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\S 1. Introduction.

The existence of a non-trivial solution of certain differential equations
on a Riemannian manifold often determines some geometric and topological
properties of the manifold. For example in [5] M. Obata announced the
following results.

THEOREM A (see also [4]). Let $M^{n}$ be a complete connected Riemannian
manifold of dimension $n\geqq 2$ . Then $M^{n}$ admits a non-trivial solution $f$ of

$\nabla\nabla f+kfg=0$ , $k=const$ . $>0$

if and only if $M^{n}$ is globally isometric to $a$ Euclidean sphere $S^{n}$ of radius $1/\sqrt{k}$.
THEOREM B. Let $M^{n}$ be a complete connected, simply connected Riemannian

manifold. Then $M^{n}$ admits a non-trivial solution $f$ of
$(\nabla\nabla\omega)(Z, X, Y)+k(2\omega(Z)g(X, Y)+\omega(X)g(Y, Z)+\omega(Y)g(X, Z))=0$

where $\omega=df$ if and only if $M^{n}$ is isometric to $a$ Euclidean sphere of radius
$1/\sqrt{k}$ .

THEOREM C. Let $M^{2n}$ be a complete connected, simply connected Kahler
manifold. Then $M^{2n}$ admits a non-trivial solution $f$ of

$4(\nabla\nabla\theta)(Z, X, Y)+c(2\theta(Z)G(X, Y)+\theta(X)G(Y, Z)+\theta(Y)G(X, Z)$

$-\theta(JX)\Omega(Y, Z)-\theta(JY)\Omega(X, Z))=0$ , $c>0$

where $\theta=df$ if and only if $M^{2n}$ is isometric to complex projective space $PC^{n}$

with the Fubini-Study metric of constant holomorphic sectional curvature $c$ .
In [5] Obata gives a proof of Theorem A and an indication of the proofs

of Theorems $B$ and C. Our purpose here is to show the relation between
Theorems $B$ and $C$ by deducing Theorem $C$ from Theorem $B$ in the case of
Hodge manifolds.

In Theorem $B$ , grad $f$ is an infinitesimal projective transformation and
we show that on an odd-dimensional sphere $S^{2n+1}$ we can find such a vector
field orthogonal to the distinguished direction of the contact structure on



10 D. E. BLAIR

the sphere and invariant with respect to that direction.
Thus the idea of our proof will be to project the equation of Theorem

$B$ via the Hopf fibration $\pi$ : $S^{2n+1}\rightarrow PC^{n}$ giving the desired equation on $PC^{n}$ .
Conversely the principal circle bundles over a simply connected manifold $M$

form a group isomorphic to $H^{2}(M, Z)$ , (see $e$ . $g$ . Kobayashi [2]). Now select-
ing the bundle corresponding to the fundamental 2-form $\Omega$ of the Hodge
manifold $M^{2n}$ (Hatakeyama [1]) we lift the equation of Theorem $C$ using
some Properties of grad $f$ on $M^{2n}$ (an infinitesimal H-projective transforma-
tion, see $e$ . $g$ . $[8]$ ) to show that the bundle space is $S^{2n+1}$ .

We remark that grad $f$ in Theorem A is an infinitesimal conformal trans-
formation on the sphere. However as there is no known K\"ahler analogue
of such a vector field, $i$ . $e$ . no ”H-conformal” transformation, one would not
expect an equation similar to that of Theorem A for $PC^{n}$ .

\S 2. Preliminaries.

First let $J$ denote the usual almost complex structure on $C^{n+1}(J^{2}=-I)$

and let $\iota:S^{2n+1}\rightarrow R^{2n+2}\approx C^{n+1}$ be the standard imbedding of the sphere of
radius 2, $S^{2n+1}$ , into $R^{2n+2}$ . Then $S^{2n+1}$ inherits an almost contact structure
$(\varphi, \xi, \eta)$ defined by

$I^{\iota_{*}X=\zeta*\varphi X+\eta(X)N}$ , $ JN=-\iota_{*}\xi$

where $N$ is the unit outer normal, that is we have

$\varphi^{2}=-I+\eta\otimes\xi$

$\eta(\xi)=1$ , $\varphi\xi=0$ , $\eta\circ\varphi=0$ .
With respect to the metric $g$ induced from the usual inner product on $R^{2n+2}$

we have
$g(X, \xi)=\eta(X)$

$g(\varphi X, \varphi Y)=g(X, Y)-\eta(X)\eta(Y)$ ,

$i$ . $e$ . $S^{2n+1}$ has an almost contact metric structure.
Letting $D$ denote the Riemannian connexion on $R^{2n+2}\approx C^{n+1}$ and V the

