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\S 1. Introduction.

In 1943 R. Baer introduced the lower nil radical, which is commonly called
the prime radical, as a radical built from nilpotent rings [1]. N. McCoy first
considered the intersection of prime ideals of a ring [7] and then J. Levitzki
showed that the prime radical was the intersection of the prime ideals of $a$.
ring [6]. Elementwise characterizations of the prime radical were given first
by N. Jacobson in terms of m-sequences [4, p. 195] and then recently by J.
Lambek in terms of strongly nilpotent elements [5, p. 55]. This latter char-
acterization enables us to describe it in terms of annihilators. The primary
purpose of this paper is to give necessary and sufficient conditions in terms
of annihilators for the prime radical to be nilpotent (see Corollary 3). These
conditions follow from Theorem 2. This also proves that the prime radicaI
of a ring with the minimum condition on (two-sided) ideals is nilpotent (see

Corollary 5).

\S 2. The results.

$R$ will always denote a ring and $r(S)(l(S))$ the right (left) annihilator of
a subset $S$ of $R$ . For $b\in R$ we write $r(b)$ instead of $r(\{b\})$ . Also, $bR$ means.
the right ideal generated by $b$ .

A decreasing sequence of sets $ S_{1}\supseteq S_{2}\supseteq S_{a}\supseteq\cdots$ of $R$ is said to have a
right (left) constant annihilafor provided that the corresponding increasing
sequence of right (left) annihilators becomes constant, that is, $r(S_{n})=r(S_{n+j})$ .
for some fixed $n$ and all $j\geqq 1$ . $(l(Sn)=l(S_{n+f}))$ . In particular we say that at
sequence of elements $\{x_{i}\}$ has a right constant annihilator if $ Rx_{1}\supseteq Rx_{2}x_{1}\supseteq$

$ Rx_{S}x_{2}x_{1}\supseteq\cdots$ has a right constant annihilator.
PROPOSITION 1. The prime radical is the set $S$ of elements $x$ such that $xR$

is nil and each sequence $\{x_{i}\}$ where $x_{1}=x,$ $x_{k+1}\in x_{k}\cdots x_{1}R$ has a right constant
annihilator.

PROOF. All strongly nilpotent elements belong to $S$. Let $y\in S$ and let-
$\{y_{i}\}$ be a sequence where $y_{1}=y,$ $y_{k+1}=y_{k}\cdots y_{1}p_{k}$ for some $p_{k}\in R$ and for alk
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$k\geqq 2$ . If $y_{k+1}y_{k}\cdots y_{1}\neq 0$ , then $r(y_{k}\cdots y_{1})\subsetneqq r(y_{k+1}y_{k}\cdots y_{1})$ because $p_{k}(y_{k}\cdots y_{1})$

and $y_{k}\cdots y_{1}$ are nilpotent elements. Since $y\in S$, the sequence $y_{1},$ $y_{2}y_{1},$ $y_{3}y_{2}y_{1},$ $\cdots$

is ultimately zero and $y$ is strongly nilpotent.
We say that a subring $N$ of $R$ has a right constant annihilator if the

sequence $ N\supseteq N^{2}\supseteq N^{s}\supseteq\ldots$ has a right constant annihilator.
THEOREM 2. If the prime radical $P$ of a ring $R$ has a right constant an-

nihilator but is not nilpotent, then there is a sequence $\{x_{i}\}$ of $P$ such that for
all $k\geqq 1x_{k}\cdots x_{1}R\neq 0$ and $x_{k}Rx_{k}\cdots x_{1}R=0$ .

PROOF. Let $K=r(P^{t})=r(P^{t+1})$ for some $t(\geqq 1)$ . Since $P$ is not nilpotent,
we have $P\not\subset K$, so that $R\neq K$. There exists an element $b_{1}$ of $P$ such that
$b_{1}R\not\subset K$ since $PR\not\subset K$. If $b_{1}Rb_{1}R$ a $K$, then we can select $b_{a}\in b_{1}Rb_{1}$ such that
$b_{2}R\not\subset K$. If $b_{2}Rb_{2}R$ a $K$, then select $b_{3}\in b_{2}Rb_{2}$ such that $b_{\theta}RczK$. This process
can not continue since $b_{1}$ is strongly nilpotent. We conclude that there exists
an element $y_{1}$ of $P$ such that $y_{1}Rc[K$ and $y_{1}Ry_{1}R\subseteq K$. Since $y_{1}R\not\subset K$, we have
$Py_{1}Rc[K$. Repeating the similar process as above, we conclude that there
exists an element $y_{2}$ of $P$ such that $y_{2}y_{1}R$ co $K$ and $y_{2}Ry_{2}y_{1}R\subseteq K$. Continuing
in this manner, we conclude that there is an infinite sequence $\{y_{i}\}$ of $P$ such
that $y_{k}\cdots y_{1}R\not\subset K$ and $y_{k}Ry_{k}\cdots y_{1}R\subseteq K$, for all $k\geqq 1$ . Let $h=t+1$ and let
$x_{k}=y_{kh}\cdots y_{(k-1)h+1},$ $k=1,2,$ $\cdots$ Then we have $x_{k}\cdots x_{1}Rc[K$ and $x_{k}Rx_{k}\cdots x_{1}R$

