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Introduction

Let $X$ be a real or complex Banach space and $S$ be a subset of $X$. Let
$\{T(t);t\geqq 0\}$ be a one-parameter family of (possibly nonlinear) contractions
from $S$ into itself satisfying the following conditions:

(i) $T(O)=I$ (the identity mapping), $T(t)T(s)=T(t+s)$ on $S$ for $t,$ $s\geqq 0$ ;
(ii) for each $x\in S_{2}T(t)x$ is strongly continuous in $t\geqq 0$ . Then the family

$\{T(t)\}$ is called a semigroup (of contractions) on $S$ . And we define the infin-
itesimal generator $A_{0}$ of a semigroup $\{T(t)\}$ by $A_{0}x=\lim_{h\rightarrow+0}h^{-1}\{T(h)x-x\}$ and

the weak infinitesimal generator $A^{\prime}$ by $A^{\prime}x=w-\lim_{h\rightarrow+0}h^{-1}\{T(h)x-x\}$ , if the right

sides exist, the notation “ $\lim$ (or ” w-lim ”) means the strong limit (or the
weak limit) in $X$.

The purpose of the present paper is to construct the semigroup of con-
tractions determined by a (nonlinear) operator given in a Banach space. Our
results consist of sufficient conditions for a (multi-valued) operator in $X$ or
a pseudo-resolvent of contractions in $X$ to determine a semigroup of contrac-
tions. Also, we are concerned with the generation of semigroups of differ-
entiable operators.

We find other interesting results on the generation of semigroups of
contractions in $[2]-[5],$ $[8]-[14]$ , in which (multi-valued) maximal dissipative,
m-accretive or m-dissipative operators are treated as the infinitesimal genera-
tors. In this paper we extend these generation theorems to the case of a
(multi-valued) dissipative operator $A$ such that the range $R(I-\lambda A)$ of $I-\lambda A$

contains $D(A)$ for every $\lambda>0$ . Recently, Brezis and Pazy [1] considered
similar problems in Hilbert spaces. A result related to their generation theo-
rem will be given in \S 6.

Section $0$ gives the notion of a dissipative operator and some of its basic
properties.

Section 1 contains the statements of main results and some remarks.
Section 2 concerns the abstract Cauchy problem.
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Section 3 deals with the pseudo-resolvent.
Section 4 deals with the approximation of operators.

Section 5 contains the construction of the semigroup determined by the
dissipative operator.

In Section 6, the differentiability of the constructed semigroup is discussed.
Finally, Section 7 deals with the construction of semigroups of differenti-

able operators.
The author wants to express his deep gratitude to Professors I. Miyadera

and H. Sunouchi for their many valuable suggestions.

\S 0. Preliminaries

In this section we introduce some notions and notations which will be
used in this paper.

An operator means a single-valued operator or a multi-valued operator
when we do not specify it. For the notion of multi-valued operator, we refer
to Kato [11; \S 2]: let $A$ be an operator in $X$ ; then the domain $D(A)$ of $A$

is the set of all $x\in X$ such that $ Ax\neq\emptyset$ ; the range $R(A)$ of $A$ is given by

$\bigcup_{x\in X}Ax$ ; here, $ Ax=\emptyset$ if $x\not\in D(A)$ ; and we write AS (or $A(S)$) for $\bigcup_{x\in S}Ax$. For
$S_{1},$ $S_{2}\subset X,$ $S_{1}+S_{2}$ denotes the set $\{x+y;x\in S_{1}, y\in S_{2}\}$ , where $ S_{1}+S_{2}=\emptyset$ if
$ S_{1}=\emptyset$ or $ S_{2}=\emptyset$ . For a scalar $\lambda$ and $S\subset X,$ $\lambda S$ denotes $\{\lambda x;x\in S\}$ . And we
write $y+S$ for $\{y\}+S$. Accordingly, we define the sum $A+B$ of two opera-
tors $A$ and $B$ on $D(A)\cap D(B)$ by $(A+B)x=Ax+Bx$, the scalar multiplication
$\lambda A$ on $D(A)$ by $(\lambda A)x=\lambda Ax$, and the product $AB$ of two operators $A$ and $B$

by $ABx=(AB)x=A(Bx)$ . We write $\gamma+\lambda A$ for the operator \gamma I+\‘AA. And we
denote by $A^{-1}$ the inverse operator of an operator $A$ . Let $G(A)$ denote the
graph of an operator A. Then G$(A^{-1})=\{(y, x);(x, y)\in G(A)\}$ . Asingle-valued
operator $A$ with domain and range in $X$ is regarded as a special case of a
multi-valued operator in $X$. Let $A$ be a single-valued operator such that
$R(A)\subset D(A)$ . Then for any positive integer $k$ , we may define the iterations
$A^{k}$ on $D(A)$ by $A^{k}x=A(A^{k-1}x)$ . Here, we define $A^{0}=I$.

Let $A,\tilde{A}$ be two operators in $X$. Then we say that $\tilde{A}$ is an extension of
$A$ , and $A$ is a restriction of $\tilde{A}$ (denoted $\tilde{A}\supset A,$ $A\subset\tilde{A}$), if $Ax\subset\tilde{A}x$ for $x\in X$.
Thus $D(A)\subset D(\tilde{A})$ . Let $A$ be an operator in $X$ and $S\subset X$. Then by a restric-
tion of $A$ to $S$ , denoted $A|_{S}$ , we mean an operator such that $D(A|_{S})=D(A)\cap S$

and $A|_{S}x=Ax$ if $x\in S$ .
Let $S\subset X$. Then we denote the closure of $S$ in $X$ by $\overline{S}$ . Let $A$ be an

operator in $X$. Then $B$ is called the closure of $A$ if $G(B)=\overline{G}(A)$ in $X\times X$ ;
and we write $B=\overline{A}$ .

Let $x*$ be the dual space of $X$. Then we denote by $\langle x, f\rangle$ the pairing
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between $\chi\in X$ and $f\in x*$ , and the duality mapping $F$ of $X$ is the (multi-
valued) mapping from $X$ into $x*$ defined by

$F(x)=$ { $f\in X^{*};$ re $\langle x,$ $f\rangle=\Vert x\Vert^{2}=\Vert f\Vert^{2}$ }.

DEFINITION 1. A dissipative operator in $X$ is an operator $A$ such that
for every $x,$ $y\in D(A)$ and $x^{\gamma}\in Ax,$ $y^{\gamma}\in Ay$ , there exists an $f\in F(x-y)$ such
that

re $\langle x^{\gamma}-y^{\gamma}, f\rangle\leqq 0$ .
Let $S\subset X$. If an operator $A$ is dissipative and if any dissipative extension
of $A$ coincides on $S$ with $A$ , then it is said to be maximal dissipative on $S$ .
And $A$ is said to be m-dissipative, if it is dissipative and $R(I-\lambda_{0}A)=X$ for
some $\lambda_{0}>0$ .

An m-dissipative operator $A$ is maximal dissipative on $D(A)$ . It is known
(see [11; Lemma 3.5]) that if $x*$ is strictly convex and if $A$ is maximal dis-
sipative on $S$, then $Ax$ is convex and closed for $x\in D(A)\cap S$ . And it is
proved in [8] or [15] that for an m-dissipative operator $A,$ $R(I-\lambda A)=X$ for
$\lambda>0$ .

DEFINITION 2. Let $S\subset X$ and $A$ be a dissipative operator. We denote by
$e[A;S]$ the set of all dissipative operator $B$ such that $D(B)\subset S$ and $Bx\supset Ax$

for $x\in S$. $B\in \mathcal{E}[A ; S]$ is called a maximal dissipative extension of $A$ in $S$, if
it is maximal dissipative on $S$ .

DEFINITION 3. An operator $A$ is said to be demi-closed, if the following
condition is Satisfied: if $x_{n}\in D(A),$ $x_{n}\rightarrow x\in X$ strongly and if there are
$y_{n}\in Ax_{n}$ such that $y_{n}\rightarrow y\in X$ weakly, then $x\in D(A)$ and $y\in Ax$ . And $A$ is
said to be closed, if the graph $G(A)$ is closed in $X\times X$.

A demi-closed operator is closed. Closed linear operators, m-dissipative
operators in a Banach space with the uniformly convex dual, and the opera-
tors treated in [16] are all demi-closed. In general, it is proved (see [11;

Lemma 3.7]) that if $x*$ is uniformly convex and if $A$ is maximal dissipative
on $D\overline{(A)}$, then $A$ is demi-closed. This notion plays a central role in the argu-
ment of differentiability of semigroups.

DEFINITION 4. Let $A$ be an operator in $X$. Then we define a (multi-
valued) operator $A^{0}$ by

$A^{0}x=\{y\in Ax;\Vert y\Vert=\inf[\Vert u\Vert ; u\in Ax]\}$ .

We call this operator the canonical restriction of $A$ .
Let $x*$ be uniformly convex and $A$ be maximal dissipative on $S$ . Then

$A^{0}$ is defined on $D(A)\cap S$ and $A^{0_{X}}$ is convex and closed for each $x\in D(A)\cap S$ .
Assume that both $X$ and $x*$ are uniformly convex and that $Ax$ is convex and
closed for $x\in D(A)$ . Then the infimum of $\{\Vert y\Vert ; y\in Ax\}$ is always attained
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by a unique element. Thus $A^{0}$ is single-valued and $D(A^{0})=D(A)$ . For details
on the canonical restriction we refer to Kato [11; \S 3].

Finally, in order to get shorter statements, we introduce the following
notations.

(1) For any non-empty set $S\subset X$, we write $\Vert|S\Vert|$ for the infimum of
$\{\Vert x\Vert ; x\in S\}$ . Thus for any operator $A$ in $X,$ $\Vert|Ax\Vert|$ is defined for all $x\in D(A)$ .

(2) Let $G$ be a single-valued operator in $X$ and $B\subset D(G)$ . Then we mean
by $\Vert G\Vert_{Lip(B)}$ the smallest Lipschitz constant for $G$ on $B$ . And we denote the
family of all contractions on a fixed set $S\subset X$ by Cont $(S)$ .

(3) We write $J_{\lambda}$ for the resolvent $(I-\lambda A)^{-1}$ if it is well defined. Also,

we write $R_{\dot{\Lambda}}$ for the range $R(I-\lambda A)=\{x-\lambda y;y\in Ax, x\in D(A)\}$ of $I-\lambda A$ .
(4) Let $K\subset X$. Then $coK$ denotes the convex hull of $K$ and $\overline{co}K$ for

the convex closure of $K$. Let $A$ be a multi-valued operator in $X$. Then we
write $A_{c}$ for the operator which is defined on $D(A)$ by $A_{C}x=\overline{co}(Ax)$ . For
instance, if $A$ is maximal dissipative on $D(A)$ , then $A=A_{c}$ .

\S 1. Main Results

In this section we state our main results and make some remarks. The
detailed statements and their proofs will be given later (see \S \S 5, 6).

Throughout this paper we make the basic assumption that Banach space
$X$ has the uniformly convex dual. This assumption implies each of the fol-
lowing ([10; Lemma 1.2]):

(a) the duality mapping $F$ of $X$ is single-valued and uniformly continuous
on every bounded set of $X$ ;

(b) $X$ is reflexive.
The following result is well known ([10; Lemma 1.1]).

PROPOSITION 1.1. An operator $A$ is dissipative if and only if $J_{\lambda}=(I-\lambda A)^{-1}$

is defined as a single-valued operator on $R_{\lambda}=R(I-\lambda A)$ and $J_{\lambda}\in Cont(R_{\lambda})$ , for
$\lambda>0$ .

In view of this we consider the dissipative operator $A$ such that

$(R)$ $R(I-\lambda A)\supset D(A)$ for every $\lambda>0$ .