Riemannian connexion of $g$, the Gauss-Weingarten equations are

$D_{\iota.X}\iota_{*}Y=\iota_{*}\overline{\nabla}_{X}Y-\frac{1}{2}g(X, Y)N$ ,

$D_{.x},N=\frac{1}{2}\iota_{*}X$

since the second fundamental form of $\iota$ : $S^{2n+1}\rightarrow R^{2n+2}$ with respect to the

outer normal $N$ is $-\frac{1}{2}g$. Then since $J$ is parallel with respect to $D$ we have
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$0=(D_{\iota_{*X}}J)\iota_{*}Y=\iota_{*}(\overline{\nabla}_{X}\varphi)Y-\frac{1}{2}g(X, \varphi Y)N+(\overline{\nabla}_{X}\eta)(Y)N$

$+\frac{1}{2}\eta(Y)\iota_{*}X-\frac{1}{2}g(X, Y)\iota_{*}\xi$

from which we obtain

$\{(\overline{\nabla}_{X}\varphi)Y=\frac{1}{2}(g(X\overline{\nabla}_{X}\xi=-\frac{1}{2}\varphi XY)\xi-\eta(Y)X)$ (2.1)

that is, $S^{2n+1}$ carries a Sasakian or normal contact metric structure. On a
Sasakian manifold of dimension $2n+1$ we also have that $\eta\wedge(d\eta)^{n}\neq 0,$ $i$ . $e$ . $\eta$

is a contact structure and that $\mathcal{L}_{\xi}g=0$ where $\mathcal{L}$ denotes Lie differentiation.
Defining the fundamental 2-form $\Phi$ of a Sasakian structure by $\Phi(X, Y)$

$=g(X, \varphi Y)$ we have

$d\eta(X, Y)=(\overline{\nabla}_{X}\eta)(Y)-(\overline{\nabla}_{Y}\eta)(X)$

$=2(\overline{\nabla}_{X}\eta)(Y)$

$=2g(\overline{\nabla}_{X}\xi, Y)$

$=g(-\varphi X, Y)$

$=\Phi(X, Y)$ ,

using the fact that $\eta$ is Killing.
We now consider the well-known Hopf fibration $\pi$ : $S^{2n+1}\rightarrow PC^{n}$ . As $JN=$

$-\iota_{*}\xi$ above we see that the vector field $\xi$ is vertical. Thus since $\xi$ is Killing,
$\pi$ is a Riemannian submersion. Moreover

$(\mathcal{L}_{\xi}\varphi)X=[\xi, \varphi X]-\varphi[\xi, X]=\overline{\nabla}_{\xi}\varphi X-\overline{\nabla}_{\varphi X}\xi-\varphi\overline{\nabla}_{\xi}X+\varphi\overline{\nabla}_{X}\xi$

$=(\overline{\nabla}_{\xi}\varphi)X=0$ .

Thus both $\varphi$ and $g$ are projectable and we shall show that the usual K\"ahler

structure on $PC^{n}$ is obtained by this projection.
We define $J$ and $G$ on $PC^{n}$ by

$JX=\pi_{*\varphi}\tilde{\pi}X$ , $G(X, Y)\circ\pi=g(\tilde{\pi}X,\tilde{\pi}Y)$

where $\tilde{\pi}$ denotes the horizontal lift with respect to the Riemannian connexion
$\overline{\nabla}$ of $g$. For future reference we give all the differential equations of the
submersion (see $e$ . $g$ . $[6]$ ). Let $\nabla$ denote the Riemannian connexion of $G$ ;
then we have
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$\left\{\begin{array}{l}\overline{\nabla}_{\overline{\pi}X}\tilde{\pi}Y=\prime\tilde{\pi}\nabla_{X}Y-\frac{1}{2}\Phi(\tilde{\pi}X,\tilde{\pi}Y)\xi\\\overline{\nabla}_{\overline{\pi}X}\xi=-\frac{1}{2}\varphi\tilde{\pi}X\\V \xi^{\tilde{\pi}X=}-\frac{1}{2}\varphi\tilde{\pi}X\\\overline{\nabla}_{\xi}\xi=0.\end{array}\right.$

(2.2)

All but the third equation are immediate and the third one follows from the
second and the following lemma.

