On the boundedness of integral transformations with rapidly oscillatory kernels

By Kenji ASADA and Daisuke FUJIWARA

(Received April 18, 1975)

The aim of this note is to prove the L^2 boundedness of some integral transformations with rapidly oscillatory kernels. We generalize a part of results in the previous paper [3] of this second author to the case of operators with multiple symbols. Techniques are the same as used in [3]. If our phase functions are homogeneous of degree one, our operators coincide with a special class of Fourier integral operators with amplitude functions of class $S_{0,0}^0$ in the notation of Hörmander [5]. Our result seems new even in this case. (See also Eskin [2].)

As an application, we shall elucidate the role of the canonical mapping associated with the phase function appeared in our previous paper [3].

We shall discuss only in the case that the dimension of the space is larger than one. But minor changes of discussions will prove our results in the one dimensional case.

§ 1. Assumptions.

In the present paper we assume the following assumptions.

(A-0) $S_j(x, \xi)$, j=1, 2, are real infinitely differentiable functions of (x, ξ) in $\mathbb{R}^n \times \mathbb{R}^n$, $n \ge 2$.

(A-I) There exists a positive constant C such that we have

$$\left| \det \left(\frac{\partial^2 S_j(x, \xi)}{\partial x_k \partial \xi_l} \right) \right| \ge C$$

for any (x, ξ) in $\mathbb{R}^n \times \mathbb{R}^n$.

(A-II) For any multi-indices α , β , $|\alpha|+|\beta| \ge 2$, there exists a constant C>0 such that $|\partial_x^{\alpha}\partial_{\xi}^{\beta}S_j(x,\xi)| \le C$.

(A-III) The function $a(x, \xi, y, \eta)$ is an infinitely differentiable function of (x, ξ, y, η) in $R^n \times R^n \times R^n \times R^n$ which together with its derivatives of all orders are uniformly bounded.

§ 2. Main theorem.

The following two linear mappings A and B are defined at least for arbitrary infinitely differentiable function f(x) with compact support.

(1)
$$Af(x) = \int a(x, \xi, y, \eta) e^{i\nu (S_1(y,\eta) - S_2(x,\xi) - \xi \cdot y)} f(\eta) d\eta dy d\xi,$$

(2)
$$Bf(x) = \int a(x, \xi, y, \eta) e^{i\nu(S_1(y,\xi) - S_2(y,\eta) + \xi \cdot x)} f(\eta) d\eta dy d\xi.$$

Here ν is a real parameter greater than 1. These operators are Fourier integral operators if phase functions are homogeneous of degree one in the variables (η, y, ξ) (cf. [2], [5]). But we do not assume this homogeneity of phase functions. Our main result is

THEOREM 1. If assumptions (A-0), (A-I), (A-II) and (A-III) hold, then there exists a positive constant C such that we have

(3)
$$||Af|| \le C\nu^{-3n/2} ||f||$$

and

$$||Bf|| \le C \nu^{-3n/2} ||f||,$$

for any $f \in C_0^{\infty}(\mathbb{R}^n)$ and $\nu \geq 1$.

Here and hereafter we shall denote by C positive constants which will take various different values in various occasions but will be independent of ν and f.

REMARK. We can so choose the constant C in the theorem as $C/\|a\|_{C^{3n+1}}$ is independent of a. Here $\|a\|_{C^l}$ is the supremum of absolute values of all derivatives of a of order not greater than l.

§ 3. Proof of the main theorem.

First we shall look for a global behaviour of the functions $S_j(x, \xi)$, j=1, 2. PROPOSITION 1. Under the assumptions (A-0) and (A-II), the condition (A-I) is equivalent to the following condition (A-I');

(A-I') There exists a positive constant C such that

$$|\operatorname{grad}_{x}(S_{j}(x, \xi) - S_{j}(x, \eta))| \ge C |\xi - \eta|,$$

$$|\operatorname{grad}_{\xi}(S_{j}(x, \xi) - S_{j}(y, \xi))| \ge C |x - y|, \quad j = 1, 2,$$

for any x, y in R^n and ξ , η in R^n .

PROOF. Since it is obvious that (A-I') implies (A-I), we have only to prove that (A-I') follows from (A-I). We shall introduce new variables $\zeta_k = \partial_{x_k} S_1(x, \xi)$.

