h) - BAB)E* (h)dt;

=_f10 {AKF(h) - BEF (hy— B (A)KE(h) - B(B)E**(h)}dt; .
Recall that
z;=2"%0/ot;+1i7'd/00;), z_;=2"%(—0d/dt;+1i"'9/08;),
AKFH () |97 = BLAKFH()|7° .

Then integrating by parts, we obtain that
j W{z;AK}‘“(h) « BE#T (h)y—(—1)" AK}*!(h) - z;BEF+ (h)}dt;

=271 é (— D1z m AKE (R | 470X {22 B4-2m5 B, B) Y EF+ 1 (R) | =0 .
m==1
Put
Ri(A, B, 1)

K+l
= ak+1j2 {2 (A KF*- Tj(B)Sk'H—Zr—j,BjTj(A)kaH : ﬁjfj(B)Ek“

=1 Hppq
— (=1 ,(AKF? - 257 (B)E* ' +-(— 1) Be (A KF - 27 ;8,7 (B)E* Y dh .
Taking into account Lemmas (2) and 2.2 (2), we obtain that

2.7 R4, B, 1) = atyu (k1) 3 j 2pr AKEYI(R) |10
m=1v L

Ty, k+1

X (2 B+ 27, BB)EH () = .

Thus we proved the following lemma.
LEMMA 2.3. Suppose that A, B<= D(H,) fulfill the condition (2.5). Then

Ri(A, B, N+Ri(y(A), y(B), =0 (0=r<+o0).

We can immediately generalize this lemma in the following fashion.

LEMMA 24. Let A™ B™ l<m<N) be 2N elements of D(H,). Suppose
that under any o, A <1< qg—Fk), the pairs (A™, B™) are transformed in such a
way that there exists a permutation w, of {1,2,---, N} such that

o (A™) = + A¥1™ | g (B™) = +B"™  g,(A™B™) = sgn (o)) A¥I™ BYim™
Moreover suppose that the pairs (a(A™), a(B™)) fulfill the analogous condition
Jor any p; A=j=<p—Fk). Then

32 {(RE(A™, B, )+ REGA™, 7(B™, D} =0 (0= < +o0).
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(iii) Put
I=Y a | {LKfh) - €5h)—(—1y"" 2 Kfhy - LE¥h)}dh .
k=0 Hy,

Let us prove that /=0. Recall that
L= 3 sgn(o)o(X{7'X§7? - Xp )= X sgn () X33 X253 -+ Xonosy »

cESy iESY

and define for 1 <s<n—1,

;= Z 2, sgn (U)J k{a(X?‘sX?If”1 o X DK - o( X5 e XEPXTHER

=0 g€8Sp
(=D X T X )KF - o(XF X e Xg X7 8% dh.
Since 0(AB)=o0(A)o(B) for any oS, and A, B 9(H,), we know that
I:%I(~1)<S"1"2”‘”/ZIS. Hence it is sufficient to prove that I,=0 for any s.
s=1

First let us consider the case of s=1. For every k2 (0<£k<q), let A, B:
be the following elements of 9(H,):

Av= 2 sgn(0)o(X§? X5 Xoo),  Be=1,

o(XD=0p-k

where the sum runs over all ¢ €S, such that ¢(X,)=@,_,. Then

0, (Ay) =sgn (c,)Ay, pija(Ay) =sgn (pa(Ay),
o(B) =B, paBy=aB,) (A=l=q—k 1Z=p—k).

And considering L as an element of 9(H,),
p—k q—k
L= 2{ sgn (0,)05 ' 0,(Ar)p;(Br)— LZI sgn (o)¥7 'o,a(Ar)oa(By)
ji= =
k
+J§ {2777 (Ag- D77 (Bi-0)— 225" BT 7 (Ag- 0BT 7 (Be-1)} -
Therefore we see easily from that

= é}o{R;(Ak, By, n—D)4Ri(r(As-1), 1(Be-, n—D)

I

{Rk(Alc’ By, n— 1)+Rk+1(2’(14k) T(Bk> n—1)

0,

I

where we put Rf =0 and R;=0.
Now let us prove that [;=—0 for any s. Let us fix s and 2 Z<s=<n—1,
0<=k=q). For any element r € S,, define two elements A}, B of 9(H;) as

Ap=sgn @r(Xp o X3aXa),  Bp=o(Xppt - X5 Xp),

then for any o, 7 € S,
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o(Ap) =sgn (0)Af",  o(Bp=DBf .

Let g, be the subset of the transformation group S, of @(H,) consisting of
all elements ¢ such that «(X,)=®,_,. We see that 0, T ; =9, for 1=[=<qg—&,
(@ p; 00T, =9, and sgn (a~'p,a)=-sgn (p;) for 1=<;<p—k. Put

Ce= X O3 ALB:.

t€T g,k

Then

Cr= X sgn () t(X7 X572 - X)),

T(Xs):wp—k

and L in 9(H,) is expressed as
p—k q—k [
L= jgl sgn (pj)(oj(ck)—L:El sgn‘(al)ala(CkH- jgl {Tjr(ck—l)_ﬁjfjr(ck»l)} .
By the analogous argument as for I,, we see from that

L=3{( 3 Ri(Ah Byn—9+ 3 RiG(AL-D, 1(Bi-D), n—9)

=0 t€dgk T€T k-1
q—1

=S 3 {Ri4p By n—5)+Ris((AD, 7(BD, n—9)
=0z Sk

=0.

Thus we proved that [,=0.
(iv) Now let us prove We know that

[, 7@n(e)de= o[ Kpeah  (f=C5G).

On the other hand, there exists a constant a, such that L%k*=a_ k" for every
k [4(d), §3]. Therefore I =0 means that

> a, f LEJ(h) - £4(h) = (—1ymn-2 3 o, j KF(h) - Le(h)dh
£=0 Hy £=0 Hy,

= (~Dreka | f(@m(e)dg.

This is nothing but the first equality of the theorem.

The second equality of the theorem is obtained immediately from the
first if LX)+ 0. In fact, in this case,

Lk = (—1)parerrr=-DRL(pk, Lk = L(X)%*E .