LEMMA 2.1. $[\xi,\tilde{\pi}X]=0$ .
PROOF. First of all $\pi_{*}[\xi,\tilde{\pi}X]=[\pi_{*}\xi, X]=0$ and hence $[\xi,\tilde{\pi}X]$ is vertical.

Now
$g([\xi,\tilde{\pi}X], \xi)=g(\overline{\nabla}_{\xi}\tilde{\pi}X, \xi)-g(\overline{\nabla}_{\tilde{\pi}X}\xi, \xi)=-g(\tilde{\pi}X,\overline{\nabla}_{\xi}\xi)=0$ .

It is easy to check that the $J$ and $G$ defined above on $PC^{n}$ satisfy

$J^{2}=-I$ , $G(JX, JY)=G(X, Y)$ , $\nabla_{X}J=0$ .
Thus the induced structure on $PC^{n}$ is K\"ahlerian. We define its fundamental
2-form $\Omega$ by $\Omega(X, Y)=G(X, JY)$ . Note that $\Omega(X, Y)\circ\pi=g(\tilde{\pi}X, \varphi\tilde{\pi}Y)=$

$\Phi(\tilde{\pi}X,\tilde{\pi}Y)$ , that is $\Phi=\pi^{*}\Omega$ .
Finally we show that the K\"ahler structure just defined on $PC^{n}$ has con-

stant holomorphic curvature equal to 1, in fact we give the curvature tensor
completely.

$G(R_{XY}Z, W)\circ\pi=g(\tilde{\pi}\nabla_{X}\nabla_{Y}Z-\tilde{\pi}\nabla_{Y}\nabla_{X}Z-\tilde{\pi}\nabla_{[X,Y]}Z,\tilde{\pi}W)$

$=g(\overline{\nabla}_{\overline{\pi}X}\tilde{\pi}\nabla_{Y}Z-\overline{\nabla}_{\overline{\pi}Y}\tilde{\pi}\nabla_{X}Z-\overline{\nabla}_{\tilde{\pi}[X.Y]}\tilde{\pi}Z,\tilde{\pi}W)$

$=g(\nabla_{\tilde{\pi}X}\overline{\nabla}_{\tilde{\pi}Y}\tilde{\pi}Z-\frac{1}{4}\Phi(\tilde{\pi}Y,\tilde{\pi}Z)\varphi\tilde{\pi}X-\overline{\nabla}_{\tilde{\pi}X}\overline{\nabla}_{\overline{\pi}Y}\tilde{\pi}Z$

$+-2^{-\Phi(\tilde{\pi}X,\tilde{\pi}Z)\varphi\tilde{\pi}Y-\nabla_{\zeta\tilde{\pi}X,\tilde{\pi}n^{\tilde{\pi}Z}}}1$

$+\eta([\tilde{\pi}X,\tilde{\pi}Y])\overline{\nabla}_{\xi}\tilde{\pi}Z,\tilde{\pi}W)$

$=\frac{1}{4}(g(\tilde{\pi}X,\tilde{\pi}W)g(\tilde{\pi}Y,\tilde{\pi}Z)-g(\tilde{\pi}Y,\tilde{\pi}W)g(\tilde{\pi}X,\tilde{\pi}Z)$

$+\Phi(\tilde{\pi}X,\hat{\pi}W)\Phi(\tilde{\pi}Y,\tilde{\pi}Z)-\Phi(\tilde{\pi}Y,\tilde{\pi}W)\Phi(\tilde{\pi}X,\tilde{\pi}Z)$

$-2\Phi(\tilde{\pi}X,\tilde{\pi}Y)\Phi(\tilde{\pi}Z,\tilde{\pi}W))$

$=\frac{1}{4}(G(X, W)G(Y, Z)-G(Y, W)G(X, Z)$

$+\Omega(X, W)\Omega(Y, Z)-\Omega(Y, W)\Omega(X, Z)$

$-2\Omega(X, Y)\Omega(Z, W))\circ\pi$
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where we have used $\eta(\tilde{\pi}X)=0$ and

$\eta([\tilde{\pi}X,\tilde{\pi}Y])=-d\eta(\tilde{\pi}X,\tilde{\pi}Y)=-\Phi(\tilde{\pi}X,\tilde{\pi}Y)$ .
We close this section with some matters of notation. For a l-form $\omega$

and Riemannian connexion $\nabla$ we write

$(\nabla\omega)(X, Y)=(\nabla_{X}\omega)(Y)$

$(\nabla\nabla\omega)(X, Y, Z)=(\nabla_{X}\nabla_{Y}\omega)(Z)-(\nabla\omega)(\nabla_{X}Y, Z)$ .
For a vector field $U$ we write

$(\nabla U)X=\nabla_{X}U$

$(\nabla\nabla U)(X, Y)=\nabla_{X}\nabla_{Y}U-(\nabla U)\nabla_{X}Y$ .

