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Introduction

S. Araki and H. Toda discussed the multiplicative structures in mod ¢
generalized cohomology theories. The mod g (reduced) cohomology of a coho-
mology & was defined by A% ;Zq):ﬁ”z( A M,) where M, is a co-Moore space
of type (Z,, 2). In this paper we consider the cohomology theories with stable
maps of spheres as coefficients, i.e., let C, be a mapping cone of a stable
map a € {S™*-!, S7} then a-coefficient (reduced) cohomology of a cohomology
h is defined by A¥( ; &)= k"™ A C,). And we discuss the multiplicative struc-
tures in «-coefficient cohomology theories by postulating three axioms (A4,),
(4,) and (4,) as in [3]. (4,) and (4,) are quite similar with these of [3], but
(4,) is not a routine generalization of that of [3] but contains an extra ele-
ment. A multiplication in an «-coefficient cohomology theory satisfying (A4,),
(4,) and (4,) is called “an admissible multiplication”.

One of the important examples of a-coefficient cohomologies other than
mod ¢ theories is the case a =7 (a stable class of the Hopf map S*—S? and
h=KO. In the case a« =7 for any & a sufficient condition for existence of
admissible multiplications in A( ;#) is obtained (Theorem 4.11). Obviously
I,{\(j-theory satisfies this condition. In this case I?OJ( ; 7) can be identified with
the cohomology Iaj] by Wood isomorphism [2], where an admissible multi-
plication corresponds to the multiplication in I?[J] defined by tensor products
(Theorem 5.3).

Some uniqueness type theorems of admissible multiplications are discussed
in general, which states that admissible multiplications are in a one-to-one
correspondence with elements of a group which is specific to the considered
cohomology theory under the assumption that the original multiplication is
commutative and associative (Corollary 2.8). In the case of h=KO and a=17y
this group is isomorphic to Z, hence there are countably many different
admissible multiplications in KO( ; 7).

In §1 we exhibit some elements of a-coefficient cohomology theory: reduc-
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tion mod «, Bockstein homomorphism, etc., and define the notion of admissible
multiplications in a-coefficient cohomology theories. Uniqueness-type theorems
of admissible multiplication in a-coefficient cohomologies are discussed in § 2.
In §3 we compute some stable homotopy groups and make preparations to
the existence theorem of admissible multiplications for case @« =» from homo-
topy theoretical point of view. §4 is devoted to the proof of the existence
theorem of admissible multiplications in the case a =7 by constructing a
multiplication. In §5 we discuss the admissible multiplications in 16?5( 7))
and their relations with Wood isomorphism [2].

Finally the author wishes to express his hearty thanks to Professor S.
Araki for his many valuable suggestions and discussions.

§1. a-coefficient cohomology theories

In this section we define the «-coefficient cohomology theories and state
the axioms for admissible multiplications.

1.1. We use the same notations as [3], p. 73; for examples,

XAY the reduced join of two spaces X and Y with base points,

SX=XAS! the reduced suspension of X,

T=TA, B): ANB—BANA a map switching factors and

{X, Y} the stable homotopy groups of CW-complexes X and Y with

base points.

For a map f: S"X—S"Y, n=0, we denote by the same letter f the stable
homotopy class represented by f, when there arises no confusion.

1.2. By a cohomology theory we understand, throughout the present
work, a reduced general cohomology theory {4, ¢} defined on the category of
finite CW-complexes with base points (or of the same homotopy type).

For the sake of simplicity A*(f) is denoted by

[¥hXY )= h*(X)
for any map f: X—Y preserving base points. By the naturality of suspen-
sion o, f* depends only on the stable homotopy class of f. Let A and B be
finite CW-complexes with base points, for any element a of {A, B}, we define
a homomorphism
a®* : f¥(X A B)— h*(X A A)
by the formula
ar* = (") Ly A f)*0"

where f: S®A—S"B in a map representing @. The definition does not depend

on the choice of f.
1.3. Let a be a stable homotopy class of g:S7*!'—S7" £>0. For the



458 N. IsHIKAWA

stable homotopy type of the mapping cone of g depends only on a we denote
as
Co=S"\U C(ST*-1y,
g

Let {&, 6} be a cohomology theory. The a-coefficient cohomology theory
{h( ; @), 0.} is defined by
R(X; a)=h"+ X ANC,)  for all 1
and the suspension isomorphism
0. BUX; @)= h"(SX;a)  for all i
is defined as the composition
0.= Ly ANT)¥a: R X N C,) — R +5+1(X A\ C, A SY)
—>i’l"i+7+k+l(X N Sl A\ Ctv) ’

where T =T(S*, C,). Since ¢ is natural, ¢, is also natural.
For a map f: X—Y, i*(f; a) is defined by

PX(f 5 a)=(f A Lg)*
and, for the sake of simplicity, sometimes denoted by
¥ R Y @) —h5(X; a) .
Obviously {ﬁ( ; @), 0, becomes a reduced cohomology theory and depends

only on the stable homotopy class a of g.
Denote by

i(=1): S"—=C, and zn(=mn): C4—S™*,
the canonical inclusion and the map collapsing S”" to a point. We put
Pa= (D)X A m*a™ % B X)—hY(X; a),
Bao = (—D* P (L AD* 2 KX ; @) = K+H(X)
and
00 = Paba,o = (—1)FTP(L A 2)*e* (1 A i)* 1 BH(X ; @) = h"H(X; @)

which are natural and called the reduction “mod «”, the Bockstein homomor-
phism and the “mod a” Bockstetn homomorphism respectively. The follow-
ing relations are easily seen.

OafPa= PaT, 5(,1',000 = (—1)"05,,,0, 5a,opa =0,
0a00=(—1)0,04 0.0.=0 and 0,0,=0.

From the exact sequence of / associated with the cofibration



Multiplications in cohomology 459

INi 1Az
(LD XAS —— XACyp—> XA ST*

and the definition of p, and d,,, we obtain the following exact sequence

a** Oa .. Oayo n. a**
e BUX) — BUX; @) —— BIH(X) —— A#(X) — -
for all 1.

1.4. A cohomology theory h is said to be multiplicative, if it is equipped
with a map

w: B(X)YQh(Y)—hH(XANY)
for all 7 and j, which is
(M) linear,
(M,) natural with respect to both variables,

(My) has a bilateral unit 1€ h*(S®), i.e, plRx)=p(xQR)=x for any
xe hi(X) and

(M) compatible with the suspension isomorphism o, i.e.,
o(x Q@) =1 ATYoxQy) = (—1)'1(xQ 0y)

for any x& h¥(X) and y € hi(Y') where T=T(Y, S%).
If ¢ is associative, i.e., satisfies

Mg p(e@1)=plQw,
or if commutative, i.e., satisfies

(My)  T*p(x®3)=(—Dp(y @)
for xe h%(X) and y € W(Y), where T=T(Y, X) is a map switching factors,
then we say that g is an associative, or commutative multiplication.