Hence a.=L()?>. The second equality for the case where L(X)=0 can be proved
by the analogous argument as above replacing £* by 7%t Now is
completely proved.

REMARK. The infinitesimal character of an arbitrary invariant eigen-

distribution = on G is singular if and only if L?%¢*=0 for 0 < k<gq. Therefore,
in this case, asserts that for any fe Cg(G),

S| LK} - Le¥hydh=0.
%=0 Hyg
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But, in this case, we can prove stronger fact that Ls*=0 for 0k <q.
This is proved by a direct calculation using the explicit form of x* studied
in [4(d), §§9 and 10].

§3. Plancherel formula for G=U(p, q).

For any fe Cy(G), define

FFh) = oy LKFR)  (he Hg(I))
and

A0 = S g)dg,

where X is of type 7, i.e, X=(c d), c=(cy Cy 5 Cp-gy), d=(dy, dy, -+, d,,
d_y, -, d.). Then it follows from that

3.1 L)AL =3[ FHOmidh=3 [ FHhyrhydh,

because 9?=0, »i=0, .-, 7 1=0.

We know the following properties of F}f (0= k= ¢).

1) F} is zero outside some relatively compact subset of H;([/)C H; and
can be extended to a continuous function on the whole H, [3(e), Lemma 407].

@) FHoh)y=c(@Ffh) (he H (D), o € Wy.

(3) The restriction of F# on every connected component of H;(I) may
be considered as an indefinitely differentiable function on the closure of the
component.

The following lemma, due to Harish-Chandra, plays an essential role in
this section.

LEMMA 3.1. There exists a positive constant y, such that

LKje)=(—1rene=2ity f(e)  (feCF(G)),

where e is the identity element of G.
PROOF. Since 4°%h) = (—1)"*2(det h)~"*'4°h), we obtain

Ky = (—Lr»->ndet Ay ™20 [ f(ghgdg (2= gH) .

Denote the subgroup SU(p, q¢) of G by G, and put K,= K G, where K is a
maximal compact subgroup of G. Then G, is semisimple and K, is a maximal -
compact subgroup of it. As is easily seen,

27Y(dim (Go/K,)—rank (Gy)+rank (K,)) =pq .
Apply for G, [3(c), Theorem 4] and [3(e), Lemmas 17 and 18] and extend

them from G, to G. Then the assertion of the lemma is immediately obtained.
Let &, be the set of all symmetric polynomials of n indeterminates. As
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is proved in [4(d), §3], for any Laplace operator D on G, there exists a
unique P, &, such that!® for any fe Cy(G), I and X,

Kpy=Pp(X)Kf,  Dmgy=Pp(N)msy,
where
Pp(X)=Pp(Cy, Cgy ==+ 5 Cpry Ayy Ay, -+, Aoy €ty o+ s Crcgyy d_qy Ay o, d_y).
And hence for any X of type r 0<r=<y¢),
(3.2) Ay () = Pp()AFX) .

The mapping D— P, is one-to-one onto &,.
Let us study some elementary properties of AyX). Let m;=d;4d_;
v/ —1p;=d;—d_; be as before. We denote sometimes AXX) by Ajc, m, p),

where m=(m,, m,, ---, m,) and p=(py, P, -, 0,). For o&S, define om=
(Macrys Macays =+ » Maery) @S before.
Aj(c, m, p) is symmetric in ¢, ¢, =+, ¢y, and alSO IN Cp_ypyy Cporins ** 5 Cnoars

odd in every p; A1 <;=<7), and

Afc, am, op) = AF(c,m, p) (G ES,).
Define for fe Cy(G),

M=% sup |FAR)| < +co.

k=0 her

Then there exists a constant « >0 such that for any X,
33) | A5 £ aM; .

In fact, we can find a constant « fulfilling |7%A)| <« for any % and X.
Define

n—2 7 n—2r r r
2= 3 DAy, [XE= 3427 Em, ([X|2=2" 0},
j=1 =1 Jj=1 =1 =1

then |X|2=|X12+|X|2.
LEMMA 3.2. Let fe CP(G). For any positive integer N, there exists a
positive constant My, such that for any X,

A+ X [HM AT | = My ;-

PrOOF. It follows from (3.2) and (3.3) that for any P=&,, there exists
a constant Mp , such that for any X of type r, |[P(X)AFX)|< Mp,;. Suppose
that for some N,

sup {A+1X DY A7} = +-co.

10) In the notation of [3(c), p. 7557, a(y/(D))= Pp(X), as the differential operator
on every H, (0sk=gq).
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Then we can find a sequence X%, X®, ... , X, ... such that
im |X?]|=+4o00,  lim [X9|*¥| AJAP)| = 40
j—too j—t+oo

Let P=&,. Then
[P AZO) | = ([PUADP) /[ XL DY | XD 2V | Ar(XP) [ £ Mpw,p < +o0.

Therefore P(X?)/|XP|*—-0 as j—4oco. Put P(X)=Py(X)=3 X3 Since
>
Py)=|21%— 2|2 =|2|>—2|%|2, we see that !

PO/ |19]* = 1=2] 1P 2/ 19| 0.

Hence [X“|2/|x?|*—1/2 and [X|3/]|X”|?—1/2. Therefore we can choose
a subsequence X“? (1=1) having the following property. Let us denote this
subsequence again by X‘® and let ¢, d® and d% be its components. Then
every component of X®/|X®|, i.e., ¢®/|XP|, d@/|X?| and d9/|X®]| etc. is
convergent. Denote by & the limit of X®/|X?|. Let P& &, be homogeneous
of degree s=2. Since |X®|*¥|A;(X®)|— 4o as i—-+oco, we see analogously
as above that P(X™)/|X”|®*—0. Therefore P(§)=0. Hence & must be zero.
But this contradicts lim |X®?|2/[X?|*=1/2. The lemma is now completely

1~ +co

proved. Q.E.D.
COROLLARY. The series
+ 00 + o0 +co +co
DA, mp)= X X X e X Ape,m, p)
c,m C1=—>® Cp-2r=—00 Mp=—0o0 rm,,.:-—oo

is absolutely convergent and the convergence is uniform with respect to p=

(o1 P2 =+, pr) ER".

