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§1. Introduction

It is well known that the alternating group %, of degree seven and the
Mathieu simple group M,, of degree eleven are doubly transitive permutation
groups in which the stabilizers of two points are isomorphic, as a group, to
the alternating groups of degree five (cf. Liineburg [9; p. 95]). The purpose
of this paper is to prove the following theorem.

THEOREM. Let & be a doubly transitive permutation group on the set Q=
{1, 2, ---, n} containing no regular normal subgroup. If the stabilizer & of the
set of points 1 and 2 is isomorphic, as a group, to the alternating group of
degree five, then one of the following holds.

1) n=7 and G is A,

(2 n=12 and ® is M,,.

The proof of this theorem is similar to that of our paper [10].

NOTATION. Let X and 9 be the subsets of &. J(¥) will denote the set
of all the fixed points of X and a(X) is the number of points in J(¥). X~9
means that X is conjugate to 9 in &. All other notations are standard.

§2. Preliminaries

Firstly we consider the following situation (*).

(*) Let ® be a doubly transitive permutation group on the set £2=1{1,2,
-«,n} and R be the stabilizer of the set of points 1 and 2. Moreover R con-
tains an involution t and every involution of ® is conjugate to = in 8.

Since & is doubly transitive on £, it contains an involution I/ with the
cycle structure (1, 2)--- which normalizes ®. Let £ be the stabilizer of the
point 1. Then we have the following decomposition of &.

G=9UPIP @.1)

Let g(2), h(2) and d denote the number of involutions in &, $ and the coset
HIH for He= 9, respectively. Then d is the number of elements in & inverted
by I, that is, the number of involutions in & with the cycle structure (1, 2) ---,
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and the following equality is obtained from [2.I)
2(2)=h@)+dn—1) 2.2)

Let 7 keep 7 (1=2) points of £ unchanged. So we may put J(z)={1, 2, ---, i}.
The group Cg(z) is doubly transitive on J(z) by a theorem of Witt [5; p. 150]
and then we have |Cg(r)|=10—1)|Ce(zx)N&K| and |Co(z)|=0G0—1)|Celz) N &].
Hence there exist (&: Cg(z)) =n(n—1)|R®|/i(t—1)| Ca(z)] involutions in & each
of which is conjugate to .

At first, let us assume that n is odd. Let hA*(2) be the number of involu-
tions in § leaving only the point 1 fixed. Thus from the following
equality is obtained.

R*2n+(8: Co(r)) = (91 Co(2))+1*¥(2)+d(n—1) 23)
Hence we have
n=u&: Ca(2)) H{(d—M*2))i—(d—h*2)+ (8 : Calz))} . 29
Next, let us assume that n is even. Let g*(2) be the number of involu-
tions in & which are semi-regular on £. Then corresponding to [2.3) the
following equality is obtained from [2.2).

gX¥2)+(S: Co(z)) = (H: Co(o)+d(n—1) (2.9)
Hence we have

n=1iR: Ce(r){(d—g*2)/n—Di—(d—g*2)/n—D+(R: Ca(z)}.  (2.6)

Put f=d—h*2), if n is odd and put f=d—g*(2)/n—1, if n is even.
PROPOSITION 1. Let & satisfy (*). Then

n=1f: Ca() {Bi— B+ : Ca(N} .

Moreover i is even if n is even and 1 is odd if n is odd.

PROOF. The result follows from (2.4) and (2.6).

PropOSITION 2 (Kimura [7]). In our situation (*), B is the number of in-
volutions with the cycle structure (1,2)--- each of which is conjugate to .
Moreover §>0.

PROOF. Let B’ be the number of involutions with the cycle structure
{1, 2) --- each of which is conjugate to r. Then

Bn—1+(D: Ce(r)) = (G : Cy(z)) .
“This implies that
r=(R: Ca(r))(n—1)/iG—1)=f.
Since & is doubly transitive on £, B must be positive.