1.5. Let i be a multiplicative cohomology theory with multiplication p.
Similarly to [3], the multiplications

U B(X)YQ(Y ; a) =X AY ; @),
pr: B(X; @) QW(Y)—R*(XAY ; @)
for all 7 and j, are canonically associated with g by setting
pr =g R(X)YQIY ; a) = hi(X) QA+ Y A C,)
SRR XA Y A CY) =R (XAY ; a),
pr = (=1 PANT Y p: BH(X, ) @A(Y)
=R XN CQAY ) = A (X ANCo N Y)
S EAHTHH XA Y A C) =X AY ; a)

and they satisfy the following properties:
(H,) linear;
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(H,) mnatural;

(Hy) 1 is a left unit for p, and a right unit for ug;

(H,) compatible with the suspension isomorphisms in the sense that
Ot (XQN =AANTY*p(0x@y) = (—D'pr(xQ0a)),
0attr(x @)= AN Ty pp(0.x @) = (—1)' trp(x @ 0)

for degx=1;
(Hy) compatible with the reduction mod a in the sense that

Ur(Pa Q1) = papr = (1@ po) 5
(Hy) compatible with the Bockstein homomorphisms in the sense that
0otz (x Q) = (—D)* pr(x ® 84,09) »
Oaot2(X Q) Y) = p(0,0XR)Y) »
Oaptr(x®Y) = (=D (x® 0a3)
Oattr(x Q) = pr(8.2Q )

for deg x=1.
If ¢ is associative, then the following associativity
(H) tr(r®1) = pr(1@ ),

pr(pr @D =p, (1R /JR) ,
(@D = p (1R pr)

holds; and if g is commutative, then the commutativity

(Hy) THpu(x @) =(—D¥pp(y R x)

holds for x < A% X) and vy € A/(Y ; ), where T=T(Y, X).
1.6. Let A be a multiplicative cohomology theory with an associative and
commutative multiplication pg. We shall discuss multiplications

ta: B(X; QY ; ) = A I(XAY ;@)

in A( ; @) by postulating the following properties:

(4y) pa i a multiplication, 1.e., satisfies (M,)~(M,) for the cohomology
theory h( ; @) and

(A;) compatible with p; and pg through the reduction mod « i.e.,

L= toPa®@1) and pr=pAQp;

(A,) there exists a cohomology operation X.: fi*( Y—h* ;@) of degree —k
satisfying the relation

1.2) Xat(xQY) = (=" p1(x QXA 3)) = (X o(2) R ¥)
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Jor deg x=1 and it is related to p, by the following relation

Oatla(x@QY) = 11(00,0X @ ¥)+(—1)* (X ® 0,0 ) — X 20,0 X X a0 V)

for xehi(X; ) and y = B(Y ; a);
(4s) 1t is quasi-associative in the sense that

(1) ,ua(ﬂL ® 1) - ﬂL(l ® ﬂa) y
(i) tlttr @) = p1Q 1),
(iii) Le(ta@1) = p1&Q pr) .

Except (4,), all axioms are routine generalizations of the corresponding ones
of [3] As to (4,), putting X,=0 and a =“ the stable class of maps of degree
q”, our (A4,) reduces to the corresponding one of

A multiplication p, satisfying (4,), (4,), (4,) and (4,) is called an admis-
sible multiplication and the cohomology operation of (A,) is called the associated
cohomology operation of p,.

For any x < A{(X)

1.3) Xa(%) = Xapt1 @ x) = (X (D)X x)
= Aat(x@1) = (—D* p (x @ A1) .
This means that the associated cohomology operation X, is determined uni-
quely by X 1) e i *S°; a).
0a,00,=0 imply that
(14) Ba,oxa,u((sa,o ® 50,0) - 26/1(50,,0 ® 5&,0)

where e=0 if k is odd, or =1 if k is even.
(4) and (H;) imply that
(A7)  pa is compatible with p through the reduction mod a in the sense that

2ol ® ) = Patt .

If a multiplication p, satisfies (4,), then (4,), or (4;), are equivalent to the
following relation (A4,"), or (A4,"):
(4,) 04 is a modified derivation in the sense that

OattaX R Y) = 1aBaX QW) (=1 (xR 00 ¥) — ttaX 000X Q) 04 Y)

= al02X @ Y)+(—1)* o x Q) 00 ) —(—1)* P 100X @ X o010 )
for deg x=1;
(Ay) if at least one element of {x, v, 2} is in p,-images, then the associativity
Lot Q V) Q) 2) = (X Q) (¥ Q) 2))
holds.
Denote by 1, the bilateral unit of y, From (A4,) and (H,) we see easily that
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p.(1) is bilateral unit of g, Then from the uniqueness of bilateral units we
have
ProprosITION 1.1. If a muitiplication p, satisfies (A,), then

(4.7 lo=pa(1).

PrOPOSITION 1.2. [If a multiplication p, satisfies (A,”), then the exact
sequence of h( ; a) associated with the cofibration (1.1) breaks into short exact

sequences
. AT, AND*
0— WX AS™; a) — hI(XANCy; @) — R(XAS"; ) — 0

for any X and j.
For any x< A*(X AS?; a),

AAa)x=1Aa)*px Q1) = (=1 Pp (xR a*l,)
= (— 1)y (x ® Pae*(1)) =0

because p,a**=0. Thus [Proposition 1.2 was obtained.

§2. Uniqueness theorems of admissible multiplications g,

Let ¢ be an associative and commutative multiplication in h. We fix p
once for all throughout this section and shall discuss relations between dif-
ferent admissible multiplications in A( ; a).

2.1. Assuming the existence of p, satisfying (4,”), put

2.1) £, = (S*T)*e%1, = (St TC,; a) .

There exists an element £, € H*(S*"C,; @) such that

(2.2) Ouky =k, and (S*")*k,=—0o%1,.

This fact can be proved by an entirely parallel argument to p. 86,
and we omit the details. The choice of £, is not unique. Nevertheless we
fix k£, once for all.

PrROPOSITION 2.1. If a multiplication p, satisfies (4,"), then for any X and
xe (X AS¥7"C,; @) it can be expressed uniquely as a sum

x=pa(x; X ’51)+ﬂa(xz R k)
with x, € A=Y X; a) and x, € k"X ; a).
ProOOF. Define a homomorphism
At B(XAS*; @) =A(X A S*"C,; a)
by putting
A(y) = (=1)F0% 1y (03%y Q@ k)
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for y e h(XAS*; a). Then A gives a splitting of the exact sequence of Pro-
position 1.2 since (1 A S*")*2 is an identity map. Thus, for any re (X
AS*TC,: @) two elements y& A(XAS*; ) and y’ € h(XAS?; a) are deter-
mined uniquely so as to satisfy

x=AAS* " z)y*y +A(y) .
Put
X, = (_1)k(i+1)+10£—vky and x,= 0%y’ .
Then

#l5 @ )+ 15, @ )
= 102 @ k) +(—DHHPH Y (o7Fy @ k)
= (LAS* " m*0% 12(07%Y @ 1) +(— D0 (05 Q )
=({AAS* )Yy +A(y) = x.

The uniqueness of x, and x, follows also from the exact sequence of Pro-
position 1.2 and definitions of &, and &,. qg.e. d
2.2. Let p, and p, be the admissible multiplications with associated
cohomology operations X, and X, respectively.
To simplify notations we put

tx@y)=xAy and p(xQ@y)=xA'y.
We see by (4,) that
2.3) XAY=XN'Y if either x or ¥y is in p,-images.
In particular,
2.4) O XNY =0, XN’y and xA0,Y=xN"0,Y

for any x and y.
Also, by (Hy) and (4,) we obtain

(2.5) TH*xAy)y=(—1D"yAx if either x or y is in p,-images

where degx=1 and degy=7j.
In particular, since via the identification XAS°=S°AX=X we get T(S°, X)
=1y, we see that

(2.6) xNa=T*xNa)=(—1)YaAx if either x or a is in p,images
where a € H(S°; a) and x= F{(X; ).
By (2.1)~(2.5) we obtain
2.7 EiNEj=E; N'K; if1=2o0r j=2,
T*k,NEj)=K; NE; if 1=2 0r ]=2.
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2.3. By the associated cohomology operation X, is determined uni-
quely by X =X, (1).

Conversely if given any element X, of A"%S°; &), assuming the multipli-
cation g is associative and commutative, we put

Lo(%) = pr(Xa@x) = (—D*p(x QX
for x < h'(X). Then, for any x< A(X) and y € #(Y), we obtain
Laft(x @) = ptr(Xa @ p(xQ ) = pr(ttrX. Q¥ @ ¥)
= prX ()R )
Xattl(x Q) = (=D (p(x @ ) Q@ X
=(=D¥p(x Q(—=D*pr(y @A) = (—DH pr(x @ Xal)) »

i.e., X, is a cohomology operation: A*( )—h*( ; a) of degree —k satisfying

with X.(1) = X,

Thus we see that the cohomology operations satisfying the relation (1.2
are in a one-to-one correspondence with the elements of h~%(S°; a).

