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Let $J$ and $W$ be a finite set of indices and the set of non-negative integers,
respectively. By $W^{J}$ we mean the cartesian product of $W$, with itself $|J|$

times where $|J|$ is the number of elements of $J$. A semi-modular state chart
(V, h) is said to be finite whenever the number of similarity classes of $V$ is
finite [7]. Moreover, we say (V, h) is digital if, for arbitrary $M$ and $N$ of
$V,$ $h(M)=h(N)$ implies $M\sim N$. A state chart $(V^{e}, h^{e})$ is called a digital ex-
tension of (V, h) when $(V^{e}, h^{e})$ is digital and restrictions $V^{e}|J$ and $h^{e}|J$ are
equal to $V$ and $h$ , respectively. Then there exists a binary, distributive and
digital extension of (V, $h$), if (V, h) is binary, finite and distributive [8].

The principal aim of the present paper is to generalize the above result under
the condition of semi-modularity of (V, $h$), which is the affirmative solution
of one of the fundamental problems proposed by D. E. Muller and W. S.
Bartky [1, 2, 3] as $,\vee$ model of asynchronous circuits, and later mathematically
reorganized by H. Noguchi [5, 6, 7] as a mathematical system constructed
over relations. Terminology of the paper relies on [5, 6, 7, 8].

We prove the following theorem.
MAIN THEOREM. $A$ finite, binary and semi-modular state chart (V, h) is

finitely realizable. In fact, there exists a distributive state chart $(D^{e}, h^{e})$ which
induces a binary, semi-modular and digital extension $(V^{e}, h^{e})$ of (V, $h$).

In \S 1 a special type of extension called a separation is defined and a
necessary and sufficient condition for existence of digital extensions is given
(Theorem 1.2). Thus in order to prove Main Theorem we have only to show
that there exists a separation of (V, $h$). However, in this paper we look for
a wide class of digital extensions rather than giving a direct proof of Main
Theorem. For this purpose, relations between semi-modular subsets and dis-
tributive subsets are investigated as follows; if $V$ is semi-modular then $\sigma(V)$

becomes a change diagram, and $\mu(\sigma(V))$ is well defined and $(\mu(\sigma(V)), h)$ is
finite if (V, h) is finite. It is to be noted that Corollary 1.13 suggests the idea
of the proof of Main Theorem.

In \S 2 some properties of the induced synthetic relation $\sim$ and v-similarity
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classes are prepared to be used in \S 3. Although Theorem 2.11 is not
directly used for the proof of the existence of separations, it ensures that
the method given in \S 3 is reasonable.

The proof of Main Theorem will be carried out in \S 3, the last section
of the paper, where it will be shown that there exist separations of (V, h)
using previous results.

Roughly speaking, the proof of Main Theorem is as follows: If (V, h)
is finite and binary then we have a binary and distributive state chart $(D, h)$

such that (V, $h$) $\subset(D, h)$ . Then we consider a separation $(D^{k}, h^{k})$ of (V, h)
for $(D, h)$ . Then, by [8] there exists a binary, distributive and digital ex-
tension $(D^{e}, h^{e})$ of $(D^{k}, h^{k})$ . The induced semi-modular extension $\lambda_{V}(D^{e}, h^{e})$ of
(V, h) (for $\lambda_{V}$ , see 1.3) is the desired digital extension of (V, $h$).

For the further development of the theory, it seems important to synthe-
size digital extensions of semi-modular state chart directly and to investigate
minimal extensions.

The author wishes to thank Prof. H. Noguchi for his advice and en-
couragement. Thanks are also due to Dr. H. Watanabe and Mr. K. Fujino of
Nippon Electric Co. for their interest in this work.

\S 1. Separations of state charts.

In this section we will define separations of state charts and show that
existence of separations is necessary and sufficient for existence of digital
extensions of a given state chart.

Let $(V^{i}, h^{i}),$ $i=1,2$ , be semi-modular state charts such that $V^{1}\subset V^{2}$ . For
the sake of simplicity we write $(V^{1}, h^{2})$ to stand for the state chart $(V^{1}, h^{2}|V^{1})$

where $h^{2}|V^{1}$ is the restriction of $h^{2}$ to $V^{1}$ . When there is no possibility of
confusion, $(V^{2}, h^{1})$ is used for implying the state chart $(V^{2}, h^{1})$ where $h$ ‘ is
the canonical extension of $h^{1}$ to $V^{2}$ .

DEFINITION 1.1. Let (V, h) and $(D, h)$ be semi-modular state charts such
that (V, $h$) $\subset(D, h)$ . Then an extension $(D^{k}, h^{k})$ is called a separation of (V, h)
for $(D, h)$ if there is an extension $(V^{k}, h^{k})\subset(D^{k}, h^{k})$ of (V, h) such that $(V^{k}, h^{k})$

is simple in $(D^{k}, h^{k})$ , that is, if $A^{k}\sim B^{k}$ in $(D^{k}, h^{k})$ for $A^{k}$ and $B^{k}$ of $V^{k}$ then
$A^{k}\sim B^{k}$ in $(V^{k}, h^{k})$ .

THEOREM 1.2. A binary and semi-modular state chart (V, h) has its digital
extension if and only if it has a finite, binary and distributive separation $(D^{k}, h^{k})$

of (V, h) for some $(D, h)\supset(V, h)$ .
In order to prove the theorem we will introduce a special type of ex-

tensions called the induced extensions and supply some preliminary lemmas,
although some of which are not used directly for the proof. Hence we will
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provide the proof of Theorem 1.2 at the end of this section, where the more
detailed form Theorem 1.2‘ will be given.

DEFINITION 1.3. Let (V, h) and $(D, h)$ be semi-modular state charts such
that (V, $h$) $\subset(D, h)$ and let $(D^{k}, h^{k})$ be an extension of $(D, h)$ . We define a
subset $V^{k}$ of $D^{k}$ by $V^{k}=\{A^{k}|A^{k}\in D^{k}, A^{k}|J\in V\}$ . $V^{k}$ will be written as $\lambda_{V}(D^{k})$

or simply $\lambda(D^{k})$ when there is no confusion. We say $V^{k}$ the induced extension
of $V$ by $D^{k}$ , or $V^{k}$ is induced by $D^{k}$ . Furthermore, let $\lambda_{V}(h^{k})=h^{k}|\lambda_{V}(D^{k})$ .
By the lemma below, if $D^{k}$ is distributive then $\lambda_{V}(D^{k})$ is semi-modular and
$(\lambda_{V}(D^{k}), \lambda_{V}(h^{k}))$ , written as $\lambda_{V}(D^{k}, h^{k})$ , is a semi-modular state chart. $\lambda_{V}(D^{k}, h^{k})$

is called the induced extension of (V, h) by $(D^{k}, h^{k})$ . As we forementioned at
the beginning of this section, we often write $(V^{k}, h^{k})$ in place of $(V^{k}, \lambda_{V}(h^{k}))$ .

LEMMA 1.4. If $(D^{k}, h^{k})$ is a distributive extension of $(D, h)$ , then the induced
extension $(V^{k}, h^{k})$ of (V, h) is a semi-modular state chart. In particular, $(V^{k}, h^{k})$

is distributive if $V$ and $D^{k}$ are distributive.
PROOF. It is clear that $0\prime l^{k}\in V^{k}$ . Moreover, if $M^{k}$ and $N^{k}$ are states of $V^{k}$ ,

then $M^{k}\vee N^{k}\in D^{k}$ and $(M^{k}\vee N^{k})|J=(M^{k}|J)\vee(N^{k}|J)\in V$ and thus $M^{k}\vee N^{k}$

$\in V^{k}$ . Therefore, to prove that $V^{k}$ is semi-modular, it remains to show that
$N^{k}=M^{k}+\delta^{p}$ for some $p\in J^{k}$ if $N^{k}$ covers $M^{k}$ in $V^{k}$ .

Let us consider in $D^{k}$ a covering sequence $M^{k}=C(0)^{k},$ $C(1)^{k},$ $\cdots$ , $C(r)^{k}=N^{k}$ .
If $N^{k}|J=M^{k}|J$ then $C(1)^{k}|J=M^{k}|J\in V$ and hence $C(1)^{k}\in V^{k}$ . This implies,
however, $N^{k}=M^{k}+\delta^{p}$ for some $p\in J^{k}$ . Suppose that $M^{k}|J<N^{k}|J$. Then
there exists at least a $P^{k}$ of $D^{k}$ such that $C=P^{k}|J$ covers $M^{k}|J$ and $C\leqq N^{k}|J$

in $V$. Now let $C^{k}=(M^{k}\vee P^{k})\wedge N^{k}$ . Then $C^{k}\in D^{k}$ and $ C^{k}|J=((M^{k}|J)\vee$

$(P^{k}|J))\wedge(N^{k}|])=C\in V$ , and we have $C^{k}\in V^{k}$ and $M^{k}<C^{k}\leqq N^{k}$ . Therefore,
considering a covering sequence again in $D^{k}$ from $M^{k}$ to $C^{k}$ , we have $M(1)^{k}$ of
$D^{k}$ such that $M^{k}\ll M(1)^{k}\leqq C^{k}\leqq N^{k}$ in $D^{k}$ . From the definition of $C^{k},$ $M(1)^{k}|J$

must be equal either to $M^{k}|J$ or $C^{k}|J$ and hence $M(1)^{k}\in V^{k}$ , that is, $V^{k}$ is
semi-modular. Therefore $(V^{k}, h^{k})$ is a semi-modular state chart because
$(D^{k}, h^{k})$ is a state chart. Moreover if $V$ and $D^{k}$ are distributive and $A^{k},$ $B^{k}$

$\in V^{k}$ , then $A^{k}\wedge B^{k}\in D^{k}$ and $(A^{k}\wedge B^{k})|J=(A^{k}|J)$ A $(B^{k}|J)\in V$ . Hence $A^{k}\wedge B^{k}$

$\in V^{k}$ , completing the proof of the lemma.
LEMMA 1.5. Let $\{D^{k}, k\in K\}$ be a co-intersectional family of distributive

subsets of $W^{J^{k}}$ with the intersection $D\subset W^{J}$ , and let $D\supset V$ . Then

$\lambda_{V}(\bigotimes_{k}D^{k})=\bigotimes_{k}\lambda_{V}(D^{k})$ .