PROPOSITION 3 (Galois). Let & be a doubly transitive group of degree n.
If & contains a solvable normal subgroup, then & contains a regular normal
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subgroup and n is a prime power.

PROOF. See Huppert [5; p. 159].

In the following of this paper, let & be a group satisfying the condition
of our theorem and we use the same notation as the preceding paragraph.
Clearly & satisfies the condition (*).

Since & is U,, & is generated by the elements K, r and p subject to the
following relations:

K®=1= p=(K7)* = (rp)° = (Kp)* =1 @.7)

Put z,=K 'K and B={z, 7,>. Then B is a four group and a Sylow 2-sub-
group of . Since the number of Sylow 2-subgroup of & is odd, we may
assume that [, B]CB and [, z]=1. Moreover |Ca(z)|=4, |Ce(z)|=4G—1)2
and |Ce(z)|=4(G—1). Proposition 1 implies that n=1i(Bi— p--15)/15.

LEMMA 1. One of the following holds:

¢)) It =77, IKI=K", [I, p]=1, d=10,
I~IK~IK?~ItKt~ItK c ~TptKop
~IpcK?rp~Ir~ITprp~Ip.
2 [, B]=1, IKI=7Kz, Iul=7pr, d=16,
I~ TuKe ~ [(pKt)? ~ [(pK7) ~ [(pK7)t ~ (7, p7,K)
~ It pr, K2~ (7 pr K2~ (o po  K) ~ Iy ~ I Tty
~ I(zp) ~ I(zp)? ~ I(t T pry) ~ It (T p)’e, .
3 [I, R]=1, d=16,
It~ It~ I ~Tp tp! ~ [p ¥, 0¥ ~ Ip~ %tz p°

where p=pKr and 1 =<7, k, s<4.

PROOF. Since the automorphism group of & is the symmetric group of
degree five, we may assume that the action of I on & is the case (1), (2) or
(3) by (2.7). The group <, & is the symmetric group of degree five or the
direct product of a cyclic group of order 2 and the alternating group of
degree five. Now the results follow from the structure of (I, . Note that
in the case (1) all involutions are conjugate in &. This proves our lemma.

LEmMma 2. =1, 10, 15 or 16.

PROOF. If the case (1) of Lemma 1 holds, then A*(2)=g*(2)=0 and =
d=10. Assume that the case (2) of Lemma 1 holds. Thus if I~ Iz, then
h*(2)=g*@2)=0 and f=d=16. If I+ Ir, then =15 or B=1 accordingly
a(I)=2 or a(I)<2. The case (3) of Lemma 1 is the same as the case (2) of
Lemma 1. This proves our lemma. ’
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LEMMA 3. If a(t) > a(B), then one of the following holds.

(1) 1=06 and Cg(z)/{z) 15 U,

(2) 1=28 and Cgy(z)/{zy is PI'L(2, 8),

(3) i=p*™ for some prime p, a(B)=+~i =p™ and Cg(z)/{z) contains a
rvegular normal subgroup. Moreover if 1 is odd, C¢(r)/{t) contains unique
involution which fixes only one point on J(z).

PROOF. Since Cg(z)/{z) is doubly transitive on J(r) of degree ¢ and order
2(i—1)i, the results follow from Ito’s theorem [6] and its proof.

LEMMA 4. If a(z)> a(®B), then =10, 15, or 16.

PROOF. There exist two points j and & in J(z)—J(®B) such that z,=(J, &)---
and so 77, =(J, k) ---. Double transitivity and Lemma 2 imply that 8=10, 15,
or 16. This proves our lemma.

§3. The case n is odd

In the following if A*(2) >0, then without loss of generality we may
assume that a(/)=1.

LEMMA 5. If h*(2)=1, then there exists no group satisfying the condition
of our theorem.