2.4, By the relation [(1.3) and (4,) we obtain

and

(28) Xaaa',ox — ‘uR(—x—a@ 50{,075) = #a’(x—a® aax) — X—(x /\ 5ax
for any x< A*(X; ). Thus, by (4,) and (2.4) we obtain
(2.9 0a(X AN D)= 0a(x N'3) = Xo—Xa) A GaX A 0ay

for any x and y.

LEMMA 2.2. Let p, and pl, be admissible multiplications with associated
cohomology operations X, and Xy respectively. There exists the elements a(y,)
and b(pta, po) in R2%(S°; a) depending only on Lo and the pair (pa, pto) respec-
tively determined by relations

(@) T*(/fl/\’cl):(_l)k’fl A’fl"{_a(/«‘a)/\’iz/\ Ko
and
(b) By NEy—Ey N Ky =0(la o) NEs N\ Ky

Further we have relations

(i) 320(fta) N £y N 3= — 26" Xatt(Bo,o81 @ 0,81
(ii) Oab(ttar ptl) = Xo—Xa,
(ii1) b(ptar 1) = b(tter pre)+0(ttey p13)
(iv) a(pte)— A pte) = 26" by M)

and
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(V) 5,X<x A y)—aa(x AN /y) — 5a'b(/-lm ﬂ(lx) AN 5ax A 5ay ’

where ¢/ =0 if k is even, or =1 if k is odd.
PROOF. By Proposition 2.1 every element x & A(X A S*"Cy A S¥"Cq; @)
can be expressed uniquely as

x=s NED N E (X A K A £ ANED A B+ (X A B NE,

with x, € A (X ; @), x,, x;€ h*(X; «) and x, € R4 X ; ).
(a) Put

(*1) T*(’f1/\’51):(611/\’51>/\"31+(a2/\’fz)/\”1
+(ag N\ £ N Eyt+(ay N £ N Ky

with a, € B%S°; a), a, a;€ h~5S°; @) and a, € h™**(S°; a). Apply (S A 1*
on both sides of (*1), then, by [(2.1), and (2.5), we obtain

(—DF Yok 1, AN k) =—0dka, N k,—okas Nk, .

Thus, by [Proposition 2.1, we see that

a,=(—1*1, and a,=0.
Similarly, applying (1 A S¥~")* on both sides of (*1), we see that
a,=0.
Finally, making use of (/4,), we get

THky N\ £y = —D*x A £y +a(pea) N\ £y N\ Ey

with a(p,y)eﬁ‘z"(SO; «). From [Proposition 2.1 a(y,) is uniquely determined
by e
(b) Put

(*2) K N B, =B, AN KD N ki+(0, N KN Ky
A(bs N D) N EyA-(by N E) N Ky

with b, € h%S°; @), b,, b= Fi~%(S°; @) and b, < A 2*(S°; a). Apply (SETi A 1)*
on both sides of (*2), then, by [2.1), [2.2), (2.3) and [Proposition 2.1, we see that

b,=1, and b,=0.

Similarly, applying (1 A S¥"))* on both sides of (*2), we see that
b,=0.
Thus, making use of (4,/), we get
Ky N\ Ey—E NE =0t tte) A (By N\ Ey)

with b(pta, ) € A 2%(S°; a) determined uniquely by (ta, ).
(i) Apply 0, on both sides of (a), then, by (4,), (2.1), (2.2) and (2.7), we
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see that
6aa(/«£a) /\ ICZ /\ ’Cz = {(—— 1)k_1}xa5a,olcl /\ ICZ .

(ii) Apply d, on both sides of (b), then, by (4,), (2.1), (2.2) and [2.9), we
see that

5ab(ﬂw ,uil) VAN K, A Ky = (Qa_za) A Ky A Ky -

Thus, by [Proposition 2.1], (ii) follows.
(iv) Apply T* on both sides of (b) and make use of (a);

{(=D"* 4+ 13b(ptar o) N 8y N By = (a(pt)— () N Ky N Ky -

Then, by [Proposition 2.1, we get the relation (iv).
(iii) Obvious.
(v) Obviously seen by and (ii). g.e.d.
2.5. The following theorem shows that b(y,, pn) measures the difference
of p, from .
THEOREM 2.3. Let p, and p, be admissible multiplications in K ;). Then

X /\ y_x /\/y - <—1)k(i+l)b(ﬂ(n /’[&) /\ (5,].7(/\ 50 y)

for any x< hi(X; a) and y € bV ; a).
Proor. To simplify notations we put

Z2=(—D"X.0,,02 Z' =(—1)"A4040z and b=0b(g,, tb)
for any z¢< HS(Z; ).
By (4,), (2.4), (2.8), (2.9), Lemma 2.2 (ii) and (v), we obtain
= (=1L N 0,2) = Z+(—1)%8,b A 0,7,

(—=D¥0(z N\ k) =(—D"0.z2 N k1 +2 N\ £;—Z N K,
and

(— D%,z Ne)+E Ney=(—1"6(z ANk)+FE Nk,

For any xe A%(X;«a) and ye A(Y; @) making use of (A4,), (2.3)~(2.6) and
(b) we get

DA XNACYNE,NE, =0 XN YANDNENE,
=0, XA O0 YN NE—EL N KL
= (—DFIDAATAD*OuX AEL Ao Y Ak — 0o X N By N0 Y N K
= (— DD EDT AT AD*{((— D) 0 (x A k) — XN Ky +-EAK,)
A(=D¥0YNED) =Y Ny +T N ED)— (=D 0u(x N ))
— XN KN EIN (DO YN B)—IN BT N K5}
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= (=DFDANT A (x Ak, —ZNAKy)
AVNAE—TNE)—ENEy—EAR)IN (Y AN Es—TAK,)}
= (—D*H{x—DN=F)—(—DN (Y=} A& Ak,
= (=DFHH{ENAY =N D) —ENY—EN'Y)
—(XAT—=xN'F)FENT=IN' D} ANk, AE,
where T=T(S*"C,, Y). We put
D(a,b)=aNb—aN'D

then, from [Proposition 2.1, we see that

(*3) D(x, ¥) = (—1)*“Pb A 0ox A0y +D(E, »)+D(x, )—D(Z, 9).
In the case x=%A«k, of (*3), by (Hy), (4,), (1.2) and we obtain
I~ .
INk,=(—1DF2e(x N k)

and
0N = 0 XNy = (—Dkize(aax/\’%)

where ¢=0 if % is even, or =1 if 2 is odd, from which we have
(*4) D(ENky ¥) = —26DN0xX Nk N0 Y+DENES, §) .

Apply (AAT)* on both sides of (*4), then, by (2.5) and [Proposition 2.1, we
obtain

(*5) D(, y) = —2eb N0 x N0y +D(Z, ).

Similarly D(x, ) and D(%, J) can be calculated as

(*6) D(x, ) = —2ebNdax Ndoy+D(%, 7)

and

*7) D%, ) =4eb AN x N8,y .

From (*5), (*6) and (*7), we see that the sum of the last three terms of (*3)
is zero. q.e. d.

2.6. The next theorem shows that a(u,) measures the deficiency of p,
from the commutativity.
THEOREM 2.4. Let p, be an admissible multiplication in h( ; ). Then

T*yAx) = (—DHx Ay+(=D"a(pta) AN (03 A\ a)}

for any x< hi(X; @) and y e WY ; a), where T=T(X, Y).

PROOF. Put p(x®y)=(—1)¥T*(yAx), then it is a routine matter to see
that p; is also an admissible multiplication with the same associated cohomo-
logy operation as g, Lemma 2.2 (a) shows that
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E N By = ’51/\’51+(_1)ka([/‘a)/\("72/\’52) .