Let Z be the set of all integers and put C*=C-—{0}.

LeEMMA 33. Let F be a continuously differentiable function on C* which
is zero outside a compact set. Define

Fa, b) = f_mj:”p(eZ) sgn (De{— la—b||t|+(a+b)0}dtd6  (a,be Z)
and

Fom, o)={ " " F(e)ette™dtd)  (me Z, pe R),
—oo ¥ 0
where z=1+i0 and i=+/—1. Then F(a, b)=F(b, a). If F(¢*) is odd in t,

@H X 3 Fab==n fij(e‘)coth(t/Z)dt—kn [ “P(—e tanh @t/2) a1

= —271 +§ _f +ooF(m, o) coth (p)dp

m=~-00

—i27? %o (—1)"’; wa(m, p) cosech (zp)dp ,

m=—00
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where

— t -t
¢—e , cotht:e+e cosech t = 2

tanh = ———— s .
"i— et_e—t et___e—t

The order of the successive integro-summation in the last part can be arbitrarily
changed.

PrROOF. Let M, N be positive integers.

N . N-b
> Fa, b= 3% Fb+m,b)
a=—-M m=—M—b

=2[" ["F@eo( 5 emmmo)drdg.

m=—M—b

Put M"=M-+b, NN=N—b, and 2=t—10. Then

N/
2 elm||t]+mi6’ 2 emz+ 2 emz
m=-—~M m=0
1— W' +1z 1_eCM'+1)? . 1—p2t N+ 12 ecM'+1>5‘
1—¢* 1—¢? [1—e?|? 1—e? 1—e*

Put g(e)=0—e")(1—e?)|1—e¢*|-2 This is bounded and continuously differ-
entiable with respect to 6. F(e9)(1—e)~! is also bounded and continuously
differentiable with respect to €, because F(¢?) is odd in f. Therefore

meny =" Fei—egedt =" Py =Sy d

e |2
is continuously differentiable. Put
gn(e) = F(eH(1—e’) e

Then if t<0, |gy(e®)| Z|F(e®)|]|1—e*| ! and gy(e®) —0 pointwisely as N — +co.
Since |F(e®)||1—e*|~* is integrable with respect to dtdf, we can apply Lebes-
gue’s theorem and obtain that

{ ’ | Tttt (eNdt df—0 (N +oo).

—0¥ §

Analogously
{ " [Tt Ry ) eidt dg—0 (M- -+oo).
—00 0

Thus we proved that
+

SV F(a, by = —2 j 0] (e)dg .

a=-—00

It follows from the theory of Fourier series that

3 { 3 Fa, b} =—2a()+h(—1)

b=—o0 *a=—0o0
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1—¢t

1ie dt

0 , 1 t 0
=2z (" Fee )ff‘; dt—2z | F(—e)
== F(e)coth (t/2)dtx [ F(—¢)tanh (t/2)dt.

This is the first part of the equality (3.4).

To prove the second part, it is sufficient to apply the following two well
known facts.

LEMMA 3.4. Let f(t) be a continuously differentiable function on R such
that f(0)=0 and zero outside a compact set. Then

[ 7@ coth ¢/2)dt = —i[ (o) coth (zp)dp,

[ "7y tanh (t/2)dt = —i [ "F(p) tanh (zp)dp,

a +00 .
where f(p)::f f(eetdt.

LEMMA 35. Let F(e¥, a) be a continuous function on the torus T of one
dimension with parameter a € A. Suppose that F(e', ) is continuously differ-
entiable on T for every a except at a finite number of fixed points of T and
that (8/00)F(e*, ) is uniformly bounded. Then

20 F(l, @)= 3 { TRE?, @)e™dd  (ae A),
m=-cov¥ Q

and the convergence is uniform with respect to a € A.
Now it follows from Lemma 3.5 that

2rF(e") = izo)o F(m, e,

. 2 . . . .

where F(m, e) :f nF(e‘“ﬂ)e""ﬁdﬁ and the convergence is uniform with respect
0

to t. Therefore

2 [ TR(erdt=_ 3 Fom, o),
and hence by Lemma 3.4,

2z | ::F(e‘) coth (t/2)dt=—i| { mgmﬁm, o)} coth (zp) dp .
Analogously we obtain that

27rf_+mF(—e’f) tanh (¢/2)dt = —ifjw{ iZO_TO (=™ E(m, p)} cosech (zp)dp .

It remains only to prove that the order of integration and summation in
the above equalities can be changed. Put
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ey = F(e1%) coth (t/2)dt = f " 1R (et coth (/2)) dt .

Then [(e*) is continuously differentiable with respect to §. Changing the
order of the integration, we obtain that

[(m) = j:ﬁl(ew)eimedﬁ = fj:ﬁ‘(m, %) coth (t/2) dt

=—i [ "Fm, p)coth (zp)dp .

Inserting this into the equality 2z/(0)= > 1(m), then we obtain

27 j:mF(et) coth (¢/2)dt = —1 ZO)O j +<>oF‘(m, o) coth (zp)dp .

m=--co

Analogously,
2z “F(—e)tanh (t/2)dt=—i 3 (—1"| “Fom, p)cosech (zp)dp.

Now is completely proved. Q.E.D.
Let Z, (Z,) be the set of all even (odd) integers. For a sequence {a,}mcz

N
let us denote by >a, > a, and X a, the limits lim 3 ap,
M

meZ me Zy meZ1 M,N—+o0 m=—

N N
Iim 3> a,, and lim 3 a,,.,, respectively.
M M

M,N—+co m=— M,N-—+co m=—

COROLLARY. Let F be as in [Lemma 3.3 Then

(35) S S Feh=-i2" % | j:F(m, o) coth (wp/2)dp

a-Z b=2Z me 2
—i2vsy {""FE(m, p)tanh (zp/2)dp .
meZy Y —oo
Proor. This is obvious from the equality (3.4).
Now let us return to the functions F} on H, 0=<k=gq, f= C7(G)). Define

(3.6) Fpasn={ FHndh; Ddh,
k
where X is of type . And put
B M=y ¥ B BN BN N - 3
F1rdr=0,1 c1=Z ¢ Z en-9r&EZ 'mI&Zjl ’m»,v:ZjT

[ | PR Den(pden(on) - esp)dpidp, - dpr,
where c;, m;, p, are the components of X =(c, m, p) and
e0)=—(G/Dcoth (xp/2), (o) =—(i/2)tanh (zp/2).