The Jacobian matrix of the correspondence $\xi \to \zeta$ is $J = (\partial_{\xi_k} \partial_{x_l} S_1(x, \xi))_{k,l}$. The condition (A-I) asserts that $|\det J| \ge C > 0$. Since R^n is connected and simply connected, the global implicit function theorem can be applied to our case and the correspondence $\xi \to \zeta$ is a global diffeomorphism of R^n . See, for example [6]. Thus ξ becomes a function of x and ζ , which we shall denote by $\xi(x,\zeta)$. The Jacobian matrix $(\partial_{\zeta_k}\xi_l(x,\zeta))_{k,l}$ is the inverse of $(\partial_{\xi_k}\partial_{x_l}S_1(x,\xi))_{k,l}$. This implies that the (k,l) element of the matrix $(\partial_{\zeta_k}\xi_l(x,\zeta))_{k,l}$ is uniformly bounded. Setting $\zeta_k' = \partial_{x_k}S_1(x,\eta)$, we have

$$\begin{aligned} |\xi_{l} - \eta_{l}| &= |\xi_{l}(x, \zeta) - \xi_{l}(x, \zeta')| \\ &= |\sum_{k} (\zeta - \zeta')_{k} \int_{0}^{1} \partial_{\zeta_{k}} \xi_{l}(x, t\zeta + (1 - t)\zeta') dt| \\ &\leq C|\zeta - \zeta'|. \end{aligned}$$

This turns out to be $|\operatorname{grad}_x(S_1(x,\xi)-S_1(x,\eta))| \ge C^{-1}|\xi-\eta|$. Similar discussions prove that $|\operatorname{grad}_{\xi}(S_1(x,\xi)-S_1(y,\xi))| \ge C|x-y|$. The same arguments are valid for $S_2(x,\xi)$.

Now we shall prove our Theorem 1. Let $\Lambda = \{0 = g_0, g_1, g_2, \cdots\}$ be the set of unit lattice points in R^n and $\{\varphi_j(x)\}_{j=0}^{\infty}$ be a partition of unity subordinate to the covering of open cubes of side 2 centered at each of these lattice points. We may assume that $\varphi_j(x) = \varphi(x - g_j)$, $\varphi(x) \ge 0$.

We shall first prove the inequality (3). We shall decompose the operator A into infinite sum of operators which are almost orthogonal to each other. (See Calderòn and Vaillancourt [1].) Let $p = (s_1, \sigma_1, s_2, \sigma_2) \in \Lambda^4$ and

$$A = \sum_{p \in \Lambda^4} A_p,$$

where

(6)
$$A_p f(x) = \int a_p(x, \xi, y, \eta) e^{i\nu(S_1(y, \eta) - S_2(x, \xi) - \xi \cdot y)} f(\eta) d\eta dy d\xi$$

and

(7)
$$a_p(x, \xi, y, \eta) = a(x, \xi, y, \eta)\varphi(x-s_1)\varphi(\xi-\sigma_1)\varphi(y-s_2)\varphi(\eta-\sigma_2)$$

for
$$p = (s_1, \sigma_1, s_2, \sigma_2)$$
.

The adjoint $A_{p'}^*$ of $A_{p'}$, $p' = (s_1', \sigma_1', s_2', \sigma_2')$, is

(8)
$$A_{p'}^*g(\eta') = \int \overline{a_{p'}(x',\,\xi',\,y',\,\eta')} e^{-i\nu(S_1(y',\eta')-S_2(x',\xi')-\xi'y')} g(x') dx' d\xi' dy'.$$

From these follows that

(9)
$$A_{p}A_{p'}^{*}g(x) = \int k_{pp'}(x, x')g(x')dx',$$

where

(10)
$$k_{pp'}(x, x') = \int a_p(x, \xi, y, \eta) \overline{a_{p'}(x', \xi', y', \eta)} e^{i\nu\phi(x, \xi, y, \eta, y', \xi', x')} d\xi' dy' d\eta dy d\xi ,$$
 and

(11)
$$\phi(x, \xi, y, \eta, y', \xi', x') = S_1(y, \eta) - S_2(x, \xi) - \xi \cdot y - S_1(y', \eta) + S_2(x', \xi') + \xi' y'.$$

Function $k_{pp'}(x, x')$ is continuous in $(x, x') \in \mathbb{R}^n \times \mathbb{R}^n$ and vanishes if $|\sigma_2 - \sigma_2'| \ge 2\sqrt{n}$. We shall denote by grad ϕ the vector of 5n components:

$$\begin{split} \partial_{\xi}\phi &= -\partial_{\xi}S_{2}(x,\,\xi) - y \;, \qquad \partial_{\xi'}\phi = \partial_{\xi'}S_{2}(x',\,\xi') + y' \;, \\ \partial_{y}\phi &= \partial_{y}S_{1}(y,\,\eta) - \xi \;, \qquad \partial_{y'}\phi = -\partial_{y'}S_{1}(y',\,\eta) + \xi' \;, \\ \partial_{\eta}\phi &= \partial_{\eta}S_{1}(y,\,\eta) - \partial_{\eta}S_{1}(y',\,\eta) \;. \end{split}$$