Hence the theorem follows from
THEOREM 2.5. Let p, be an admissible multiplication- ind i ; a) with the
associated cohomology operation X, and any be h2%(S°; a) given. If we put

Ulx@Y) = x A\YH(—1)F DY A G X N, Y

for xe Ri(X; a) and ys (Y ; @), then Uy is also an admissible multiplication
with associated cohomology operation X, such that Xl = 8,b-+X, and b(a, ta)=>b.
ProoFr. It is straightforward to see that p) satisfies (4,) and (4,). Put

14(0) = pp((@ab+ L) ® 1) = (D (@ (0ab+X.) for any xeA(X) then g

satisfy (4,) with associated cohomology operation X, and since 0,6 =X\—Xa»

we obtain b(¢a, pa) =0. By a simple calculation we see that

@) ENDINZ—=XN(IN'2) =X AP AZ—XN(YN\Z)
_l_(__l)k(j-l‘l)“l‘l(b/\x__x/\ b)/\aay/\aaz

+e"b NOaX AN (8,0 Y Q) 0r,02)
where j=degy and ¢” =0 if £ is even, or =(—1)/*'—(—1)"*! if k is odd. If
x or b is in p,-images, then

bAx=xAb and 0,x=0
by (2.6). If y or z is in p,-images, then

0aIN0,2=0 and 0,0y 0,,02=0.

Thus, if x or y, or z, is in p,-images, then the second term and the third term
of the right side of (#) vanishe, and the first term also vanishes by (4,") for

Yo 1. €., (4;) for p, was proved. q.e.d.
2.7. From Theorems 2.3, 2.4, 25 and Lemma 2.2 we obtain the following

corollaries.

COROLLARY 2.6. Let p,, i be two admissible multiplications in A a) and
X X be the associated cohomology operations with p,, pe respectively. The
following conditions are equivalent.

® 0ab(ttay o) =0,
(i) Xo=X0,
(iii) X1 =2%0(1).

COROLLARY 2.7. Let p, and p, be two admissible multiplications. The fol-
lowing conditions are equivalent.
@ Yo = U »
(i) b(ttar ) =0,
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(iii) . coincides with pl, for the case of X=Y =S*"C,.

COROLLARY 2.8. If there exists an admissible multiplication with associated
cohomology operation X, in h( ; &), then admissible multiplications in ﬁ( ;@) are
in one-to-one correspondence with the elements of h™*(S°; ). In particular,
admissible multiplications in h( ; &) which have the same cohomology operation
are in one-to-one correspondence with the elements of R=25(S°; a) N 6310).

COROLLARY 2.9. (i) If k is even and there exists an admissible multipli-
cation in ﬁ( ; ), then either there is no commutative one, or every one is com-
mutative.

(ii) If k is odd and there exists an admissible multiplication, then either
there is no commutative one, ov commutative ones are in one-to-one corre-
spondence with the elements of Tor (A™**(S°; a), Z,).

COROLLARY 2.10. (i) If k is even, h2(S°; @) = p (A 2*(S%) and there exists
an associative admissible multiplication in h( ; @), then every admissible one in
R ; ) is associative.

(i) If k is odd, R-25(S°; @) = p(R?"(S") and there exists an associative
admissible multiplication in k( ; &) of which the associated cohomology operation
satisfies Xopt(0a,0 0ay0) =0, then every admissible one is associative.

PROOF. See the formula () in the proof of Theorem 2.5, Corollary 2.10
follows from (2.6).

§ 3. Stable homotopy of some elementary complexes

3.1. The results in the following table are well-known.

i<0 | i=0| i=1 {=2 i=3 | i=4,5| i=6
{S™, S} 0 z Z, Z, Zos 0 Z,
1

generators /i =97 y v

Let P be the complex projective plane, i.e, P=S%_e*. Let i: S*—P
7

and #: P—S* be the inclusion and the map collapsing S%. We have a co-
fibration
1 T
3.1) S?— P—S*.
From Puppe’s exact sequence and its dual associated with we obtain
LEMMA 3.1. The groups {S™**5 S*P} and {S"P, S™*+°} are both isomor-
phic to the corrvesponding groups in the following table:
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k=—2|k=—1| k=0 | k=1 | k=2 | k=3 | k=4 | k=5
generators of
0 Z 0 Z AR 0 " Z,
{Sn+k+3’ SnP} 1 f iy P w?
{SP, Sn-k+3} T g v D Vi
where £, £, D and ¥ are defined by
(3.2) 78 =21gnre Ci=2-lgy, =y and Di=v.

LEMMA 3.2. The groups {P,S*P}, 0=1, and {S’P, P}, j=1, 2, are isomor-
phic to the corresponding groups in the following table:

generators
{P, StP}, i=3 0
{pP, S*P} VA (S%)x
(P, SP} f 0
{P, P} Z+Z 1p, Zx(or il)
(SP, P} o Z iw(Sm)
(S*P, P} z | st
We have relations
(33 i{+in=2-1p,
(3.4 15 A 7 =3iv(S7),
(3.5) En="6iv and 7f=6ux.

ProOF. From Lemma 3.1 and Puppe’s exact sequence, we see easily the
results for {P, S*P}, i=0. Then, by (3.2), we obtain the relation (3.3).

We sketch the proof of {SP, P} =Z, and (3.4) (for details, see [3] Theo-
rem 8.1). In the exact sequence

(S*)* 7* (Sm)* (Su*
*) 0 — {S?P, P} — {S%, P} — {S*, P} — {SP, P} — 0
p*-image is at most of order 2. Thus, making use of Lemma 3.1, we obtain
{SP, P} = Z, or Z,, with generator iv(Sx), and we can put 1p A 7= a(SHv(S’x)
e {StP, SP} for some integer a. Sg*=+0 in PAM, A M, (where M,=S'¢?)
i 2

implies that a is odd. By (3.1), (3.3) and (¥, 2a-ivr=(Sm)*p*{=0, which
implies that a=3 and {SP, P} =Z,.
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Since n*-image is of order 2 in the exact sequence (*), we obtain {7»=~6iy
and {S?P, P} = Z with generator £(S*¢). Similarly in the exact sequence

Ty /e T
0— {S?P, P} — {SP, S®*} — {SP, S} — {SP, P} — 0

nsx-image is of order 2, then making use of Lemma 3.1, we obtain 7;5:6wr.

q.e. d.
3.2. We shall see that P A P is homotopy equivalent in stable range to
the following mapping cone

(3.6) ]Vy,:Ssz_j C(S*P),
£
where

Z=3(S*)v(S*r): S°P -S"—>S*C S*P.
We denote also by N, a subcomplex of N, obtained by removing the 6-
cell S2P—S* i.e,
(3.6 Ny =S8*UC(S*P),
g
where
g=3u(S%r): S*P—-S"—S*.
The cell structures of N, and N, can be interpreted as follows:
(3.7 N, =(S*PVv S®)Ue®* and N,=(S*VSHUe,
where e is attached to S*\/ S® by a map representing the sum of 3v € {S7, S*}
and S'ne{S", S°}.
We use the following notations:
3.8 j: NyC Ny the inclusion;
p; N,—S¢ the map collapsing Ny ;
iy: SEPC Ny, 1,: S*C Ny, the inclusions;
%y Ny —S*P, m,: N;—S*P the map collapsing S?P or S*;
i,: S*c N, i,: S°C N, the inclusions;
71 Ny —S?*PUé, m,: Ny—S*\Je® the map collapsing S°.
Hereafter, these mappings will be fixed as to satisfy the following rela-

tions:

(3.8 jiozi)(szi), i =i pi_o:Sz”» Ty = o]
and Ty, = m,i; =S,
By [3.4), 1, A » is homotopic to g in stable range. On the other hand

P A P is mapping cone of 1 A 7. Therefore we obtain
LEMMA 3.3. There exists an element & of {Ny, PA P} satisfying the
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following conditions:
(3.9) (i) @ is a homotopy equivalence, i.e., there is an inverse e {PAP, Ny}
of & such that ag=1 and a=1,

() a@i,=1p Ai, thus BAp A1) =1,

and
(iii) (1p A @)X =7, thus 7,f=1p A 7.
Put
(3.10) ay=ai, € {S, PAP} and Bo=pBe{PAP,S°.