LEMMA 3.6. The successie integro-summation in (3.7) is convergent for



The Plancherel formula for SU(p, q) 165

any fe Co(G) and the order of the opzrations of integrations and summations
on FFQL;7v) can be arbitrarily changed. And for any k such that 0=k=gq,

b =bk=bk= ... =bk.
Moreover for any fe Cy(G),
(3.8) b= (@2r)"n! Fj(e) =(—1Petr»222my" nla,r,f(e).

PrOOF. The first and second assertions of the lemma can be obtained by
slightly extending Lemma 3.3 and its Corollary to functions of several variables.
The last assertion follows from Lemma 3.1 if we know that

i=0Cr)"nl Fe)=0Qrn)"n! a,r,LKje).

But, as is remarked in the beginning of this section, the function F2(h)

=a,LKj(h) on Hy(I) can be extended to a continuous function on the whole

H, which is indefinitely differentiable on the closure of every connected

component of H(I). Generalize Lemma 3.5 for the case of higher dimensions

and apply it to the function Fp(h), then we see that b§=Qnr)"n! F}e). Q.E.D.
Define

3.9 c=g N T % 3% 3

T dr=0,1 c|EZ en-9r€Z4 MIEZ myEZ,

J o Lo @I eondpo.dp, - dor .

It follows from (1.23), (1.24), (1.25) and (3.1) that the order of the successive
integro-summation in (3.9) can be arbitrarily changed and that for 0<r=<g,

(3.10) ga" = atbi+ar byt - - +ag b anbe,
where ¢,=(—1)"""PE(—])Pererir@=-D2 and af =(n—2r) 1k 1((k—r)!)"! for 0=r=k.
Put b* =0k =0 = ... =bF and define
a—= t(eoaO, Elal, A Eqaq) ’ b :t(bo’ bl’ ) bq) ’
and
(o) a) A - af
0 af af - o

A= 0 0 & - a

Then
(3.10M) a—=Ab.

Put B, =(—-1)y((n—2r)1r1)*. Then (B, B, Bs -+, By is the first row of
AL In fact, it follows from the equality:
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2Dy =0 (2D,

that
(@0’ 181’ 52’ Tty ﬁq)A:(l’ 0’ O, Tty O) .

Therefore we obtain that §°= Zqoﬁrsrar. Hence it follows from (3.8) that

xa.
Let X be of typer. Let d;=27"(m;+1ip,) and d_;=2""(m;—ip;) be as before
the components of X. If ¢;>¢, > - > cpoypyy
LX) =L(cy, Coy >+ 5 Cpry Ayy gy o+ 3 Aoy Cpopiry *++ y Cpmgry Ay »o» 5 d_y)

= (D= Lye e Ly T e | (T o)

Therefore for any j, j, -+ ,Jr (=0, 1),
(—=Dr(=Der PR L(Xe;(p1)es5(02) -+ e5,(0,) 2 0.

Suppose also that ¢; >c¢, > -+ > ¢, Let g—T%,(g) be a unitary repre-
sentation of G whose character is n;,'”. Then it follows immediately from

the definition that
(3.12) Az () = ;SP(T},x(f ) (feCra),

where I runs over all subsets of p—r elements of I, ,,={1,2, .-, n—2r} and
(3.13) (D= Tin(e)(2)dg.
Insert into and then the latter into [3.11), then [3.I1) is essentially

the Plancherel formula for G.
Define for f,, f, = C(G),

JHO=/ED,  fixflo)=[ Flegflerds (2<G).

Then if ¢, > ¢, >+ > Cpoary SP(T7(f*/*)=0. Therefore taking into account
the symmetries of A%(X) and L(X) with respect to the components of X, we
see that the series are absolutely convergent for 0=<r=<gq if f=f, «f*
for some f, = C7(G). And so are also, if f=/f,xf, for some f,, f, c C2(G).
Thus we obtained the following theorem. Put y=(Q2x)"n! a,7,.

THEOREM 3. Let f,, /,€CyG) and put f=f,xf,. Then

11) An irreducible unitary representation of G is determined within unitary equi-
valence by its character [3(a), p. 2507.
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1
r/(e)= 2“27 T, 2 \ 2
oZrsq 410 1, dr=01 et er S ooy mgE 45
(1=s=r7)

§ o AZ SHTLA D} ILWestoden(o) -+ es (o)l dp

= 2 > 2 >
0=ST=q Jp,jr=0,1 c1> 6> ep-gr mSEZjS
(1=s=r)

{ZSoTea N} 1L 00es00) - eslonldp

f 01> p2> >pr 0
where I runs over all subset of p—r elements of Iy, dp=dp,dp, --- dp, and
X =(c, m, p). The successive integro-summation converges absolutely.

REMARK. Let X7 be the set of all X={(c, m, p) of type » such that
€1> €3> oo > Cpoyy and py > p,> -+ > p,>0. Suppose that X € X7 and X’ € X3,
then the unitary representations 77y and T%,, are equivalent if and only if
r=s, I=I and X =12'. In fact, this is seen easily from the explicit form of
7yx and 7wy 4. In the above equality, we must take {;SP(T?,Z(f))}]L(X)] as
the summand for »=0.

§4. Computation of the constant 7.

The constant y in depends on the fixed Haar measure dg on G.
Let us choose a standard normalization of it. Let U be the maximal compact
subgroup of G consisting of all matrices of the form

0
Uu—= 811 uzz] ) ull e U(p) ’ uZZ S U(q) ’

where U(p) is the unitary group of order p. Denote the subgroup Hf by A.
Let du (ue U) be the normalized Haar measure on U such that f du=1 and
U

let da be the Haar measure on A defined as da =dt,dt, --- dt,, where a is the
matrix in (1.2) for k=gq.