REMARK 1.1. (a) If $A$ is a closed dissipative operator satisfying $(R)$ ,
then we have that

$(R_{cl})$ $R(I-\lambda A)\supset\overline{D(A})$ for every $\lambda>0$ .
(b) Brezis and Pazy [1] treat a closed dissipative operator $A$ in a Hil-

bert space satisfying

$(R_{co})$ $R(I-\lambda A)\supset\overline{co}D(A)$ for every $\lambda>0$ .
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EXAMPLE. Let $X=L^{2}(a, b)$ . Let $A$ be an operator with domain and range
in $X$, defined as follows. We denote by $\Leftrightarrow C^{2}(a, b)$ the class of all functions
$u(s)$ on $[a, b]$ such that $u(s)$ is measurable and square summable over $[a, b]$ .
Let $D(A)$ be the class of those $x\in X$ for which a representative function
$x(s)\in t^{2}(a, b)$ can be found such that $x(s)$ is monotone non-decreasing on
$[a, b],$ $|x(s)-x(s^{\prime})|\leqq|s-s^{\prime}|$ , and $x(a)=0$ . This means that

$ x(s)=\int_{a^{s}}x^{\gamma}(\sigma)d\sigma$, $x^{\prime}(s)\in\Leftrightarrow C^{2}(a, b)$ , and $0\leqq x^{\prime}(s)\leqq 1$ $a$ . $e$ .

We then define $Ax$ as an element of $X$ for which $-x(s)x^{\prime}(s)$ is a representa-
tive function. We shall demonstrate that $A$ is a demi-closed, dissipative
operator satisfying $(R)$ . Let $x,$ $y\in D(A)$ . Then $-2\langle Ax-Ay, x-y\rangle$ can be
written in the following forms:

$\int_{\alpha^{b}}(x(s)+y(s))^{\gamma}(x(s)-y(s))^{2}ds+\int_{a^{b}}(x(s)^{2}-y(s)^{2})(x(s)-y(s))^{\gamma}ds$ ,

$-\int_{a}^{b}(x(s)-y(s))(x(s)-y(s))^{\prime}ds+\int_{a}^{b}[(x(s)^{2}-y(s)^{2})(x(s)-y(s))]^{J}ds$ .

Therefore, we have

$\langle Ax-Ay, x-y\rangle=-2^{-1}\int_{a}^{b}(x^{\prime}(s)+y^{\prime}(s))(x(s)-y(s))^{2}ds$

$-2^{-1}(x(s)-y(s))^{2}(x(s)+y(s))|_{a}^{b}\leqq 0$ ,

which means that $A$ is dissipative. Next, we show that $A$ is demi-closed.
Assume that $x_{n}\in D(A),$ $x,$ $y\in X,$ $x_{n}\rightarrow x$ strongly and $Ax_{n}\rightarrow y$ weakly. We can
write $ 2^{-1}x_{n}(s)^{2}=\int_{a^{s}}x_{n}(\sigma)x_{n}^{\prime}(\sigma)d\sigma$ . But $\int_{a^{S}}x_{n}(\sigma)x_{n}^{\prime}(\sigma)d\sigma\rightarrow-\int_{a^{s}}y(\sigma)d\sigma$ for each $ s\in$

$[a, b]$ ; the convergence on $[a, b]$ is uniform with respect to $s$ . Thus we see
that $x_{n}(s)^{2}$ converges uniformly to the limit $z(s)$ , where $ 2^{-1}z(s)=-\int_{a^{S}}y(\sigma)d\sigma$ .
On the other hand, a subsequence $\{n^{\prime}\}$ can be found such that $x_{n^{\prime}}(s)\rightarrow x(s)$

$a$ . $e$ . Also, by Arzera-Ascoli’s theorem there is a subsequence $\{n^{\prime\prime}\}$ of $\{n^{\prime}\}$

such that $x_{n},(s)\rightarrow u(s)$ uniformly with respect to $s$ . Clearly $u(s)$ is monotone
non-decreasing, $|u(s)-u(s^{\prime})|\leqq|s-s^{\prime}|$ , and $u(a)=0$ . Since $u(s)=x(s)$ a. e., $u(s)$

is a representative function of $x$ , and so $x\in D(A)$ . Since $x_{n}.(s)^{2}\rightarrow u(s)^{2},$ $u(s)^{2}$

$=z(s)a$ . $e$ . But $u(s)^{2}$ and $z(s)$ are continuous, so $u(s)^{2}\equiv z(s)$ . Consequently,

$ 2^{- 1}u(s)^{2}=-\int_{a^{S}}y(\sigma)d\sigma$ and thus $-u(s)u^{\prime}(s)=y(s)$ a. e. This means that $Ax=y$ .
It is clear that $D(A)$ is convex. And $D(A)$ is closed, because, as mentioned
above, $x_{n}\in D(A)$ , and $x_{n}\rightarrow x\in X$ strongly imply that $x\in D(A)$ . Finally, we
show that $R_{\lambda}\supset D(A)$ for every $\lambda>0$ . For this purpose, we quote Dor-
roh [5; Example 4.10]: Let $\lambda>0$ and $v(s)$ be monotone nondecreasing on
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$[a, b],$ $|v(s)-v(s^{\prime})|\leqq|s-s^{\gamma}$ , and $v(a)=0$ . Then by the same argument as in
[5; Example 4.10] there is a unique solution $x(s)$ of the differential equation
$x(s)+x(s)x^{\gamma}(s)=v(s)$ such that $x(s)$ is monotone nondecreasing on $[a, b],$ $0\leqq x^{\prime}(s)$

$\leqq 1$ , and $x(a)=0$ . This means that $x\in D(A)$ and $(I-\lambda A)x=v$ . It then follows
that $R_{\lambda}\supset D(A)$ .

In the sequel we shall study that a dissipative operator satisfying $(R)$

determines a semigroup of contractions. Our main results are now stated as
follows.

Let $A$ be a dissipative operator satisfying $(R)$ . Then we have the fol-
lowing assertions.

I. There is a semigroup $\{T(t)\}$ of contractions on $\overline{D(A}$) such that $T(t)x$

$=\lim_{\lambda-+0}(I-\lambda A)^{-[t/\lambda]}x$ for $t\geqq 0$ and $x\in D(A)$ . If furthermore, $A$ satisfies $(R_{cl})$ ,

then for any $\tilde{A}\in \mathcal{E}[A;\overline{D(A})],$
$T(t)x=\lim_{\lambda-\neq 0}(I-\lambda\tilde{A})^{-[t/\lambda]}x$ holds for $t\geqq 0$ and

$x\in\overline{D(A})$ .
II. Let $\tilde{A}\in \mathcal{E}[A ; \overline{D(A})]$ be maximal dissipative on $\overline{D(A}$). Then there is

a uniquely determined semigroup $\{T(t)\}$ of contractions on $D(\tilde{A})$ such that for
each $x\in D(\tilde{A}),$ $(d/dt)T(t)x\in\tilde{A}^{0}T(t)x$ for almost all $t\geqq 0$ . If furthermore, $X$ is
uniformly convex, then $A^{0}$ is the infinitesimal generator.

III. Let $A$ be single-valued and $\tilde{A}\in \mathcal{E}[A;\overline{D(A})]$ . If $\tilde{A}$ is also single-
valued and demi-closed, then it is the weak infinitesimal generator of a uni-
quely determined semigroup $\{T(t)\}$ of contractions on $D(\tilde{A})$ .

IV. Let $X$ be uniformly convex. Let $\tilde{A}\in \mathcal{E}[A ; \overline{D(A})]$ . If $\tilde{A}$ is closed,

then $\tilde{A}^{0}$ is single-valued and is the infinitesimal generator of a uniquely
determined semigroup $\{T(t)\}$ of contractions on $D(\tilde{A})$ . In particular, $\overline{A}^{0}$ is the
infinitesimal generator of a semigroup on $D(\overline{A})$ .

These theorems I–IV correspond to Theorems 5.1, 5.2, 6.1, 6.2 and 6.3.
REMARK 1.2. The results mentioned above can be extended to the case

of the semigroup $\{T(t);t\geqq 0\}$ of Lipschitzians on a subset $S$ such that there
is a real number $\omega>0$ with

$ e^{-\omega t}T(t)\in$ Cont $(S)$ for $t\geqq 0$ .
This kind of semigroup is called a semigroup of local type. In this case we
consider the operator $A$ satisfying the following conditions:

(1.1) $ A-\omega$ is dissipative,

(1.2) $R(I-\lambda A)\supset D(A)$ for $\lambda\in(0,1/\omega)$ .
Then, by similar arguments to the analysis in the sequel we can obtain a
semigroup $\{T(t)\}$ of local type on $\overline{D(A}$) and quite similar conclusions as above.
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\S 2. Abstract Cauchy Problem

A semigroup of contractions is closely related to the abstract Cauchy
problem, formulated as follows:

$(CP)$ Given an operator $A$ in $X$ and an element $x\in X$, find a function
$y(t;x)$ such that

(i) $y(t;x)$ is strongly absolutely continuous on every finite subinterval
of $[0, \infty$);

(ii) $y(O;x)=x$ and $(d/dt)y(t;x)\in Ay(t;x)$ for $a$ . $a$ . $t\geqq 0$ ; here, if $A$ is
single-valued, then $\in$ in the above problem is replaced by $=$ .

We call this an abstract Cauchy problem formulated for $A$ . The multi-
valued operator has been introduced so that each range $R(I-\lambda A)$ may include
$\overline{D(A})$ (see also Komura [8]). We are led to such a kind of problem in this
paper. $(CP)$ is related to the notion of semigroup in the following manner.

PROPOSITION 2.1. Let $A$ be a dissipative operator in X. And suppose that
for each $x\in D(A)$ there is a solution of the $(CP)$ formulated for A. Then there
is a uniquely determined semigroup $\{T(t)\}$ of contractions on $\overline{D(A}$) in such a
way that $y(t;x)=T(t)x$ for all $t\geqq 0$ and $\chi\in D(A)$ . In particular, if $A$ is single-
valued, then $A$ coincides with the weak infinitesimal generator of the $\{T(t)\}$ on
a dense subset of $D(A)$ . Conversely, if $A$ is the weak infinitesimal generator

of a semigroup $\{T(t)\}$ of contractions, then $A$ is dissipative and for each
$x\in D(A),$ $T(t)x$ is a unique solution of the $(CP)$ .

The proof is in Miyadera and Oharu [14]. We note that the first half
of this Proposition 2.1 is still true for an arbitrary Banach space.

REMARK 2.1. Let $A$ be a dissipative operator satisfying condition $(R)$ .
Then, $e$ . $g.$ , Theorem II described in \S 1 states that the semigroup obtained
by iteration of resolvents of $A$ gives a solution operator of $(CP)$ formulated
for a maximal dissipative extension $\tilde{A}$ of $A$ in $\overline{D(A}$). In particular, if $X$ is
uniformly convex and if $A$ is closed, then the semigroup gives a solution
operator of $(CP)$ formulated for the canonical restriction $A^{0}$ . In view of
these facts, we may restate the main results in \S 1 in terms of abstract
Cauchy problem. See also Kato [11; Remark 6.4].