If all of these vanish then y=y', $\xi=\xi'$ and x=x'. This point is contained in the support of the integrand of (10) only if $|s_1-s_1'| \le 2\sqrt{n}$, $|\sigma_1-\sigma_1'| \le 2\sqrt{n}$ and $|s_2-s_2'| \le 2\sqrt{n}$. A differential operator of the first order

$$\begin{split} L_1 &= |\operatorname{grad} \phi|^{-2} (\operatorname{grad} \phi \cdot \nabla) \\ &= |\operatorname{grad} \phi|^{-2} (\partial_{\xi} \phi \cdot \partial_{\xi} + \partial_{y} \phi \cdot \partial_{y} + \partial_{\eta} \phi \cdot \partial_{\eta} + \partial_{y'} \phi \cdot \partial_{y'} + \partial_{\xi'} \phi \cdot \partial_{\xi'}) \end{split}$$

is defined for $x \neq x'$. Since $(L_1 - i\nu)e^{i\nu\phi} = 0$, the expression

$$k_{pp'}(x, x') = (i\nu)^{-l} \int a_p(x, \xi, y, \eta) \overline{a_{p'}(\eta, y', \xi', x')} L_1^l(e^{i\nu\phi}) d\xi' dy' d\eta dy d\xi'$$

is valid for $x \neq x'$ and $l = 0, 1, 2, \dots$. An integration by part give

(12)
$$k_{pp'}(x, x') = (i\nu)^{-l} \int L_1^{*l}(a_p(x, \xi, y, \eta) \overline{a_{p'}(x', \xi', y', \eta)}) e^{i\nu\phi} d\xi' dy' d\eta dy d\xi$$

for $x \neq x'$ and $l = 0, 1, 2, 3, \cdots$. Here L_1^* is the formal adjoint of L_1 , i.e.,

(13)
$$L_1^* = -L_1 - \text{div} (|\text{grad } \phi|^{-2} \text{grad } \phi).$$

Now we need the following lemma.

LEMMA 1. For any positive integer l there exists a constant $C_l > 0$ such that

(14)
$$L_1^{*l}(a_p(x,\,\xi,\,y,\,\eta)\overline{a_{p'}(x',\,\xi',\,y',\,\eta)}) \leq C_l |\operatorname{grad} \phi|^{-l} \,.$$

PROOF. Since $L_1^* = -|\operatorname{grad} \phi|^{-2}(\operatorname{grad} \phi \cdot \nabla) + \operatorname{div}(|\operatorname{grad} \phi|^{-2}\operatorname{grad} \phi)$, $L_1^{*l}(a_p(x, \xi, y, \eta)\overline{a_{p'}(x', \xi', y', \eta)})$ is a sum of terms of the form $(|\operatorname{grad} \phi|^{-k}) \times (\operatorname{products} \operatorname{of} \operatorname{derivatives} \operatorname{of} \phi)(\operatorname{products} \operatorname{of} \operatorname{derivatives} \operatorname{of} a_p a_{p'})$ which is homogeneous of degree -l in ϕ . This proves lemma.

In obtaining an upper bound of $k_{pp'}(x, x')$, we distinguish two cases. Case 1.

$$|s_1-s_1'| \le 3\sqrt{n}$$
, $|s_2-s_2'| \le 3\sqrt{n}$ and $|\sigma_1-\sigma_1'| \le 3\sqrt{n}$.

In this case |x-x'|, $|\xi-\xi'|$ and $|y-y'| \le 6\sqrt{n}$ in the support of the integrand of (12). We can show that there exists a constant C > 0 such that

(15)
$$|\operatorname{grad} \phi| \ge C(|y-y'| + |\xi-\xi'| + |x-x'|).$$

In fact, (A-I') implies that

(16)
$$|\operatorname{grad} \phi| \ge |\partial_{\eta} S_1(y, \eta) - \partial_{\eta} S_1(y', \eta)| \ge C|y - y'|.$$