It follows from (ii), (iii) of (3.9)
(3.109) (Ip Am)a,=S* and BpNi)=S’x.

LEMMA 3.4. (i) Let ae {N, PAP} be an element satisfying (3.9). Any
element & < {N,, P\ P} satisfies (3.9) if and only if

@ = a+kp NSNS0z, for some integer k.
(i) Put ay=ai, and al,=a'1,. If @ and & satisfy (3.9), then
ab=a,+2R(C N1)  for some integer k.

PrOOF. (i) Assume that & and &’ satisfy (3.9). There exists y’e {N,, S?P}
such that (1pAD)y’ = @’ —a@ since Ap AT)(@ —@) =0. Then (Lp AD(G i)=(@'— D)1,
=0, The kernel of (1pA)s: {S?P, S!P}—{S?P, PAP} vanishes since {S?P,
S*P}=0. We have 7/i,=0. Thus 7/ is contained in the image of 7¥: {S*P,
S2P} —{N,, S?P}. Then there exists an integer k such that r’:k(SZC)(Sf)fro,
and @’ = a-+1p Ay’ =a+k(Lp AD)(S?2)(S 07,

Conversely, if @ satisfies (ii), (iii) of (3.9), then so does &’. Put
B =F—k- iSRS OAp AT,

then @ is a homotopy equivalence with an inverse 5.
(ii) Making use of (3.8) and (3.2), it follows from (i). q.e. d.
3.3. From the Puppe’s exact sequence associated with a cofibration

1p/\l lp/\TL'
3.11) PASt—— PAP—PAS?,

making use of Lemma 3.1, (3.5) and (3.10) we obtain
LEMMA 3.5. The groups {S°®*, PAP} and {P N\ P, S***}, k= —2, are both
1somorphic to the corresponding groups in the following table:
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k23| k=2 | k=l k=0 | k=-1 j h=—2
generators of ‘ — - ‘ I
0 Z 0 z+z g Zs J z
{S**, PAP} i IAT AL @, w/\z ’
{PAP, Se+F} \ TAT CAT, B | yrAz ' PN

where a, and B, are elements satisfying (lpAm)a,=5S* and B,(1pAi)=S*n.
LEMMA 3.6. The groups {S* %, PA P} and {P A P, S***P} are isomorphic
to the corresponding groups in the following table:

(k=3 k=2 } k=1 =0 k=—1| k=—2
generators of | ! S -
0 Z 0 Z+Z+Z Z, Z+Z+Z
i Ny a(S*), | | 2D,
{S*P, PAP} GADT g o (ST
iCATL (or TrAT) &, @,
1o AT, (S4B, LS D(ApA),
{PAP, S*+P} S Az z Do smn ’
AT (or Ern A T) ‘31, {31

where &, @, B, and B, are elements satisfying

(Ap Ama,=Cr, ApAn)a,=il, F1pAi)=Cr
and F(lpAi)y=1C.
We have relations
(3.12) am =30y A1) and nB,=3r A7).
Proor. From the Puppe’s exact sequence associated with (3.11) and

Lemma 3.5, we see easily the table. In the exact sequence

(S*)* n* (S°m)* (S?)*

— {S, PAP}— {S", PAP} — {S?°P,PAP} — 0

n*-image is of order 2 since {S", PAP}=Z, and {S°P, PAP}=Z, Put a,
=a(ivA1) then 2a=0 (mod.6). On the other hand, »*-image of the another
generator of {S¢ PAP} vanishes since

(3.12) PFEAD)=6Gy AT)=0  inI{ST, PAP}.

Thus we obtain a=3 (mod. 6) and a,n=3(ivAi). Similarly we obtain 58,
=3 Axn). g.e.d.
3.4. Next we put

(3.14) Q0=5"U ¢
3
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and denote by
(3.15) S —Q and wn': Q—S7

the canonical inclusion and the map collapsing S*® to a point. From (3.8) and
(3.15) we have following three cofibrations:

v '

(3.15") S Q — 87,
i

(3.16) St —— N7 —s S*P,
i T,

3.17) St N, —5 50,

where C(S®P) is attached to S* by a map representing 3vzr < {S*P, S*} and
CQ is attached to S° by a map representing 7z’ < {Q, S*}.

The following tables (3.18), (3.19) and (3.20) are verified from the Puppe’s
exact sequence associated with the cofibrations (3.15%), [(3.16), and Lemmas
.1, and

| i=6 | i=5 ‘ i=4 | i=3 ; i=2 | i=1 ‘
| !
(3.18) | groups {Q,S'P} | 0 Z 0 z |z Z
generators i’ En’ wr’ e’
where ¢’ is defined by &'t/ =41.
| izs | =4 i i=3 | 2_27 |
roups {N,, S'P 0 Z-i—Zﬂ“k B E - ‘ Z ‘
@iy | Lo ST > — |
o Cnn():in’nl} wrmw, ¢ C(S? C)ﬂo, E
generators ‘ |
(or ilm,) ‘ =1iym’ T & }

where ¢, is defined by &1, = 2i.

{Q PAP) | {(SQ,PAP}
(3.20) ’ Z, 747 '

generators (v Az’ CNADr/, p

where p is defined by pi’ =iAi.
Making use of [3.5), and (3.12) we get
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(3.21) CNipr' =@y AN’ =6y A)x’ =0,
agmr’ =30y AN i)r’ =0

in {Q, PAP}. Then, from the Puppe’s exact sequence associated with [(3.17),
and (3.20) we have the following table

Z+Z+Z+2 Zs
3.22)
ENDn'm, (v A7,
generators o pTy, U, U, o
= ADrr,, =@y AD)7T,

where u and v are elements satisfying ui, = a, and vi,=FCA1i.
LEMMA 3.7. For any w,= aa,+b& A1) {S¢ PAP}
(i) there exists we {Ny, PA\P} satisfying

(3.23) W, = wi,,
(ii) any we {N,, PAP} satisfies (3.23) if and only if
w=c,CNOrn,tc,om,+autbv  for some integers c,, C,,
(iii) theré exists we {Ny,, PAP} satisfying and
(3.24) (Ip Am)w=ar,.

Proor. (i) From (3.21) we obtain
(" )*w, =0 {Q, PAP}.

Thus, there exists an element w < {N,, PAP} satisfying (3.23).
(ii) Making use of (3.22) any element w = {N,, PAP} can be expressed as

w=c N’ n,+Fc,pm+cutcv
for some integers ¢;. If w satisfies (3.23) we obtain
Wy = Wi, = Ui +c,vi = e ENT).
Then from we have
coc=a and c¢,=b.
Conversely, if o satisfies (3.23) for any integer ¢, and ¢, then
Wi, =W, .

(iii) Making use of (3.18), (3.19), (3.20) and (3.22) we have the following
commutative diagram associated with [3.1T) and [3.17), in which all rows and
columns are exact, and the middle column, the right column and the third
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row splits.
0 0 0
|
0 {SQ, S*P}———————»{SQ, P A\ P }————={SQ, S*P} 0
T
1 ( [ A, A
0 {Ny, S2P)—— ) (N, PA P}—= R . S'P} 0
. J ]
0———{S°, S?P} {S¢, PA P} {S¢ S*P} 0
| |

0 0 0
From [3.2), we obtain
Ap AD)E A Dn’ = 20n’
then, for the other generator p of {SQ, PAP}, we have
(Ap Am)p=I1En’ for some odd integer [

since the first row of the above diagram is exact. And since the diagram is
commutative, we obtain

Ap AN, =28r'n, =2rr,,

(Ap A mW)gpr, =1Cn'n, = Crx,,

(p N m)xu=rm,,

(Ap A m)v=mlrmn, for some integer m.
‘We can take the integers ¢; and c, satisfying

2¢,+1c,+mb=0
since [ is odd, and we put

o=c,CNrr,+c,pm,+autbv.
Then, from (ii), o satisfies and
Ap A ©)ww = (2¢,+lc,+mb)ernny+ar, = ar, . qg.e.d.