(For the definition of amalgamation $\otimes$ , see \S 6 of [7].)

PROOF. Let $V^{k}=\lambda_{V}(D^{k})$ , $D^{e}=\bigotimes_{k}D^{k}$ and $V^{e}=\lambda_{V}(D^{e})$ . If $A^{e}\in V^{e}$ , then

$A^{e}|J\in V$ and $A^{e}|J^{k}\in D^{k}$ for each $k\in K$. Hence $A^{e}|J^{k}\in V^{k}$ and so $A^{e}\in\bigotimes_{k}V^{k}$ .
Conversely, if $A^{e}\in\bigotimes_{k}V^{k}$ , then $A^{e}|J^{k}\in V^{k}\subset D^{k}$ , so $A^{e}\in D^{e}$ and $A^{e}|J,\in V$.
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Therefore $A^{e}\in\lambda_{V}(D^{e})$ and we have the desired result.
LEMMA 1.6. Let $(D^{k}, h^{k})$ be a distributive separation of (V, $h$), that is, there

exists an extension $(V^{k}, h^{k})$ such that $(V^{k}, h^{k})$ is simple in $(D^{k}, h^{k})$ . Then for
any distributive extension $(D^{e}, h^{e})$ of $(D^{k}, h^{k}),$ $\lambda_{V^{k}}(D^{e}, h^{e})$ , say $(V^{e}, h^{e})$ , is simple
in $(D^{\phi}\cdot, h^{e})$ , that is, $(D^{e}, h^{e})$ is a separation of (V, $h$). Furthermore, if $D_{0}$ is a
distributive subset such that $V\subset D_{0}\subset D=D^{k}|J$, then $\lambda_{V^{k}}(D^{e}, h^{e})=\lambda_{V^{k}}(D_{0}^{e}, h^{e})$ ,
where $D_{0}=\lambda_{D_{0}}(D^{e})$ . $1n$ particular, $\lambda_{V^{k}}(D_{U}^{e}, h^{e})$ is simple in $(D_{0}^{e}, h^{e})$ if $\lambda_{V^{k}}(D^{e}, h^{e})$

is digital.
PROOF. By 1.4, $\lambda_{V^{k}}(D^{e}, h^{e})$ is a semi-modular extension of (V, $h$). Let

$A^{e}\sim B$ . in $(D^{l}\vee, h^{e})$ and $A^{e},$ $B^{e}\in V^{e}$ . Then $A^{e}|J^{k}\sim B^{e}|J^{k}$ in $(V^{k}, h^{k})$ . Hence
$L^{e}+A^{e}\in V^{e}$ if and only if $L^{e}+B^{e}\in V^{e}$ and we have $A^{e}\sim B^{e}$ in $(V^{e}, h^{e})$ . There-
fore $(D^{-}, h^{e})$ is a separation of (V, $h$). If $V\subset D_{0}\subset D$ , then clearly $\lambda_{V^{k}}(D^{e}, h^{e})$

$\supset\lambda_{V^{k}}(D_{0}^{e}, h^{e})$ . The reverse inclusion follows from $\lambda_{V^{k}}(D^{e}, h^{e})\subset\lambda_{V}(D^{e}, h^{e})\subset$

$\lambda_{D_{0}}(D^{a}, h^{e})=(D_{0}^{e}, h^{e})$ and $\lambda_{V^{k}}(D^{e}, h^{e})=\lambda_{V^{k}}(\lambda_{V^{k}}(D^{e}, h^{e}))\subset\lambda_{\gamma k}(D_{0}^{e}, h^{e})$ .
In order to prove the if part of Theorem 1.2, we need show that there

is a distributive extension $(D^{e}, h^{e})$ of $(D^{k}, h^{k})$ such that $\lambda_{V}(D^{e}, h^{e})$ is a digital
extension of (V, $h$).

Lemma 1.6 says that the class of digital extension of (V, h) obtained for
a given $D\supset V$ in such a manner is included in that class constructed for $D_{0}$

if $V\subset D_{0}\subset D$ .
Now we will show that in a family of all distributive subset $\{D|V\subset D\}$

there exists the minimum distributive subset $D_{0}$ , and $(D_{0}, h)$ is finite if so is
(V, $h$).

LEMMA 1.7. Let $V$ be a semi-modular subset of $W^{J}$ . Then for a $ny[\varphi, j]$

of $\sigma(V)$ , the number of changes $[\theta, i]\in\sigma(V)$ such that $[\theta, i]\leqq[\varphi, j]$ is finite,
and hence $\sigma(V)$ is a change diagram. (For the definitions of change diagram
and $\sigma(V)$ , see 7.1 and 9.3 of [6].)

PROOF. It is known that $\sigma(V)$ is partially ordered set, and if $[\theta, i]$ is in
$\sigma(V)$ and $\theta>1$ , then $[\theta-1, i]$ is in $\sigma(V)$ and $[\theta-1, i]<[\theta, i]$ (see 7.4 and 7.5
of [6]).

Assume that there are infinite number of $[\theta, i]$ in $\sigma(V)$ such that $[\theta, i]$

$\leqq[\varphi, j]$ . Since $J$ is a finite set, there exists an $i_{0}$ of $J$ such that for infinitely
many $\eta$ , it follows $[\eta, i_{0}]\leqq[\varphi, j]$ , that is, $[\theta, i_{0}]\leqq[\varphi, j]$ for all $\theta>0$ . Now
let $M$ be an arbitrary element of $V$ . Then $ M_{j}<\varphi$ , because $[M_{i_{0}}+1, i_{0}]<[\varphi,j]$ .
Thus from the definition of $\sigma(V),$ $[\varphi, j]$ cannot be in $\sigma(V)$ , contradicting the
assumption. Therefore the number of $[\theta, i]\in\sigma(V)$ such that $[\theta, i]\leqq[\varphi, j]$

must be finite for every $[\varphi, j]$ of $\sigma(V)$ , and then $\sigma(V)$ is a change diagram.

LEMMA 1.8. Let $V$ be a semi-modular subset of $W^{J}$ and let $D$ be a (tis-

tributive subset of $W^{J}$ such that $D\supset V$ . If $[\theta, i]$ and $[\varphi, j]$ are changes of
$\sigma(V)$ and $[\theta, i]\leqq[\varphi, j]$ in $\sigma(D)$ , then $[\theta, i]\leqq[\varphi, j]$ in $\sigma(V)$ .
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PROOF. Let $[\theta, i]$ and $[\varphi, j]$ be changes satisfying the above condition.
Then from the semi-modularity of $V$, there exists an $A$ of $V$ such that $ A_{i}\geqq\theta$

and $ A_{j}\geqq\varphi$ .
Now we consider an arbitrary covering sequence in $V$ from $0^{J}$ to $A$ .

Then this sequence is also a covering sequence in $D$ , and the corresponding
sequence of changes contains changes $[\theta, i]$ and $[\varphi, j]$ in the given order by

7.6 of [6]. Therefore by 7.6 of [6], $[\theta, i]\leqq[\varphi, j]$ in $\sigma(V)$ , completing the
proof.

LEMMA 1.9. Let $V$ be a semi-modular subset of $W^{J}$ and recursively define
a subset $V(i+1)$ by $V(1)=V$ and $V(i+1)=V(i)\wedge V=\{A\wedge B|A\in V(i), B\in V\}$ .
Then $V(n),$ $n=|J|$ , is the minimum distributive subset including $V$, and $V(m)$

$=V(n)$ if $n\leqq m$ .
PROOF. Let $P$ be an element of $V(m)$ . Then $P$ may be written as

$P=P(1)\wedge P(2)\wedge\cdots\wedge P(m)$ where each $P(i)$ , $1\leqq i\leqq m$ , is in $V$ and $m\geqq n$ .
Then for each $k\in J$ there exists $P(i_{k})$ in $\{P(i), 1\leqq i\leqq m\}$ such that $P_{k}=P(i_{k})_{k}$ .
Hence $P(1)\wedge\cdots\wedge P(m)\leqq P(i_{1})\wedge\cdots\Lambda P(i_{n})\leqq P$, and this implies $ P=P(i_{1})\wedge$

$ P(i_{2})\wedge$ – $\wedge P(i_{n})\in V(n)$ . Since $V(i)\subset V(])$ if $i\leqq j$ , we have $V(m)=V(n)$ for
$m\geqq n=|J|$ . Now let $M=\bigwedge_{i}M(i)$ and $N=\bigwedge_{i}N(i)$ be elements of $V(n)$ . Then

$M\wedge N\in V(2n)=V(n),$ $M\vee N=\bigwedge_{i.j}(M(i)\vee M(j))\in V(n^{2})=V(n)$ and it is clear

that $0^{J}\in V(n)$ . Thus, in order to prove that $V(n)$ is distributive, it suffices
to show that if $M\ll N$ (Ncovers $M$) in $V(n)$ , then $N=M+\delta^{p}$ for some $p\in I$.
In this case, however, we may assume without loss of generality $M_{i}=M(i)_{i}$

and $N_{i}=N(i)_{i}$ . Then $N=\bigwedge_{1\leqq i\leqq n}(M(i)\vee N(i))$ because $(M(i)\vee N(i))_{i}=N_{i}$ and

$N_{i}=(\bigwedge_{i}N(i))_{i}\leqq(\bigwedge_{i}(M(i)\vee N(i)))_{i}\leqq N_{i}$ . Now consider a covering sequence

$M(i)=C(i, 0),$ $C(i, 1),$ $\cdots$ , $C(i, r_{i})=M(i)\vee N(i)$ in $V$ for each pair $M(i)$ and $M(i)$