Let P, be the set of all positive roots (with respect to some lexicographic
order) of (G, H;) which are not trivial on A, and, as in [4(d), § 1], denote by
£,(a) the homomorphism of A into C* corresponding to a € P,. Put

@l  day= lag+(§a(a>_‘§ -a(@)) |

—_ II (etj__e—tj>2(p—q), H letj-x-tz_e—tj—tll. H (etj-tz__e—tj-btz)z

1=j=q 1=5,1=q 1sj<d=q
= I @sht)*®-2. TI |2sh24|- II (2ch2t,—2ch2t).
1=j=q 1=j=q 155<I=q

Then it follows from [3(b), Lemma 227] that we can normalize a Haar measure
dg in such a fashion that the following equality holds: for every integrable
function f on G,



168 T. HirAl

4.2) j f(e)dg= f A@da j g ey dudv®.

Let us calculate the constant y for this normalized Haar measure dg.
This can be done using the formula given in [3(b), Lemma 28]. But the
integral appeared in this formula is not easy to calculate explicitly. As we
feel some interest in spherical functions, we proceed here in the following
way. First we give the explicit form of some spherical functions of a series
of square-integrable irreducible unitary representations, and second, using
these spherical functions, calculate the formal degrees (see [3(b), p. 574]) of
these representations, then the constant y is obtained. In the second step, the
formal degrees of the representations of this series are expressed as a poly-
nomial function of integral variables which parametrize these represen-
tations. This fact makes us possible to calculate the formal degrees.

Let g—T(g) be an irreducible unitary representation of G on a Hilbert
space 4. Let 9 be an equivalent class of finite-dimensional irreducible
representation of U. Denote by 4(9) the set of all vectors in .4 which trans-
form under T(u) (u € U) according to 9. Let E(9) be the canonical projection
of 4 onto 4(9). Then the function on G:

3(2)=SHEDT(2) (g<C)
is called the spherical function of type 9 of the representation 7.

Let 9, be the equivalent class of the representation u—|u,|*|u,,|" (us U),
where |u;,|=det u;;. As is well known [3(a)], dim %#(D,,) <1. Denote every
element g G in the form

— gll g12
(4.3) £= 82 gzz]’
where gy, g1 8x and gy, are matrices of type pxp, pXq, ¢xp and gxg,
respectively. Let gf='Z,;,. Then we have the following proposition.

PROPOSITION 1. Put n=p-+q as before and let k and | be two integers.

Then the functions

“@.4) SZSk,l(g):lgm—klgzzll:igul_klgzz[l (k—lz=n)
and
@5 Pk ={5Speued+ L  Sp e} et H gl -1z nt2)

are respectively the spherical functions of type Dy, of the square-integrable
irreducible unitary representations g—7T3,(g), where for ¢,
I:{l,Z, ’p}a
c=(k+p—1, k+p—2, -, k+1, kb, I4+n—1, .-, I4+Dp+1, I+D),

12) 1In the notation of [3(b), p. 592], 4(a)=|D(a)|¥2.
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and f07’ ¢k,l!
I:{1,2, ’p}:
C:(k‘*‘ﬁ_“l, k+p“2; Tty k+1’ k'_'lr l+7l, l+n_2; l"l—n’—g’ Tt l+p+1r l+p) .
The proof of this proposition will be given in Appendix. In this section,
we use only ¢, (k—I1=n).
It is easily proved that [3(b), Theorem 3] is also valid for our reductive

Lie group G. Therefore denoting by d¥! the formal degree of T}, cor-
responding to ¢,, we see from in the preceding section that

rdbl=L()=(p—1)! (=21 2111 (q—1)1 (q—2)! - 21 11 TT TT (N—i—j-+1),

i=1 j=1

where N=Fk—I[ (=n). Therefore d¥! may be expressed as

(46) d : Cpuq H H (N'—l—]’|'1> s

i=1 j=

where ¢, , is a constant independent of 2 and [ (and of N).
On the other hand, by the definition of the formal degree, it follows from

(4.2) that
a7 = [ |$ui@)|*dg= |$10)|*4(0)da

= {7 f T eh gy 1T @sh )0 | 25h 2t
o —eo j=1 m=1

X TI (2ch2t,—2ch2t)? dt,dt, - dt,

1=i<j=q
Put
x;=(sht;)?=(cht;?—1=2""(ch2t,—-1) (1s57529.
Then
(dpht = 4qu °°j G Va1 (xa—xp)? daydx, - dx, .
0 m=1 1= j=q
Since
I (x;—x)= 2 sgn (2)xf@~1xfa b1 ... xF®-1,

1=i<y=q TES, q

we obtain that

@D @ghr=4roqt[ " [ UG AD 0 T (=) didx, - i

1=i(j=q
e . . : .
=474 2 sgn @ U B(p—j+z(@—j+1), N=p+j—e(g—j+1),
€Sy j=
where B(a, b) is the B-function defined as

Bla, N—a)=[ (34D "eidy  (N>azD).
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Let I" be the usual I'-function, that is, F(s):fme‘”xs‘ldx. Then

0

B(a, b) = 1;%%? =1, I'G)=6-DIE-1).
Hence
AT (g =41 8 san @ I (p—jetq—j+1) LNPERAIED
Now
11 I'(N—p+j—r(g—j+1)
j=1 I'(N)
_ TN=DI(N—=p—1) - I(N=p—g+1) ., pN)
I'NI'(N=T) - T(N—q¢+1) 1ﬁgjsq(z\/—i) ’

where p.(N) is a polynomial of N of degree ¢(g—1)/2 whose coefficient of
N¥@-b2 jg equal to 1. As N runs over all integers =n, we obtain by com-

paring and (4.7") that
Cplar II (N—i)=4r7%] = Sgn (r)i%(N)IIF(P~J+r(qﬂj+l))

1=i<j=q

Comparing the coefficients of N‘l‘q'”’2 in the two sides of this equality, we
see that

(4.8) Crig=4P% ! X sgn (r)HF (p—j+z(g—i+1).

€S q
Now let us prove that

(4.9) =471 (=D (g—=2)1 - 2111 p=D1(p=D! - (p—!.