PrROOF. Let © be a Sylow 2-subgroup of & containing I. Since n is odd,
I is isolated in © with respect to . Then it follows from the Z*-theorem
of Glauberman [5; p. 628] that I is contained in the center of &/0O(S). Pro-
position 3 implies that & contains a regular normal subgroup. This proves
our lemma.

LEMMA 6. If a(z)> a(B), then there exists no group satisfying the condi-
tion of our theorem.

PrROOF.®» By Lemmas 4 and 5, 7*(2)=0. Note that Ng(B) contains no
Sylow 2-subgroup of & by Lemma 3. If [/, B]=1, then IR contains no ele-
ment of order 4 by Lemma 1. Now a Sylow 2-subgroup of ® is elementary
abelian which is impossible. Thus {, &> is a symmetric group of degree
five. We can consider ® as a permutation group on the set 2= {{i,j} |, j€ £}
of unordered pairs of the points in £2. Then {, & is the stabilizer of {1, 2}
in £. Let U be a four group in </, & with U= DB in <, ®). If a(l)=1, then
by a theorem of Witt [5; p. 1507 Ng(®B) is transitive on the set of fixed points
of B on 2 which is a union of the B-orbits of length 2 and the pairs of the
fixed points of B in L. This contradicts a(z) > a(B). If all)= a(B), then
h*(2)=0 implies that every four group fixes /i points in £2. Let & be a
Sylow 2-subgroup of & contained in Cg(z). If € is not a maximal class, ©

1) The idea of this proof is due to R. Noda.
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contains a normal four group. This is impossible. Now & is dihedral or
quasi-dihedral (cf. [5; p. 339]). By theorems of Gorenstein-Walter [3] and
Liineburg [8], we may assume that & is quasi-dihedral. On the other hand
since ©/(r> is a dihedral Sylow 2-subgroup of Cg(z)/{z>, implies
that Cg(z) has a normal 2-complement. Applying theorems of Gorenstein
and Lineburg we get a contradiction. The proof is complete.

LeMMA 7. If a(z)=a(B) and h*@2)=0, then n=7 and @ is U,.

PROOF. The group Cg(z)/®B is a Frobenius group of odd degree i. Let
© be a Sylow 2-subgroup of & containing {J,®B) and contained in Cg(z).
Then &/B is cyclic or generalized quaternion. If [/, 8]+ 1, then &=, B>
is dihedral because I8 is a unique involution in €/ and applying theorems
of Gorenstein-Walter [3] and Liineburg [8], n=7 and & is %,. Assume that
[I, 8B]=1. Then by the same way as in the proof of Lemma 6, & is ele-
mentary abelian and hence &=<I, B). Therefore Cy(r) is solvable and by
theorems of Gorenstein [1] and Liineburg [8], we get a contradiction. The
proof is complete.

LEMMA 8. If a(r)=a(®B) and h*(2)>1, then there exists no group satisfy-
ing the condition of our theorem.

PROOF. Since f=d—h*2)<d—1, Lemma 2 implies that S=1. Therefore
Lemma 1 vields [Iz, 8] =1 which is impossible because ® is simple and
Cg(I7) is conjugate to Cg(z) in @. The proof is complete.

§4. The case n is even

LEMMA 9. If a(z)= a(B), then there exists no group satisfying the condi-
tion of our theorem.

PROOF. Since n is even, B is a Sylow 2-subgroup of §. Assume that
BNH'BH contains t for some He$. Then J(B) and J(HVH) are con-
tained in 3(z). It follows that J(z) = I(B)=I(H BVH) and hence { contains
B and H'BH. Since R is A;, we have B=H 'BH. This implies that § is a
(TD)-group in the sense of Suzuki [12] and hence £/0(9) is also (TI)-group.
By a theorem of Suzuki [12; p. 69], £/0(9) is PSL(2, 4) and O($) is contained
in the center of . It follows from |Cg(r)|=4(z—1) that |O(®)|=i—1 and
(9: O(9)) =4(Bi+15) =60 which is impossible because >0 by Proposition 2.
The proof is complete.