$\vee N(i)$ . Since $\bigwedge_{i}C(i, O)=M$ and A $C(i, i_{r})=N$, there exist $C(i, i_{1})$ for each $i\in J$

and $C(k, k_{1}+1)$ such that $M=\bigwedge_{i}C(i, i_{1})<(\bigwedge_{i\neq k}C(i, i_{1}))\wedge C(k, k_{1}+1)\leqq N$, where

$0\leqq i_{1}\leqq r_{i},$ $i\in J$ and $k_{1}+1\leqq r_{k}$ . Since $C(k, k_{1}+1)$ is written as $C(k, k_{1})+\delta^{p}$ for
some $p\in J,$

$(\bigwedge_{i\neq k}C(i, i_{1}))\wedge C(k, k_{1}+1)$ must be $M+\delta^{p}$ . This implies that $N=M$

$+\delta^{p}$ because $N$ covers $M$ in $V(n)$ . Hence $V(n)$ is a distributive subset.
Moreover, if $D$ is a distributive subset of $W^{J}$ and $V\subset D$ , then $V(n)\subset D$ , that
is, $V(n)$ is the minimum distributive subset including $V$ , completing the proof

of the lemma.
LEMMA 1.10. Let $M$ be an element of a semi-modular subset $V$ of $W^{J}$ . If

$M$ covers only $M(1),$ $M(2)$ , $\cdot$ .. , $M(m),$ $m\geqq 2$ , then for each $M(i)$ there exists at
least an $M(i_{r})$ , $1\leqq i_{r}\leqq m$ , such that $M(i)\wedge M(i_{r})\in V$ and $M(i)\neq M(i_{r})$ . In
particular, if $m\leqq 2$ for every element $M$ of $V$, then $V$ is distributive.

PROOF. Since $g$ . $1$ . $b$ . $(M(i), M(j))=M(i)-M(j)$ is in $V$ and $m\leqq|J|$ , for
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given $M(i)$ we have an $M(i_{r})$ such that $M(i)-M(i_{r})$ is maximal in a
set $\{M(i)-M(j), 1\leqq j\leqq m\}$ . Now we consider two covering sequences in
$V;M(i)-M(i_{r})=A(0),$ $A(1),$ $\cdots$ $A(p)=M(i)$ , and $M(i)-M(i_{r})=B(0),$ $B(1),$ $\cdots$ ,
$B(q)=M(i_{r})$ . Then $A(1)\neq B(1)$ . From the definition of $M(i_{r})$ , we have $A(1)$

$\vee B(1)\not\leqq M(j)$ for every $M(j),$ $1\leqq j\leqq m$ . If this is not the case there exists
an $M(j)(1\leqq j\leqq m)$ such that $M(i)-M(j)\geqq A(1)>M(i)-M(i_{r})$ , contradicting
the assumption. Since $A(1)\vee B(1)\leqq M$, we have $A(1)\vee B(1)=M$. This implies
$M=M(i)\rightarrow M(i_{r})+\delta^{s}+\delta^{t}$ , where $A(1)=A(0)+\delta^{s}$ and $B(1)=B(0)+\delta^{t}$ for some
distinct $s$ and $t$ of $J$. Therefore, $M(i)=A(1),$ $M(i_{r})=B(1)$ and $M(i)-M(i_{r})$

$=M(i)$ A $\lrcorner ll(i_{r})$ , which completes the first part of the lemma. The second part

of the lemma is the direct consequence of the first part.
Now let us show that $\mu(\sigma(V))$ is the desired minimum distributive subset

including $V$ .
THEOREM 1.11. $1fV$ is a semi-modular subset of $W^{J}$ then $\mu(\sigma(V))$ is the

minimum distributive subset including V. That is, $\mu(\sigma(V))=V(n)$ , where $V(n)$

is the subset defined in 1.8. $1n$ particular, if every element of $V$ covers at most
two states of $V$ then $V$ is distributive and $\mu(\sigma(V))=V$ .

PROOF. By 1.7, $\sigma(V)$ is a change diagram. Hence $\mu(\sigma(V))$ is well defined
and $\mu(\sigma(V))\supset V$ . Thus by 1.9, to prove the first part of the theorem we have
only to show that $\mu(\sigma(V))\subset V(n),$ $n=|J|$ . Let $A\in\mu(\sigma(V))$ , and $[\theta, i]\leqq[\varphi, j]$

in $\sigma(V(n))$ and $ A_{i}<\theta$ . If we have $ A_{j}<\varphi$ , then $A\in\mu(\sigma(V(n)))$ , that is, $\mu(\sigma(V))$

$\subset V(n)$ . Since $[\eta, k]\in\sigma(V)$ if and only if $[\eta, k]\in\sigma(V(n)),$ $[\theta, i]$ and $[\varphi, j]$

are changes of $\sigma(V)$ . Therefore by 1.8, we have $[\theta, i]\leqq[\varphi, j]$ in $\sigma(V)$ , and
from the assumption that $A\in\mu(\sigma(V))$ , we have $ A_{j}\leqq\varphi$ .

The latter part of the theorem follows directly from the former part of
the theorem and 1.10.

COROLLARY 1.12. $1f$ $A$ is an element of a semi-modular subset $V$, then
$\mu(\sigma(V_{A}))=\mu(\sigma(V))_{A}$ .

PROOF. Since $V_{A}$ is a semi-modular subset, by 1.11,

$\mu(\sigma(V_{A}))=V_{A}(n)$

$=\{M(1)\wedge M(2)\wedge\cdots\wedge M(n)|M(i)\in V_{A}\}$

$=$ { $ N(1)\wedge N(2)\wedge\cdots$ A $N(n)-A|N(i)\in V,$ $N(i)\geqq A$ }

$=\{M-A|M\in V(n), M\geqq A\}$

$=\mu(\sigma(V))_{4}1$ .
COROLLARY 1.13. Let $V$ be a semi-modular subset and let $A$ and $B$ be

elements of V. If $V_{A}=V_{B}$ , then $\mu(\sigma(V))_{z}1=\mu(\sigma(V))_{B}$ . $1n$ particular, if $A\sim B$

in a semi-modular state chart (V, h) then $A\sim B$ in $(\mu(\sigma(V)), h)$ .
PROOF. By 1.12, if $V_{A}=V_{B}$ then
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$\mu(\sigma(V))_{A}=\mu(\sigma(V_{A}))=\mu(\sigma(V_{B}))=\mu(\sigma(V))_{B}$ .
In particular, if $A\sim B$ in (V, $h$), then $h_{A}=h_{B}$ in $V_{A}(=V_{B})$ . Moreover, from
the definition of state charts, the domain of $h$ is extended to $V(n)=\mu(\sigma(V))$

by taking $h(N)_{j}=h(M)_{j}$ , for any $N\in\mu(\sigma(V))-V$ and $j\in J$ and for some $M\in V$

such that $N_{j}=M_{j}$ . Hence $(\mu(\sigma(V)), h)$ is a distributive state chart and $h_{A}=h_{B}$

in $\mu(\sigma(V))_{A}(=\mu(\sigma(V))_{B})$ . Therefore $A\sim B$ in $(\mu(\sigma(V)), h)$ , completing the
proof.

DEFINITION 1.14. Let $V$ be a semi-modular subset of $W^{J}$ . Define a relation
$\mathfrak{P}$ on $V$ by $M\mathfrak{P}N$ if and only if $V_{M}=V_{N}$ . Then $\mathfrak{P}$ is an equivalence relation
on $V$ and a family of equivalence classes $V/\mathfrak{P}$ is well defined. $V$ is said to
be periodic whenever $V/\mathfrak{P}$ is a finite family of equivalence classes. It is to
be noted that when our discussions are focussed on binary state charts,
(V, h) is finite if and only if $V$ is periodic, and $M\sim N$ if and only if $M\mathfrak{P}N$

and $h(M)=h(N)$ .
Now we will show $\mu(\sigma(V))$ is periodic if so is $V$ , and for this purpose,

next two lemmas are prepared.
LEMMA 1.15. Let $V$ be a semi-modular subset of $W^{J}$ . Then for any subset

$J_{p}$ of $J,$ $\sigma(V)|J_{p}=\sigma(V|J_{p})$ and $\mu(\sigma(V|J_{p}))=\mu(\sigma(V))|J_{p}$ .
PROOF. By 1.7, $\sigma(V)$ and $\sigma(V|J_{p})$ are change diagrams, and $\mu(\sigma(V))$ and

$\mu(\sigma(V|J_{p}))$ are well defined. If $[\theta, i]\in\sigma(V)|J_{p}$ , then $[\theta, i]\in\sigma(V)$ and there
is an $M$ of $V$ such that $M_{i}=\theta=(M|J_{p})_{i}$ . This means $[\theta, i]\in\sigma(V|J_{p})$ . Con-
versely if $[\theta, i]\in\sigma(V|J_{p})$ , then there exists an $M$ of $V$ satisfying $(M|J)_{i}$

$=M_{i}=\theta$ , and hence $[\theta, i]\in\sigma(V)|J_{p}$ .
Now suppose $[\theta, i]\leqq[\varphi, j]$ in $\sigma(V)|J_{p}$ . If $M^{p}\in V|J_{p}$ then we have an $M$

of $V$ such that $M|J_{p}=M^{p}$ , where if $ M_{l}^{p}=M_{i}<\theta$ then $ M^{p_{j}}=M_{j}<\varphi$ . Therefore
$[\theta, i]\leqq[\varphi, j]$ in $\sigma(V|J_{p})$ .