3.5. We consider the ordinary homology maps induced by the elements
of {S% PAP}. Let s; be a generator of the group HfG(SG) and let (e,Ae,,
e Ne,, e,Ne,, ¢, N\e,) be the generators of groups ﬁ*(P/\P), where ¢; A¢; is a
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generator of (i+j)-dim. groups, ¢,Ae, is the generator represented by the 6-
cell of S%P if we put PAP=S*PUC(S®P), and e,Ae, is the other 6-dim.
generator.

The element of fe {S°% PAP} is called to he of type (&, ) if induced
homology map is

Jx(se) = k(ey N ey)+1(e, A\ ey) for some integers k, [.

Making use of the relations (1pAm)a,=S*, IpAT)EAL)=0 and (x A 1p)(EA7)
=2(1g4 A1), we obtain that «, is of type (b, 1) and A1 is of type (2,0). For
any element w,< {S% PAP} we can put

wo=0a- o, A1)

then w, is of type (ak-+2b, a). On the other hand there is Te«, of type (1, k)
where T =T(P, P), then easily seen that % is odd. We put 2=2k’+1 and

(3.25) wy= a,—k'({ A1)

then o) is of type (1, 1) and Twj is so.
PROPOSITION 3.8. There exists an element a < {N,, PAP} satisfying the
relations

@) (e AmTa=0p A =m,
and

(ii) Ty AD)+Ap AD)=aiy(S°m)+i A

Proor. We take w, < {S¢ PAP} of type (1,1). From Lemma 3.7 (iii)
and (3.25), there exists a« € {N,, P A P} (which is extended from w{) satisfying
the relation (i). Let s; be a generator of ﬁi(Si) and (e,, ¢,) be the generators
of ﬁz(P) and FZ(P). The homology maps iy, 7 and . can put

ix: Hd(S®) — Hu(P): ix(s) = e,

Ty * ﬁ*(P) — ﬁ*(s4) : wi(e,, e) = (0, s,)
and

Gt Ho(P) —— H(S%): Tuley, €)= (25, 0)

since {i=2-15. We consider the following maps H.(S*P) — H.(P A P):
(Ip A D)s: (0%ey, %)) — (3 N\ €y, 4 N 0y)
T«(lp A D5t (0%ey, o%e)) —— (23 N\ ey, 5 A 2y),

(@i, (S*7))s : (0%, 0%¢)) — (0, e, AN ey te;, A ey)
and
GC A D (a%e,, o?e,) — (2e, A ey, 0).
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Then we obtain
(1p A D5+ Tu(lp A D = (@i (S2aNs+GE A D

From we see easily that the stable homotopy class of any element
fe {S*P, P\ P} is determined by its homology type, and then (ii) follows.
q.e. d.

§4. Existence of admissible multiplication in ﬁ( ;M)

Let ¢ be an associative and commutative multiplication in a reduced
cohomology theory h. In this section we define a multiplication Uy in ﬁ( 7))
and prove that p, is admissible. Thereby, we need some assumptions on h.

4.1. Using the notation of 3.2, the cofibration

1y o

S _— Nv; _— S4P
yields, for any finite CW-complex W with a base point, a cofibration

1A, 1AT,
WAS*— W/\N,]——» W AS*P.

In the exact sequence of i associated with this cofibration,

(L A STg)*: RE(W A S™4) —— (W A P A S™%)
becomes a trivial map if 3(wr)**=0. Thus we obtain

LEMMA 4.1. If 3(wn)**=0 in h, then the h-cohomology sequence associated
with the above cofibration breaks into the following short exact sequences

(IAT)*, ANT*,
4.1) 0 — A5(W A S*P) —— (W A Ny) — R*(W A S* — 0.
By [A1) for W=S" and k=4, there exists 7, < h*(N,) such that i¥r,=o*l.
If 3y**=0 in £, (1,(S*p)*rs=20 since 1,7 is homotopic to 3i,v. From the exact-
ness of the sequence
(S** . (S'p*,
RY(S1P) — F4(S® — A%(S7)

follows that (S*0)*x=1ify; for some x& R%S*P). Put

To=70—TFx.
Then we have
Wro=@r—wafxr=1iro=o'l,
iFro=1ifri—ifrFx = (S*)*x—(mi)*x =0
by (3.9). Thus
LEMMA 4.2. () If 3wr)**=0 in h, then there exists y,< h'(N,) satisfying

4.2) ifr,=o0'l.
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(i) If 3v**=0 in h, then there exists y, & h*(Ny) satisfying
i¥re=0"1 and ify,=0.

4.2. Making use of 7, of hence at least under the assumption
of 3(vr)** =0, we define a homomorphism

r=7w: RW A Ny) — KW A S*P)
by the formula
4.3) Tw(®) = Qw A T)*(x—plo™* Aw A 1)*xQ70))
for x& A*(W A Ny). Since
Ly N igy* (o™ Aw N 1) xR 70) = (o™ Ly N i)*2 D 0'1)
=1y A ip*x,

x—p(o™ (A Ni)*x@7,) is in the kernel of (1 Ad)*. By [41), Aw Am)* is mono-
morphic. Thus the map 7y is a well-defined homomorphism.

LEMMA 43. (i) 7w is a left inverse of (IwAmy*, i.e, rw(ly Am)*=an
identity map; hence the sequence of (4.1) splits:

REW A Ny = WE(W A SAP)+RSW A S
(i) 7 is natural in the sense that

(SAS™ ) rw = 1w S A 1n,)*,
where f: W/ —W.
(iii) 7 is compatible with the suspension in the sense that

Aw A T”)*O'TW = TSW(lW A T/)*ﬁ ’

where T' =T(S*, Ny) and T” =T(S?, S*P).
(iv) The relation

LY Qrw(0) =1y aw (¥ & x)
holds, where x & AX(W ANy and v e BI(Y).
PrOOF. (i) If x=(1Amy*y, then (1A)*x=0 and (i) follows from (4.3).
(i) Since (1y:Awy* is monomorphic, it is sufficient to prove the equality
A AT)*(f A S LeY*rw(®) = L A T 7w (F A L) *() -
Now, the left side={(f A mo)*7w(x) = (f A Ly, )*(Lw A mo)*7w (%)
= (f N Ly *x—plo (S /1w A 1)*2Q 70)
=(f ALy *a—plo™ ' Qwe AT A L 2 & 70)
== the right side.

(iii) Since T, =T(S*', S*) is a map of degree 1, we have
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Asw A i)*Aw ATV 0 =y A To)*o(1y Aig*
=o(ly ANi)*.
Making use of this identity
(Lsw A mo)*7sw(lw N\ T')*a(x)
=Aw ATV ox—p(o™*Asw A 1)*Aw AT)*0xQ70)
=y ATV ox—Ayw ATV ou(o™* (Ly Ni*xQ70)
=Ly ATV oLy A T)*rw(x)
= sy AT)*Aw AT *orw(x),
from which (iii) follows since (1gy A 7,)* is monomorphic.
(iv) Araw A Tl *rraw (Y Q) x)
= (Y Q1) o™ Ay pw N )* (Y QD) Q 70)
= p(Y Q1) — (Y Q0™ (w A 1)* ) 70)
= p(y Q@ Uw A mo)*rw(x))
= Ayaw AT * (Y Q rw(x),
from which (iv) follows. q. e. d.
LEMMA 4.4. If 7, satisfies (4.2)), then the relation
Ay A S*D*rw = Aw A i)*
holds for the inclusion i: S*C P and i,: S*C Ny,
PrROOF. Since S*i=m,, by (3.8") and iffy,=0 by (4.2"), we see that
A A S D*rw(x) = Aw A 1)*¥Aw A o) rw ()
=1y N i)*x—plo™* Ay A x Qi)
=1y AD*x. q.e.d.