(17)
$$|\operatorname{grad} \phi| \ge (|\partial_{y} S_{1}(y, \eta) - \xi|^{2} + |-\partial_{y'} S_{1}(y', \eta) + \xi'|^{2})^{1/2}$$

$$\ge \frac{1}{2} (|\partial_{y} S_{1}(y, \eta) - \partial_{y'} S_{1}(y', \eta) + \xi' - \xi|)$$

$$\ge \frac{1}{2} (|\xi - \xi'| - |\partial_{y} S_{1}(y, \eta) - \partial_{y'} S_{1}(y', \eta)|)$$

$$\ge \frac{1}{2} (|\xi - \xi'| - C|y - y'|).$$

The last inequality is a consequence of (A-II). Similarly,

$$|\operatorname{grad} \phi| \ge \frac{1}{2} (|-\partial_{\xi} S_{2}(x, \xi) - y| + |\partial_{\xi'} S_{2}(x', \xi') + y'|)$$

$$\ge \frac{1}{2} (|-\partial_{\xi} S_{2}(x, \xi) + \partial_{\xi} S_{2}(x', \xi)|$$

$$-|\partial_{\xi} S_{2}(x', \xi) - \partial_{\xi'} S_{2}(x', \xi')| - |y - y'|).$$

Hence, by virtue of (A-I),

(18)
$$|\operatorname{grad} \phi| \ge \frac{1}{2} |x - x'| - C|\xi - \xi'| - C|y - y'|.$$

These three inequalities (16), (17) and (18) yield inequality (15). Combining (12), (14) and (15), we have

$$\begin{aligned} |k_{pp'}(x, x')| &\leq C \nu^{-l} \varphi(x-s_1) \varphi(x'-s_1') \\ &\times \int_{R^{5n}} (|y-y'| + |\xi-\xi'| + |x-x'|)^{-l} \chi(y-s_2) \chi(y'-s_2') \\ &\times \chi(\xi-\sigma_1) \chi(\xi'-\sigma_1') \chi(\eta-\sigma_2) \chi(\eta-\sigma_2') dy d\xi d\eta dy' d\xi' \end{aligned}$$

for $l=0, 1, 2, 3, \cdots$, where χ is the characteristic function of the ball of radius $3\sqrt{n}$ centered at the origin. We choose l>2n, then

$$(19) |k_{pp'}(x, x')| \leq C \nu^{-l} \chi \Big(\frac{1}{2} (\sigma_{2} - \sigma'_{2}) \Big) \varphi(x - s_{1}) \varphi(x' - s'_{1}) \int_{\mathbb{R}^{2n}} \chi(\xi - \sigma_{1}) \chi(y - s_{2}) dy d\xi$$

$$\times \int_{\mathbb{R}^{2n}} (|y - y'| + |\xi - \xi'| + |x - x'|)^{-l} d\xi' dy'$$

$$\leq C \nu^{-l} \chi \Big(\frac{\sigma_{2} - \sigma'_{2}}{2} \Big) \varphi(x - s_{1}) \varphi(x' - s'_{2}) |x - x'|^{2n - l}.$$

Case 2. At least one of $|s_1-s_1'|$, $|s_2-s_2'|$, $|\sigma_1-\sigma_1'|$ is greater than $3\sqrt{n}$. We can find a constant C such that $|\operatorname{grad}\phi| \ge C|\operatorname{grad}\phi(s_1,\sigma_1,s_2,\sigma_2^*,s_2',\sigma_1',s_1')|$ on the support of $a_p\bar{a}_{p'}$, where $\sigma_2^* = \frac{1}{2}(\sigma_2+\sigma_2')$. Hence for any integer $l \ge 0$,

(20)
$$|k_{pp'}(x, x')| \leq C \nu^{-l} |\operatorname{grad} \phi(s_1, \sigma_1, s_2, \sigma_2^*, s_2', \sigma_1', s_1')|^{-l} \times \varphi(x-s_1) \varphi(x'-s_1') \chi\left(\frac{1}{2}(\sigma_2-\sigma_2')\right).$$

We shall denote by χ^* the characteristic function for the set

$$|s_1'-s_1| \le 3\sqrt{n}$$
, $|s_2-s_2'| \le 3\sqrt{n}$, $|\sigma_1-\sigma_1'| \le 3\sqrt{n}$.