Secondly let us assume $[\theta, i]\leqq[\varphi, j]$ in $\sigma(V|J_{p}),$ $M\in V$ and $ M_{i}<\theta$ . In
this case, however, $M|J_{p}\in V|J_{p}$ . Since $(M|J_{p})_{i}<\theta$ , we have $(M|J_{p})_{j}=M_{j}<\varphi$,
and so $[\theta, i]\leqq[\varphi, j]$ in $\sigma(V)|J_{p}$ . Hence $\sigma(V|J_{p})=\sigma(V)|J_{p}$ . Let us show the
remaining part of the lemma. By 9.3 of [7] and 9.6 of [6], $\sigma(\mu(\sigma(V)|J_{p}))$

$=\sigma(\mu(\sigma(V)))|J_{p}=\sigma(V)|J_{p}$ . Therefore by 9.2 of [7],

$\mu(\sigma(V)|J_{p})=\mu(\sigma(\mu(\sigma(V)|J_{p})))$

$=\mu(\sigma(\mu(\sigma(V)))|J_{p})$

$=\mu(\sigma(V))|J_{p}$ .
Hence from the first part of the lemma,

$\mu(\sigma(V|J_{p}))=\mu(\sigma(V)|J_{p})=\mu(\sigma(V))|J_{p}$ ,

completing the proof.
LEMMA 1.16. Let $V$ be a distributive subset of $W^{J}$ and $P=\{J_{p}\}$ be a finite
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family of subsets of $J$ satisfying that for any pair $\{i, j\}\subset J$ there exists $J_{p}$ of
$P$ such that $\{i, j\}\subset J_{p}$ . Then $A\mathfrak{P}B$ in $V$ if and only if $(A|J_{p})\mathfrak{P}(B|J_{p})$ for every
$J_{p}\subset J$. Furthermore, $V$ is periodic if and only if $V|J_{p}$ is periodic for every $J_{p}$

of $P$.
PROOF. The only if part of the lemma is a direct consequence of 5.2 of

[7], that is, $(V|J_{p})_{A1J_{p}}=V_{A}|J_{p}$ . Let us show the if part of the lemma.
Let $L\in V_{A}$ . Suppose that $[\theta, i]\leqq[\varphi,j]$ in $\sigma(V)$ and $(B+L)_{i}<\theta$ . Then, by

the assumption, there exists a $J_{p}$ of $P$ such that $\{i, j\}\subset J_{p}$ , and $(A|J_{p})\mathfrak{P}(B|J_{p})$

in $V|J_{p}$ . On the other hand, we have $\sigma(V)|J_{p}=\sigma(V|J_{p})$ by 1.15 and $[\theta, i]$

$\leqq[\varphi, j]$ in $\sigma(V|]_{p})$ . Since $(V|J_{p})_{A1J_{p}}=(V|J_{p})_{B1J_{p}}$ and $(A+L)|J_{p}\in V|J_{p}$ , we
obtain $(B+L)|J_{p}\in V|J_{p}$ . Hence $((B+L)|J_{p})_{j}=(B+L)_{j}<\varphi$ . This implies
$L\in V_{B}$ . The same reasoning shows that if $L\in V_{B}$ then $L\in V_{A}$ and hence we
have $V_{A}=V_{B}$ , that is, $A\mathfrak{P}B$ . Next, suppose $A\mathfrak{P}B$ . Then $(A|J_{p})\mathfrak{P}(B|J_{p})$ in $V|J_{p}$ ,

and therefore $|V/\mathfrak{P}|$ , the number of elements of $V/\mathfrak{P}$ , is not greater than
$\prod_{J_{p}\in P}|(V|J_{p})/\mathfrak{P}|$ . However, each $V|J_{p}$ is periodic and $\prod_{J_{p}\in P}|(V|J_{p})/\mathfrak{P}|$

must be

finite. This completes the proof of the lemma.
THEOREM 1.17. Let $V$ be a semi-modular subset of $W^{J}$ . If $V$ is periodic,

then $\mu(\sigma(V))$ is periodic.
PROOF. If $|J|\leqq 2$ , then $\mu(\sigma(V))=V$ by 1.11, and the assertion of 1.17 holds.
Suppose 1.17 is true for $|J|\leqq n$ . Now let $|J|=n+1$ . For each $p\in J$ we

define $J_{p}$ by taking $J_{p}=J-p$ . Then the family $P=\{J_{v}, p\in J\}$ satisfies the
condition of 1.16. Moreover, if $V$ is periodic then $V|J_{p}$ is periodic and so is
$\mu(\sigma(V|J_{p}))$ by the assumption. Therefore $\mu(\sigma(V))|J_{p}$ is periodic by 1.15, and
$\mu(\sigma(V))$ is periodic by 1.16. The proof is thus completed by the induction on
the number of elements of $J$.

PROOF OF THEOREM 1.2. Instead of proving 1.2, we shall show the next
theorem. The proof of Theorem 1.2 is all the same except that of the last
part of Theorem 1.2’.

THEOREM 1.2’. A binary and semi-modular state chart (V, h) has its binary
and digital extension if and only if it has a finite, binary and distributive
separation $(D^{k}, h^{k})$ for $D=\mu(\sigma(V))$ . In fact, if $(D^{e}, h^{e})$ is a binary and digital
extension of $(D^{k}, h^{k})$ and $(V^{k}, h^{k})$ is simple in $(D^{k}, h^{k})$ , then $\lambda_{Vp}(D^{e}, h^{e})$ is a
digital extension of (V, $h$), where $J\subset J^{p}\subset J^{k}$ and $V^{p}=V^{k}|J^{p}$ . Furthermore, if
a digital extension $(V^{e}, h^{e})$ is induced by a distributive extension $(D^{e}, h^{e})$ of a
given distributive state chart $(D, h)$ , then $(V^{e}, h^{e})$ is induced by a finite separation
$(\mu(\sigma(V))^{e}, h^{e})$ of (V, $h$).

PROOF. Let $D=\mu(\sigma(V))$ and $(D^{k}, h^{k})$ be a finite, binary distributive sep-
aration of (V, $h$). Then there exists a binary, distributive and digital extension
$(D^{e}, h^{e})$ of $(D^{k}, h^{k})[8]$ . $(D^{e}, h^{e})$ is clearly an extension of $(D, h)$ , and we define
$(V^{e}, h^{e})=\lambda_{V^{p}}(D^{e}, h^{e})$ . By 1.3, $(V^{e}, h^{e})$ is a binary and semi-modular extension
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of (V, $h$).

Let $A^{e}$ and $B^{e}$ be elements of $V^{e}$ and $h^{e}(A^{e})=h^{e}(B^{e})$ . Since $(D^{e}, h^{e})$ is
digital, $A^{e}\sim B^{e}$ in $(D^{e}, h^{e})$ . Then $A^{e}|J^{k}\sim B^{e}|J^{k}$ in $(D^{k}, h^{k})$ and $A^{e}|J^{k}\sim B^{e}|J^{k}$ in
$(V^{k}, h^{k})$ because $(D^{k}, h^{k})$ is a separation. Hence $A^{e}|J^{p}\sim B^{e}|J^{p}$ for an arbitrary
$J^{p}$ such that $I\subset 1^{p}\subset I^{k}$ . Now suppose $L^{e}\in V_{Ae}^{e}$ . Then $L^{e}\in D_{A^{e}}^{e}=D_{B^{e}}^{e}$ and
$L^{e}+B^{e}\in D^{e}$ because $A^{e}\sim B^{e}$ in $(D^{e}, h^{e})$ . However, since $L^{e}|J^{p}\in V_{A}^{p_{e|Jp}}=Vg_{e|J^{p}}$ ,
we have $(L^{e}+B^{e})|J^{p}\in V^{P}$ . Therefore we have $L^{e}+B^{e}\in V^{e}$ and $L^{e}\in V_{B^{e}}^{e}$ . A
similar argument shows that if $L^{e}\in V_{B^{e}}^{e}$ then $L^{e}\in V_{Ae}^{e}$ . Therefore $V_{Ae}^{e}=V_{Be}^{e}$ ,
and by the assumption $h^{e}(A^{e})=h^{e}(B^{e})$ , we obtain $A^{e}\sim B^{e}$ in $(V^{e}, h^{e})$ , completing
the proof of the if part of the theorem.

Now let $(V^{e}, h^{e})$ be a semi-modular and digital extension of (V, $h$), and
let $(D^{e}, h^{e})=(\mu(\sigma(V^{e})), h^{e})$ . Then by 1.15,

$\mu(\sigma(V^{e}))|J=\mu(\sigma(V^{e}|J))=\mu(\sigma(V))$ ,

that is, $(D^{e}, h^{e})$ is a distributive extension of $(\mu(\sigma(V)), h)$ , and is finite by 1.17.
Suppose that $A^{e}$ and $B^{e}$ are elements of $V^{e}$ and $A^{e}\sim B^{e}$ in $(D^{e}, h^{e})$ . Since
$h^{e}(A^{e})=h^{e}(B^{e}),$ $A^{e}\sim B^{e}$ in $(V^{e}, h^{e})$ . Therefore $(D^{e}, h^{e})$ is a separation of (V, $h$).
This completes the proof of the first part of 1.2’.

Now let $(V^{e}, h^{e})$ be a digital extension of (V, $h$), and $(V^{e}, h^{e})=\lambda_{V^{p}}(D^{e}, h^{e})$ ,
where $(D^{e}, h^{e})$ is an arbitrary distributive extension of a given state chart
$(D, h)$ . Then by 1.17, $(\mu(\sigma(V^{e})), h^{e})$ is a finite separation of (V, $h$), and $ V^{e}\subset$

$\mu(\sigma(V^{e}))\subset D^{e}$ by 1.11. Therefore, $\lambda_{Vp}(\mu(\sigma(V^{e})), h^{e})=(V^{e}, h^{e})$ , completing the
proof of 1.2’.

\S 2. Some elementary properties of the induced synthetic classes and
$v$-similarity classes.

The synthetic relation and induced synthetic relation $\sim^{e}$ were defined in
[8]. That is $A_{\sim^{e}}B$ in $V$ if there exists a digital semi-modular extension
$(V^{e}, h^{e})$ such that $A^{e}\sim B^{e}$ in $V^{e}$ for some extensions $A^{e}$ and $B^{e}$ of $A$ and $B$ ,
respectively. We at first notice the following remark without proof, because
we can prove it by the same argument as 1.4 and 1.5 of [8], where it was
assumed that (V, h) was distributive.

