
J. Math. Soc. Japan
Vol. 24, No. 2, 1972

Normal parts of certain operators
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1. Only bounded operators $T$ on a Hilbert space $\mathfrak{H}$ will be considered.
A compact set $X$ of complex numbers containing $sp(T)$ is said to be a spectraI
set of $T$ (von Neumann [8]) if $\Vert f(T)\Vert\leqq\sup_{z\in X}|f(z)|$ , where $f(z)$ is a rational

function having no poles on $X$ ; cf. Riesz and Sz.-Nagy [12], p. 435. For any
compact set $X$ let $C(X)$ denote the space of continuous functions on $X$ and
$R(X)$ the uniform closure of the set of rational functions with poles off $X$.
It was shown by von Neumann that if $X$ is a spectral set of $T$ and if $C(X)$

$=R(X)$ then $T$ must be normal; see also Lebow [6], p. 73. It may be noted
that $C(X)=R(X)$ holds when $X$ has Lebesgue plane measure $0$ ; this result is
due to Hartogs and Rosenthal (cf. Gamelin [4], p. 47).

An operator $T$ is said to be hyponormal if

(1.1) $\tau*\tau-\tau\tau*\geqq 0$ .
It is well-known that a subnormal operator, that is, an operator having a
normal extension on a larger Hilbert space, is hyponormal, but that the con-
verse need not hold. Further, if $T$ is subnormal then $sp(T)$ is a spectral set
of $T$. On the other hand, if $T$ is only hyponormal, this need not be the case;
see Clancey [1].

Let $T$ be hyponormal and let $Ddeno\zeta e$ an open disk satisfying

(1.2) $ sp(T)\cap D\neq\emptyset$ .
In case the set $sp(T)\cap D$ has planar measure zero then $T$ has a normal part,
that is,

(1.3) $T=T_{1}\oplus N$ , $N=normal$ ;

see Putnam [9]. Whether every compact set $X$ with the property that

(1.4) $X\cap D\neq\emptyset\Rightarrow meas_{2}(X\cap D)>0$ ($D=open$ disk)

is the spectrum of a completely hyponormal operator (hyponormal and having
no non-trivial reducing space on which it is normal) is not known. In this
connection, see [3], [11]. As to subnormal operators, however, the authors
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have shown in [2] that a compact set $X$ is the spectrum of a completely sub-
normal operator (subnormal and completely hyponormal) if and only if

(1.5) $X\cap D\neq\emptyset\Rightarrow R(X\cap\overline{D})\neq C(X\cap\overline{D})$ ,

where $D$ denotes an open disk. (The closure of a set $A$ is denoted by $\overline{A}.$)
In case $T$ is subnormal, then polynomials in $T$ and, in fact, rational func-

tions of $T$ are also subnormal. On the other hand, if $T$ is assumed only to
be polynomially hyponormal, so that all polynomials in $T$ are hyponormal, it
seems to be unknown whether all rational functions of $T$ must also be hypo-
normal. Further, it is also apparently not known whether $T$ must be sub-
normal if all rational functions of $T$ are hyponormal.

It may be noted that if $T$ is hyponormal (and invertible) then so also is
its inverse; Stampfli [13]. Also, there exist hyponormal operators $T$ which
are not subnormal but are such that all powers $T^{2},$ $T^{3},$ $\cdots$ are subnormal;
Stampfli [14]. In addition, for every positive integer $n$ there exists a hypo-
normal operator $T$ which is not subnormal and such that all polynomials in
$T$ of degree not exceeding $n$ are hyponormal; Joshi [5].

If $T$ is hyponormal then $\Vert T\Vert=\sup\{|z| : z\in sp(T)\}$ . It follows that if all
rational functions of $T$ are hyponormal then $sp(T)$ is a spectral set of $T$.
Further, if $T$ is hyponormal and if all polynomials in $T$ are hyponormal and
if, in addition, $sp(T)$ does not separate the plane, then all rational functions
of $T$ are also hyponormal. This is easily deduced from Mergelyan’s theorem.
(See Lebow [6], p. 66, where it is shown that if $X$ is a compact set which
does not separate the plane and if for an operator $T,$

$\Vert p(T)\Vert\leqq\sup_{z\in X}|p(z)|$ holds
for any polynomial $p(z)$ , then $X$ is a spectral set of $T.$)

It will be shown in the present paper that certain results on subnormal
operators obtained in [2] and [10] can be extended to operators $T$ for which
$sp(T)$ is a spectral set or to operators $T$ which are polynomially hyponormal.