If ¢ is commutative, we can easily see that
LEMMA 4.5. If p is commutative, then there holds

(4.4) tEQr)=T*uy,&Q2)

for any z e h¥(Z), where T’ =T(Z, Ny).
LEMMA 4.6. If 7, satisfies (4.4), then there holds a relation

Iy ATV (w0 Q2 = rwaz(lw A T*pu(x® 2)

for any xe k*(W A Ny) and z e h¥(Z), where T'=T(Z, Ny) and T” =T(Z, S*P).
PROOF.
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Awnz A T Ay AT plyw(0) R 2)
=Ly ATY*Qw Ao AL rw() Q2)
=QAw AT p(x@2) =y A TV p(p(o™ Ly A i) 2 Q10 @ 2)
=w ATV p(xQ2)— (o™ Aw N i)* 3 QT"*ply e ® 2))
=y ATV px@2)—po™ Ay N * xQ u(zQ@70) by (4.4,
=Aw AT)*p(xQ 2)— p(plo™ (L A 1)*xQ2) Q7o)
=Awaz AT rwazly A T (xQ2) - q. e. d.

4.3. Making use of the homomorphism yy defined by and the ele-
ment « € {N, PAP} of [Proposition 3.8, we define a map

(45) tn: R(X; Q@AY ) — KX AY ;5 7)

as the composition

ty=0"*rxpya®*Ax AT AN 1p)*p:
WX @IY 5 )= EX A PYQ (Y A P)
— B X NP AY AP)— B*+(X AY AP A P)
— RHIX A Y A Ny) — BHS(X A Y APASYH
— A XANY AP)=R*(XAY;7),

where T=T(Y, P).

Uy is defined only if 3(vm)**=0.

The definition of u, depends on the choices of y, and « which are but
fixed during the subsequent proofs of properties of an admissible multiplica-
tion.

4.4. THEOREM 4.7. The map p, of (4.5) is a multiplication satisfying (A,).

PRrROOF. The linearity and naturality of w, are obvious.

To prove (4,): putting T"=T, P), T,=T(S*", YAP), T,=T(S* P) and
T=T(P, P), by definitions of p, and p;, we have

(0 @) =07 r xpava** (A x AT N 1p)*p((Lx A m)*0* @ lyap)
=0 rxpr @A x AT N1p)*¥(1x AT A Lppae)*(Ax A T)*a'pe
=0 Y xara@®* A xay A T A 1p)*(Axpar A To)*o' 1t
=0""rxnr((le A MTa)** o'yt
=0 'y xarTi¥oty by Proposition 3.8, (i),

=0l yavnstpoip = p=py by Lemma 4.3, (i).
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Similarly, making use of [Proposition 3.8, (i), and (i), we obtain
r1Q o) =Ax ATV p=pg

i.e, (4,) was proved.

From (A4,) and (H,) it follows that p,(1) is the bilateral unit of y, i.e., the
existence of 1, is obtained.

To prove the compatibility of y, with oy, putting 7'=7(, P), T,=T(, SY),
T,=TSY, P), T,=T(SY, Y ANy, T'=T(S, N,) and T7=T(S*, S*P), by de-
finitions of g, and ¢, we have

(Lx A T)* (07 Q1)
=Ax ATy A1p)o " rsxnr@®*Lsx AT N 1p)*((lx A T o R1)
=07 Ax ANTi A S p)*rsxnr(lx A Tof*oa**Ax AT A 1p)*p
=0 xnsy(Lx A Ti A 1y *(Ax A To*oa?* (1 AT A Lp)*p
by (i),
=0 rscxnrxar A TD*oa**(Lx AT A 1p)*p
=0 A xpr A T"V*0rxpy**Qx AT A1p)*p by Lemma 4.3, (iii),
=xar ATD*007 rxpora®* (U x AT AN 1p)*pr=oppty .
Similarly we see that
(1@ 0p) =0 rxpsr@®* (Lx AT A 1p)*u(lx @y A Ty)*0)
=0 Y xnsy(Lxnr AT oa**(Lxy AT A 1p)*p
=0oylty. qg.e. d.

COROLLARY 4.8. The condition that 3(wr)** =0 in h is necessary and suf-
ficient for the existence of a multiplication p, satisfying (A,).

PROOF. We need only to prove the necessity. Making use of Proposition
1.2 for a=7, X=P and j=4, (2.2) and (3.4), we see that

0=, A P*oy’k, = 3((S*DV(S*m)* 04’k
= 30, 2(Sr)*v*i*k, = —30,*(S7)*v*1, .
Now ¢;, and (Sz)* are monomorphic (by Proposition 1.2). Hence

31)*],1/ — 3107;”*(1) = 0 .
For any xe& A(X A SY),

3ry*kx = 3m)**p(o~*xQ 0*l) = p(o~*xQ 3(S *m)*v*o*l)

= (o' xQ3T*(1 A m)*o*v*1) = (o~ xR T *(3p,)v*1)
=0,
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where T=T(P, S®). g.e.d.
THEOREM 4.9. If 7, satisfies (4.27), then the multiplication p, of (4.5)
satisfies (A,) with associated cohomology operation T**a?: R¥( )— hi=¥ 7).
PrROOF. By Theorem 4.6 we can use (4;) for y,;. Putting T=T(P, P),
T'=T(Y, P) and T” =T(Y A P, S?), we have on A'(X; n)Qhi(Y ; n)
/JL<57],0 ® 1)+ﬂR(1 X 577,0)
=u(o Ay AP*QD+Ux ATV 1 Q0™ Ay A1)*)
=0 {{Ax AT *Ax NiAYypp)* +Ax AT Als2)*(Axppar AD*} 1t
=0 {Lxpvnr AD*Axar AT+ xpxnr AD¥ A x AT A1p)*
=0 X (TAp AD)F1p A (1x AT N 1p)*p
= {o X (ai,m)**+o2(GE A D Ay AT A 1p)*p

by Proposition 3.8, (ii),
= **e? g y ey ¥ Ly ATV N 1p)*p

o2 lrkgt (o7 ® o72*%) by Lemma 4.4,
= 09,0ty CF5 02 18,0 D 0,0) -

Here we put X, = {*0?, then
5%”7/ = ﬂL(a’I/,ﬂ XD+ 11X 57/,0)'11//1(57/,0 X 57},0) .
Clearly X, is a cohomology operation and the relation

Xopt= pr(Xy Q1) = p(1Q Xy)
holds. Moreover we obtain
Oyl = 0 2R (R =2
since £i=2-15 (by (3.2)). g. e d.
THEOREM 4.10. If 7y, satisfies (44), then the multiplication p, of (4.5)
satisfies (A,).
Proor. To prove (i) of (4,), discussing on AXX)QA*(Y ; p)@h*(Z; 7)
and putting T,=T(Z, P), we have
e @)y =0 *rxarnz@** A xar A Ti A 1p) (@ 1)
=0 xarazt(1Q a**(1y A Ty A 1p)*p)
=0 (1@ ryaza**(ly AT A1p)*p) by Lemma 4.3, (iv),
= pA Q0™ rxpza** Ay AT A 1p)*p)
= p1Q ) -
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In a similar way we can easily see (ii) of (4;) on ﬁ*(X; 7)& ﬁ*(Y)(X) ﬁ*(Z; 7).
To prove (iii) of (4,), discussing on A*(X;7)@A*(Y ; 7)Qk*(Z) and putting
T,=TZ, P), T,=T(PNZ, P), T,=T(Y, P), T"=T(Z, Ny) and T” =T(Z, PAS*),
we have
(L@ pr) = 0y xprnz0@®* Ly ATy ALp)* (1Q Ay A T* 1)

=0 Y xarnz@®*(Lx A Ty A 1p)*(y AT (@ 1)

=0 'Y xavnzllxar ATV pu(a®**(Axy ATy A1p)*u®1)

=0 *(xar ATV (7 xar QD(a**Ax ATy A1p)¥Q@1)

by
=Axar ATD*¥p(o™*r xpva®**(Ax ATy A1p)*u@1)
= pr(ty&@1) . g.e. d.