It is sufficient for this only to prove the following equality:

b—j+zlg—j+D—-1
(4.10) qu sen () 11 ( b )

a
where <b> b'(a BT for a=b=0.

Denote by C the right hand side of the above equality. Cis equal tojthe
coefficient of x?~'xf~%... x?77 in

> sgn (o)1) P @ (L )P 2@ DL L (] yP-ade-d

T&Sq

=TLA+x0P ™ T (5.

1 1=i.jsq

Therefore C is also equal to
réq*””(»:(g) 1><f(q 1)— e (fa) 1)

where we put (Z):O if b>a. But this is exactly the coefficient of
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243 .., ~1 — T4 T@—D=1 , LTD—1
XoX3Xy X =T gy T e X3 In

> 88N (T)AH X)) P (LA Koo )? 7% -+ (LA 2ery) P72

€Sy

I] 2

A4x)P7 % TL (x—xp).

m=1 1= j=q

Hence we see that C is equal to 1.
Thus the following result is obtained:

(4.11) it = cp TTIT(N—i—j+1), ¢, =479! Iqu(J?—l) L(p—1)!
-

i=1 j=1
and hence

@11y dp

l

L4711 1 ()1 )_l(ij_Il(j—D T G-D1)

PROPOSITION 2. Let dg be the Haar measure of G normalized in such_a
Jashion that the relation (4.2) holds. Then the constant y in Theorem 3 is
equal to

(“.12) =411 j1(p= !+ T on—1)! IT G~
ji= m =1

=1

=472 (T171) 1L (p—m) 1 TLi 1.
=1 i=1

m=1

NoTE. By the way of proving (4.11), we obtain the following equalities:

e T
Tg}gqsgn(T)ng(a—]+T(J), b+j—z()= (=% )/JI:IO T(a+b—7) )

where a and b are positive integers such that a, b=¢q; and

S sen () 1 D a—j+() = (=1 111 Na—,

TESy

where a is a positive integer such that a=¢. As is seen above, these are
the consequences of the following equality:

1:T§5q8gn (ﬂ(r(l?_l)(daz;tll) (z(;q:11> ,

where a is a non-negative integer.

§5. The Plancherel formula for SU(p, q).

Let G, denote the subgroup SU(p,q) of G and put U,=G,~U and
A=H{. Then G,=U,AU,, that is, every element g< G, can be expressed as
g=uav, where u,ve U, and a= A. Let du be the normalized Haar measure

on U, such that du=1 and da the Haar measure on A defined in the
Uy



172 T. HirAl

preceding section. There exists a unique Haar measure dg on G, such that
the following relation holds: for any integrable function f on G,,

G.1) j _f(g)dg= j _d(@)da j f(uav)dudv .

Ugx Uy

et T be the set of all complex numbers with absolute value 1. Let
Ag AeT, g= Gy be the usual product of 2 and g. The mapping (1, g)—1g

if g= G, Define a mapping P on Cy(G,) as
PINg)=18) (feCF(Gy, geCGy)
and let I be the identity mapping on C7(G,). Define, as in [4(d), §2],

fi=t oo oe-xDf O=j=n-1.
n Oéici'(t—l
J

Then it follows from P"=1] that
Pfj:/%fj, f:fo+f1+f2+ +fn—1~
Extend every function f; to a function fje C3(G) in such a way that
FQAg)y=xf(g) QeT, geGy
and put f=fo+f;+ - +fa_,. Then, for any two functions f, h € C3(G,),

5.2 [, /@iedg="S | f{ea)ds

=% [ Hk@de={ f(@ia)s,

where the Haar measure dg on G is the one defined in the preceding section
by [4.2)

Let T%,, be the representation of G defined earlier, whose character is 7 4.
Let us denote by °T%, the representation of G, induced by 7%, of G. Let
°7;,x be the character of °T7,. Then

(5.3) ‘i (8)=mr(g) (ge Gy,

where Gj is the set of all regular elements of G,.
Recall that if X is of type » and =/, is the character of Ty, then X =(c, d)
or (¢, m, p), where

C;>C> v > Cnogr; d;=2"Ym;+~—1p)), d_;=2"Ym;—~—1p;) (A=Zj=7).
Define
(5.4) nx:"§76k+é (dj+d—j) :"276k+2' mi,
k=1 =1 k=1 =1
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then
(5.5) TrA8) =", (g) (QREeT, gelb).
For any X and integer s, define X*=(c/, d’) as follows:
(5.6) Cp==Cr+S5 Ak n—2v);
dj=d;+s=2"(m;+25)+v —1p;, d;=d_;+s=2"(m;+2s)—~—Lp;

d=sj=n.
Then it follows from the definition of =, in §1 that

nrs(g)=(detg)nr,(g) (g€G)

and hence for any s, °r; s =°n;, This means that °T%,s and °T7, are unitary
equivalent. Therefore any °T% ., is equivalent to a certain °T%, for which
¢p—9r=0. Moreover when ¢, ,,=0 and ¢,_,, =0 for X and X’ respectively,
Ty and °T% .. are unitary equivalent if and only if /=1’ and X =X".

Let fe Cy(G,). Evidently, if n,+ —j,

G7) SPT1FN=0.
If n,=—j, we obtain by a calculation analogous as in that

58) SHT5IN = [ w14 9)T(8)dg
=, ‘mrue) (&) dg=SpCTr S,

where °T7,,(f) = fao "Tr(8)fA(8)dg.