In the following we may assume that a(z)> a(B).

LEMMA 10. If i=6 or 28, then there exists no group satisfying the condi-
tion of our theorem.

ProoF. Note that by a Brauer-Wielandt’s formula [13] we have

O =1C)NOD)|*/ | CBYNOD)|*
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and since & is simple, O) N\ ={1}. Assume that i=6. Then |Cy(zr)|=22.5,
|9|=22.3-5%, 22.3.5%.7 or 22.3-5-37 and |O($)|=1 or 5. Assume that i=28.
Then |Cy(z)|=2%-3%, |9H|=22.3%.5.59, or 2%2.3*.5-29 and |O(D)| is a factor of
3% On the other hand, in both cases, £/0(9) is isomorphic to a subgroup of
PI'L(2, q) containing PSL(2, q) for some ¢ by a theorem of Gorenstein-Walter
which is impossible. This proves our lemma.

LEMMA 11. If the case (3) of Lemma 3 holds, then n=12 and & is M,,.

PROOF. The group %B is a Sylow 2-subgroup of £ and hence Cg(z) has a
normal 2-complement. Since Cg(z)/{z) is a solvable doubly transitive group
on J(z) of even degree, it follows from a theorem of Huppert that Cy(z)
has a cyclic normal 2-complement. Applying a theorem of Gorenstein-Walter
[3], $/0(®)is PSL(2, q) for some ¢q. By Lemma 3, a(B)=+/1 =2™ and | Ng(B)|
=12(+71 —=DV7, | Ne(B)| =127 —1), | Ce(B)| =41 —1). It follows from the
structure of PSL(2, q) that |O(D) N\ C(W)|=~/7 —1. Put |O(D) N C(z)| =x(\/7—1).
Then x is a factor of vi+1 and |O®) N C(z)|=10®) N Clzr)| = x(~/7—1).
By a formula of Brauer-Wielandt [13] we have

[O@)| 0@ N CEB)|*=]0(D) N C(D)O®) N Cz) | |O@) N C(zz)y)|

= x}(Vi —1)
and therefore |O®)|=x%/i —1). Now we have
4VTH1)(Bi+15)/x° = g(g—1)(g+1)/2. (4.1)

Put §=9/0(®) and in the natural epimorphism $—, let 7, Co(c) be the
images of z, Ce(z), respectively. Since C(7) "9 = Cy(zr), we have

(g+e)/4=W1i+1)/x 4.2)
where e=1 or —1. It follows from [4.1) and [(4.2) that

2(Bi+15)/x2=q(g—e) (4.3)

and therefore x is also a factor of Bi+15. Now Bi+15= g+15(mod.v/7 + 1)
implies that x is a factor of 8+15. It follows from B=10, 15, or 16 that x
must be 1, 3, 5, 15, 25, or 31. On the other hand, [4.2) and [(4.3) imply that

(B—8)i—2(8—3ex)Vi —(x—Te)(x+e) =0
and hence

T = {(8—3ex) £~/ (BF Dx’—6efx+120—78}/(5—8).

Put f(x, B)=(B+1)x*—6eBx+120—78. Since f(x, f) is a quadratic number,
the possibilities of f(x, §) are as follows.
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f(1,10)=1, or 121,  £(5, 10)=25, or 625,
£, 15)=121, 7@, 16)=121,
£(31,16)=19321.

Since v/7 =2™, we must have f(1,10)=1 and therefore

1=4, g=11, n=12.

Thus § is PSL(2,11) and & contains no regular normal subgroup by Proposi-
tion 3. Now & is a simple group of order 7920. By a theorem of Parrott
[11], ® is M,,. This proves our lemma.

1]
2]
[3]

[4]

£5]
(6]
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£8]
£9]
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[11]
[12]
[13]

The proof of our theorem is complete.

Osaka University
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