EXAMPLE. Let $X=L^{2}(a, b)$ and $A$ be the operator defined in Example in
\S 1. We are concerned with the initial-value problem

(2.1) $u_{t}+uu_{s}=0$ , $u(O, s)=x(s)\in\Leftrightarrow C^{2}(a, b)$ .
If we restrict ourselves to the initial functions $x(s)$ such that $x\in D(A)$ , then
as an equation in the space $X,$ $(2.1)$ can be written

$(d/dt)u(t)=Au(t)$ , $u(O)=x$ .
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According to Theorem III or IV stated in \S 1, this problem has a unique
solution in $X$ if $x\in D(A)$ . The solution is $u(t)=T(t)x$, where $\{T(t)\}$ is a semi-
group on $D(A)$ generated by the $A$ . And for each $f\in x*,$ $\langle u(t), f\rangle$ is con-
tinuously differentiable and $\langle u(t), f\rangle_{t}=\langle Au(t), f\rangle$ (see Theorem 6.2 mentioned
later). This means that

$\int_{a^{b}}u(t, \sigma)f(\sigma)d\sigma-\int_{a^{b}}x(\sigma)f(\sigma)d\sigma=-\int_{0^{t}}\int_{a^{b}}u(\xi, \sigma)u_{\sigma}(\xi, \sigma)f(\sigma)d\sigma d\xi$ .

Since it is easily seen that both $u(t, s)$ and $u_{s}(t, s)$ are measurable and essen-
tially bounded as functions of two variables $s$ and $t$ , using Fubini’s theorem
we obtain

$\int_{a^{b}}\{u(t, s)-x(s)+\int_{0^{t}}u(\xi, s)u_{s}(\xi, s)d\xi\}f(s)ds=0$ .

This means that for each initial function $x(s)\in\rightarrow C^{2}(a, b)$ with $x\in D(A),$ $(2.1)$

has a weak solution $u(t, s)$ in the sense that

$u_{t}(t, s)+u(t, s)u_{s}(t, s)=0$ for $a$ . $a$ . $(t, s)$ ;

$\lim_{t-+0}\int_{a^{b}}|u(t, s)-x(s)|^{2}ds=0$ .

In order to show the unicity of semigroup of contractions, we restate
Proposition 2.1 in the following form.

PROPOSITION 2.2. Suppose that $A$ is dissipative. Then there is at most one
semigroup $\{T(t)\}$ of contractions on $\overline{D(A}$) such that for $x\in D(A)$ ,

(a) $T(t)x\in D(A)$ for $a$ . $a$ . $t$ ; and
(b) there is a Bochner measurable, locally integrable function $f(t;x)$ such

that $f(t;x)\in AT(t)x$ for almost all $t$ and $(d/dt)T(t)x=f(t;x)$ olmost everywhere.

\S 3. Pseudo-Resolvents

In this section we consider pseudo-resolvents of nonlinear operators in
X. Let $\{I_{\lambda} ; \lambda>0\}$ be a one-parameter family of contractions with the fol-
lowing properties: for every $\lambda,$ $\mu>0$ and $x\in D(I_{\lambda})$ ,

(i) $R[\frac{\mu}{\lambda}+(1_{\lambda}^{\mu}---)I_{\lambda}]\subset D(I_{\mu})$ ;

(ii) $I_{\lambda}x=I_{\mu}[\frac{\mu}{\lambda}x+(1\frac{\mu}{\lambda})I_{\lambda}x]$ .
We call this $\{I_{\lambda} ; \lambda>0\}$ a pseudo-resolvent of contractions. We say that a
pseudo-resolvent $\{I_{\lambda}\}$ has the property $(DM)$ , if there exists an $\eta>0$ such
that $I_{\eta}$ has the following property: if $D(I_{\eta})\ni x_{n}\rightarrow x$ weakly and $I_{\eta}x_{n}\rightarrow y$



534 S. OHARU

strongly imply that $x\in D(I_{\eta})$ and $y=I_{\eta}x$ .
REMARK 3.1. $R(I_{\lambda})$ is constant, for the resolvent equation (ii) implies

that $R(I_{\lambda})\subset R(I_{\mu})$ for every $\lambda,$ $\mu>0$ .
PROPOSITION 3.1. Let $A$ be a dissipative operator in $X$ and let $J_{\lambda}=(I-\lambda A)^{-1}$

for $\lambda>0$ . Then we have:
(a) $\{J_{\lambda} ; \lambda>0\}$ defines a pseudo-resolvent of contractions;
(b) if $A$ is closed, then each $R_{\lambda}$ is closed; if $A$ is demi-closed, then $\{J_{\lambda}\}$

has the property $(DM)$ ;
(c) if $A$ satisfies $(R)$ , then for $x\in D(A),$ $J_{\lambda}x$ is strongly continuous in $\lambda>0$

and $\lim_{\lambda\rightarrow+0}J_{\lambda}x=x$ .
PROOF. (a) Take any $x\in R_{\lambda}$ . Then we have that

$R_{\mu}\supset(I-\mu A)J_{\lambda}x=J_{\lambda}x-\frac{\mu}{\lambda}\lambda AJ_{\lambda}x\ni\frac{\mu}{\lambda}x+(1-\frac{\mu}{\lambda})J_{\lambda}x$ ,

from which it follows that $R[\frac{\mu}{\text{{\it \‘{A}}}}+(1\frac{\mu}{\lambda})J_{\lambda}]\subset R_{\mu}$ and

(3.1) $J_{\lambda}x=J_{\mu}[\frac{\mu}{\lambda}+(1-\frac{\mu}{\lambda})J_{\lambda}]x$ .

(b) Fix any $\lambda>0$ . Suppose that $A$ is closed, $y_{n}\in R_{\lambda}$ , and $y_{n}\rightarrow y\in X$

strongly. Then $x_{n}=J_{\lambda}y_{n}\rightarrow x\in X$, and so, $Ax_{n}\ni(x_{n}-y_{n})/\lambda\rightarrow(x-y)/\text{\‘{A}}$ . Thus
$(x-y)/\lambda\in Ax$ , which means that $y\in R_{\text{{\it \‘{A}}}}$ . Next, assume that $A$ is demi-closed,
$y_{n}\in R_{\lambda},$ $y_{n}\rightarrow y$ weakly, and $x_{n}=J_{\lambda}y_{n}\rightarrow x$ strongly. Then $ Ax_{n}\ni(x_{n}-y_{n})/\lambda\rightarrow$

$(x-y)/\lambda$ weakly. Thus $x\in D(A)$ and $(x-y)/\lambda\in Ax$, that is, $J_{\lambda}y=x$.
(c) Take any $x\in D(A)$ . Since $J_{\mu}\in Cont(R_{\mu})$ for $\mu>0$ , and since { $J_{\lambda}x$ ;

$0<\lambda<\epsilon\}$ is bounded, $J_{\lambda}x\rightarrow J_{\mu}x$ as $\lambda\rightarrow\mu$ by (3.1). The last part is clear from
$\Vert J_{\lambda}x-x\Vert\leqq\lambda\Vert|Ax\Vert|$ . Q. E. D.

We obtain the converse of the above Proposition 3.1.
PROPOSITION 3.2. Let $\{I_{\lambda} ; \lambda>0\}$ be a pseudo-resolvent of contractions.

Then there is a dissipative operator $A$ , defined on $D\equiv R(I_{\lambda})$ , such that $I_{\lambda}=$

$(I-\lambda A)^{-1}$ for every $\lambda>0$ . If a $D(I_{\lambda})$ is closed, then $A$ is closed. And if the
$\{I_{\lambda} ; \lambda>0\}$ has the property $(DM)$ , then $A$ is demi-closed.

PROOF. Since $R(I_{\lambda})$ is constant by Remark 3.1, we write $D$ for it. We
first show that for each $\lambda,$ $\mu>0$ the following relation holds:

(3.2) $\lambda^{-1}(x-I_{\lambda}^{-1}x)=\mu^{-1}(x-I_{\ell}^{-1}x)$ for $x\in D$ .
For this purpose we show that

(3.3) $\lambda^{-1}(x-I_{\lambda}^{-1}x)\subset\mu^{-1}(x-I_{\mu}^{-1}x)$

for each $x\in D$ and $\lambda,$ $\mu>0$ . Fix any $\lambda>0$ and $\mu>0$ . Then, operating $I_{u,}^{-1}$ on
both sides of the resolvent equation (ii), we have that $I_{\mu}^{-1}I_{\lambda}y\ni(\mu/\lambda)y+$
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$(1-\mu/\lambda)I_{\lambda}y$ for $y\in R_{\lambda}$ , that is, $\lambda^{-1}(I_{\lambda}y-y)\in\mu^{-1}(I-I_{\mu}^{-1})I_{\lambda}y$ . Hence, for any
$\chi\in D$ and $y\in D(I_{\lambda})$ with $I_{\lambda}y=x$, we have $\lambda^{-1}(x-y)\in\mu^{-1}(I-I_{\mu}^{-1})x$, which implies
(3.3). We then define an operator $A$ on $D$ by $Ax=\lambda^{-1}(x-I_{\lambda}^{-1}x)$ for $\chi\in D$ . It
is easy to see that $I_{\lambda}=(I-\lambda A)^{-1}$ . Since $(I-\lambda A)^{-1}\in Cont(D(I_{\lambda}))$ for $\lambda>0$ ,
Proposition 1.1 yields that $A$ is dissipative. The remaining part of the asser-
tions is easily seen. Q. E. D.

REMARK 3.2. Assume that each $I_{\lambda}$ of a pseudo-resolvent $\{I_{\lambda} ; \lambda>0\}$ be-
longs to Cont (X). Then the operator $A$ obtained by Proposition 3.2 is, by
definition, an m-dissipative operator. So, $A$ is demi-closed. Hence, $\{I_{\lambda}\}$ has
the property $(DM)$ . Also, $A=A_{c}$ in this case.

Next, we present an extension of Proposition 3.2 (see also Brezis and
Pazy [1; Theorem 2.3]).

PROPOSITION 3.3. Let $\{I_{\lambda} ; \lambda>0\}$ be $a$ one-parameter family of single-valued
operators such that the relations (i) and (ii) hold for each $\lambda,$

$\mu$ with $ 0<\mu\leqq\lambda$

and the following condition is satisfied;
(iii) for each $\lambda>0$ and $x,$ $y\in D(I_{\lambda})$ ,

$\Vert I_{\lambda}x-I_{\lambda}y\Vert^{2}\leqq re\langle x-y, F(I_{\lambda}x-I_{\lambda}y)\rangle$ .
Then there is a dissipative operator $A$ such that $D(A)=\bigcup_{\lambda>0}R(I_{\lambda})$ and $(I-\lambda A)^{-1}x$

$=I_{\lambda}x$ for $x\in D(I_{\lambda})$ and $\lambda>0$ .
PROOF. For each $\lambda>0$ we define an operator $A(\lambda)$ by $A(\lambda)x=\lambda^{-1}(x-I_{\lambda}^{-1}x)$

for $x\in R(I_{\lambda})$ . Then by the same argument as in the proof of (3.3), we see
that

(3.4) $R(I_{\lambda})\subset R(I_{\mu})$ and $A(\lambda)\subset A(\mu)$ for $ 0<\mu\leqq\lambda$ .
Let $A=\bigcup_{\lambda>0}A(\lambda)$ . Then it follows from (3.4) and (iii) that $A$ is dissipative.

Also, for $\lambda>0$ , we have

(3.5) $x-\lambda Ax\supset x-\lambda A(\lambda)x=I_{\lambda}^{-1}x$ for $x\in R(I_{\lambda})$ ,

so it follows that $(I-\lambda A)^{-1}y=I_{\lambda}y$ for $y\in D(I_{\lambda})$ . Q. E. D.
COROLLARY 3.1. Let $K$ be a convex set and let $\{I_{\lambda} ; \lambda>0\}$ be $a$ one-parameter

family of single-valued operators such that $I_{\lambda}K\subset K$ for every $\lambda>0$ and (ii) and
(iii) hold for every pair $\lambda,$

$\mu$ with $ 0<\mu\leqq\lambda$ and $x\in K$. Then there is a dissipa-
tive operator $A$ such that $D(A)=_{\lambda>0}UI_{\lambda}K,$

$R(I-\lambda A)\supset K\supset coD(A)$ for $\lambda>0$, and
$(I-\lambda A)^{-1}x=I_{\lambda}x$ for $\lambda>0$ and $x\in K$.