REMARK 2.1. Let (V, h) be a semi-modular state chart. Then there exists
a digital extension $(V^{e}, h^{e})$ if and only if (V, h) admits a synthetic relation.
Furthermore, the induced synthetic relation $\sim^{e}$ is a congruence on $V$ and we
have $\sim^{e}\leqq\sim^{v}\leqq\sim$ , where $\sim^{v}$ is the v-similarity relation of (V, h) (see 4.4 of
[7]), and $\alpha\leqq\beta$ implies that if $A\beta B$ then $A\alpha B$ for binary relations $\alpha$ and $\beta$ .

Remark 2.1 indicates that to synthesize a digital state chart $(V^{e}, h^{e})$ it is
required to investigate properties of v-similarity classes rather than that of
similarity classes when we are concerned with semi-modular state charts (it
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is to be noticed that if (V, h) is distributive then $\sim^{v}=\sim$).
Let (V, h) be a finite and semi-modular state chart with nodes $J$. By $[A]$ ,

$[A]_{v}$ and $[A]_{e}$ we denote the similarity class, v-similarity class and the
induced synthetic class each containing a state $A$ of $V$, respectively. As in
the case of similarity classes, we denote $s_{1}\mathfrak{F}S_{2}$ for any subsets $S_{1}$ and $S_{2}$ of
$W^{J}$ if there are elements $M$ of $S_{1}$ and $N$ of $S_{2}$ such that $M\leqq N$, and we write
$S_{1}\mathfrak{E}S_{2}$ if $S_{1}\mathfrak{F}S_{2}$ and $S_{2}\mathfrak{F}S_{1}$ . Moreover, let $J_{Z}=\{i|i\in J, Z_{i}\neq 0\}$ for a cycle $Z$

of $Z(M),$ $M\in V$, and let $J_{K}=_{Z\in Z(M)}UJ_{Z}$ and $\overline{J_{K}}=J-J_{M}$ . Since $A_{\sim^{v}}B$ implies

$A\sim A\vee B\sim B$ and $\sim v$ is a congruence on $V,$ $Z([M]_{v})=Z(M)=Z([M])$ .
LEMMA 2.2. A semi-modular state chart (V, h) is finite if and only if the

family of v-similarity classes $V/\sim^{v}$ is finite.
PROOF. (V, h) is finite if $V/\sim v$ is finite because $\sim v\leqq\sim$ Now let (V, h)

be finite and $S$ be one of similarity classes of $V$ . Since $\sim v$ is restricted to
be a congruence on $S,$ $S/\sim^{v}$ is well defined and we have

$ V/v\sim=\bigcup_{S\in V/\sim}S/v\sim$ .

Let $m(S)=$ { $M(i)|M(i)\in S,$ $M(i)$ is minimal in $S$ }. Then $m(S)$ is a finite
subset of $S$, by 3.2 of [6]. Moreover if $M$ is in $S$, then there is an $M(i)$ of
$m(S)$ such that $M(i)\leqq M$ and $M(i)\sim M=M(i)\vee M$, that is, $[M]_{v}=[M(i)]_{v}$ .
Therefore, we have $|S/\sim^{v}|\leqq|m(S)|$ and

$|V/v\sim|\leqq|V/\sim|\cdot\max_{S\in V/\sim}|S/v\sim|\leqq|V/\sim|\cdot\max_{s\in V/\sim}|m(S)|$ .

Hence $|V/\sim^{v}|$ is finite because both $|V/\sim|$ and $\max_{s}|m(S)|$ is finite, com-
pleting the proof of the lemma.

LEMMA 2.3. Let $S$ be a v-similarity class of a finite semi-modular state chart
(V, h) and $Z\in Z(S)$ . Then $S|J_{Z}=\{M|J_{Z}|M\in S\}$ is a totally ordered set.

PROOF. Suppose that $M$ and $N$ be elements of $S$ and $N|J_{Z}\not\leqq M|J_{Z}$ . Then
$M\sim M\vee N$ and $(M\vee N-M)|J_{Z}\neq 0^{J_{Z}}$ . From the orthogonality of cycles of $S$ ,

we have $(M\vee N-M)|J_{Z}\geqq Z|J_{Z}$ and $(Z|J_{Z})_{i}>0$ for all $i$ of $J_{Z}$ . Hence it
follows that $M|J_{Z}<N|J_{Z}$ . Therefore we have either $M|J_{Z}\geqq N|J_{Z}$ or $M|J_{Z}$

$<N|J_{Z}$ . This completes the proof of the lemma.
LEMMA 2.4. Let (V, h) be a semi-modular state chart with nodes $J$ and let

$M\sim N$ in (V, $h$). Then $M_{\sim}^{v}N$ if and only if either $\overline{J_{M}}=\phi$ or $M|I_{M}^{-}=N|\overline{J_{N}}$.
PROOF. It is to be noticed that $J_{M}=J_{N}$ by 7.3 of [7].

Suppose $ M_{\sim}^{v}Nand\overline{J_{M}}\neq\phi$ . Since $M\sim M\vee N\sim N,$ $M_{i}=(M\vee N)_{i}=N_{i}$ for

all $i\in I_{M}^{-}$. Hence $M|\overline{J_{M}}=N|\overline{J_{N}}$ .
Let us prove the if part. If either $\overline{J_{M}}=\phi$ or both $\overline{J_{M}}\neq\phi$ and $M|I_{M}^{-}$

$=N|\overline{J_{N}}$ , then there exists an $A$ of $V$ such that $M\vee N\leqq A$ and $A\sim M\sim N$.
Hence $M\sim A=M\vee A$ and $N\sim A=N\vee A$ . This implies, however, $M_{\sim}^{v}N$
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because $\sim$ is a congruence on $V$, completing the proof of the lemma.
THEOREM 2.5. Let (V, h) be a finite and semi-modular state chart, $M$ and

$N$ be elements of $V$ such that $Z(M)=Z(N)$ . Then $M_{\sim}^{v}N$ if and only if both
$M|J_{Z}=N|J_{Z}mod Z|J_{Z}$ for all $Z\in Z(M)$ and $M|\overline{J_{M}}=N|\overline{J_{N}}$ if $\overline{J_{M}}\neq\phi$ .

PROOF. If $M_{\sim}^{v}N$ then $M|\overline{J_{M}}=N|\overline{J_{N}}$ provided $\overline{J_{M}}\neq\phi$ , by 2.3. Furthermore,
$M\sim M\vee N\sim N$ and by 2.6 of [7], $M\vee N$ can be represented as
$(*)$

$M\vee N=M+\sum_{Z(i)\in Z(M)}a_{i}Z(i)$

$=N+\sum_{Z(j)\leftarrow Z(N)}b_{j}Z(j)$ , $a_{i},$ $b_{j}\in W$ .

Hence from the orthogonality of cycles, we have, for every $Z\in Z(M)$ ,

$(M\vee N)|J_{Z}=M|J_{Z}mod Z|J_{Z}$
and

$(M\vee N)|J_{Z}=N|J_{Z}mod Z|J_{Z}$ .
Hence

$M|J_{Z}=N|J_{Z}mod Z|J_{Z}$ .
Conversely, if the sufficient condition of 2.5 is fulfilled, then $M|\overline{J_{M}}=(M\vee N)|\overline{J_{M}}$

$=N|$ JN if $\overline{J_{M}}\neq\phi$ , and $M\vee N$ can be written as $(*)$ . Hence by 2.6 of [7],
$M\sim M\vee N\sim N$, completing the proof of the theorem.

Now we will define cycles of the induced synthetic classes and show in
2.11 that they can be written as $k_{i}Z(i)$ . Although this result is not directly
utilized in \S 3, it indicates that the method constructing separations of (V, h)
is reasonable.

LEMMA 2.6. Let $(V^{e}, h^{e})$ be a digital extension of a semi-modular state
chart (V, h) with nodes $J$, $and\sim^{e}$ be the induced synthetic relation. Then the
following properties are satisfied.

(1) If $A^{e}\in V^{e}$ then $[A^{e}]|J\subset[A^{e}|J]_{e}$ .
(2) If $A^{e},$ $B^{e}\in V^{e},$ $A^{e}\leqq B^{e}$ and $A^{e}|J=B^{e}|J$, then $[A^{e}]|J\subset[B^{e}]|J$.
(3) For any $A\in V$, there exists an extension $A^{e}\in V^{e}$ such that $[A^{e}]|J$

$=[A^{e}|J]_{e}=[A]_{e}$ .
PROOF. Let $A^{e}\sim B^{e}$ in $(V^{e}, h^{e})$ . Then $A^{e}|J^{e}\sim B^{e}|J$ from the definition of

$\sim^{e}$ . Hence $[A^{e}]|J\subset[A^{e}|J]_{e}$ .
Suppose that $C^{e}$ is in $[A^{e}]$ . Then $A^{e}\sim C^{e}$ and we have $B^{e}-A^{e}+C^{e}\sim C^{e}$ and

$(B^{e}-A^{e}+C^{e})|J=C^{e}|J$. Therefore $C^{e}|J\subset[B^{e}]|J$, and this completes the proof
of (2).

Let $\{[A(i)^{e}], 1\leqq i\leqq p\}$ be the family of all similarity classes such that
$A(i)^{e}|J=A,$ $1\leqq i\leqq p$ . Since $(V^{e}, h^{e})$ is digital, $p$ is certainly a positive integer.
Let $A^{e}=_{1\leqq}\ovalbox{\tt\small REJECT}_{i\leqq p}A(i)^{e}$. Then $A(i)^{e}\leqq A^{e}\in V^{e}$ and $A^{e}|J=A$ . Therefore by (2) we
have $[A(i)^{e}]|J\subset[A^{e}]|J,$ $1\leqq i\leqq p$ . Now let $B\in[A]_{e}$ . Then there exist $B^{e}$ and
$A(0)^{e}$ of $V^{e}$ with the property $B^{e}\sim A(0)^{e},$ $B^{e}|J=B$ and $A(0)^{e}|J=A$ . However,
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$A(0)^{e}$ must be a member of some $[A(k)^{e}](1\leqq k\leqq p)$ . Hence $A\in[A(k)^{e}]|J$

$\subset[A^{e}]|]$, that is, $[A]_{e}\subset[A^{e}]|J$. Therefore, by (1) we have $[A^{e}]|J=[A]_{e},$ .
completing the proof of (3).