\S 3. Infinitesimal projective transformations.

In this section we give some properties of infinitesimal projective trans-
formations and of the differential equation of Theorem B. Recall that a
vector field $U$ is an infinitesimal projective transformation on a Riemannian
manifold $M^{n}$ with Riemannian connexion $\nabla$ if it satisfies

$(\nabla\nabla U)(X, Y)+R_{UX}Y=(Xf)Y+(Yf)X$

where $f=\frac{1}{n+1}$ tr $(\nabla U)$ . It is known [7] that if $M^{n}$ is an Einstein space

then this $f$ satisfies the differential equation of Theorem B.
We now show that if a function $f$ satisfies the differential equation of

Theorem $B$ , then grad $f$ is an infinitesimal projective transformation. First
of all from the equation we have

$(\nabla\nabla\omega)(X, Y, Z)-(\nabla\nabla\omega)(Y, X, Z)=(R_{XY}\omega)(Z)$

$=k(\omega(Y)g(X, Z)-\omega(X)g(Y, Z))$

from which

$(\nabla\nabla\omega)(Z, X, Y)+(R_{XY}\omega)(Z)=-2k(\omega(Z)g(X, Y)+\omega(X)g(Z, Y))$ .
But if $U$ is the contravariant form of $\omega=df$,

$(\nabla\nabla\omega)(Z, X, Y)=g((\nabla\nabla U)(Z, X),$ $Y$ )

and
$(R_{XY}\omega)(Z)=g(R_{XY}U, Z)=g(R_{UZ}X, Y)$

giving
$(\nabla\nabla U)(Z, X)+R_{UZ}X=-2k((Zf)X+(Xf)Z)$ .

We now give some lemmas that will be needed later.
LEMMA 3.1. On $S^{2n+1}$ there exists a non-trivial solution $\omega=df$ of the equa-

tion of Theorem $B$ such that grad $f$ is orthogonal to the vector field $\xi$ of the
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usual Sasakian structure on $S^{2n+1}$ .
PROOF. First suppose $\iota$ : $S^{2n+1}\rightarrow R^{2n+2}$ is given by $\sum_{\alpha=1}^{2n+2}(X^{\alpha})^{2}=4$ ; then a

function $f$ satisfying the equation of Theorem $B$ is the restriction of

$f=\sum_{\alpha,\beta}a_{\alpha\beta}X^{\alpha}X^{\beta}$ , $a_{\alpha\beta}=a_{\beta\alpha}\in R$ .

Now $N=\frac{1}{2}(X^{1}, \cdots , X^{2n+2})$ is the outer normal to $S^{2n+1}$ in $R^{2n+2}$ . Thus grad7

is orthogonal to $\xi$ if and only if grad $\tilde{f}$ is orthogonal to $JN$ in $R^{2n+2},$ $i$ . $e$ .

$\sum_{\alpha}(\sum_{\beta}a_{a\beta}X^{\beta})(\sum_{\gamma}J_{\gamma}^{a}X^{\gamma})=0$

which means we must have

$\sum_{\alpha}(J_{\gamma}^{\alpha}a_{\alpha\beta}+J_{\beta}^{\alpha}a_{a}\gamma)=0$

but such $a_{\alpha\beta}’ s$ can easily be chosen.
LEMMA 3.2. The vector fields $v=gradf$ and $\xi$ in Lemma 3.1 statisfy

$\mathcal{L}_{\xi}v=0$ .
PROOF. By Lemma 3.1, $\xi f=g(v, \xi)=0$ ; moreover $\xi$ is Killing so that

$g(\mathcal{L}_{\xi}v, X)=\xi(Xf)-[\xi, X]f=X(\xi f)=0$ .

\S 4. Proof of Theorem C.

We first note that it suffices to prove the theorem for $c=1$ . For if $c\neq 1$ ,

the homothetic change of metric $\overline{G}=cG$ , transforms the differential equation
into the corresponding one for $c=1$ and transforms the curvature tensor of
the Fubini-Study metric of constant holomorphic sectional curvature $c$ into
the corresponding curvature tensor for $c=1$ . We now give the proof of
Theorem $C$ in two parts.