THEOREM 1. Let $sp(T)$ be a spectral set of T. Suppose that $D$ is an open
disk satisfying (1.2) and for which

(1.6) $R(sp(T)\cap\overline{D})=C(sp(T)\cap\overline{D})$ .

Then $T$ has a normal part, so that (1.3) holds.
In the special case in which $T$ is subnormal, the above result was proved

in [2].

For any simple closed curve $C$, not necessarily having zero Lebesgue
plane measure, denote its open interior by int $(C)$ and its open exterior by
ext $(C)$ . The following generalizes a result of [10].

THEOREM 2. Let $T$ be polynomially hyponormal. Let $C$ be a simple closed
curve such that
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(1.7) $ sp(T)\subset$ {CU int $(C)$ }

and suppose that

(1.8) $\{sp(T)\cap C\}-\{sp(T)\cap int(C)\}^{-}\neq\emptyset$ .
Then $T$ has a normal part, so that (1.3) holds.

It may be noted that if $T$ is supposed only to be hyponormal, rather than
polynomially hyponormal, then $T$ may be completely hyponormal even though
its spectrum is a subset of a simple closed curve; see [10]. In fact, $T$ can
be chosen so that $\tau*\tau-\tau\tau*$ has rank one and hence is even irreducible; cf.
[10], [11].

A dual of Theorem 2 is the following.
THEOREM 2’. Let $T$ be hyponormal and invertible and suppose that $T^{-1}$ is

polynomially hyponormal. Let $C$ be a simple closed curve for which

(1.7) $ sp(T)\subset$ {CUext $(C)$ }

and
$\langle 1.8)^{\prime}$ $\{sp(T)\cap C\}-\{sp(T)\cap ext(C)\}^{-}\neq\emptyset$ .
Then $T$ has a normal part.

The above is of course a corollary of Theorem 2 by virtue of the map-
ping $w=1/z$ .

2. PROOF OF THEOREM 1. In view of (1.2) it is clear that one can choose
$con^{\wedge}.entric$ open disks $D_{1}\subset D_{2}\subset D$ centered at $z_{0}$ with corresponding radii
$r_{1}<r_{2}<r$ and such that $ sp(T)\cap D_{1}\neq\emptyset$ . Let $A$ denote the closed annulus with
hole $D$ and outer radius so large that $A$ contains that part of $sp(T)$ lying
outside $D$ . Then put $Y=A\cup\{sp(T)\cap\overline{D}\}$ . Let $f(z)$ be defined by; $f(z)=1$ on
$\overline{D}_{1},$ $f(z)=(R-r_{2})/(r_{1}-r_{2})$ if $|z-z_{0}|=R$ and $r_{1}<R<r_{2}$ , and $f(z)=0$ outside $D_{2}$ .
Thus $f$ is continuous in the plane and, in particular, $f|_{Y}\in C(Y)$ . Further,
in view of (1.6), it is clear that $f|_{Y}$ is locally in $R(Y)$ so that, by Bishop’s
theorem (see Gamelin [4], p. 51 or Zalcman [15], p. 124), $f|_{Y}\in R(Y)$ . (Cf. the
similar argument in [2].)