PROOF. Set $\hat{I}_{\lambda}=I_{\lambda}|_{K}$ for $\lambda>0$ . Then $\{\hat{I}_{\lambda} ; \lambda>0\}$ satisfies all of the as-
sumptions of Proposition 3.3. We then let $A$ be the dissipative operator ob-
tained by Proposition 3.3. Then (3.5) states that $R(I-\lambda A)\supset R(I-\lambda A(\lambda))\supset K$

$\supset UR(I_{\lambda})=D(A)$ for $\lambda>0$ . Q. E. D.
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\S 4. Approximation of Operators

Let $A$ be a dissipative operator in $X$. Then by Proposition 1.1, $J_{\lambda}=(I-\text{{\it \‘{A}}} A)^{-1}$

exists on $R_{\lambda}=R(I-\lambda A)$ for each $\lambda>0$ . We then define a single-valued opera-
tor $A_{\eta}$ on $R_{\eta}$ for $\eta>0$ , by

(4.1) $A_{\eta}x=\eta^{-1}[J_{\eta}x-x]$ , $x\in R_{\eta}$ .
It is easy to see that $\Vert A_{\eta}\Vert_{Li_{f}(R\eta^{)}}\leqq 2/\eta$ and that each $A_{\eta}$ is dissipative. In this
section we shall give some properties of $A_{\eta}$ and some of the basic properties
of closed or demi-closed dissipative operators. First, we present the next
lemma which is proved in a similar way to Kato [11 ; \S 4] or Crandall and
Pazy [2; Lemma 2.3].

PROPOSITION 4.1. Let $A$ be a demi-closed operator in $X,$ $\{x_{n}\}\subset D(A)$ , and
$x_{n}\rightarrow x_{0}$ strongly as $ n\rightarrow\infty$ . Then we have:

(a) Let $y_{n}\in Ax_{n}$ for each $n$ and $\{y_{n}\}$ be bounded. Let $V$ be the set of all
weak cluster points of $\{y_{n}\}$ . Then $x_{0}\in D(A),$ $ V\neq\emptyset$ and $V\subset Ax_{0}$ . In particular,
if $A$ is single-valued, then $Ax_{0}=w-\lim_{n-}y_{n}$ .

(b) Assume that $X$ is uniformly convex and that the canonical restriction
$A^{0}$ is single-valued. If $y_{n}\in Ax_{n}$ for each $n,$ $x_{0}\in D(A^{0})$ and $\lim\sup\Vert y_{n}\Vert\leqq\Vert A^{0}x_{0}\Vert$ ,
then $A^{0}x_{0}=\lim y_{n}$ .

Next, referring to Brezis and Pazy [1; \S 2], we obtain
PROPOSITION 4.2. Let $X$ be uniformly convex and $A$ be a closed dissipative

operator satisfying $(R)$ . Let $\tilde{A}$ be a maximal dissipative extension of $A$ in
$\overline{D(A})$ . Then $D(\tilde{A})=D(A)=D(A^{0})$ and $\tilde{A}^{0}=A_{c}^{0}=A^{0}$ .

PROOF. We first note that $\tilde{A}$ is demi-closed, $\tilde{A}^{0}$ is single-valued and that
$J_{\text{{\it \‘{A}}}}x=(I-\lambda\tilde{A})^{-1}x\rightarrow x$ strongly as $\lambda\rightarrow+0$ for $x\in D(\tilde{A})$ . And $A_{c}^{0}$ is also single-
valued. Let $\eta_{k}\downarrow 0,\tilde{J}_{k}\equiv\tilde{J}_{\eta_{k}}$ , and $\tilde{A}_{k}\equiv\eta_{k}^{-1}(\tilde{J}_{k}-I)$ . Then by Proposition 4.1 (b),

(4.2) $\tilde{A}^{0}x=\varliminf_{k}\tilde{A}_{k}x$ for $x\in D(\tilde{A})$ .

Now take any $z\in D(\tilde{A})$ . Then by the assumption there are $x_{k}\in D(A)$ and
$y_{k}\in Ax_{k}$ such that $z=x_{k}-\eta_{k}y_{k}$ . Since $y_{k}=\tilde{A}_{k}z\in\tilde{A}x_{k}$ , it follows that $x_{k}=\tilde{J}_{k}z$

$\rightarrow z$ strongly. Combining with (4.2), the closedness of $A$ implies that $z\in D(A)$

and $\tilde{A}^{0}z\in Az$ . But then $Az\subset A_{c}z\subset\tilde{A}z$, so we see that $\tilde{A}^{0}z=A_{c}^{0}z\in A^{0}z$ . Also,
$\Vert|A^{0}z\Vert|\leqq\Vert\tilde{A}^{0}z\Vert$ . Hence the relation $v\in A^{0}z\subset\tilde{A}z$ states that $v=\tilde{A}^{0}z$, because
$\tilde{A}^{0}$ is single-valued. This means that $A^{0}$ is also single-valued. Q. E. D.

That $A^{0}$ is single-valued was suggested by Mr. J. Chambers.
Let $\eta_{k}\downarrow 0,$ $J_{k}\equiv J_{\eta_{k}}$ , and $A_{k}\equiv A_{\eta_{k}}$ . Then the sequence $\{A_{k}\}$ approximates

$A$ in the following sense.
COROLLARY 4.1. Let $A$ be a dissipative operator satisfying $(R)$ . For each

$\chi\in D(A)$ let $V(x)$ be the set of all weak cluster points of $\{A_{k}x\}$ . Then we have:
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(a) If $A$ is demi-closed, then $ V(x)\neq\emptyset$ and $V(x)\subset A^{0}x$. If $A$ is demi-closed
and if $A^{0}$ is single-valued, then $A^{0}x=w-\lim A_{k}x$ .

(b) Let $X$ be uniformly convex. If $A$ is closed, then $A^{0}x=\lim A_{k}x$ for
$x\in D(A)$ .

PROOF. (a) For $x\in D(A),$ $\lim J_{k}x=x$ and $\Vert A_{k}x\Vert\leqq\Vert|Ax\Vert|$ . It then follows
from Proposition 4.1 (a) that $V(x)cAx$ . Let $A_{k^{\prime}}x\rightarrow y$ weakly. Then we see
that $\Vert y\Vert\leqq\Vert|Ax\Vert|$ , which means that $V(x)\subset A^{0}x$ . If $A^{0}$ is single-valued, then
each $V(x)$ is a singleton, and so the whole sequence $\{A_{k}x\}$ converges weakly
to $A^{0}x$ for $x\in D(A)$ . (b) is an immediate consequence of Proposition 4.2 and
the convergence (4.2), since $\tilde{A}_{k}x=A_{k}x$ for each $x\in D(A)$ . Q. E. D.

REMARK 4.1. As proved in Proposition 4.4, $(I-\lambda A_{k})^{-1}x\rightarrow J_{\lambda}x$ strongly as
$ k\rightarrow\infty$ , for $\lambda>0$ and $x\in D(A)$ . This shows that $\{A_{k}\}$ approximates $A$ in a
generalized sense.

REMARK 4.2. Let $A$ be a demi-closed dissipative operator satisfying $(R)$ .
Let $\tilde{A}$ be any maximal dissipative extension of $A$ in $\overline{D(A}$), and $\tilde{J}_{\lambda}=(I-\lambda\tilde{A})^{-1}$

for $\lambda>0$ . Then $\tilde{\gamma_{\lambda}}\supset J_{\lambda}$ and $\tilde{A}\supset A_{c}\supset A$ . Now fix an $x\in D(A)$ , then $\Vert A_{\lambda}x\Vert$

$=\lambda^{-1}\Vert J_{\lambda}x-x\Vert=\lambda^{-1}\Vert\tilde{J}_{\lambda}x-\tilde{J_{\lambda}}(x-\lambda y)\Vert\leqq\Vert y\Vert$ for $y\in\tilde{A}x$ and $\lambda>0$ . Hence, $\Vert A_{\lambda}x\Vert$

$\leqq\Vert|\tilde{A}x\Vert|\leqq\Vert|\overline{co}Ax\Vert|\leqq\Vert|Ax\Vert|$ for $x\in D(A)$ and $\lambda>0$ . Let $J_{\lambda_{i}}x\rightarrow x$ strongly and
$A_{\lambda_{i}}x\rightarrow y$ weakly. Then Corollary 4.1 (a) yields that $y\in Ax$, and $\Vert y\Vert\leqq$

lim $inf\Vert A_{\lambda_{i}}x\Vert$ . This means that $\Vert|Ax\Vert|=\Vert|\tilde{A}x\Vert|=\Vert|A_{c}x\Vert|=\lim_{\lambda\rightarrow+0}\Vert A_{\lambda}x\Vert$ . Since
$Axc\overline{co}Ax\subset\tilde{A}x$ for $x\in D(A)$ , it follows that $ A^{0}x\neq\emptyset$ and $A^{0}x\subset A_{c}^{0_{X}}\subset\tilde{A}^{0}x$ for
$x\in D(A)$ .

In the following, we consider the resolvent of $A_{\eta}$ .
PROPOSITION 4.3. Let $A$ be a dissipative operator, $J_{\lambda}=(I-\lambda A)^{-1}$ for $\lambda>0$

and $A_{\eta}$ be defined by (4.1). Then for every $\eta,$ $h>0,$ $(I-hA_{\eta})^{-1}$ exists as an
operator from $R_{\eta+h}$ onto $R_{\eta}$ , and

(4.3) $(I-hA_{\eta})^{-1}x=\frac{h}{\eta+h}J_{\eta+h}x+\frac{\eta}{\eta+h}x$ , for $x\in R_{\eta+h}$ .
PROOF. Fix any pair $\eta,$ $h>0$ . Then for $x\in R_{\eta+h}$ ,

$\frac{h}{\eta+h}J_{\eta+h}x+\frac{\eta}{\eta+h}x=J_{\eta+h}x-\frac{\eta}{\eta+h}[J_{\eta+h}x-x]\in(I-\eta A)J_{\eta+h}xcR_{\eta}$ ,

and for $x\in R_{\eta}$ ,

$(I-hA_{\eta})x=\frac{\eta+h}{\eta}x-\frac{h}{\eta}h^{\chi}$

$=J_{\eta}x-\frac{\eta+h}{\eta}[J_{\eta}x-x]\in(I-(\eta+h)A)J_{\eta}xcR_{\eta+h}$ ,

where we used the relation $h^{-1}[J_{h}x-x]\in AJ_{h}x$ . Using these relations, we
obtain
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$(I-hA_{\eta})[\frac{h}{\eta+h}J_{\eta+h}x+\frac{\eta}{\eta+h}x]$

$=\frac{\eta+h}{\eta}[\frac{h}{\eta+h}J_{\eta+h}x+\frac{\eta}{\eta+h}x]-\frac{h}{\eta}J_{\eta}(I-\eta A)J_{\eta+h}x=x$

for $x\in R_{\eta+h}$ ; and

$[\frac{h}{\eta+h}J_{\eta+n}+\frac{\eta}{\eta+h}I](I-hA_{\eta})x$

$=\frac{h}{\eta+h}J_{\eta+h}(I-(\eta+h)A)J_{\eta}x+\frac{\eta}{\eta+h}[\frac{\eta+h}{\eta}x-\frac{h}{\eta}J_{\eta}x]=x$ ,

for $x\in R_{\eta}$ . Thus $(I-hA_{\eta})^{-1}$ exists as an operator from $R_{\eta+h}$ onto $R_{\eta}$ and
hence (4.3) holds. Q. E. D.