Using this notation, we can unite estimates (19) and (20) into

(21)
$$|k_{pp'}(x, x')| \leq C_{ll'} \varphi(x - s_1) \varphi(x' - s_1') \chi \left(\frac{1}{2} (\sigma_2 - \sigma_2') \right) (\nu^{-l} |x - x'|^{2n - l} \chi^{\#}$$

$$+ (1 - \chi^{\#}) \nu^{-l'} |\operatorname{grad} \phi(s_1, \sigma_1, s_2, \sigma_2^{\#}, s_2', \sigma_1', s_1')|^{-l'})$$

for $x \neq x'$, l > 2n and $l' = 0, 1, 2, 3, \dots$

We shall look for an upper bound of $\int |k_{pp'}(x,x')| dx'$. We divide this integral into two parts: $I_1 = \int_{|x-x'| < \rho} |k_{pp'}(x,x')| dx'$, $I_2 = \int_{|x-x'| > \rho} |k_{pp'}(x,x')| dx'$, where ρ is any number $1 > \rho > 0$. Making use of (21) for $l \ge 2n+1$, $l' \ge 3n+1$, we have

$$\begin{split} |I_{1}| & \leq C \chi \Big(\frac{1}{2} (\sigma_{2} - \sigma_{2}') \Big) \{ \nu^{-(2n+1)} \rho^{n-1} \chi^{\sharp} \\ & + \nu^{-l'} \rho^{n} | \operatorname{grad} \phi(s_{1}, \sigma_{1}, s_{2}, \sigma_{2}^{*}, s_{2}', \sigma_{1}', s_{1}') |^{-l'} (1 - \chi^{\sharp}) \} . \end{split}$$

Next we use (21) for $l \ge 3n+1$, $l' \ge 3n+1$, and we obtain

$$\begin{split} |\,I_2| & \leq C \chi \Big(\frac{1}{2} (\sigma_2 - \sigma_2') \Big) (\nu^{-3n-1} \rho^{-1} \chi^{\#} \\ & + \nu^{-l'} \, |\, \mathrm{grad} \; \phi(s_1, \, \sigma_1, \, s_2, \, \sigma_2^{\#}, \, s_2', \, \sigma_1', \, s_1') \, |^{-l'} (1 - \chi^{\#})) \; . \end{split}$$

Consequently we obtain

(22)
$$\int |k_{pp'}(x, x')| dx' \leq C \chi \left(\frac{1}{2}(\sigma_2 - \sigma_2')\right) \nu^{-3n}$$

$$\times (\chi^* + (1 - \chi^*)| \operatorname{grad} \phi(s_1, \sigma_1, s_2, \sigma_2^*, s_2', \sigma_1', s_1')|^{-l'}),$$

if we choose $\rho = \nu^{-1}$. We have the same upper bound for integral $\int |k_{pp'}(x, x')| dx$. This implies that

(23)
$$||A_p A_{p'}^*|| \leq C \nu^{-3n} h_1(p, p')^2,$$

where

(24)
$$h_{1}(p, p') = \left[\chi \left(\frac{1}{2} (\sigma_{2} - \sigma'_{2}) \right) \times (\chi^{*} + (1 - \chi^{*}) | \operatorname{grad} \phi(s_{1}, \sigma_{1}, s_{2}, \sigma^{*}_{2}, s'_{2}, \sigma'_{1}, s'_{1}) |^{-l'}) \right]^{1/2}.$$

As a consequence of symmetry of our assumptions (A-0), (A-I), (A-II) and (A-III), we obtain the same upper bound for $\|A_p^*A_{p'}\|$. Calderòn and Vaillancourt lemma (see [1]) proves inequality (3) if we can prove that the kernel $h_1(p, p')$ defines a continuous linear mapping in $l^2(\Lambda^4)$. In order to prove this, we shall look for an upper bound of $\sum_{p'} h_1(p, p')$.

(25)
$$\sum_{p'} h_1(p, p') \leq \sum_{p'} \chi^* \chi \left(\frac{1}{2} (\sigma_2 - \sigma_2') \right)$$

$$+ \sum_{p'} (1 - \chi^*) \chi \left(\frac{1}{2} (\sigma_2 - \sigma_2') \right) |\operatorname{grad} \phi(s_1, \sigma_1, s_2, \sigma_2^*, s_2', \sigma_1', s_1')|^{-l'/2}.$$

This first sum of the right side is smaller than a constant. The second is

(26)
$$\sum_{p'} (1-\chi^{*}) \chi \left(\frac{1}{2}(\sigma_{2}-\sigma'_{2})\right) |\operatorname{grad} \phi(s_{1}, \sigma_{1}, s_{2}, \sigma'_{2}, s'_{2}, \sigma'_{1}, s'_{1})|^{-(1/2)l'}$$

$$\leq C \int_{R^{4n}} (1-\chi^{*}) \chi \left(\frac{1}{2}(\sigma_{2}-\sigma'_{2})\right)$$

$$\times (|\operatorname{grad} \phi(s_{1}, \sigma_{1}, s_{2}, \sigma'_{2}, s'_{2}, \sigma'_{1}, s'_{1})| + 1)^{-(1/2)l'} ds'_{1} d\sigma'_{1} ds'_{2} d\sigma'_{2}$$