$=0$ for all $k\geqq 1$ .
COROLLARY 3. The prime radical $P$ of a ring $R$ is nilpotent if and only

if $P$ has a right constant annihilator and for each sequence $\{x_{i}\}$ of $P$, the
sequence $ Rx_{1}R\supseteq Rx_{2}x_{1}R\supseteq Rx_{3}x_{2}x_{1}R\cdots$ has a left constant annihilator.

PROOF. Assume that $P$ has a right constant annihilator but is not nil-
potent. By Theorem 2, we can conclude that there exists an infinite sequence
$\{x_{i}\}$ of $P$ such that $x_{k}\cdots x_{1}R\neq 0$ and $x_{k}Rx_{k}\cdots x_{1}R=0$ for any $k\geqq 1$ . Then
the sequence $ Rx_{1}R\supseteq Rx_{2}x_{1}R\supseteq Rx_{8}x_{2}x_{1}R\supseteq\ldots$ has no left constant annihilator
since $x_{k+2}\in l(Rx_{k+2}\cdots x_{1}R)$ but $x_{k+2}\not\in l(Rx_{k}\cdots x_{1}R)$ . The rest of the proof is
obvious.

COROLLARY 4. Assume that $R$ is a nil ring. Then $R$ is nilpotent if and
only if $R$ has a right constant annihilator and, for each sequence $\{x_{i}\}$ of $R$ ,
the sequence $ Rx_{1}R\supseteq Rx_{2}x_{1}R\supseteq Rx_{8}x_{2}x_{1}R\supseteq\ldots$ has right and left constant anni-
hilators.

PROOF. It follows from Proposition 1 that the prime radical of $R$ is $R$ .
Corollary 2 implies that $R$ is nilpotent.

COROLLARY 5. The prime radical of a ring with the minimum condition
on ideals is nilpotent.

PROOF. The proof is clear.
COROLLARY 6. Assume that each sequence of elements of $R$ and each nil

subring of $R$ have right constant annihilators. If $R$ is a right finite dimensional
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ring, then each nil subring is nilpoten $t$ .
PROOF. By Proposition 1 the prime radical of a nil subring $N$ is $N$. If

$N$ is not nilpotent, then there does exist a sequence $\{x_{i}\}$ of $N$ such that
$x_{n}\cdots x_{1}\neq 0$ and $x_{n}Rx_{n}\cdots x_{1}=0$ for all $n\geqq 1$ . By hypothesis $r(x_{j}\cdots x_{1})=$

$r(x_{j+k}\cdots x_{1})$ for some fixed $j$ and all $k\geqq 1$ ; for notational purposes assume
that $r(x_{1})=r(x_{k}\cdots x_{1})$ for all $k\geqq 1$ . The sum $x_{1}R+x_{3}x_{2}x_{1}R$ is direct for if
$0\neq y=x_{1}r_{1}=x_{3}x_{2}x_{1}r_{2}$ where $r_{1},$ $r_{2}\in R$ then by multiplying on the left by $x_{8}x_{2}$ we
have $0\neq x_{3}x_{2}y=x_{3}x_{2}x_{3}x_{2}x_{1}r_{2}=0$ since $r(x_{3}x_{2}x_{1})=r(x_{1})$ and $x_{3}Rx_{3}x_{2}x_{1}=0$ . Con-
tinuing in this manner we conclude that the sum $ x_{1}R+x_{3}x_{2}x_{1}R+x_{5}x_{4}x_{3}x_{2}x_{1}R+\cdots$

is direct, a contradiction. Therefore $N$ is nilpotent.
Recall that a right Goldie ring is a right finite dimensional ring with the

maximum condition on right annihilators. All right Goldie rings satisfy the
hypothesis of Corollary 5, but not conversely. The following ring, which is
not a right Goldie ring, satisfies the hypothesis of Corollary 5. Let $R$ be the
commutative ring generated by $p,$ $e_{1},$ $e_{2},$

$\cdots$ , $a_{1},$ $a_{2},$ $\cdots$ with the relation that all
products are zero except those of the form: $a_{t}^{2}\neq 0,$ $a_{i}e_{i}\neq 0,$ $a_{J}^{2}e_{i}=p$ . $R$ has
dimension one since $pR$ is essential, but $ r(S_{1})\subseteqq r(S_{2})\subsetneqq r(S_{3})\subsetneqq\cdots$ where $S_{i}=$

$\{a_{k} : k\geqq i\}$ .
The author thanks the referee for his suggestions.
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