I. Sufficiency. Let $S^{2n+1}$ be the sphere of radius 2 in $R^{2n+2}$ with its
induced normal contact metric structure $(\varphi, \xi, \eta, g)$ and let $\omega=d\overline{f}$ be a non-
trivial solution of the equation of Theorem $B$ on $S^{2n+1}$ which by virtue of
Lemma 3.1 we assume is orthogonal to $\xi$ . We now consider the Hopf fibra-
tion $\pi$ : $S^{2n+1}\rightarrow PC^{n}$ as discussed in section 2. By Lemma 3.2 and the fact
that $\xi$ is Killing we have $\mathcal{L}_{\xi}\omega=0$ and hence that $\omega$ is projectable. Thus we
can define $\theta$ on $PC^{n}$ by

$\theta(X)\circ\pi=\omega(\tilde{\pi}X)$

and since $\xi\overline{f}=0$ , we dePne $f$ on $PC^{n}$ by $f\circ\pi=\overline{f}$ from which we have $\theta=df$.
Now using the differential equations of the submersion we have

(V$\overline{\pi}x^{\omega)(\tilde{\pi}Y)}=\tilde{\pi}X\omega(\tilde{\pi}Y)-\omega(\overline{\nabla}_{\overline{\pi}X}\tilde{\pi}Y)=(X\theta(Y))\circ\pi-\theta(\nabla_{X}Y)\circ\pi$

$=(\nabla_{X}\theta)(Y)\circ\pi$
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and

$(\overline{\nabla}_{\tilde{\pi}X}\omega)(\xi)=-\omega(\overline{\nabla}_{\overline{\pi}X}\xi)=\frac{1}{2}\omega(\varphi\tilde{\pi}X)=\frac{1}{2}\omega(\tilde{\pi}JX)=\frac{1}{2}\theta(JX)\circ\pi$ .
By Lemma 2.1 we also have

$(\overline{\nabla}_{\xi}\omega)(\tilde{\pi}X)=\xi\omega(\tilde{\pi}X)-\omega(\overline{\nabla}_{\xi}\tilde{\pi}X)=-\omega(\overline{\nabla}_{\tilde{\pi}X}\xi)=\frac{1}{2}\theta(JX)\circ\pi$ .
We now differentiate $(\overline{\nabla}_{\pi X}^{\sim}\omega)(\tilde{\pi}Y)=(\nabla_{X}\theta)(Y)\circ\pi$ with respect to $\tilde{\pi}Z$.

$(\overline{\nabla}_{\tilde{\pi}Z}\overline{\nabla}_{\tilde{\pi}X}\omega)(\tilde{\pi}Y)+(\overline{\nabla}_{\tilde{\pi}X}\omega)(\tilde{\pi}\nabla_{Z}Y-\frac{1}{2}\Phi(\tilde{\pi}Z,\tilde{\pi}Y)\xi)$

$=(\nabla_{Z}\nabla_{X}\theta)(Y)\circ\pi+(\nabla_{X}\theta)(\nabla_{Z}Y)\circ\pi$ .
Therefore

$(\overline{\nabla}_{\tilde{\pi}Z}\overline{\nabla}_{\tilde{\pi}X}\omega)(\tilde{\pi}Y)-(\overline{\nabla}_{\nabla_{\tilde{\pi}Z}\tilde{\pi}X}^{-}\omega)(\tilde{\pi}Y)-\frac{1}{4}\Phi(\tilde{\pi}Z,\tilde{\pi}Y)\omega(\varphi\tilde{\pi}X)$

$=(\nabla_{Z}\nabla_{X}\theta)(Y)\circ\pi-(\nabla_{\nabla_{Z^{X}}}\theta)(Y)\circ\pi$

$+\frac{1}{2}\Phi(\tilde{\pi}Z,\tilde{\pi}X)(\overline{\nabla}_{\xi}\omega)(\tilde{\pi}Y)$

from which
$(\overline{\nabla}\overline{\nabla}\omega)(\tilde{\pi}Z,\tilde{\pi}X,\tilde{\pi}Y)=(\nabla\nabla\theta)(Z, X, Y)\circ\pi+\frac{1}{4}\Omega(Z, Y)\theta(JX)\circ\pi$

$+\frac{1}{4}\Omega(Z, X)\theta(JY)\circ\pi$ .
On the other hand

$(\overline{\nabla}\overline{\nabla}\omega)(\tilde{\pi}Z,\tilde{\pi}X,\tilde{\pi}Y)=-\frac{1}{4}(2\omega(\tilde{\pi}Z)g(\tilde{\pi}X,\tilde{\pi}Y)+\omega(\tilde{\pi}X)g(\tilde{\pi}Y,\tilde{\pi}Z)$