PROPOSITION 4.4. Let $A$ be a dissipative operator in $X$ satisfying $(R_{co})$

(stated in Remark 1.1). Let $U_{\eta}=A_{\eta}|_{coD(A)}-$ and $J_{h}(\eta)=(I-hU_{\eta})^{-1}$ for $\eta,$ $h>0$ .
Then $R(I-hU_{\eta})\supset\overline{co}D(A)=D(U_{\eta})$ and $J_{h}(\eta)\in Cont(R(I-hU_{\eta}))$ for $\eta,$ $h>0$ .
Furthermore, for $\chi\in D(A),$ $h>0$ and $n$ ,

(4.4)
$\lim_{\eta\rightarrow+0}J_{h}(\eta)^{n}x=J_{n^{\chi}}^{n}$ .

PROOF. Under $(R_{co}),$ $(4.3)$ implies $thatJ_{h}(\eta)[\overline{co}D(A)]\subset\overline{co}D(A)$ for $\eta,$ $h>0$ .
Hence, we see that $R(I-hU_{\eta})\supset\overline{co}D(A)$ . Since $U_{\eta}$ is dissipative, $J_{h}(\eta)$

$\in Cont(R(I-hU_{\eta}))$ . Hence, the iterations $J_{h}(\eta)^{n},$ $n=1,2,$ $\cdots$ , are well-defined
on $R(I-hU_{\eta})$ and

(4.5) $\Vert U_{\eta}J_{h}(\eta)^{n}x\Vert\leqq\Vert|Ax\Vert|$ for $x\in D(A)$ .

Take $x\in D(A)$ , then by (4.3), $J_{h}(\eta)x-J_{h}x=\frac{h}{\eta+h}J_{\eta+h}x+\frac{\eta}{\eta+h}x-J_{h}x$ for $h,$ $\eta>0$ .

Since the right side is estimated by $\frac{h}{\eta+h}\Vert J_{\eta+h}x-J_{h}x\Vert+\frac{\eta}{\eta+h}\Vert x-J_{h}x\Vert$ ,

Proposition 3.1 (c) implies that $\lim_{\eta\rightarrow+0}J_{h}(\eta)x=J_{h}x$ . $SinceJ_{h}(\eta)\in Cont(R(I-hU_{\eta}))$ ,

(4.4) holds for each positive integer $n$ . Q. E. D.

\S 5. Construction of the Semigroups

In this section, we construct the semigroup determined by a dissipative
operator $A$ which satisfies the condition $(R)$ .

LEMMA 5.1. Let $A$ be a dissipative operator in $X$ satisfying $(R)$ . If $x\in D(A)$

and $T>0$ , then

(5.1) $y(t;x)=\lim_{\lambda\rightarrow+0}(I-\lambda A)^{-[t/\lambda]}x$

exists uniformly for $t\in[0, T]$ .
PROOF. Set $J_{\lambda}=(I-\lambda A)^{-1}$ and $A_{\lambda}=\lambda^{-1}(J_{\lambda}-I),$ $\lambda>0$ . Let $x\in D(A)$ and
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$T>0$ . We note that

(5.2) $\Vert A_{h}J_{h}^{m}x\Vert\leqq\Vert|Ax\Vert|$ for $h>0$ and $m$ .
Now, assume that $n\lambda\leqq h$ and $hm\leqq T$, where $\lambda,$ $h>0$ and $m,$ $n$ are integers.

Let $k\leqq m$ . Since $J_{\lambda}^{nk}x-J_{\lambda}^{n(k-1)}x=\lambda\sum_{p=0}^{n-1}A_{\lambda}J_{\lambda}^{p}J_{\lambda}^{n(k-1)}x$, we have that $(J_{\lambda}^{nk}x-J_{\lambda}^{n(k-1)}x)$

$-(J_{h}^{k}x-J_{h}^{k-1}x)=\lambda\sum_{p=0}^{n-1}\{A_{\lambda}J_{\lambda}^{p}J_{\lambda}^{n(k-1)}x-A_{h}J_{h}^{k-1}x\}+(n\lambda-h)A_{h}J_{h}^{k-1}x$ . Thus we can
write

\langle ( $J$ ft $kx-J_{\lambda}^{n(k-1)}x)-(J_{h}^{k}x-J_{h}^{k-1}x),$ $ F(J_{\lambda}^{nk}x-J_{h}^{k}x)\rangle$

$=\lambda\sum_{p=0}^{n-1}\langle A_{\lambda}J_{\lambda}^{n(k-1)+p}x-A_{h}J_{h}^{k-1}x, F(J_{\lambda}^{n(k-l)+p+1}x-J_{h}^{k}x)\rangle$

$+\lambda\sum_{=l)0}^{n-1}\langle A_{\lambda}J_{\lambda}^{n(k-1)+p}x-A_{h}J_{h}^{k-1}x, F(J_{h}^{nk}x-J_{h}^{k}x)-F(J_{\lambda}^{n(k-1)+p+1}x-J_{h}^{k}x)\rangle$

$+(n\lambda-h)\langle A_{h}J_{h}^{k-1}x, F(J_{\lambda}^{nk}x-J_{h}^{k}x)\rangle$

$\equiv I_{1}+I_{2}+I_{a}$ .
We now estimate each term. Since $A$ is dissipative, $I_{1}\leqq 0$ . Also, by using
(5.2) we have that

$\Vert I_{2}\Vert\leqq 2\Vert|Ax\Vert|\lambda\sum_{p=0}^{n-1}\Vert F(J_{\lambda}^{nk}x-J_{h}^{k}x)-F(J_{\lambda}^{n(k-1)+p+1}x-J_{h}^{k}x)\Vert$ .

Employing the uniform continuity of $F$ on bounded sets, we can find a func-
tion $\epsilon(h)\equiv\epsilon(h;x, T)$ such that $\epsilon(h)\rightarrow 0$ as $h\downarrow 0$, and

$\sup_{n\lambda\leqq h,\hslash k\leqq\tau}\Vert F(J_{\lambda}^{nk}x-J_{h}^{k}x)-F(J_{\lambda}^{n(k-1)+p+1}x-J_{\hslash}^{k}x)\Vert\leqq\epsilon(h)$ .

Note that $\Vert J_{\lambda}^{n(k-1)+p+1}x-J_{\lambda}^{nk}x\Vert=0(h)$ as $h\downarrow 0$ . Also,

$\Vert I_{3}\Vert\leqq|n\lambda-h|\Vert|Ax\Vert|\Vert J_{\lambda}^{nk}x-J_{h}^{k}x\Vert$ .
Consequently,

$\Vert J_{\lambda}^{nm}x-J_{h}^{m}x\Vert^{2}=\sum_{k=1}^{m}\{\Vert J_{\lambda}^{nk}x-J_{h}^{k}x\Vert^{2}-\Vert J_{\lambda}^{n(k-1)}x-J_{h}^{k-1}x\Vert^{2}\}$

$\leqq\sum_{k=1}^{m}2$ re $\langle(J_{\lambda}^{nk}x-J_{h}^{k}x)-(J_{\lambda}^{n(k-1)}x-J_{h}^{k-1}x), F(J_{\lambda}^{nk}x-J_{h}^{k}x)\rangle$

$\leqq\psi(\lambda, h)$ ,

where $\psi(\lambda, h)\equiv const(x, T)(h+\epsilon(h)+m|\lambda n-h|)$ and note that $\Vert x\Vert^{2}-\Vert y\Vert^{2}\leqq$

$2$ re $\langle x-y, F(x)\rangle$ . Hence, for each $t\in[0, T]$ ,

$\Vert J_{\lambda}^{n\mathfrak{c}t/h1}x-J_{h}^{[t/h]}x\Vert^{2}\leqq\psi(\lambda, h)$ .
First, take $\lambda=\epsilon_{\mu}=2^{-\mu},$ $h=\epsilon_{\nu}=2^{-\nu},$ $m=[t/\epsilon_{v}]$ and $n=2^{\mu-\nu}$ . In this case
$\psi(\epsilon_{\mu}, \epsilon_{\nu})=const(x, T)(\epsilon_{\nu}+\epsilon(\epsilon_{\nu}))\rightarrow 0$ as $\nu\rightarrow\infty$ and $|[t/\epsilon_{\mu}]-2^{\mu-\nu}[t/\epsilon_{\nu}]|\leqq 2^{u-\nu}$ . So,
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we see that (by (5.2)) $\Vert J_{e}^{[t/\epsilon_{\mu}]}\mu x-J_{\epsilon}^{2}\mu x\Vert=0(\epsilon_{\nu})$ , and hence $\Vert J_{\text{\’{e}}_{\mu}}^{[t/e_{\mu}]}x-J_{e_{\nu}}^{[t/e_{\nu}]}x\Vert$

$\leqq 0(\epsilon_{\nu})+\sqrt{\psi(\epsilon_{\mu},\epsilon_{\nu}})$ . This means that $\{J_{e_{\nu}}^{[t/e_{\nu}]}x\}$ is a Cauchy sequence. We then
set

(5.3)
$y(t;x)=\varliminf_{\nu}J_{\text{\’{e}}_{\nu}}^{[t/e_{\nu}]}x$ , $t\in[0, T]$ .

Finally, we show that the limit is independent of the sequence chosen. Let
$0\leqq t<T$, and $0<\lambda\leqq h<T-t$ . Taking, this time $m=[t/h]+1$ and $n=$

$[\frac{[t/\lambda]}{[t/h]+1}]$ , we observe that

(5.4) $\left\{\begin{array}{l}mh\leqq t+h, n\lambda\leqq h, |t-n\lambda m|\leqq 2\lambda+T\lambda/h,\\|[t/\lambda]-nm|\lambda\leqq 3\lambda+T\lambda/h, m|n\lambda-h|\leqq 2h+2\lambda+T\lambda/h.\end{array}\right.$

Again take $\lambda=\epsilon_{\nu}$ . Using (5.4) and letting $\nu\rightarrow\infty$ , we see that $\psi(\epsilon_{\nu}, h)$

$\rightarrow const(x, T)(3h+\epsilon(h))$ . Therefore, (5.3) and (5.4) imply that

(5.5) $\Vert y(t;x)-J_{h}^{[t/h]}x\Vert\leqq const(x, T)\sqrt{h+\epsilon(h)}$ .
Q. E. D.

LEMMA 5.2. Let $A$ be a dissipative operator in $X$ satisfying $(R)$ .
(a) $\Vert y(t;x_{1})-y(t;x_{2})\Vert\leqq\Vert x_{1}-x_{2}\Vert$ for $t\geqq 0$ and $x_{1},$ $x_{2}\in D(A)$ .
(b) For every $x\in D(A)$ ,

$\Vert y(t;x)-y(t$‘ ; $x)\Vert\leqq|t-t^{\gamma}|\Vert|Ax\Vert|$ for $t,$ $t^{\gamma}\geqq 0$ .

PROOF. (a) Since $J_{\text{{\it \‘{A}}}}\in Cont(R_{\lambda})$ for $\lambda>0,$ $(a)$ follows from (5.3).
(b) For $x\in D(A),$ $(5.2)$ yields that $\Vert J_{h}^{[t/h]}x-]_{h}^{[t’/h]}x\Vert\leqq|t-t^{\prime}+h|\Vert|Ax\Vert|$ for $t$ ,

$t^{\prime}\geqq 0$ . Letting $h\rightarrow+0$ , we have (b).

Consequently, we have the following main theorem.
THEOREM 5.1. If $A$ is a dissipative operator in $X$ satisfying $(R)$ , then there

exists a semigroup $\{T(t)\}$ on $\overline{D(A}$) such that

(5.6) $T(t)x=\lim_{\lambda-+0}(I-\lambda A)^{-[t/\lambda]}x$ for $t\geqq 0$ and $x\in D(A)$

and the convergence is uniform with respect to $t$ in every finite interval.
PROOF. In view of Lemma 5.1, set $T(t)x=y(t;x)$ for $t\geqq 0$ and $x\in D(A)$ .