Let S,_,, be the symmetric group of order n—2r. For any X={(c, d) of
type 7 and for o € S,_,,, put oX =(oc, d). Let us recall the definitions in §1:
for any X and o< S,.,, m,y=sgn(o)ny; and if ¢, =¢,= -+ = ¢pp fOr XA,
nx:;nm. Hence, if I (¢;—c)=0, then 7y=0 and of course

isjds=n—2r
(5.9) J, (@) f(@)dg=0 (f=C7GY;

and if II  (¢;—c)#0 and ¢4y > Coy > > Con-ary fOr X, where o € Syyy,
1sj<dsn—2r
then

69) | mde)f(g)dg=sgn (o) meg)f(g)dg="sgn(0) 3 SHTh0( /).
Since L(oX)=sgn (¢)L(X), we see that, in the latter case,
(5.10) L®es(ps)esos) -+ es(on) f m8) (g)dg

= Les:(p)e(02) =+ €50 L SH(T,0:( 1)) -
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Fix fe Cg(G,) and apply [3.9), [3.IT) and to f; = Cy(G), then [3.IL)

is rewritten as
G1Y) 7fie)=rfie)
g 1
22:]0@“_ 2 E ‘2

= 57
7 _27) tr12 1 ir=0,1 1€EZ tn-2r€Z m1EZj, MmyEZj,

j‘ple}e 5“0 ERV]'(X 5 f]) | L(X)ejl(ﬁﬂejz({oz) ejr(lor)ldfh dpz dpr ’

where
—1 2 —1
(5.12) r=@mrnlar =42t (T51) Tt 11 (p—m);
j= i= m=

and, when n; # —j, V,(l, [)=0; when ny=—j, V/t, [p=0if _TI (e;—e)
1=5<d=n—2r
=0, and

Vs £)= S SPCTh ol £)

if II  (cj—c)#0 and ¢,y > Coy > *++ > Coen-ory fOr 6 €S, _,,.. The order of
1=j<d=n—2r

the above successive integro-summation can be arbitrarily changed.
Taking into account that Sp(°T7,(f;))=0 if n,= —j (mod n) and summing
up the above equalities over 0 <7< n—1, we obtain that for any fe& CJ(G,),

G139 1fO=5 Gz, S, 2, % v ¥

f1sr s dr=0,1 C1EZ Cp-orEZ mJEZjl m,ezjr

LIER fp T DL (0)eslp) -+ e50r) | dpy dp, -+ dpr,

where, when ny< —n or n, >0, V(X; f)=0; when —n+1=n,Z0, VX; /)=0
if T (cj—¢)=0, and

1=jUsn—2r

Vs 1) =2 SpCT10(f))

if II  (¢;—c)#0 and ¢y > Cory > *** > Con-2m 10T 6 € Sy_y.. This is essen-
isi<dsn—2r

tially the Plancherel formula for G,=SU(p, 9).

Let f=hxh* (h = C3(Gy)), then Sp(°T7 () =0. Hence the above successive
integro-summation converges absolutely. So is also when f=f,*f,, where
o fo€ CP(Gy). Recall that SpOT5 (/)= Sp(*T%,.(f)) for any integer s and
fe Cy(G,) and note that the set of all X of type » such that —n+1=n,<0
corresponds one-to-one onto the set of all X of type » such that ¢,_,,=0, in

such a way that X —¥°, where s=-—c¢,_,,. Then we obtain the following
theorem which gives the explicit form of the Plancherel formula for G,=
SU(, 9-

THEOREM 4. Let dg be the normalized Haar measure on G, for which (5.1)
holds. Then for any f= fixf, (fi, [o € C2(Gy),
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q
Gly  rflo=2
T=0 J1,0 0 jp=0,1 cp>ep> >en —gr —1>0n 27 =0 MEZ;,
(1=s=r)

ZSP(OTf,*((f))'L(x>ej1(101)ejz<102) -~ ep(p)l dp,

f p1>p2> > pr>0 I

where dp=dp,dp, -+ dp,, X=1(c, m, p), and I runs over all subset of p—r
elements of I,_,,={1,2, -+ ,n—2r}, and y is the constant given by (5.12). The
successive integro-summation converges absolutely.

Appendix. Proof of Proposition 1.

Here we use the notations in [2, §3]. Let w denote a complex matrix of
type ¢Xp and let w*="‘® be as usual. Denote by £ the homogeneous bounded
domain of dimension pg defined by ww* <1, (i.e., 1,—ww* is positive definite).
The group G=U(p, q¢) operates on {2 on the right as

® — (012 Z20) " (WG11F&2y) (g: Eu gm) S G) ’

821 Lo
where g;; are as in [(4.3).

M.I. Graev has constructed a series of square-integrable irreducible
unitary representations of G on the Hilbert spaces of the appropriate analytic
functions on £ [2, §3]. Let us call them the representations of Graev!®.

1. Let 2 and [ be integers such that 2—[/=n. And let g—T(g) (g€ ()
be a representation of Graev (see [2, p.358]) corresponding to the parameter

(1) (kly kz: ttt oy kp; lly lz: Tty lq):(k: k) “tty k; _l’ _l; trt oy _l)-

Then the Hilbert space % on which T is realized, is the space of all analytic
functions ¢ on 2 which fulfill the following condition:

ol = | 1o@)*dp(@) < +oo,

where dp(w) is a measure on £ invariant under the operation of G. T is
defined as follows:

2 T()p() = ¢[(@wg12+g20) (@Wg11+2:1)] - | gH 80| *|lwgit 8l

where lwg12+g22l =det (wglz_l"gzz) etc.
Let ¢, be the constant function 1 on 2. As is easily seen, #(D;,) = Cop,.
Moreover we can prove that when p +# ¢, #(9)= {0} if dim9=1 and 9+ 9,,.

13) Comparing the characters of the representations of Graev and the ones z;, of
T3. we see that any representation of Graev is equivalent to some T}, for which the
subset [ of I,={1,2,.--,n} is {1,2, .-, p} or {g+1,¢+2, ..., n} and conversely any such
TJ. is equivalent to a representation of Graev.
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It follows from (2) that
3) T(g)po= |gf+gtio| *lwg,+ga.l .

Let E(9y,) be the orthogonal projection of 4 onto #(9,,). We wish to
calculate E(9,,)T(g)p,. For this purpose, we utilize the following structure
of 4. Let 4, (s=0) be the vector space of all polynomials of degree s of
w; 1=21=q, 1<j<p), where w;; are the matrix elements of w. Then
H T H, Hsl H, if s+s’, and A is the direct sum of these 4 (s=0). A

~+ oo
series X ¢ (¢; = ;) converges in 4 if and only if it converges uniformly
§=0

on every compact subset of £, and the limit function in the first sence is
identical with the one in the second sence.
Now put a=(g#) g% =g..8%" then aa* <1,. Therefore

(gh+go) ' = (L+aw) (g = { B (~D'@a) } gh ™,
(4) + oo
(a)glz'{‘gzz)fl = gﬁl(wa+1q)—1 =g {EO(‘I)S(COCZ)S} .