$+\omega(\tilde{\pi}Y)g(\tilde{\pi}X,\tilde{\pi}Z)=-\frac{1}{4}(2\theta(Z)G(X, Y)$

$+\theta(X)G(Y, Z)+\theta(Y)G(X, Z))\circ\pi$ .
Thus $\theta=df$ satisfies

$4(\nabla\nabla\theta)(Z, X, Y)+2\theta(Z)G(X, Y)+\theta(X)G(Y, Z)+\theta(Y)G(X, Z)$

$-\theta(JX)\Omega(Y, Z)-\theta(JY)\Omega(X, Z)=0$

as desired.
II. Necessity. The necessity part of the proof is, of course, more dif-

ficult and we begin some lemmas.
LBMMA 4.1. The vector field $U=gradf$ is an infinitesimal $H$-projective

transformation, $i$ . $e$ . we have

$(\nabla\nabla\theta)(Z, X, Y)+G(R_{UZ}X, Y)=-\frac{c}{2}(\theta(Z)G(X, Y)+\theta(X)G(Y, Z)$

$-\theta(JX)\Omega(Y, Z)-\theta(JZ)\Omega(Y, X))$ .

The proof of this lemma is similar to the corresponding computation in
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the projective case given in section 3.
LEMMA 4.2. The vector field $U=gradf$ is analytic $(i. e. \mathcal{L}_{U}J=0)$ on $M^{2n}$ .
PROOF. We first show that $M^{2n}$ is irreducible. Suppose $M^{2n}$ is a product

of K\"ahler manifolds. From the equations of Theorem $C$ and Lemma 4.1 we
have

$4G(R_{UZ}X, Y)=c(\theta(Y)G(Z, X)-\theta(X)G(Y, Z)+\theta(JX)\Omega(Y, Z)$

$-\theta(JY)\Omega(X, Z)+2\theta(JZ)\Omega(Y, X))$ .
If now $X$ and $Y$ are tangent to one factor and $Z$ is tangent to another we
have $G(R_{UZ}X, Y)=-G(R_{XY}Z, U)=0$ and hence

$0=c(2\theta(JZ)G(Y, JX))$ .

Taking $Y=JX$ we then have $\theta(JZ)=0$ . But $J$ acts non-singularly on each
factor, therefore choosing a basis compatible with the product structure we
find that $\theta\equiv 0$ on $M^{2n}$ contradicting the fact that $\theta=df$ is a non-trivial solu-
tion of the equation of Theorem C.

Next we show that the Ricci tensor does not vanish on $M^{2n}$ . From the
above expression for $G(R_{UZ}X, Y)$ we have

$4G(R_{UZ}U, Z)=c(\theta(Z)^{\prime}\angle:-\theta(U)G(Z, Z)+3\theta(JZ)\Omega(Z, U))$

so that taking $Z$ to be a unit vector field orthogonal to $U$ we have for the
sectional curvature $K(U, Z)$

$K(U, Z)=\frac{c}{4}(1+3\theta\theta\underline{(}\frac{JZ)^{2}}{(U)})$ .

Thus for $Z=\frac{JU}{\theta(U)^{1/2}}$ , $K(U, JU)=c$ and for Zorthogonal to both $U$ and $JU$ ,

$K(U, Z)=\frac{c}{4}$ . Now as the Ricci curvature in the direction of $U$ is an aver-
age of sectional curvatures containing $U$, we see that the Ricci curvature
in the direction of $U$ is a positive constant on $M^{*}=\{m\in M|U(m)\neq 0\}$ . But
the zeros of $U$ ( $i$ . $e$ . the critical points of f) lie on a set of measure zero.
Thus by the continuity of the Ricci tensor, we see that the Ricci tensor of
$M^{2n}$ does not vanish.

Lemma 4.2 now follows from the fact (see $e$ . $g$ . $[8]$ ) that on an irreducible
K\"ahler manifold with non-vanishing Ricci tensor, every H-projective vector
field is analytic.