DEFINITiON 2.7. Let (V, h) be a finite and semi-modular state chart,.
$(V^{e}, h^{e})$ be a digital extension of (V, h) and $\sim^{e}$ be the induced synthetic re-
lation of (V, $h$). By $s(A),$ $A\in V$, we denote the set $\{s|0^{J}<s\in W^{J},$ $A\ll A+s$

in $[A]_{e}$ }, where $A\ll A+s$ in $[A]_{e}$ means that both $A,$ $A+s\in[A]_{e}$ and if
$A<B<A+s$ then $B\not\in[A]_{e}$ . If $A_{\sim^{e}}B$ then $s(A)=s(B)$ by 2.6, and $s([A]_{e})$ is.
well defined, by taking $s([A]_{e})=s(A)$ . We say $s(\in s(A))$ an induced synthetic $\cdot$

cycle of $A$ (defined by $(V^{e},$ $h^{c})$ or $\sim^{e}$ ), and $s(A)$ (or equivalently $s([A]_{e})$) is
called the set of induced synthetic cycles of $A$ (or $[A]_{e}$). Then from the $\cdot$

orthogonality of cycles, there exists only one cycle $s^{e}$ of $Z(A^{e})$ such that
$s^{e}|J=s,$ $A^{e}|J=A$ and $A^{e}\in V^{e}$ . Hence $s(i)\wedge s(J)=0^{J}$ if $s(i)$ and $s(])$ are distinct
elements of $s(A)$ .

LEMMA 2.8. Let $(V^{e}, h^{e})$ be a digital extension of a semi-modular state chart
(V, $h$). If $[A]_{e}\mathfrak{F}[B]_{e}$ and $s\in s(A)$ then $s$ is written as $s=\sum_{<1_{\approx}?\leqq m}a_{i}s(i),$

$a_{i}\in W,$ .

where $s(B)=\{s(i), 1\leqq i\leqq m\}$ . Furthermore if $[A]_{e}\mathfrak{E}[B]_{e}$ , then $s(A)=s(B)$ .
PROOF. By (3) of 2.6, there exist $A^{e}$ and $B^{e}$ of $V^{e}$ with the property

$A^{e}|J=A,$ $B^{e}|J=B,$ $[A^{e}]|J=[A]_{e}$ and $[B^{e}]|J=[B]_{e}$ , where we may assume
without loss of generality $A\leqq B$ . Let $C^{e}=A^{e}\vee B^{e}$ . Then $C^{e}|J=B$ and by
(1) and (2) of 2.6,

$[C^{e}]|J\subset[\sigma|J]_{e}=[B]_{e}=[B^{e}]|J\subset[C^{e}]|J$ .
Hence $[C^{e}]|J=[B^{e}]|J$. Thus we have $s(A)=Z(A^{e})|J,$ $s(B)=Z(C^{e})|J=Z(B^{e})|J$

and $A^{e}\leqq C^{e}$ . Therefore by 7.4 of [7] we have

$s=\sum_{<1_{\Leftarrow}j\leqq m}a_{j}s(j)$ .

The latter part of the lemma is obtained by the above result (see 7.2 of [7])..

LEMMA 2.9. Let $(V^{e}, h^{e})$ be a digital extension of a semi-modular state
chart (V, h) and let $Z\in Z(A)$ for $A\in V$ . Then, there exist positive integers $r$

and $k$ such that $A(p)\sim^{e}A(q)$ if and only if $p,$ $q\geqq r$ and $p=qmod k$ , where
$A(j)=A+jZ$ for an arbitrary non-negative integer $j$ .

PROOF. Since the number of equivalence classes defined by $\sim^{e}$ is finite,
there must be $A(s)$ and $A(t),$ $s<t$, of $V$ such that $A(s)^{\epsilon}\sim A(t)$ . Denote by $r$

the minimum number $s$ satisfying the above condition, and by $k$ the cor-
responding minimum positive integer $j$ such that $A(r)\sim^{e}A(r+j)$ , that is,
$kZ\in s(A(r))$ . Now let $A(p)\sim^{e}A(q)$ . From the definition of $r$ , we have $p,$ $q\geqq r$

and $[A(r)]_{e}\mathfrak{E}[A(p)]_{e}$ , because $A(r)\sim^{e}A(r+ck)$ for any $c\in W$ and there exists
an integer $c$ such that $A(r)\leqq A(p)\leqq A(r+ck)$ . Hence $s(A(r))=s(A(p))$ by $2.8_{r}$

and we obtain the result that $A(p)\sim^{e}A(q)$ if and only if $p=qmod k$ , com-



Semi.modular state charts 429

pleting the proof of the lemma. $\iota$

LEMMA 2.10. Let $(V^{e}, h^{e})$ be a digital extension of a semi-modular state
chart (V, h) and $Z(A)=\{Z(i), 1\leqq i\leqq m\}$ and $r_{i}$ be the integer whose existence
was ensured in 2.9 for each $i$ . Then there exist integral vectors $k,$ $r\in W^{m}$ such
that if $p,$ $q\in W^{m}$ and $p,$ $q\geqq r$, then $A(p)\sim^{e}A(q)$ if and only if $p_{i}=q_{i}mod k_{i}$

for all $i$, where $A(a)$ denotes

$A+\sum_{\leq 1\leqq l\approx m}a_{i}Z(i)$ for any $a\in W^{m}$ .
PROOF. Denote by $a^{i}$ an element of $W^{m}$ whose i-th component is $a_{i}$ and

j-th component is zero if $i\neq j$ . Let $k^{i}$ be the minimum vector such that
$A(r)\sim^{e}A(r+k^{i}),$ $1\leqq i\leqq m$ , and $k=\sum_{1\leqq\iota\leqq m}k^{i}$ (by 2.9 and the definition of $r$, such

a $k^{i}$ exists). Then $k_{i}Z(i)\in s(A(r))$ and $[A(r)]_{\theta}\mathfrak{C}[A(p)]_{e}$ if $p\geqq r$ because there
exists an $a\in W^{m}$ such that $A(r)\leqq A(p)\leqq A(r+a_{i}k^{i})$ and $A(r)\sim^{e}A(r+a_{i}k^{i})$ .
Hence by 2.8 and 2.9, $A(p)\sim^{e}A(q)$ if and only if $p_{i}=q_{i}mod k_{i},$ $1\leqq i\leqq m$ ,
completing the proof of the lemma.

THEOREM 2.11. Let (V, h) be a semi-modular state chart which admits an
induced synthetic relation ,-SZ. If $s$ is an induced synthetic cycle of $A\in V$, then
$s=k_{i}Z(i)$ for some $k_{i}\in W$, where $Z(i)$ is a cycle of $Z(A)$ such that $s\wedge Z(i)=0^{J}$ .

PROOF. By 2.6, $s$ may be written as $s=\sum_{1\leqq i\leqq m}a_{i}Z(i)$ , where $a\in W^{m}$ and

$|Z(A)|=m$ . Furthermore, by 2.8 and 2.10, there exist $r$ and $k$ of $W^{m}$ such
that $k_{i}Z(i)\in s(A(r))$ , where $A(r)=A+\sum_{1\leqq i\leqq m}r_{i}Z(i)$ and $r_{i}\neq 0$ if and only if $a_{i}\neq 0$ .
Since there are $p$ and $q$ of $W$ satisfying

$A(r)\leqq A+\sum_{\leq 1t\leq m}pa_{i}Z(i)=A+ps$

$\leqq A+q\sum_{1\leqq l\leqq m}k_{i}Z(i)$ ,

we have $A(r)\mathfrak{E}(A+q\sum_{i}k_{i}Z(i))$ and $A\mathfrak{E}(A+ps)$ . Therefore $A\mathfrak{C}A(r)$ and by 2.8,

$s=k_{i}Z(i)$ if $s\wedge A(i)\neq 0^{J}$, which is the desired result.

\S 3. Proof of Main Theorem.

Let (V, h) be a binary, finite and semi-modular state chart. For the proof
of Main Theorem it suffices, by 1.2 or 1.2’, to show that there exists a finite,
binary and distributive separation $(D^{k}, h^{k})$ of (V, $h$). At first we will define
a special type of extension called a separation with respect to $ V/\sim$ . Secondly,
some preliminary lemmas will be prepared to show that there exists a sep-
aration with respect to $ V/\sim$ . Then finally we will complete the proof of
Main Theorem in 3.7, where the existence of a separation of (V, h) will be
shown.
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DEFINITION 3.1. Let (V, h) be a finitesand semi-modular state chart with
nodes $J$, and let $S=\{S_{i}\}$ be a finite family of mutually disjoint subsets of $V$.
Moreover, let $(D, h)$ be a distributive state chart such that (V, $h$) $\subset(D, h)$ . An
extension $(D^{k}, h^{k})$ of $(D, h)$ is called an S-separation or a separation with
respect to $S$ whenever it satisfies the followings.

(1) $(D^{k}, h^{k})$ is finite.
(2) If $A^{k},$ $B^{k}\in D^{k},$ $h^{k}(A^{k})=h^{k}(B^{k})$ and $A^{k}|J,$

$B^{k}|J\in\bigcup_{i}S_{i}$ then $A^{k}|J,$ $B^{k}|J$

$\in S_{i}$ for some $S_{i}$ of $S$ .
LEMMA 3.2. If $(D^{k}, h^{k})$ is a separation with respect to $ V/\sim$ , then $(D^{k}, h^{k})$

is a finite separation of (V, $h$). In fact, $\lambda_{V}(D^{k}, h^{k})$ is simple in $(D^{k}, h^{k})$ .
PROOF. Let $(V^{k}, h^{k})=\lambda_{V}(D^{k}, h^{k})$ , and let $A^{k}\sim B^{k}$ in $(D^{k}, h^{k})$ . Then $A^{k}|J$

$\sim B^{k}|J$ by the assumption.
Now suppose $L^{k}+A^{k}\in V^{k}$ , viz., $L^{k}+A^{k}\in D^{k}$ and $(L^{k}+A^{k})|J\in V$ . Then

$L^{k}+B^{k}\in D^{k}$ and $(L^{k}+B^{k})|J=L^{k}|J+B^{k}|J\in V$ . This implies $L^{k}+B^{k}\in V^{k}$ . By
the same argument, we have $L^{k}+A^{k}\in V^{k}$ if $L^{k}+B^{k}\in V^{k}$ . Therefore $V_{A^{k}}^{k}=V_{B^{k}}^{k}$ .
Since $h_{A^{k}}^{k}=h_{B^{k}}^{k}$ on $D_{A^{k}}^{k}$ , we obtain $h_{A^{k}}^{k}=h_{B^{k}}^{k}$ on $V_{A^{k}}^{k}$ . Hence $A^{k}\sim B^{k}$ in $(V^{k}, h^{k})$ ,

completing the proof of the lemma.
LEMMA 3.3. Let (V, h) be a finite and semi-modular state chart and $S=\{S_{i}\}$

be a finite family of mutually disjoint subsets of V. Then the following properties
are satisfied.