First, by using Lemma 3.2 (a), we can obtain a unique extension of $T(t)$ to
$\overline{D(A})$ by continuity, we denote this extension by the same symbol $T(t)$ . Then
each $T(t)$ maps $\overline{D(A}$) into itself and $ T(t)\in$ Cont $(\overline{D(A}))$ . To establish the semi-
group property ; first take $x\in D(A)$ and $t,$ $s\geqq 0$ with $t+s\leqq T$. Let $\epsilon>0$ and
take $z\in D(A)$ such that $\Vert z-T(s)x\Vert<\epsilon$ . Then, $\Vert T(t+s)x-T(t)T(s)x\Vert\leqq\Vert T(t+s)x$

$-]_{\lambda}^{[(t+S)/\lambda]}x\Vert+\Vert J_{\lambda}^{[(t+s)/\lambda]}x-J_{\lambda}^{[t/\lambda]+[s/\lambda]}x\Vert+\Vert J_{\lambda}^{[t/\lambda]+[s/\lambda]}x-J_{\lambda}^{[t/\lambda]}z\Vert+\Vert J_{\lambda}^{[t/\lambda]}z-T(t)z\Vert+\Vert T(t)z$

$-T(t)T(s)x\Vert\leqq\Vert T(t+s)x-J_{\lambda}^{[(t+s)/\lambda]}x\Vert+2\lambda\Vert|Ax\Vert|+\Vert J_{\lambda}^{[s/\lambda]}x-z\Vert+\Vert J_{\lambda^{t/\lambda j}}^{I}z-T(t)z\Vert+\Vert z-$
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$ T(s)x\Vert$ . Therefore, letting $\lambda\rightarrow+0$ , we have $\Vert T(t+s)x-T(t)T(s)x\Vert\leqq 2\epsilon$ . This
means that $\{T(t);t\geqq 0\}$ has the semigroup property. (5.6) was established in
Lemma 5.1. Q. E. D.

REMARK 5.1. Let $A$ be a dissipative operator in $X$ satisfying $(R_{cl})$ . Then
$J_{\lambda}^{[t/\lambda]}\in Cont(\overline{D(A}))$ for $\lambda>0$ and $t\geqq 0$ . Hence, the convergence (5.6) holds for
all $t\geqq 0$ and $x\in\overline{D(A}$).

REMARK 5.2. (a) Let $A$ be a dissipative operator satisfying $(R)$ , and
$\{T(t)\}$ be the corresponding semigroup obtained by Theorem 5.1. Let
$\tilde{A}\in e[A;\overline{D(A})]$ and put $\tilde{R}_{\text{{\it \‘{A}}}}=R(I-\lambda\tilde{A})$ and $\tilde{J}_{\lambda}=(I-\lambda\tilde{A})^{-1}$ , then $\tilde{J}_{\lambda}\supset J_{\lambda}$ for $\lambda>0$ .
Now, if $\tilde{A}$ is maximal dissipative on $\overline{D(A}$), then by Remark 1.1 (a) we have
that $\tilde{R}_{\lambda}\supset\overline{D(A}$) $\supset D(\tilde{A})$ for $\lambda>0$ . So that $\tilde{A}$ satisfies $(R_{cl})$ . Thus, Lemma 5.1
and Remark 5.1 yield that

(5.7) $T(t)x=\lim_{\lambda-+0}(I-\lambda\tilde{A})^{-[t/\lambda]}x$

for $t\geqq 0$ and $x\in\overline{D(A}$).
(b) Let $A$ be a dissipative operator satisfying $(R_{ct})$ . Then for $\tilde{A}\in \mathcal{E}[A$ ;

$\overline{D(A})],\tilde{R}_{\lambda}\supset\overline{D(A)}\supset D(\tilde{A})$ for $\lambda>0$ , and hence we have the same conclusion
(5.6) for $t\geqq 0$ and $x\in\overline{D(A}$).

In view of these results, we obtain the following
THEOREM 5.2. Let $A$ be a dissipative operator in $X$ satisfying $(R_{ct})$ . Then

there is a semigroup $\{T(t)\}$ of contractions on $\overline{D(A}$) such that the convergence
(5.7) holds for $\tilde{A}\in \mathcal{E}[A;\overline{D(A})]$ .

Next, in terms of pseudo-resolvent, we can obtain some variations of
Theorem 5.1.

COROLLARY 5.1. Let $ScX$, and $\{I_{\lambda} ; \lambda>0\}$ be a pseudo-resolvent of con-
tractions from $S$ into itself. Then there is a semigroup $\{T(t)\}$ of contractions
on $\overline{R(I_{\lambda})}$ such that $T(t)x=\lim_{\lambda-0}I_{\lambda}^{[t/\lambda]}x$ for each $t\geqq 0$ and $x\in R(I_{\lambda})$ .

The proof is a simple consequence of Theorem 5.1. For, Proposition 3.2
implies that $\{I_{\lambda}\}$ determines a dissipative operator $A$ on $D\equiv R(I_{\lambda})$ in such a
way that $I_{\text{{\it \‘{A}}}}=(I-\lambda A)^{-1}$ . The assumptions yield that $A$ satisfies condition $(R)$

and therefore, by Theorem 5.1 we have the assertions.
COROLLARY 5.2. Let $K\subset X$ be a convex set and $\{I_{\lambda} ; \lambda>0\}$ be $a$ one-para-

meter family of single-valued operators such that $I_{\lambda}K\subset K$ for every $\lambda>0$ and
such that

(5.8) $I_{\lambda}x=I_{\mu}[\frac{\mu}{\lambda}x+(1-\frac{\mu}{\lambda})I_{\lambda}x]$ ,

(5.9) 1 $ I_{\text{{\it \‘{A}}}}x-I_{\lambda}y\Vert^{2}\leqq$ re $\langle x-y, F(I_{\lambda}x-I_{\lambda}y)\rangle$ ,

for $\lambda,$

$\mu$ with $ 0<\mu\leqq\lambda$ and $x\in K$. Then there exists a semigroup $\{T(t)\}$ of
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contractions on $\overline{\bigcup_{\lambda>0}I_{\lambda}K}$ such that $T(t)x=\lim_{\lambda\rightarrow+0}I_{\lambda}^{[t/\lambda]}x$ for $t\geqq 0$ and $x\in\bigcup_{\lambda>0}I_{\lambda}K$.
The proof is easily seen from Corollary 3.1 and Theorem 5.1, in the

similar way to the proof of Corollary 5.1.
Finally, we present a result on the semigroups determined by the approx-

imate operators $A_{\eta}$ .
COROLLARY 5.3. Let $A$ be a dissipative operator in $X$ satisfying $(R_{co})$ , and

$\{T(t)\}$ be the corresponding semigroup on $\overline{D(A}$). Let $A_{\eta},$ $\eta>0$, be the operators
defined by (4.1). Then we have:

(a) Let $U_{\eta}\equiv A_{\eta}|_{coD(A)}-$ for $\eta>0$, then

$T_{\eta}(t)x=\lim_{\lambda\rightarrow+0}(I-\lambda U_{\eta})^{-[t/\lambda]}x$

exists for $t\geqq 0,$ $x\in\overline{co}D(A)$ and $\eta>0$ , and $\{T_{\eta}(t);t\geqq 0\}$ forms a semigroup of
contractions on $\overline{co}D(A)$ . Furthermore, if $x\in D(A)$ , then the convergence is uni-
form with respect to $\eta>0$ and $t$ in every finite interval.

(b) For $x\in\overline{D(A}$) and $t\geqq 0$,

$\lim_{\eta\rightarrow+0}T_{\eta}(t)x=T(t)x$
,

where the convergence is uniform with respect to $t$ in every finite interval.
PROOF. (a) The first assertion follows from Proposition 4.4 and Remark

5.1. To prove the second assertion; let $x\in D(A)$ and $T>0$ , then by (4.5) we
see that the set $\{J_{h}(\eta)^{n}x;h, \eta>0, nh\leqq T\}$ is bounded and $\leftrightarrow\sup_{0<p\leqq n-1}\Vert J_{\lambda}(\eta)^{n(k-1)+p+1}x$

$-J_{\lambda}(\eta)^{nk}x\Vert\leqq n\lambda\Vert|Ax\Vert|$ . Therefore, by the same argument as in Lemma 5.1, we
have the following estimate:

(5.10) $\Vert T_{\eta}(t)x-J_{h}(\eta)^{[t/h]}x\Vert\leqq const(x, T)\sqrt{h+\epsilon(h)}$ ,

where the constant const $(x, T)$ and the function $\epsilon(h)$ are independent of $\eta>0$

and $t\in[0, T]$ .
(b) Let $x\in D(A)$ and $T>0$ . Then (5.5) and (5.10) imply that

$\Vert T(t)x-T_{\eta}(t)x\Vert\leqq const(x, T)\sqrt{h+\epsilon(h)}+\Vert J_{h}^{[t/h]}x-J_{h}(\eta)^{[t/h]}x\Vert$ .

Take any $\epsilon>0$ , then there is an $h_{0}>0$ such that const $(x, T)\sqrt{h_{0}+\epsilon(h_{0})}<\epsilon/2$ .
Since $\{[t/h_{0}];0\leqq t\leqq T\}$ is a finite set, there is an $\eta_{0}$ such that $\Vert J_{h_{0}}^{[\iota/h_{0}]}x$

$-J_{h_{0}}(\eta)^{[i/h_{0}]}x\Vert<\epsilon/2$ for $\eta\in(0, \eta_{0})$ . Consequently, $\sup_{0\leqq r\leqq T}\Vert T(t)x-T_{\eta}(t)x\Vert\leqq\epsilon$ for
$\eta\in(0, \eta_{0})$ . Q. E. D.

\S 6. Differentiability of Semigroups

In this section we consider the differentiability of semigroups obtained
by Theorem 5.1 and some relations among the semigroups and the infinitesi-
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mal generators. The central part of the proof is based on the results by
Kato $[10, 11]$ .

Throughout this section we use the following notations: Let $r_{n}=2^{n}$ , and
$I_{r}=[0, r]$ for $r>0$ . We then set $J_{n}=(I-r_{n}^{-1}A)^{-1},$ $A_{n}=r_{n}[J_{n}-I]$ , and $T(n;t)$

$=(I-r_{n}^{-1}A)^{-[tr_{n}]}$ .
LEMMA 6.1. Let $A$ be a dissipative operator satisfying $(R)$ . Let $x\in D(A)$

and $f_{n}(t)=A_{n}T(n;t)x$ for $t\geqq 0$ . Then,

(6.1) $f_{n}(t)\in AJ_{n}T(n;t)x$ and $\Vert f_{n}(t)\Vert\leqq\Vert|Ax\Vert|$ for $t\geqq 0$ ,

(6.2) $\Vert[T(n;t)-I]J_{n}x-\int_{0^{t}}f_{n}(s)ds\Vert=0(1/r_{n})$ .

PROOF. (6.1) is obvious. (6.2) is obtained by estimating

(6.3) $\int_{0^{[r_{n}t]/r_{n}}}f_{n}(s)ds=r_{n}^{-1}\sum_{k=1}^{[rnt]}A_{n}J_{n}^{(k-1)}x$

$=[T(n;t)-I]J_{n}x+r_{n}^{-1}\{A_{n}x-A_{n}T(n;t)x\}$ . Q. E. D.

LEMMA 6.2. Let $A$ be a demi-closed dissipative operator satisfying $(R)$ . Let
$\{T(t)\}$ be the semigroup of contractions on $\overline{D(A}$), obtained by Theorem 5.1. Then
we have:

(a) For every $x\in D(A),$ $T(t)x\in D(A)$ for $t\geqq 0$ and there is a function
$f$(. ; x) on $[0, \infty$) such that $f(t;x)\in A_{c}^{0}T(t)x$ for almost all $t\geqq 0$ and

(6.4) $T(t)x-x=\int_{0^{t}}f(s;x)ds$ , for $t\geqq 0$ .