4.5. As a corollary of Theorems 4.6,[4.9, 410, Lemma 4.2 and
we obtain

THEOREM 4.11. If we assume that 3v** =0 in h, then admissible multipli-
cations py exist in I*( ;7).

§5. Admissible multiplications in I’(VO( ; )-theory

5.1. The KO (or I’{VU)-cohomology theory of real (or complex) vector
bundles has the commutative and associative multiplication g, (or py) defined
by tensor product.

First we recall [1] that fg\Oj"(Sq) and I?U"(SO are both isomorphic to cor-
responding groups in the following table:

q (mod 8) 0 1 2 3 4 5 6 7

(5.1) ROSY=Kosy |z |z |zl 0|z ool o

KU SHY=KUXSY | z| o0 |z | 0|z |o0o|lz]| o

And the operations—the complexification ¢: l’(VOi(X)efva"(X), the real re-
striction 7: ﬁ]i(X)aKOi(X) and the conjugation *: KU’(X)—»KTJKX)—«have
the following relations (c. f. [5]):

(5.2) re=2: KOY(X)—KOU(X),

er =1+#: KUYX)—>KUYX).
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The operations are natural with respect to maps and ring homomorphism
with respect to tensor product multiplication, excepting y which is a homo-
morphism of groups.

Let g be a generator of K"\IJJ"(SZ), given by the reduced Hopf bundle.
Bott’s isomorphism

Byt KUWX) — KU™*X)

is given by the formula By =0"%uy( ®2).
We can easily obtain the following relations

(5.3) Byx=—*By ,
G4 Bop®3) = (B @)= pp(x®Byy) for xe KUXX), ye KUXY)
and
(.5) (@) = u(rx®3)  for xe KUXX) and y e KOXY).
5.2. Let H be the complex Hopf bundle over P (complex projective plane)
and let h=[H]-1.
Define W: KU™(X)—KO"(X; 7) by
(5.6) W@ =7p0(Brx@ ).
Making use of exact sequence associated with the cofibration

1Az 1IAT
XAS2— XAP— XASH,

we have the following diagram

sk

~ 1% ~ 7, ~ ~
mem e KOH(X ) = KOY(X ; 7)) - KO™(X) RO™(X) ——tm e
w
¢ 787
KUX)

D.W. Anderson [2] proved that W is an isomorphism and the above diagram
is commutative. Thus
THEOREM 5.1 (Anderson). We have an exact sequence

~ & o~ 1B~ /Ao e
o — KOY(X) — KU {X) — KO™¥(X) — KO*{(X) —> ---

and the relations

GX)) We=p, and yBg' =0y, W
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where W is an isomorphism.

W is called the Wood isomorphism.

5.3. THEOREM 5.2 There exists an admissible multiplication p, in KB( 7))
The admissible multiplications in ]F(VO( ; ;) are in one-to-one corvespondence with
the elements of the group Z = @“4(50).

Proor. From the Bott’s isomorphism in I?O-theory we obtain

KO(X) = KO (X)® KO'(S®)

and since y*-image in ]?é"S(S") vanishes, then yv*-image in @i(X) also
vanishes. Thus by Theorem 4.10, the KO( ; ) has an admissible multiplication

Uy constructed by tensor product multiplication. From (5.1) and Wood iso-
morphism,

Oy = pabpet KOTH(S"; ) — KO(S*) — KO™(S"; 1)
is a zero map. Thus d,-image of [?0‘4(50; ») vanishes and 5,;1(0):@‘4(8"; 7)
= fU“‘(S") =~ 7. Then any admissible multiplication in f(b( ; 7) have the same

cohomology operation and the theorem follows from Corollary 2.8.
5.4. To simplify notation we put

tx@P) =xNoY, po(xQ¥)=xAygy, M(xQy)=xAYy, etc.
We define the maps gy and p}
s KUYX)YQKONY) — KU (X AY)

u: KOX)QKUHY) — KUS(XAY)
by
GRS trR(xQY)=xAysy and pr(xQy)=exAyy.

From (5.4) the following diagrams are commutative since g, and g, are
commutative associative multiplications:

’

~ /’t ~
EUH(X)QKO/(Y) = KUM™(XAY)

(5.89) wW®1 w

~ ~ AUR ~
KO(X; n)QKO'(Y) =~ KO"(XN\Y ;)
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’

KOAX)QKU(Y) e KUW((XAY)
1QW w
KO'(X)®KO/(X ; ) KO™(XNY 5 7).
We put
(5.9 Ou,o=7Bc", pPv=¢ and dy=pydy,,=1+%)B .
From (5.7) we obtain
(5.10) Oyo="00W, pyp=W0, and oy=W5,W.

Making use of the relations [(5.5), [(5.9) and [5.10), we obtain that the multi-
plications g and g satisfy (H,)~(H;) with respect to 6y, and py. Moreover
we can easily obtain that the tensor product multiplication g, satisfies (4,),
(4,) and (4;) with respect to oy, p¢r and p;. And we obtain

INgY=ENg Y =E=X) Ny +x Ng(y—=5)—(x—%) Ag(y—3)
for any xe KAI/J*(X) and y = K’T]*(Y) where Z is denoted by Z=xz, then, from
(5.3}, (5.8) and
B’ (A—0)(x Ay ¥) = Br'A—0)x Ay y+x Ay fy'(L—+)y
—Bu(Br'(1—%)x Ay Bg'(1—%)y)
= pi(r B’ x QN+ pr(x Q1 85') —Bus(y o' x Aoy Bu'y) -
Here we put X = fye¢, then

Bure(x No¥) = Buex Ayey =ex NyPyey
= pr(Brex@y) = pi(x X Byey)

and
Ou, ok =Py’ Bre=re =2
by [5.2), (5.4) and (5.8).
Thus gy is an admissible multiplication in KU with associated cohomology
operation X = fye.
Next we put

fin =Wy (W QW) : KOUX ; ) QKOXY ; ) KO (X A Y ;)
then, making use of (5.8), (56.9) and [(5.10) we obtain that f#;, is an admissible

multiplication in I?é( ; 1) with associated cohomology operation Wpye. Thus
THEOREM b5.3. f?é( ;M) has an admissible multiplication (associated with
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the tensor product multiplication in I?é) which corresponds to the tensor product
multiplication py in KU by Wood isomorphism.

COROLLARY 5.4. The associated cohomology operation C*o=* with admissible
multiplication in ]?(5( ;) is vegarded as

Cxo=3x) = x A o7 Brth for any x & I?O’(X) ,
and a bilateral unit 1, KOY(S®; n) is
1, =Bk .

COROLLARY 5.5. Any admissible multiplication p, in I?O( ;) can be ex-
pressed as

n(xQy) = fin(x Q@)+ k- fn(yh Q@ fin(07xQ 6, ))
for some integer k, where fi, is the multiplication corresponding to py.

PROOF. Since KO~(S°; n)= KU %S®) = Z and a generator of KU-%S° is
B¥(1y), a generator of I’fb“‘(S“; n) is WBy(ly)=yrh. Then the corollary fol-
lows from Theorem 2.3.

COROLLARY 5.6. The admissible multiplications in KU (identified with
I?é( ; M) have the same associated cohomology operation Bye and are in one-to-
one correspondence with the elements of the group Za—'@“(S“).

COROLLARY 5.7. The multiplication py in KU is admissible if and only if

tr(xQ¥) =x Ay y—k(x—X) Ng(¥y—3)
for some integer k.
PrROOF. From Theorem 2.3, through the Wood isomorphism we obtain
that any admissible multiplication can be expressed as

XNy =xANygy—Fk - B5y) Au(BrtQ—:x Ay Bt (l—=)y)
=X NyY—k(x—X) Ay(y—5)

for some integer k. Conversely it is clear that gy satisfies (4,)~(4;) with
respect to py, Oy,n Mz and . g.e.d.
Kyushu University
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