$$\leq C \int_{R^{4n}} (1-\chi^{*}) \chi \left(\frac{1}{2}(\sigma_{2}-\sigma'_{2})\right) \{1+|\partial_{\sigma_{1}} S_{2}(s_{1}, \sigma_{1})+s_{2}|+|\partial_{s_{2}} S_{1}(s_{2}, \sigma_{2})-\sigma_{1}|$$

$$+|\sigma'_{1}-\partial_{s'_{2}} S_{1}(s'_{2}, \sigma_{2})|+|\partial_{\sigma_{2}} S_{1}(s_{2}, \sigma_{2})-\partial_{\sigma_{2}} S_{1}(s'_{2}, \sigma_{2})|$$

$$+|\partial_{\sigma'_{1}} S_{2}(s'_{1}, \sigma'_{1})+s'_{2}|\}^{-l'/2} ds'_{1} d\sigma'_{1} ds'_{2} d\sigma'_{2}.$$

We introduce new variables $t = \partial_{\sigma_1} S_2(s_1, \sigma_1)$, $t' = \partial_{\sigma_1'} S_2(s_1', \sigma_1')$. Correspondences $s_1 \leftrightarrow t$, $s_1' \leftrightarrow t'$ are diffeomorphisms because of (A-I'). We have $\left| \det \left(\frac{\partial t}{\partial s_1} \right) \right| \ge C$ and $\left| \det \left(\frac{\partial t'}{\partial s_1} \right) \right| \ge C$, with some constant C > 0. We choose $\left(2n - \frac{1}{2}l' \right) < -n$, then the right side is estimated as

(27)
$$C\int (1+|t'+s_2'|+|s_2-s_2'|+|\sigma_1'-\hat{\sigma}_{s_2'}S_1(s_2',\sigma_2)|)^{-(1/2)l'}dt'ds_2'd\sigma_1'$$

$$\leq C\int (1+|s_2-s_2'|^{(2n-(1/2)l')}ds_2'$$

$$\leq C.$$

As a consequence we obtained $\sum_{p'} h_1(p, p') \leq C$ independent of p. Similarly, $\sum_{p} h_1(p, p') \leq C$ holds. These two imply that the kernel $h_1(p, p')$ defines a bounded linear mapping in $l^2(\Lambda^4)$. Our inequality (3) has been proved.

Inequality (4) is proved similarly. We shall present the proof briefly. The operator B turns out to be

$$(28) B = \sum_{p \in \mathcal{A}^4} B_p$$

and

$$B_pf(x) = \int a_p(x,\,\xi,\,y,\,\eta) e^{i\nu(S_1(y,\xi)-S_2(y,\,\eta)+\xi\cdot x)} f(\eta) d\eta dy d\xi \;.$$

The adjoint of $B_{p'}$ is

$$B_{p'}^*g(\eta) = \int \overline{a_{p'}(x',\,\xi',\,y',\,\eta)} e^{-i\nu(S_1(y',\xi')-S_2(y',\eta)+\xi'\cdot x')} g(x') dx' d\xi' dy' \; .$$

Putting $B_p B_{p'}^* g(x) = \int b_{pp'}(x, x') g(x') dx'$, we have

$$(29) \qquad b_{pp'}(x, x') = \int a_p(x, \xi, y, \eta) \overline{a_{p'}(x', \xi', y', \eta)} e^{i\nu\phi(x, \xi, y, \eta, y', \xi', x')} d\xi' dy' d\eta dy d\xi,$$
 where

$$\psi = \psi(x, \xi, y, \eta, y', \xi', x')
= S_1(y, \xi) - S_2(y, \eta) + \xi \cdot x - S_1(y', \xi') + S_2(y', \eta) - \xi' x'.$$

Function $b_{pp'}(x, x')$ is continuous and $b_{pp'}(x, x') \neq 0$ only if $|\sigma_2 - \sigma_2'| \leq 2\sqrt{n}$. The gradient of the function ϕ is

$$\begin{split} &\partial_{\xi}\phi=\partial_{\xi}S_{1}(y,\,\xi)+x\;,\qquad \partial_{\xi'}\phi=-\partial_{\xi'}S_{1}(y',\,\xi')-x'\;,\\ &\partial_{y}\phi=\partial_{y}S_{1}(y,\,\xi)-\partial_{y}S_{2}(y,\,\eta)\;,\\ &\partial_{y'}\phi=-\partial_{y'}S_{1}(y',\,\xi')+\partial_{y'}S_{2}(y',\,\eta)\;,\\ &\partial_{n}\phi=-\partial_{n}S_{2}(y,\,\eta)+\partial_{n}S_{2}(y',\,\eta)\;. \end{split}$$