LEMMA 4.3. On $M^{2n}$ we have $(\nabla_{Y}\theta)(JX)+(\nabla_{X}\theta)(JY)=0$ .
PROOF. Since $U=gradf$ is analytic we have

$0=-G((X_{U}J)X, Y)=-G(\nabla_{U}JX-\nabla_{JX}U-J\nabla_{U}X+J\nabla_{X}U, Y)$

$=G(\nabla_{JX}U, Y)+G(\nabla_{X}U, JY)=(\nabla_{JX}\theta)(Y)+(\nabla_{X}\theta)(JY)$ .
The result now follows from the fact that $d\theta=0$ .
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We now turn directly to the proof of the theorem. It is well known that
the set of all principal circle bundles over a simply connected manifold $M$ is
a group isomorphic to $H^{2}(M, Z)$ (see $e$ . $g$ . Kobayashi [2]). Thus let $\pi;M^{2n+1}$

$\rightarrow M^{2n}$ be the principal circle bundle over the Hodge manifold $M^{2n}$ corre-
sponding to the fundamental 2-form $\Omega$ . Let $\eta^{\prime}$ be a connexion form on $M^{2n+1}$ .
Then there exists a 2-form $\Psi$ on $M^{2n}$ such that $ d\eta^{\prime}=\pi^{*}\Psi$ ; but the charac-
teristic class $[\Psi]\in H^{2}(M^{2n}, Z)$ is independent of the choice of connexions
(see $e$ . $g$ . Kobayashi [2], Hatakeyama [1]), so that $[\Psi]=[\Omega]$ . Thus there
exists a l-form $\alpha$ on $M^{2n}$ such that $\Omega-\Psi=d\alpha$ and hence $\pi^{*}\Omega=d(\eta^{\prime}+\pi^{*}\alpha)$ .
Setting $\eta=\eta^{\prime}+\pi^{*}\alpha$ we can easily check that $\eta$ is a connexion with $ d\eta=\pi^{*}\Omega$

and moreover $\eta\wedge d\eta^{n}\neq 0$ . Let $\xi$ be a vertical vector field such that $\eta(\xi)=1$

and define $\varphi$ on $M^{2n+1}$ by $\varphi=\tilde{\pi}J\pi_{*}$ where $\tilde{\pi}$ denotes the horizontal lift with
respect to $\eta$ . It is easy to check that $\varphi\xi=0,$ $\eta\circ\varphi=0$ and $\varphi^{2}=-I+\eta\otimes\xi$ .
Defining a metric $g$ on $M^{2n+1}$ by $ g=\pi^{*}G+\eta\otimes\eta$ , one can easily verify that
$M^{2n+1}$ has a contact metric structure. Finally, Morimoto [3] and Hatakeyama
[1] showed that since $M^{2n}$ is complex and $\Omega$ , the curvature form of $\eta$ , is of
bidegree $(1, 1)$ , the almost contact structure $(\varphi, \xi, \eta)$ is normal. Thus $M^{2n+1}$

is Sasakian and so equations (2.1) hold from which one can show that the
differential equations of the submersion are again given by (2.2).

Now let $\theta=df$ be a non-trivial solution of the differential equation of
Theorem $C$ (with $c=1$ ) and define $\omega$ on $M^{2n+1}$ by $\omega=\pi^{*}\theta$ . Then by direct
computation

$(_{(\overline{\nabla}_{\xi}\omega)(\xi)=0}^{(\overline{\nabla}_{\tilde{\pi}X}\omega)(\xi)=\frac{1}{2}\theta(JX)\circ\pi}(\overline{\nabla}_{\xi}\omega)(\tilde{\pi}X)=\frac{1}{2}\theta(JX)\circ\pi(\overline{\nabla}_{\overline{\pi}X}\omega)(\tilde{\pi}Y)=(\nabla_{X}\theta)(Y)\circ\pi$

,

(4.1)

Now as $(\overline{\nabla}\overline{\nabla}\omega)$ is a tensor it suffices to compute it on vector fields of the
form $\tilde{\pi}X$ and $\xi$ . Differentiating the first of equations (4.1) with respect to
$\tilde{\pi}Z$ we have

$(\subset\pi Z$
$=((\nabla_{Z}\nabla_{X}\theta)(Y)+(\nabla_{X}\theta)(\nabla_{Z}Y))\circ\pi-(\nabla_{\nabla_{Z^{X}}}\theta)(Y)\circ\pi$

$+\frac{1}{2}\Phi(\tilde{\pi}Z,\tilde{\pi}X)(\overline{\nabla}_{\xi}\omega)(\tilde{\pi}Y)$

and therefore
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$(\overline{\nabla}\overline{\nabla}\omega)(\tilde{\pi}Z,\tilde{\pi}X,\tilde{\pi}Y)=(\nabla\nabla\theta)(Z, X, Y)\circ\pi+\frac{1}{4}(\Omega(Z, Y)\theta(JX)$