Hence there exists a sequence $\{r_{n}(z)\},$ $n=1,2,$ $\cdots$ , of rational functions in
$R(Y)$ converging uniformly on $Y$ to $f(z)$ . Since $sp(T)$ , hence also $Y$, is a
spectral set of $T$ , it follows that $\{r_{n}(T)\}$ converges in the uniform topology
to an operator $f(T)$ . If $\mathfrak{H}_{0}$ is defined by

(2.1) $\mathfrak{H}_{0}=(f(T)\mathfrak{H})^{-}$ ,

then clearly $\mathfrak{H}_{0}$ is invariant under $T$ . Let $T_{0}=T|\mathfrak{H}_{0}$

Next, we show that $\mathfrak{H}_{0}$ reduces $T$ . By von Neumann [8], p. 266, the image
of $sp(T)$ under $f$ is a spectral set of $f(T)$ . But this set is real, so that by
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von Neumann’s theorem $f(T)$ is self-adjoint. Since $T$ commutes with $f(T)_{r}$

so also does $\tau*$ , and hence $\mathfrak{H}_{0}$ reduces $T$ . Since $\Vert r_{n}(T)-f(T)\Vert\rightarrow 0$ and, by
the spectral mapping theorem, $sp(r_{n}(T))=r_{n}(sp(T))$ , it follows that $ sp(f(T)\rangle$

$\supset f(sp(T))\neq\{0\}$ , so that, in particular, $\mathfrak{H}_{0}\neq 0$ -space. (Since $f(sp(T))$ is a spec-
tral set of $f(T)$ then, in fact, $sp(f(T))=f(sp(T)).)$ Thus,

(2.2) $T=T_{\iota}\oplus T_{0}$ , $T_{0}=T|\mathfrak{H}_{0}$ .
It will next be shown that $T_{0}$ is normal.

Since the spectrum of $T$ is a spectral set it follows that for every $x\neq 0$

in $\mathfrak{H}$ there is a positive measure $\mu[x, x]$ supported on $sp(T)$ such that

(2.3) $(g(T)x, x)=\int_{sp(T)}g(t)d\mu[x, x]$

for every $g$ in $R(sp(T))$ ; see Lebow [6], pp. 70-71. Since $\overline{z}f(z)$ is in $R(sp(T))_{r}$

just as $f(z)$ , there exists a sequence $\{s_{n}(z)\}$ of functions in $R(sp(T))$ converging
uniformly to $\overline{z}f(z)$ and hence $\{s_{n}(T)\}$ converges uniformly to an operator $S$.
By (2.3),

$(Sx, x)=\int\overline{t}f(t)d\mu[x, x]=(\int tf(t)d\mu[x, x])^{*}=(f(T)Tx, x)^{*}$

$=(x, f(T)Tx)=(T^{*}f(T)x, x)$

(cf. Lebow [6], p. 73). Hence $S=T^{*}f(T)$ and so $T^{*}f(T)$ commutes with $T$.
Since $f(T)$ also commutes with $T$ , then $T^{*}Tf(T)=T^{*}f(T)T=TT^{*}f(T)$ , so that
$T_{0}$ is normal, and the proof of Theorem 1 is complete.

3. LEMMA. Let $\{T_{n}\}$ be a sequence of hyponormal operators converging
uniformly to the (hyponormal) operator $T$ , so that

(3.1) $\Vert T_{n}-T\Vert\rightarrow 0$ as $ n\rightarrow\infty$ .
Then $z_{0}\in sp(T)$ if and only if there exists a sequence $\{z_{n}\},$ $z_{n}\in sp(T_{n})$ , such
that $z_{n}\rightarrow z_{0}$ .

PROOF. The “ if ” part clearly holds for any bounded operators $T_{n},$ $T$

satisfying (3.1). In order to prove the ” only if,” let $z_{0}\in sp(T)$ . If the as-
sertion is false, then there exists a constant $\delta>0$ and a sequence $\{n_{k}\}$ of
positive integers satisfying $ n_{1}<n_{2}<\ldots$ for which $ sp(T_{n_{k}})\cap\{z:|z-z_{0}|<\delta\}=\emptyset$ .
Since $T_{n_{k}}$ is hyponormal, then $\Vert(T_{n_{k}}-z_{0}I)x\Vert\geqq\Vert(T_{n_{k}}-z_{0}I)^{*}x\Vert\geqq\delta\Vert x\Vert$ for all $x$ in
$\mathfrak{H}$ . On letting $ n_{k}\rightarrow\infty$ , one obtains similar inequalities with $T_{n_{k}}$ replaced by
$T$, so that $z_{0}\not\in sp(T)$ , a contradiction.