These power series of matrices aw and wa converge absolutely and uniformly
on every compact subset of £. The direct sum decomposition according to

I = ZOO@ I, of T(2)p,=|gt+g¥w| *lwg,,+8:|" can be obtained by calculating
$=0

formally the above power series of matrices. Therefore we see that
(5) E<g)lc,1)T(g)§00 = Igﬁ[ _klgzzll: g%l _klgzzllSDO .

This proves that ¢,,(g)=|g%! *|g,|" is the spherical function of type 9;,
of the representation 7.
Let I and ¢ be as in Proposition 1. The fact that T is equivalent to 79,
is proved by comparing the character of T [2, p. 375] and the one x;, of T}, .
2. Now suppose that k—[/=n-2. Let us treat the case of ¢, Let T
be a representation of Graev corresponding to the parameter

(6) (kI’ kz: Tty kp; 11, 12, ] lq):(k, k, o k; k_l: -“l, —‘l, Tty “l, '—l—*l) .

Denote by M, the set of all matrices of type pxp. The Hilbert space 4 on
which T is realized, is the set of all functions

0z, 2®, w) EFPeM, z2PeM, we )

14) In the proof of the character formula in [2, §5], Graev admitted tacitly the
recent result of Harish-Chandra, which asserts that any invariant eigendistribution =
on G has no contribution on the set of all singular elements G—G’, in other words, =
is essentially determined when we know z(f) for all feCy(G’). In fact, the contri-
bution of the characters on the subset G—G’ is not discussed there.



The Plancherel formula for SU(D, q) 177

fulfilling the following three conditions. (i) ¢ is analytic in w. (ii) Let x;
(v, resp.) be the (p,7) (g, ]) resp.) cofactor of z* (z® resp.). Then ¢ contains
the variables z and z® in such a manner that it is homogeneous linear with
respect to x=(x;, X,, -+, %,) and to y=(¥, Vs -+, ¥,), respectively. (Even
when ¢=1, we introduce the variable y in order to discuss this case together
with the others.) (iii) The integral [3.12) in [2, p. 357] is convergent. The
inner product in 4 is defined by this integral [3.12).

Let us denote ¢(z?, 22, w) by ¢(x, 3, ). Let I, be the set of all ¢(x,y, @)
which is homogeneous linear with respect to x and to y respectively and is
a homogeneous polynomial of degree s of w,s. Then 4, (s=0) are the
mutually orthogonal subspaces of .9 and .4 is the direct sum of them. The
same statement as in Subsection 1 holds for the convergence of a series

+200¢s (¢s € d). The operator T(g) is defined as
$=0

@ T()P(x, 3, ) = ¢[x(§n—}—ta)§21), w81+ 822)s (WZ157820) (WG11+821)]
X |gfi+giw] —kl WZ1,+ Lo |l P

Put ¢y(x, ¥, w) = yw'x. Then JH(D;,)=Cep,. Moreover we can see that when
Let us calculate E(9;,)T(g)¢,. First of all,

®) T(g)po=y(wg+g:)(gh+gHo)x- |gli+giio| *log,+g.l .
It follows from (4) that

lgii+gfw| = |gf|{1-Sp(aw)},

| 0812+ o2 | 71 = [ 822l {1 =Sp(@a)} = | g22] "' {1 —Sp(aw)}
modulo power series of w;; of degree higher than 1. Hence

|8 %+ 850|081t 8" = | K| I o {1+ (—k+DSp(aw)} .

Therefore, in the sence of modulo 3 P .4,
s#1

T(g)¢oE y(wg11+g21)(gﬁ+g3ﬁw)‘x . {1—}-—(-—]8—]—1)51)((160)} |gﬁ I -klgzzll
= | g% ¥ goo | { Y (@811 8+ o1 £50) x4-(—R-+1)y g5y gF 1 - SPlaw)}
= ¢, (say).

Since every 4, is invariant under T(u) (u € U), we see that

E(D:,)T(2)po= E(Dr,)¢1 »
and by definition,

15) The formula (3.23) in [2, p. 358] of T(g)e is transformed into this one under
(p—-—)¢.
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E@u)¢= [ T, - [t | s, .

Let du,, (u,, € U(p)) and du,, (u,, € U(g)) be the normalized Haar measures

on U(p) and on U(g) such that j'( duu:f ()dum:l, respectively. Ther
U(p) U
du=du,,du,,. Therefore ! !

{15171 8221 "} 7 E(Die, ) T(&) o

= f You, 8,85 uﬁ”xdulﬁ—f Vil o1 8 5 Uz @ X AUy,
U(p) U(q)

+(—k+D| Yty @1 85 Uit tx Splauz wuyy) ity dity, .

U(p) XU(g)

By an easy calculation, we see that this is equal to

—k-+1

bq
= {%sp( g8+ %Sp{gug%ﬁ)} $o

- { lgﬁl _klgzzll}_lﬁbk,L(g)(/’o .

This proves that ¢, is the spherical function of type 9, of the represen-
tation T.

The unitary equivalence of T and T, given in Proposition 1 is proved
analogously as in Subsection 1. Now the proof of Proposition 1 is complete.

REMARK. We can prove the following fact. The representation of Graev
corresponding to the parameter (ky, ky, ---, Ry Iy, Ly, -+, 1)) contains 9, (i.e.,
I(Dy,) + {0}) if and only if there exist g non-negative integers m,, m,, .-+, m,
such that 0=<m, =<m,< -.- <m, and

(kli kz; ) kp; 117 lz; oy lq)

=(k, by, Ry R—my, k—my, -, R—my; —l—my, —l—my, -, —l—m)).

Sp(gmgﬁa)} yth

{5-SP(gagD+-SH(gugt)+

In this case, put s=m,+m,+ --- +m, then H(Dy,) C I, where I, is defined
analogously as above (see [2, §4]).
In this Appendix we treated the simplest cases where (m,, m,, ---, m,)
=(0,0,--,0) or (0,0,--,0,1).
Kyoto University
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