(b) If $A$ is single-valued, then for $x\in D(A),$ $AT(t)x$ is weakly continuous
in $t\geqq 0$ , and

(6.5) $T(t)x-x=\int_{0^{t}}AT(s)xds$ , for $t\geqq 0$ .

PROOF. (a) Fix any $x\in D(A)$ and any $p$ with $ 1<p<+\infty$ . And set
$f_{n}(t)=A_{n}T(n;t)x$. Then by (6.1) $\{f_{n}|_{Ir} ; n\}$ forms a bounded set of $L^{p}(I_{r} ; X)$

for each integer $r>0$ . Thus, by moving $r$ and by using the diagonal proce-
dure, we may find a subsequence $\{q\}$ of $\{n\}$ and a function $f$, defined on
$[0, \infty)$ , such that $f_{q}|I_{r}$ converges to $f|I_{r}$ weakly in $L^{p}(I_{r} ; X)$ , for each $r$.
Hence, $x*\int_{0}^{t}f_{q}(s)ds\rightarrow x*\int_{0^{t}}f(s)ds$ for $\chi*\in x*$ and $t\geqq 0$ . Therefore (6.4) follows
from (6.2). Next, we write $V(t)$ for the set of all weak cluster points of
$\{f_{n}(t);n\}$ for each $t$ . Then from Lemma 5.1 and Proposition 4.1 (a) it follows
that $T(t)x\in D(A),$ $ V(t)\neq\emptyset$ , and $V(t)\subset AT(t)x$ for $t\geqq 0$ . Hence, by the same
argument as in Kato [11; Lemma 8.2] we see that $f(t)\in\overline{co}AT(t)x$ almost
everywhere. Moreover, in a similar way to Kato [11; Lemma 6.2], we can
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prove that $\Vert f(t)\Vert\leqq\Vert|\overline{co}AT(t)x\Vert|$ almost everywhere (where we apply the argu-
ment in Remark 4.2). Thus it follows that $f(t)\in A_{c}^{0}T(t)x$ almost everywhere.

(b) Aussume that $A$ is single-valued. Then each $V(t)$ is a singleton, and
so, Proposition 4.1 implies that w- $\lim f_{n}(t)=AT(t)x$ for all $t\geqq 0$ . Also, from
the strong continuity of $T(t)x$ and the boundedness of AT$(t)x$ we see that
AT$(t)x$ is weakly continuous in $t$ . Thus (6.5) follows from (6.2). Q. E. D.

REMARK 6.1. Let $A$ be a demi-closed dissipative operator satisfying $(R)$

and $\{T(t)\}$ the semigroup obtained by Theorem 5.1. Then $\{T(t)|_{D(A)} ; t\geqq 0\}$

forms a semigroup of contractions on $D(A)$ by the above lemma.
REMARK 6.2. By (6.4) we see that the infinitesimal generator $A_{0}$ of $\{T(t)\}$

is densely defined in $D(A)$ .
In view of these results, we obtain the following.
First, combining with Remark 5.2 (a) we obtain
THEOREM 6.1. Let $A$ be a dissipative operator satisfying $(R)$ . Let $\tilde{A}$ be

any maximal dissipative extension of $A$ in $\overline{D(A}$). Then there is a uniquely
determined semigroup $\{T(t)\}$ of contractions on $D(\tilde{A})$ such that for each $x\in D(\tilde{A})$ ,
$(d/dt)T(t)x\in\tilde{A}^{0}T(t)x$ for almost all $i\geqq 0$ .

Next, for the single-valued case, we obtain
THEOREM 6.2. Let $A$ be a single-valued, demi-closed dissipative operator

satisfying $(R)$ . Then $A$ is the weak infinitesimal generator of a unique semi-
group $\{T(t)\}$ of contractions on $D(A)$ such that for each $x\in D(A),$ $T(t)x$ is
weakly continuously differentiable in $t\geqq 0$ and $T(t)x-x=\int_{0^{t}}AT(s)xds$ for $t\geqq 0$ .

In the remainder of this section we consider the case $X$ is uniformly
convex. Assume that $X$ is uniformly convex. Let $A$ be a closed dissipative
operator satisfying $(R)$ , and $\tilde{A}$ be any maximal dissipative extension of $A$ in
$D\overline{(A})$ . Then by Theorem 6.1, $\tilde{A}$ generates a semigroup $\{T(t)\}$ of contractions
on $D(\tilde{A})$ . Also, from Proposition 4.2 it follows that $D(\tilde{A})=D(A)$ and $\tilde{A}^{0}=A^{0}$ .
Hence, for $x\in D(A),$ $\Vert|\tilde{A}T(t)x_{1}\Vert=\Vert|AT(t)x\Vert|$ for $t\geqq 0$ and $(d/dt)T(t)x=A^{0}T(t)x$

$almo_{3}^{\neg}t$ everywhere. Therefore, we can say that $\{T(t)\}$ is the semigroup on
$D(A)$ which is determined by the $A$ . For this semigroup, we have the fol-
lowing

LEMMA 6.3. For each $x\in D(A)$ , we have:
(a) $\Vert|AT(t)x\Vert|$ is of bounded variation on every finite interval of the form

$[0, T]$ and has no positive jumps;
(b) the right derivative $D^{+}T(t)x$ exists and strongly right-continuous in $t$,

and $D^{\sim}T(t)x=A^{0}T(t)x$ for all $t\geqq 0$ ;
(c) $A^{0}T(t)x$ is strongly continuous except possibly at a countable number of

points $t$ .
PROOF. (a) Let $\tilde{A}$ be a maximal dissipative extension of $A$ in $\overline{D(A}$). Let
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$x\in D(A)$ and $0\leqq r<t$ . Then by the same argument as in Kato [11; Lemma
6.6] we see that $\Vert|AT(t)x\Vert|\leqq\Vert|AT(r)x\Vert|$ .

(b) By Proposition 4.2, $\tilde{A}^{0}(=A^{0})$ is a single-valued operator with $D(\tilde{A}^{0})$

$=D(A)$ . Fix any $x\in D(A)$ and $t\geqq 0$ . And choose a sequence $t_{k}\downarrow t$ . Then
by the proof of Kato [11; Theorem 7.5] we see that $\{\tilde{A}^{0}T(t_{k})x\}$ contains a
subsequence which converges strongly to $\tilde{A}^{0}T(t)x$ . So, $\tilde{A}^{0}T(t)x$ is strongly

right-continuous in $t$ . But, since $T(t)x-x=\int_{0^{t}}\tilde{A}^{0}T(s)xds$ by Theorem 6.2, it

follows that $D^{+}T(t)x=\tilde{A}^{0}T(t)x=A^{0}T(t)x$ for each $t$ .
(c) By (a), $\Vert\tilde{A}^{0}T(t)x\Vert=\Vert|AT(t)x\Vert|$ is continuous except for a countable

number of points $t$ . In order to prove that $\tilde{A}^{0}T(t)x$ is continuous except for
those points, it suffices to repeat the same argument as in (b) with $t_{k}\uparrow t$ .

Q. E. D.
Hence, we obtain the following result.
THEOREM 6.3. Assume that $X$ is uniformly convex. Let $A$ be a closed

dissipative operator satisfying $(R)$ . Then $A^{0}$ is the infinitesimal generator of a
unique semigroup $\{T(t)\}$ of contractions on $D(A)$ such that for each $x\in D(A)$ ,

$D^{*}T(t)x=A^{0}T(t)x$ for all $t\geqq 0$ and $D^{+}T(t)x$ is strongly right-continuous in $t\geqq 0$ .
REMARK 6.3. Let $X$ be a Hilbert space. Then there are the following

remarkable results (see Crandall and Pazy [2, 3], and Komura [9]):

(I) If $A$ is maximal dissipative in $X$, then $\overline{D(A}$) is convex.
(II) For any dissipative operator $A$ in $X$ there is a unique m-dissipative

extension $\tilde{A}$ of $A$ such that $D(\tilde{A})c\overline{co}D(A)$ .
In view of these results, we see that Theorem 6.3 gives a result of

Brezis and Pazy [1; Theorem 2.1].
Finally, we present some variations of Theorem 6.3 in terms of pseudo-

resolvent:
COROLLARY 6.1. Assume that $X$ is uniformly convex. Let $S$ be a closed

subset of $X$ and $\{I_{\lambda} ; \lambda>0\}$ be a pseudo-resolvent of contractions from $S$ into
itself. Then there are a closed dissipative operator A defined on $D\equiv R(I_{\lambda})$ and
a semigroup $\{T(t)\}$ on $D$ , such that $I_{\lambda}=(I-\text{\‘{A}} A)^{-1}$ for $\lambda>0$ and $A^{0}$ is the in-
finitesimal generator of $\{T(t)\}$ .

PROOF. Let $A$ be the closed dissipative operator obtained by Proposition
3.2. Then it satisfies the conditions of Theorem 6.3.

COROLLARY 6.2. Let $K\subset X$ be convex, and $\{I_{\lambda} ; \lambda>0\}$ be a family of
single-valued operators satisfying all of the assumptions of Corollary 5.2. Then
there is a closed dissipative operator $A$ such that $\overline{D(A}$) $=\overline{\bigcup_{\lambda^{\sim},0}I_{\lambda}K,}I_{\lambda}x=(I-\lambda A)^{-1}x$

for $\lambda>0$ and $x\in K$, and such that $A^{0}$ is the infinitesimal generator of a unique
semigroup on $D(A)$ .

PROOF. Let $A$ be the closure of the dissipative operator obtained by
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Corollary 3.1. Then it satisfies the assumptions of Theorem 6.3. Q. E. D.

\S 7. Semigroups of Differentiable Operators

The purpose of this section is to construct the semigroups of differenti-
able operators.

Let $S\subset X$ and $G$ be a single-valued operator in $X$ such that $D(G)\supset S$

and there is an $L(X, X)$ -valued continuous function $dG(\cdot)$ on $S$ such that

$\Vert G(x+y)-Gx-dG(x)y\Vert=o(\Vert y\Vert)$

for $x\in S$ and $y\in X$ with $x+y\in S$ . Here $L(X, X)$ denotes the Banach algebra
of endomorphisms of $X$. Then we denote the family of such operators by
$F(S)$ . lf $S$ is open, then $F(S)$ is the family of operators which are continuously
Fr\’echet (F-) differentiable in $S$ . For the notions of F-differentiable operators,
Gateaux (G-) differentiable operators, and analytic operators, we refer to
Hille-Phillips [7; Chap. III] and J. T. Schwartz [19]. (By an analytic operator
we mean an analytic function on vectors to vectors.)

In the remainder of this section we need to assume that $X$ is a complex
Banach space. Our result is the following

THEOREM 7.1. Let $A$ be a single-valued, closed dissipative operator satisfy-
ing $(R)$ . Assume that $\overline{D(A}$) is the closure of an open convex set $D$ (hence $(R_{co})$

is satisfied) and that $(I-\lambda A)^{-1}$ is G-differentiable in $D$ for every $\lambda>0$ . Let
$\{T(t)\}$ be the semigroup on $\overline{D(A}$) obtained by Theorem 5.1. Then we have:

(a) for each $t>0,$ $T(t)$ is analytic in $D$ and $T(f)\in F(D)$ ;
(b) for each $x\in D\cap D(A),$ $AT(t)x$ is strongly continuous in $t\geqq 0$ and

$(d/dt)T(t)x=AT(t)x=dT(t)(x)Ax$ for all $t\geqq 0$ .
Before proving this theorem, we state some remarks and give an ex-

ample.
REMARK 7.1. Let $\{T(t)\}$ be a $(C_{0})$ -semigroup of bounded linear operators

and $A$ be the infinitesimal generator. Then for each $x\in D(A),$ $(d/dt)T(t)x$

$=AT(t)x=T(t)Ax$ for $t\geqq 0$ . The assertion (b) corresponds to this property
and the nonlinearity appears in the term $dT(t)(x)$ .