(1) There is an S-separation of (V, h) if and only if there is an $(S_{p}, S_{q})-$

separation for every distinct pair $(S_{p}, S_{q})$ .
(2) There exists an $(S_{p}, S_{q})$ -separation if and only if there exists an $(S_{p_{i}}, S_{q_{j}})-$

separation for all $1\leqq i\leqq r$ and $1\leqq j\leqq t$ , where $\{S_{p_{i}}, 1\leqq i\leqq r\}$ and $\{S_{q_{j}}, 1\leqq j\leqq t\}$

are partitions of $S_{p}$ and $S_{q}$ , respectively.
PROOF. If $(V^{k}, h^{k})$ is an $(S_{1}, S_{2})$-separation, then it is also an $(S_{3}, S_{4})-$

separation if $S_{3}\subset S_{1}$ and $S_{4}\subset S_{2}$ . Hence the only if parts of (1) and (2) are
satisfied. Now let $(V^{k}, h^{k})$ be an $(S_{p}, S_{q})$ -separation of (V, h) with nodes $J^{k}$ ,

where $k$ corresponds to a non-ordered pair $(S_{p}, S_{q})$ . In this case, however,
we may assume without loss of generality that system $(V^{k}, h^{k}),$ $k\in\{(p, q)\}$ ,

is co-intersectional.
Now let us show that $(V^{e}, h^{e})=\bigotimes_{k}(V^{k}, h^{k})$ is an S-separation. Since each

$(V^{k}, h^{k})$ is finite, $(V^{e}, h^{e})$ is finite by 6.7 of [7], and the assertion (1) of 3.1
holds. Suppose $A^{e}$ and $B^{e}$ are states of $V^{e}$ such that $A^{e}|J\in S_{p}$ and $B^{e}|J\in S_{q}$ .
Then there exists an $(S_{p}, S_{q})$-separation $(V^{k}, h^{k})$ (with nodes $J^{k}$) such that
$h^{k}(A^{e}|J^{k})\neq h^{k}(B^{e}|J^{k})$ . Hence we have the relation $h^{e}(A^{e})\neq h^{e}(B^{e})$ , and $(V^{e}, h^{e})$

is an $(S_{p}, S_{q})$-separation.
The if part of (2) is verified similarly.
DEFINITION 3.4. Let $[\Sigma, H]$ be a binary change chart whose corresponding

state chart $(D, h)$ is finite. It is assumed that the set $J$ of nodes of the chart
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does not contain $0$ . We define an extension $[\Sigma^{k}, H^{k}],$ called.Lthe type $\beta$ ex.
tension with period $\gamma\geqq 4$ , by taking $\Sigma^{k}=\Sigma\cup[\eta, 0],$ $ H[\eta, 0]=\eta$ mod2, $\eta>0$ ,

and with the ordering for each non-negative integer $c$ ,

(1) $[\theta_{0}+c\gamma+1, r]\ll[2c+1,0]\ll[\theta_{0}+c\gamma+2, r]$ if $[\theta_{0}+c\gamma+2, r]$

exists where $[\theta_{0}+1, r]<[\varphi_{0}, r]<[\theta_{0}+\gamma, r]$ , and

(2) $[\varphi_{0}+c\gamma+1, r]\ll[2c+2,0]\ll[\varphi_{0}+c\gamma+1, r]$ if $[\varphi_{0}+c\gamma+1, r]$

exists, and $[\theta_{0}+1, r]<[\varphi_{0}, r]<[\theta_{0}+\gamma, r]$ .
In particular when $\Sigma^{k}=\Sigma\cup[1,0]$ with the ordering

(3) $[\theta_{0}+1, r]\ll[1,0]\ll[\theta_{0}+2, r]$ ,

$[\Sigma^{k}, H^{k}]$ is said to be the type $\alpha$ extension.
The corresponding state chart $(D^{k}, h^{k})$ is called an extension of type $\alpha$

or of type $\beta$ according as $[\Sigma^{k}, H^{k}]$ is an extension of type $\alpha$ or of type $\beta$ .
Then it is easily verified that $A^{k}\in D^{k}$ if and only if $A^{k}|J\in D$ and

(4) $A_{0}^{k}=\left\{\begin{array}{llll} & & & 0 , 0\leqq A_{r}^{k}\leqq\theta_{0}\\ & & & 2cor2c+1 A_{r}^{k}=\theta_{0}+c\gamma+1\\ & & & 2c+1 \theta_{0}+c\gamma+1<A_{r}^{k}\leqq\varphi_{0}+c\gamma\\ & & & 2c+1or2c+2, A_{r}^{k}=\varphi_{0}+c\gamma+1\\ & & & 2c+2 \varphi_{0}+c\gamma+1<A_{r}^{k}\leqq\theta_{0}+(c+1)\gamma\end{array}\right.$

when $(D^{k}, h^{k})$ is of type $\beta$ , and

(5) $A_{0}^{k}=\left\{\begin{array}{llll} & & & 0 , 0\leqq A_{r}^{k}\leqq\theta_{0}\\ & & & 0_{\wedge}^{v}or1, A_{r}^{k}=\theta_{0}+1\\ & & & 1 A_{r}^{k}>\theta_{0}+1\end{array}\right.$

when $(D^{k}, h^{k})$ is of type $\alpha$ .
LEMMA 3.5. Let $(D, h)$ be a finite, binary distributive state chart, and $S_{1}$

and $S_{2}$ be subsets of $D$ with the property that if $M\in S_{1}$ , then $ M_{r}=\theta_{0}mod \gamma$ and
if $N\in S_{2}$ then $ N_{r}=\varphi_{0}mod \gamma$ , where $\theta_{0}<\varphi_{0}<\theta_{0}+\gamma$ and $\gamma$ is a positive even
integer $\geqq 4$ . Then the extension $(D^{k}, h^{k})$ of type $\beta$ defined in 3.4 is an $(S_{1}, S_{2})-$

separation. In particular, if $M_{r}=\theta_{0}$ for all $M\in S_{1}$ , then extension $(D^{k}, h^{k})$ of
type $\alpha$ defined in 3.4 is also an $(S_{1}, S_{2})$-separation.

PROOF. By (4) and (5) of 3.4, it is clear that $h^{k}(M^{k})_{0}=h_{0}^{k}(\theta_{0})=0,$ $h^{k}(N^{k})_{0}$

$=h_{0}^{k}(\varphi_{0})=1$ and $h^{k}(M^{k})\neq h^{k}(N^{k})$ , if $M^{k}$ and $N^{k}$ are extensions of $M\in S_{1}$ and
$N\in S_{2}$ , respectively. Hence, to prove the first part of the lemma, it is suf-
ficient to show that $(D^{k}, h^{k})$ is finite.

At first, let $A\sim B$ in $D,$ $A^{k}$ and $B^{k}$ be extensions of $A$ and $B$ , respectively,
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and $A_{r}=B_{r}<\theta_{0}$ . Then by 3.4, $A_{0}^{k}=B_{0}^{k}=0$ . If $L^{k}\in D_{A^{k}}^{k}$ and $L^{k}|J=L$ , then
$A+L\in D$ and we have $B+L\in D$ . Since $(A+L)_{r}=(B+L)_{r}$ , there is a $P^{k}$ of
$D^{k}$ such that $P^{k}|J=B+L$ and $P_{0}=(A^{k}+L^{k})_{0}$ from the definition of $D^{k}$ . Since
$(P^{k}-B^{k})_{0}=L_{0}^{k}$ and $(P^{k}-B^{k})|J=L$ , we have $P^{k}-B^{k}=L^{k}\in D_{B^{k}}^{k}$ . Conversely, if
$L^{k}\in D_{B^{k}}^{k}$ then $L^{k}\in D_{A^{k}}^{k}$ by a similar argument. Hence we have $D_{A^{k}}^{k}=D_{B^{k}}^{k}$

and $A^{k}\sim B^{k}$ because $(D^{k}, h^{k})$ is binary.
Now suppose $h^{k}(A^{k})=h^{k}(B^{k}),$ $A^{k}|J=A\sim B=B^{k}|J$ in $D$ , and $ B_{r}=A_{r}+c\gamma$ ,

$c\in W$ and $A_{r}\geqq\theta_{0}$ . Then $B_{0}^{k}=A_{0}^{k}+2c$ by (4) of 3.4, and if $L^{k}+A^{k}\in D^{k}$ then
$L+A$ and $L+B$ are in $D$ , where $(L+A)_{r}+c\gamma=(L+B)_{r}$ . Therefore by 3.4,
there is a $P^{k}$ of $D^{k}$ such that $P^{k}|J=B+L$ and $P_{0}^{k}=(L^{k}+A^{k})_{0}+2c$ . Hence
$(P^{k}-B^{k})|J=L$ and $(P^{k}-B^{k})_{0}=L_{0}^{k}$ , that is, $L^{k}\in D_{B^{k}}^{k}$ . The same reasoning
shows that $L^{k}\in D_{A^{k}}^{k}$ if $L^{k}\in D_{B^{k}}^{k}$ . Hence $A^{k}\sim B^{k}$ . Combining the relation with
the above result, we have the result that any similarity class of $(D, h)$ is split
into at most finite similarity classes of $(D^{k}, h^{k})$ , and therefore $(D^{k}, h^{k})$ is finite.