If all these vanish, then x = x', $\xi = \xi'$, y = y'. We introduce differential operator $M_1 = (|\operatorname{grad} \phi|^{-2})(\operatorname{grad} \phi \cdot \nabla)$. The function $b_{pp'}(x, x')$ turns out to be

for $x \neq x'$ and $l = 0, 1, 2, 3, \cdots$. Lemma 1 where L is replaced by M_1 still holds. In case $|s_1 - s_1'| \leq 3\sqrt{n}$, $|\sigma_1 - \sigma_1'| \leq 3\sqrt{n}$, $|s_2 - s_2'| \leq 3\sqrt{n}$, an inequality $|\operatorname{grad} \psi| \geq C(|y - y'| + |\xi - \xi'| + |x - x'|)$ holds. Consequently we have an estimate

(31)
$$|b_{pp'}(x, x')| \leq C \nu^{-l} |x - x'|^{2n-l} \varphi(x - s_1) \varphi(x' - s_1') \chi(\sigma_2 - \sigma_2') .$$

In the other case, σ_2^* being $\frac{1}{2}(\sigma_2 + \sigma_2')$,

$$|\operatorname{grad} \psi(x, \xi, y, \eta, y', \xi', x')| \ge C |\operatorname{grad} \psi(s_1, \sigma_1, s_2, \sigma_2^*, s_2', \sigma_1', s_1')|$$

in the support of the integrand of (30). Therefore we obtain

(32)
$$|b_{pp'}(x, x')| \leq C\chi(\sigma_2 - \sigma_2')\varphi(x - s_1)\varphi(x' - s_1') \times (\chi^* | x - x'|^{2n-l}\nu^{-l} + (1 - \chi^*)\nu^{-l'}| \operatorname{grad} \psi(s_1, \sigma_1, s_2, \sigma_2^*, s_2', \sigma_1', s_1')|^{-l'})$$

for $l=2n+1, 2n+2, \cdots$ and $l'=0, 1, 2, 3, \cdots$. Consequently, just as in the previous discussions, we have

(33)
$$||B_{p}B_{p'}^{*}|| \leq C\nu^{-3n}h_{2}(p, p')^{2},$$

$$h_{2}(p, p') = \chi(\sigma_{2} - \sigma'_{2})(\chi^{*} + (1 - \chi^{*})|\operatorname{grad} \psi(s_{1}, \sigma_{1}, s_{2}, \sigma'_{2}, s'_{2}, \sigma'_{1}, s'_{1})|^{-l'})^{1/2}.$$

Just as before we obtain $\sum_{v'} \chi^* \chi(\sigma_2 - \sigma_2') \leq C$ and

(34)
$$\sum_{p'} (1 - \chi^*) \chi(\sigma_2 - \sigma_2') |\operatorname{grad} \phi(s_1, \sigma_1, s_2, \sigma_2^*, s_2', \sigma_1', s_1')|^{-l'}$$

$$\leq C \int \chi(\sigma_2 - \sigma_2') (1 + |\partial_{\sigma_1} S_1(\sigma_2, \sigma_1) + s_1| + |\partial_{\sigma_2} S_1(s_2', \sigma_1') + s_1'|$$

$$+ |\partial_{\sigma_2} S_2(s_2, \sigma_2^*) - \partial_{\sigma_2} S_2(s_2', \sigma_2^*)| + |\partial_{s_2} S_1(s_2, \sigma_1) - \partial_{s_2} S_2(s_2, \sigma_2)|$$

$$+ |-\partial_{s_3'} S_1(s_1', \sigma_1') + \partial_{s_3'} S_2(s_2', \sigma_2^*)|)^{-l'} ds_1' d\sigma_1' ds_2' d\sigma_2' .$$

The change of variables $t'=-\partial_{s_2'}\,S_1(s_2',\,\sigma_1')$ proves that the right side of (34) is majorized by

$$C\int (1+|s_1'+\partial_{\sigma_1'} S_1(s_2', \sigma_1')|+|s_2-s_2'|+|t'+\partial_{s_2'} S_2(s_2', \sigma_2^*)|)^{-t'}ds_1'dt'ds_2'$$

$$\leq C.$$

These inequalities mean that $\sum_{p'} h_2(p, p') \leq C$. Similarly, $\sum_{p} h_2(p, p') \leq C$ holds. Consequently the kernel $h_2(p, p')$ defines a linear mapping bounded in $l^2(\Lambda^4)$.