REMARK 7.2. If a single-valued operator $G$ on a complex Banach space
$X$ is uniformly Lipschitz continuous and G-differentiable on $X$, then by virtue
of the Liouville’s theorem for vector-valued analytic functions $G$ becomes a
combination of a linear operator and a translation by a constant vector.
Now, assume that $A$ is a densely defined, m-dissipative operator in $X$ and
$(I-\lambda A)^{-1}$ is G-differentiable in $X$ for $\lambda>0$ . Then $A$ determines a semigroup
$\{T(t)\}$ of contractions on $X$, and Theorem 7.1 states that each $T(t)$ is an
analytic operator on $X$ . Therefore, it is proved that for each $t\geqq 0,$ $x\rightarrow S(t)x=$
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$T(t)x-T(t)O$ is a linear operator on $X$ (see Komura [9; \S 4, p. 397]). Since
$\Vert S(t)x\Vert\leqq\Vert x\Vert$ and $S(t)S(s)x=S(t)T(s)x-S(t)T(s)0=T(t+s)x-T(t+s)0=S(t+s)x$

for $t,$ $s\geqq 0$ and $x\in X$, the family $\{S(t);t\geqq 0\}$ forms a $(C_{0})$ -semigroup of linear
contractions on $X$. Therefore $\{T(t)\}$ is an affine semigroup (see Crandall and
Pazy [2; \S 5]).

EXAMPLE. Let $X=C^{1}$ and let us consider an operator $A$ defined by
$Az=z^{2},$ $z\in D(A)=$ { $z\in C^{1}$ ; re $z\leqq-|imz|$ }. Then the interior $D(A)^{0}=\{z\in C^{1}$ ;
re $z<-|$ im $z|$ } is convex. Since re $(z_{1}^{2}-z_{2}^{2})(\overline{z_{1}-z_{2}})=|z_{1}-z_{2}|^{2}$ re $(z_{1}+z_{2})\leqq 0$ for
$z_{1},$ $z_{2}\in D(A),$ $A$ is dissipative. And we see that $R_{\lambda}\supset D(A)$ for every $\lambda>0$ .
Since $z\rightarrow z-\lambda z^{2}$ is analytic on $D(A)^{0}$ , it follows from the implicit function
theorem that $(I-\lambda A)^{-1}$ is analytic in $D(A)^{0}$ .

In the remainder of this section, let $A$ be a single-valued, closed dissipa-
tive operator satisfying all of the assumptions of Theorem 7.1. Let $U_{\eta}=A_{\eta}|_{\overline{D(A)}}$

for $\eta>0$ , and $\{T_{\eta}(t)\}$ be the semigroup on $\overline{D(A}$) determined by $U_{\eta}$ in the
sense of Corollary 5.3. And, taking a sequence $\eta_{m}\downarrow 0$ , we write $U_{m}$ for $U_{\eta_{m}}$

and $\{T_{m}(t)\}$ for $\{T_{\eta_{m}}(t)\}$ .
For the proof of Theorem 7.1 we need the theory of analytic functions

on vectors to vectors. Let $G$ be an operator in $X$, which is G-differentiable
in a finitely open set $D$ , and if $x\in D$ we may define the n-th variation $\delta^{n}G(x;v)$

of $G$ at $x$ with increment $v$ as
$\delta^{n}G(x;v)=[\frac{d^{n}}{d\xi^{n}}G(x+\xi v)]_{\xi=0}$ .

The key fact is the following theorem (see Hille-Phillips [7; Theorem 3.18.1]).
THEOREM A. Let $\{G_{n}\}$ be a sequence of operators in $X$ analytic and locally

uniformly bounded in a fixed domain D. If $Gx=\lim G_{n}x$ exists $mD$ , then the
limit operator $G$ is analytic in D. Furthermore, $\delta^{k}G(x;v)=\lim\delta^{k}G_{n}(x;v)$ for
each $k,$ $x\in D$ and $v\in X$.

LEMMA 7.1. (a) For each $\lambda>0,$ $J_{\lambda}=(I-\lambda A)^{-1}$ is analytlc in $D$ and for
$\chi\in D\cap D(A)$ and $y\in X,\lim_{\lambda\rightarrow+0}dJ_{\lambda}(x)y=y$ .

(b) For each $x\in D\cap D(A),$
$\lim_{\eta\rightarrow+0}U_{\eta}x=Ax$.

PROOF. Since each $J_{\lambda}$ is locally bounded in $D$ , it is analytic in $D$ . Since
$\lim_{\lambda\rightarrow+0}J_{\lambda}x=x$ for $x\in D(A)$ , Theorem A implies that $dJ_{\lambda}(x)y=\delta J_{\lambda}(x;y)\rightarrow y$ strongly

as $\lambda\rightarrow+0$ , for $x\in D\cap D(A)$ and $y\in X$.
(b) Fix an $x\in D\cap D(A)$ . Then $x-\eta Ax\in D$ for $\eta>0$ sufficiently small.

Since $U_{\eta}x=\eta^{-1}[J_{\eta}x-J_{\eta}(x-\eta Ax)]$ , it follows from the argument in Hille-Phil-
lips [7; Theorem 3.17.1, p. 113] that $\Vert U_{\eta}x-dJ_{\eta}(x)Ax\Vert=\eta^{-1}o(\Vert Ax\Vert\eta)$ as $\eta\rightarrow+0$ .
Therefore, combining with (a) we have the assertion. Q. E. D.

LEMMA 7.2. (a) For each $t\geqq 0,$ $T_{m}(t)$ and $T(t)$ are analytic in $D$ (hence

$\in F(D))$ , and $\lim dT_{m}(t)(x)y=dT(t)(x)y$ for $x\in D$ and $y\in X$ .
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(b) For each $\chi\in D,$ $y\in X,$ $dT(t)(x)y$ is strongly continuous in $t$ .
PROOF. (a) For the proof of (a) it suffices to show that $T.(t)$ are analytic

and locally uniformly bounded in $D$ . For if so, then Corollary 5.3 (b) and
Theorem A would yield that $T(t)$ is analytic in $D$ (hence $T(t)\in F(D)$) and
$dT_{m}(t)(x)y=\delta T_{m}(t)(x;y)\rightarrow\delta T(t)(x;y)=dT(t)(x)y$ strongly as $ m\rightarrow\infty$ for $x\in D$

and $y\in X$. Now, fix an $\eta>0$ . Then (4.3) and Lemma 7.1 (a) imply that
$(I-hU_{\eta})^{-1}$ maps $D$ into itself and is analytic in $D$ (and hence $\in F(D)$). Thus
$(I-hU_{\eta})^{-n}\in F(D)$ for $h>0$ and $n$ , by the chain rule of F-differentiability.
On the other hand, (4.5) implies that for any $T>0$ , the contractions { $(I-hU_{\eta})^{-n}$ ;
$h,$ $\eta>0,$ $nh\in[0, T]$ } are locally uniformly bounded in $D$ . Hence, by Corollary

5.3 (a) and Theorem A we see that $T_{m}(t)$ are analytic and locally uniformly
bounded in $D$ .

(b) Fix any $x\in D$ and $y\in X$ with $\Vert y\Vert=1$ . Let $\rho(x;y)$ be the supremum
of all numbers $\rho$ such that $|\xi|\leqq\rho$ implies that $x+\xi y\in D$ , and $C$ be any
circle $|\xi|=\rho^{\prime}<\rho(x;y)$ . Then by the Cauchy’s integral formula [19; p. 111],

$ dT(t)(x)y=\frac{1}{2\pi i}\int_{c}\xi^{-2}T(t)(x+\xi y)d\xi$ , for $t\geqq 0$ .

Now, let $0\leqq t,$ $t^{\gamma}\leqq T$, then we have that

$ dT(f^{\prime})(x)y-dT(t)(x)y=\frac{1}{2\pi i}\int_{c}\xi^{-2}\{T(t^{\prime})(x+\xi y)-T(t)(x+\xi y)\}d\xi$ .

Since the integrand is uniformly bounded with respect to $\xi\in C$ and $t,$ $ t^{\prime}\in$

$[0, T]$ , and since the convergence $\lim_{t-t}T(t^{\prime})(x+\xi y)=T(t)(x+\xi y)$ holds uniformly

for $\xi\in C$, it follows that $\lim_{t\rightarrow t}dT(t^{\prime})(x)y=dT(t)(x)y$ . Q. E. D.

PROOF OF THEOREM 7.1. Fix an $m$ and let $t\geqq 0$ and $x\in D$ . Since $T_{m}(t)$

$\in F(D)$ by Lemma 7.2 (a), we have that

$h^{-1}\{T_{m}(t+h)x-T_{n\iota}(t)x\}=h^{-1}\{T_{m}(t)[x+(T_{m}(h)x-x)]-T_{m}(t)x\}$

$=dT_{m}(t)(x)[h^{-1}(T_{m}(h)x-x)]+h^{-1}o(\Vert T_{m}(h)x-x\Vert)$ as $h\rightarrow+0$ .
Since $D\subset D(U_{m})$ , passing to the limit as $h\rightarrow+0,$ $(d/dt)T_{m}(t)x=U_{m}T_{m}(t)x$

$=dT_{m}(t)(x)U_{m}x$ . The derivative $(d/dt)T_{m}(t)x$ is strongly continuous in $t$, and
so, we have that

(7.1) $T_{m}(t)x-x=\int_{0^{t}}dT_{m}(s)(x)U_{m}xds$ , for $t\geqq 0$ and $x\in D$ .

On the other hand, $\Vert T_{m}(t)(x+y)-T_{m}(t)x-dT_{m}(t)(x)y\Vert=o(\Vert y\Vert)$ as $\Vert y\Vert\rightarrow 0$ , and
hence $\Vert dT_{m}(t)(x)(y/\Vert y\Vert)\Vert\leqq\Vert T_{m}(t)(x+y)-T_{m}(t)x\Vert/\Vert y\Vert+o(\Vert y\Vert)/\Vert y\Vert\leqq 1+o(\Vert y\Vert)/\Vert y\Vert$ .
This means that $\Vert dT_{m}(t)(x)\Vert\leqq 1$ for $t\geqq 0$ and $x\in D$ . Thus, the set
$\{dT_{m}(s)(x)U_{m}x;s\geqq 0, m\}$ is bounded for $x\in D\cap D(A)$ . Hence, Lemmas 7.1 (b)
and 7.2 (a) imply that
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(7.2) $\lim_{m-}dT_{m}(s)(x)U_{m}x=dT(s)(x)Ax$ .

By Lemma 7.2 (b), $dT(s)(x)Ax$ is strongly continuous in $s\geqq 0$ . Applying the
dominated convergence theorem to (7.1), we have

$T(t)x-x=\int_{0^{t}}dT(s)(x)Axds$ for $t\geqq 0$ and $x\in D\cap D(A)$ .

Finally, we show that $dT(t)(x)Ax=AT(t)x$ for $t\geqq 0$ . By (7.2), $U_{m}T_{m}(t)x=$

$AJ_{\eta_{m}}T_{m}(t)x\rightarrow dT(t)(x)Ax$ strongly for each $t\geqq 0$ . Since $\lim_{m-}J_{\eta_{m}}T_{m}(t)x=T(t)x$

and $A$ is closed, it follows that $T(t)x\in D(A)$ and $dT(t)(x)Ax=AT(t)x$ . Q.E.D.

Waseda University
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