The latter part of the lemma is verified by a similar argument.
LEMMA 3.6. Let $S_{A}$ and $S_{B}$ be subsets of $W^{J}$ such that for any $M$ of $S_{A}$

and $N$ of $S_{B}$ ,

(1) $M=Amod Z,$ $N=Bmod Z$, and
(2) $M\neq Nmod Z$,

where $A,$ $B$ and $Z$ are elements of $W^{J}$ and $Z_{i}\neq 0$ for all $i\in J$. Then there
exists a positive integer $k$ such that $S_{A},$ $S_{B}$ are partitioned into $k$ classes (some

of them may be empty) $S_{A}(i),$ $S_{B}(i),$ $0\leqq i\leqq k-1$ respectively, with properties that
for any $M,$ $P$ of $S_{A}(i)$ and $N,$ $Q$ of $S_{B}(j)$ ,

(3) $M=Pmod kZ,$ $N=Qmod kZ$, and
(4) there exists an $r\in J$, depending on $S_{A}(i)$ and $S_{B}(j)$ , such that $M_{r}\neq N_{r}$

$mod kZ_{r}$ .
PROOF. With no loss of generality we may assume that $A$ and $B$ are the

minimum points of $W^{J}$ satisfying the condition (1). Let

$S(A)=\{M|M\in W^{J}, M=Amod Z\}$

and $S(B)=\{N|N\in W^{J}, N=Bmod Z\}$ .
Then $S_{A}\subset S(A)$ and $S_{B}\subset S(B)$ , and if there exist partitions of $S(A)$ and $S(B)$ ,
satisfying (3) and (4) of the lemma, then they induce the desired partitions
of $S_{A}$ and $S_{B}$ . Hence we may assume that $S_{A}=S(A)$ and $S_{B}=S(B)$ . Let
$B(b)=B+bZ$ be the minimum element of $S_{B}$ such that $A<B+bZ$ , and let us
define an integer $k$ by the minimum positive integer with the property that
there exists an $r$ of $J$ such that $A_{r}\neq B(b)_{r}mod kZ_{r}$ .

Now we define $S_{A}(i)$ and $S_{B}(j),$ $0\leqq i,$ $i\leqq k-1$ by

$S_{A}(i)=\{A(p)|A(p)=A+\rho Z, p=imod k, p\geqq 0\}$ ,

and $S_{B}(j)=\{B(q)|B(q)=B+qZ, q=jmod k, q\geqq 0\}$ .
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Then it is evident that $S_{A}(i)$ and $S_{B}(j)$ satisfy (3) of the lemma. Let us show
that they satisfy also (4) of the lemma.

If $k=1$ then $S_{A}(i)=S_{A},$ $S_{B}(j)=S_{B}$ , and (4) holds as shown by the definition
of $r$ and $k$ . Therefore, we may assume $k>1$ . In this case, however, $A_{t}=$

$B(b)_{t}mod Z_{t}$ for all $t\in J$. Hence we have a $t\in J$ such that $A_{t}=B(b)_{t}$ because
otherwise we have $A<B(b)-Z\in B(b)$ , contradicting the assumption.

Now let $A(p)\in S_{A}(i)$ and $B(q)\in S_{B}(j)$ . Then $A(p)_{t}=B(b+p)_{t}$ and there
exists $B(q^{\prime})$ of $S_{B}$ such that $b+p\leqq q^{\prime}<b+p+k$ and $q^{\prime}=qmod k$ . Therefore, if
$q^{\prime}\neq b+p$ , then $A(p)_{t}<B(q^{\prime})_{t}<B(b+p+k)_{t}=A(p+k)_{t}$ and $A(p)_{t}\neq B(q)_{t}mod kZ_{t}$ .
On the other hand, since $A(p)_{r}\neq B(b+p)_{r}mod kZ_{r}$ , we have $ A(p)_{r}\neq$

$B(q^{\prime})_{r}mod kZ_{r}$ if $q^{\prime}=b+p$ . This completes the proof of the lemma.
THEOREM 3.7. Let (V, h) be a binary, finite and semi-modular state chart.

Then there exists a finite separation $(D^{k}, h^{k})$ of (V, $h$). In fact, there exists a
separation $(D^{k}, h^{k})$ with respect to $ V/\sim$ .

PROOF. By 1.17, $(\mu(\sigma(V)), h)$ (or $(W^{J},$ $h)$) is binary, finite and distributive
state chart including (V, $h$). Now let $(D, h)$ be an arbitrary finite, binary and
distributive state chart including (V, $h$), and let $[M]_{v},$ $[N]_{v}\in V/\sim^{v},$ $[M]_{v}$

$\neq[N]_{v}$ and $h(M)=h(N)$ . Suppose, at first, that $[M]_{v}\mathfrak{F}[N]_{v}$ is not satisfied.
Then $\overline{J_{N}}\neq\phi$ and by 2.5, there exists an $r$ of $\overline{J_{N}}$ such that for any $A\in[M]_{v}$

and $B\in[N]_{v},$ $A_{r}>B_{r}=N_{r}$ . Hence by 3.5, we have an $([M]_{v}, [N]_{v})$-separation

of type $\alpha$ .
Next let $[M]_{v}\mathfrak{F}[N]_{v}$ , where without loss of generality we may assume

$[N]_{v}\mathfrak{F}[M]_{v}$ , that is, $[M]_{v}\mathfrak{E}[N]_{v}$ . Then $Z(M)=Z(N)$ , and by 2.5, there
exists a $Z\in Z(M)$ such that if $P\in[M]_{v}$ and $Q\in[N]_{v}$ , then

$M|J_{Z}=P|J_{Z}mod Z|J_{Z}$ , $N|J_{Z}=Q|J_{Z}mod Z|J_{Z}$ ,

and $M|J_{Z}\neq N|J_{Z}mod Z|J_{Z}$ .

Therefore by 3.6, $[M]_{v}$ and $[N]_{v}$ are partitioned into $\{S_{1}(i), 0\leqq i\leqq k-1\}$ and
$\{S_{2}(j), 0\leqq j\leqq k-1\}$ , respectively, each satisfying (3) and (4) of 3.6. Therefore
by 3.5, there exists an $(S_{1}(i), S_{2}(j))$-separation of type $\beta$ for each pair $(S_{1}(i)$ ,
$S_{2}(j))$ . Hence by (2) of 3.3, we have an $([M]_{v}, [N]_{v})$-separation. Thus we
obtain, by 2.2 and (1) of 3.3, a separation $(D^{k}, h^{k})$ with respect to $V/\sim^{v}$ . Since
$\sim v\leqq\sim(D^{k}, h^{k})$ is a separation with respect to $ V/\sim$ . Therefore, by 3.2 there
exists a finite separation of (V, $h$), completing the proof of Theorem 3.7.

COROLLARY 3.8. If $(D^{k}, h^{k})$ is distributive and both (V, h) and $(D^{k}, h^{k})$ are
finite then $\lambda_{V}(D^{k}, h^{k})$ is finite.

PROOF. In order to prove the corollary, it is sufficient to show that $\lambda_{V}(D^{k})$

is periodic. Thus we have only to show that the corollary holds when $(D^{k}, h^{k})$

is binary. Let $(D^{p}, h^{p})$ be a separation with respect to $ V/\sim$ , where it may
be assumed that $(D^{k}, h^{k})$ and $(D^{p}, h^{p})$ is co-intersectional, viz., the intersection
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of $(D^{k}, h^{k})$ and $(D^{p}, h^{p})$ is equal to (V, $h$). Let $(D^{e}, h^{e})=(D^{k}, h^{k})\otimes(D^{p}, h^{p})$ .
$(D^{e}, h^{e})$ is clearly a separation with respect to $ V/\sim$ by 1.6. Hence by 3.2,
$\lambda_{V}(D^{e}, h^{e})$ is simple and finite, and $\lambda_{V}(D^{e})$ is periodic. By 1.5, however, we
have $\lambda_{V}(D^{e})|J^{k}=\lambda_{V}(D^{e}|J^{k})=\lambda_{V}(D^{k})$ , where $J^{k}$ is nodes of $D^{k}$ . Therefore
$\lambda_{V}(D^{k})$ is periodic, completing the proof.

REMARK. Let $\{V, h\}$ and $\{D, h\}$ be sets of semi-modular extensions
$\{(V^{k}, h^{k})\}$ and distributive extensions $\{(D^{k}, h^{k})\}$ of (V, h) and $(D, h)$ , respec-
tively, where (V, $h$) $\subset(D, h)$ and $(D, h)$ is distributive. We have shown that
there exists a mapping $\lambda:\{D, h\}\rightarrow\{V, h\}$ with the following properties.

(1) If $(D^{k}, h^{k})$ is finite then $\lambda(D^{k}, h^{k})$ is finite.
(2) If $D_{1}\subset D_{2}$ then $\lambda\{D_{1}, h\}\subset\lambda\{D_{2}, h\}$ .
(3) For any $(D^{k}, h^{k})\in\{D, h\}$ there exists a $(D_{0}^{k}, h^{k})\in\{D_{0}, h\}$ such that

$\lambda(D^{k}, h^{k})=\lambda(D_{0}^{k}, h^{k})$ where $D_{0}=\mu(\sigma(V))$ .
(4) If $(D, h)$ is binary and finite, then there exists a $(D^{e}, h^{e})\in\{D, h\}$ such

that $\lambda(D^{e}, h^{e})$ is digital.
However, we have not confirmed as yet whether for any $(V^{k}, h^{k})$ there

exists a $(D^{k}, h^{k})$ (may be not distributive) such that $\lambda(D^{k}, h^{k})=(V^{k}, h^{k})$ or not,

even in the case $(V^{k}, h^{k})$ is binary and digital.

Nippon Electric Company, Limited
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