$+\Omega(Z, X)\theta(JY))\circ\pi$

$=\frac{1}{4}(2\theta(Z)G(X, Y)+\theta(X)G(Y, Z)+\theta(Y)G(X, Z))\circ\pi$

$=-\frac{1}{4}(2\omega(\tilde{\pi}Z)g(\tilde{\pi}X,\tilde{\pi}Y)+\omega(\tilde{\pi}X)g(\tilde{\pi}Y,\tilde{\pi}Z)$

$+\omega(\tilde{\pi}Y)g(\tilde{\pi}X,\tilde{\pi}Z))$ .
Differentiating the second of equations (4.1) with respect to $\tilde{\pi}Z$ we have

$(\overline{\nabla}_{\overline{\pi}Z}\overline{\nabla}_{\tilde{\pi}X}\omega)(\xi)+(\overline{\nabla}_{\tilde{\pi}X}\omega)(-\frac{1}{2}\varphi\tilde{\pi}Z)-(\overline{\nabla}_{\overline{\nabla}_{\tilde{\pi}Z^{\tilde{\pi}X}}}\omega)(\xi)$

$=\frac{1}{2}((\nabla_{Z}\theta)(JX)+\frac{1}{2}\theta(J\nabla_{Z}X))\circ\pi-\frac{1}{2}\theta(J\nabla_{Z}X)\circ\pi$

$+\frac{1}{2}\Phi(\tilde{\pi}Z,\tilde{\pi}X)(\overline{\nabla}_{\xi}\omega)(\xi)$

giving

$(\overline{\nabla}\overline{\nabla}\omega)(\tilde{\pi}Z,\tilde{\pi}X, \xi)=\frac{1}{2}((\nabla_{Z}\theta)(JX)+(\nabla_{X}\theta)(JZ))\circ\pi=0$

by Lemma 4.3.
Differentiating the fourth of equations (4.1) with respect to $\tilde{\pi}Z$ we have

$(\overline{\nabla}_{\pi_{Z}}^{\sim}\overline{\nabla}_{\xi}\omega)(\xi)+(\overline{\nabla}_{\xi}\omega)(-\frac{1}{2}\varphi\tilde{\pi}Z)-(\overline{\nabla}_{\overline{\nabla}_{\overline{\pi}Z}\xi}\omega)(\xi)=\frac{1}{2}(\overline{\nabla}_{\varphi\tilde{\pi}Z}\omega)(\xi)$

and therefore

$(\overline{\nabla}\overline{\nabla}\omega)(\tilde{\pi}Z, \xi, \xi)=-\frac{1}{2}\theta(Z)\circ\pi=-\frac{1}{2}\omega(\tilde{\pi}Z)$ .
In like manner we obtain

$(\overline{\nabla}\overline{\nabla}\omega)(\tilde{\pi}Z, \xi,\tilde{\pi}Y)=\frac{1}{2}((\nabla_{Z}\theta)(JY)+(\nabla_{JZ}\theta)(Y))\circ\pi=0$ ,

$(\overline{\nabla}\overline{\nabla}\omega)(\xi,\tilde{\pi}X,\tilde{\pi}Y)=\frac{1}{2}((\nabla_{X}\theta)(JY)+(\nabla_{JX}\theta)(Y))\circ\pi=0$ ,

$(\overline{\nabla}\overline{\nabla}\omega)(\xi,\tilde{\pi}X, \xi)=-\frac{1}{4}\omega(\tilde{\pi}X)$ ,

$(\overline{\nabla}\overline{\nabla}\omega)(\xi, \xi,\tilde{\pi}Y)=-\frac{1}{4}\omega(\tilde{\pi}Y)$ ,

$(\overline{\nabla}\overline{\nabla}\omega)(\xi, \xi, \xi)=0$ .

Thus we see that $\omega$ satisPes the differential equation of Theorem $B$ with
$k=\frac{1}{4}$ and since $\theta=df,$ $\omega=\pi^{*}\theta=d(f\circ\pi)$ . $M^{2n+1}$ or its simply connected

covering space is therefore globally isometric to a Euclidean sphere $S^{2n+1}$ of



Characterization of complex prOjective space 19

radius 2. Hence the fibration $\pi$ : $M^{2n+1}\rightarrow M^{2n}$ is the Hopf fibration and $M^{2n}$

is isometric to $PC^{n}$ with $c=1$ as desired.
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