4. PROOF OF THEOREM 2. By the Riemann mapping theorem, the set
CUint $(C)$ can be mapped homeomorphically onto $|w|\leqq 1$ by $w=f(z)$ , where
$f(z)$ is analytic in int $(C)$ . By Mergelyan’s theorem ([7]) there exist polyno-
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mials $\{p_{n}(z)\},$ $n=1,2,$ $\cdots$ , such that $p_{n}(z)\rightarrow f(z)$ uniformly on CU int $(C)$ . Since
the operators $p_{n}(T)$ are hyponormal, then $p_{n}(T)$ converges in the uniform
topology to a hyponormal operator $f(T)$ . According to the spectral mapping
theorem, $sp(p_{n}(T))=p_{n}(sp(T))$ and it now follows from the Lemma that
$sp(f(T))=f(sp(T))$ . Further, if $z_{1}$ is in the set of (1.8), then $f(z_{1})$ is in
$sp(f(T))\cap C^{\prime}$ , where $C^{\prime}=\{w:|w|=1\}$ , and $f(z_{1})$ is not in the closure of
$sp(f(T))\cap int(C^{\prime})$ . It follows from [9] that $f(T)$ has a normal part $M=f(T)|\mathfrak{H}_{0}$ ,
$\mathfrak{H}_{0}\neq 0$ , so that $f(T)=S\oplus M$ , where $M$ is normal on $\mathfrak{H}_{0}\neq 0$ . Since Mergelyan’s
theorem can be used again (cf. [10]) to recover $T$ as $T=g(f(T))=g(S)\oplus g(M)$ ,
where $g$ is the inverse of $f$, it follows that $g(M)$ is also normal (on $\mathfrak{H}_{0}$) and
the proof is complete.

Acknowledgment. We are indebted to J. G. Stampfli for helpful conver-
sations concerning some of the results of this paper.

University of Georgia
Purdue University

References

[1] K. F. Clancey, Examples of non-normal seminormal operators whose spectra are
not spectral sets, Proc. Amer. Math. Soc., 24 (1970), 797-800.

[2] K. F. Clancey and C. R. Putnam, The local spectral behavior of completely sub-
normal operators, Trans. Amer. Math. Soc., 163 (1972), 239-244.

[3] K. F. Clancey and C. R. Putnam, The spectra of hyponormal integral operators,
Comm. Math. Helv. (to appear).

[4] T. W. Gamelin, Uniform Algebras, Prentice Hall, 1969.
[5] A. D. Joshi, Hyponormal polynomials of monotone shifts, Thesis, Purdue Uni-

versity, 1971.
[6] A. Lebow, On von Neumann’s theory of spectral sets, J. Math. Anal. Appl., 7

(1963), 64-90.
[7] S. Mergelyan, Uniform approximations to functions of a complex variable, Amer.

Math. Soc. Trans., No. 10, 1954.
[8] J. von Neumann, Eine Spektraltheorie f\"ur allgemeine Operatoren eines unit\"aren

Raumes, Math. Nachr., 4 (1951), 258-281.
[9] C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Zeits.,

116 (1970), 323-330.
[10] C. R. Putnam, The spectra of subnormal operators, Proc. Amer. Math. Soc., 28

(1971), 473-477.
[11] C. R. Putnam, The spectra of completely hyponormal operators, Amer. J. Math.,

93 (1971), 699-708.
[12] F. Riesz and B. Sz.-Nagy, Functional Analysis, Frederick Ungar Pub. Co., New

York, 1955.
[13] J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math.

Soc., 117 (1965), 469-476.



Normal parts of certain operators 203

[14] J. G. Stampfli, Which weighted shifts are subnormal, Pacific J. Math., 17 (1966),
367-379.

$\}_{-}15]$ L. Zalcman, Analytic capacity and rational approximation, Lecture Notes in
Mathematics, no. 50, Springer, 1968.


	Normal parts of certain ...
	1.
	THEOREM 1. ...
	THEOREM 2. ...
	THEOREM 2'. ...

	2.
	3.
	4.
	References