Next we put $B_p^* B_{p'} f(\eta) = \int b_{pp'}^* (\eta, \eta') f(\eta') d\eta'$. Then

$$b_{pp'}^*(\eta,\,\eta') = \int \overline{a_p(x,\,\xi,\,y,\,\eta)} a_{p'}(x,\,\xi',\,y',\,\eta') e^{i\nu\phi_1} dx d\xi' dy' d\xi dy$$

and

$$\psi_1 = \psi_1(\eta, y, \xi, x, \xi', y', \eta')
= S_1(y', \xi') - S_2(y', \eta') + \xi' \cdot x - S_1(y, \xi) + S_2(y, \eta) - \xi \cdot x.$$

The gradient of ϕ_1 is

$$\begin{split} &\partial_y \phi_1 = \partial_y S_2(y, \, \eta) - \partial_y S_1(y, \, \xi), \quad \partial_{y'} \phi_1 = \partial_{y'} S_1(y', \, \xi') - \partial_{y'} S_2(y', \, \eta') \,, \\ &\partial_{\xi} \phi_1 = -x - \partial_{\xi} S_1(y, \, \xi), \quad \partial_{\xi'} \phi_1 = \partial_{\xi'} S_1(y', \, \xi') + x \,, \\ &\partial_x \phi_1 = \xi' - \xi \,. \end{split}$$

If all these vanish, then $\xi' = \xi$, y = y' and $\eta = \eta'$. Introducing a differential operator $M_2 = |\operatorname{grad} \phi_1|^{-2}(\operatorname{grad} \phi_1 \cdot \nabla)$, we obtain expression for $\eta \neq \eta'$ and $l = 0, 1, 2, 3, \cdots$

$$b_{pp'}^*(\eta,\;\eta') = (i\nu)^{-l} \int M_1^* \overline{(a_p(x,\;\xi,\;y,\;\eta)} a_{p'}(x,\;\xi',\;y',\;\eta') e^{i\nu\phi_1} dx d\xi' dy' dy d\xi\;.$$

From this follows an estimate

$$|b_{pp'}^{*}(\eta, \eta')| \leq C_{ll'} \chi \left(\frac{1}{2} (s_1 - s_1') \right) \varphi(\eta - \sigma_2) \varphi(\eta' - \sigma_2')$$

$$\times (\nu^{-l} |\eta - \eta'|^{2n-l} \chi^* + (1 - \chi^*) \nu^{-l'} |\operatorname{grad} \psi_1(\sigma_2, s_2, \sigma_1, s_1^*, \sigma_1', s_2', \sigma_2')|^{-l'})$$

for $l \ge 2n+1, \cdots$, and $l'=0, 1, 2, \cdots$, where χ^* is the characteristic function of the set $|\xi'-\xi| \le 3\sqrt{n}, |y-y'| \le 3\sqrt{n}$ and $|\eta-\eta'| \le 3\sqrt{n}$.

Therefore we obtain $||B_p^*B_{p'}|| \leq C\nu^{-3n}h_3(p, p')^2$,

(36)
$$h_{s}(p, p') = \chi\left(\frac{1}{2}(s_{1}-s'_{1})\right)(\chi^{*}+(1-\chi^{*})|\operatorname{grad} \psi(\sigma_{2}, s_{2}, \sigma_{1}, s'_{1}, \sigma'_{1}, s'_{2}, \sigma'_{1})|^{-\iota'/2}).$$

Here $s_1^* = \frac{1}{2}(s_1 + s_1')$. As before

$$\begin{split} \sum_{p'} (1 - \chi^*) \chi \Big(\frac{1}{2} (s_1 - s_1') \Big) | \operatorname{grad} \, \phi_1(\sigma_2, \, s_2, \, \sigma_1, \, s_1^*, \, \sigma_1', \, s_2', \, \sigma_2) |^{-(1/2)l'} \\ & \leq C \int \chi \Big(\frac{1}{2} (s_1 - s_1') \Big) (1 + |\partial_{s_2} S_2(s_2, \, \sigma_2) - \partial_{s_2} S_1(s_2, \, \sigma_1)| \\ & + |s_1^* + \partial_{\sigma_1} S_1(s_2, \, \sigma_1)| + |\sigma_1 - \sigma_1'| + |\partial_{\sigma_1'} \, S_1(s_2', \, \sigma_1') + s_1^*| \\ & + |\partial_{s_2'} \, S_1(s_2', \, \sigma_1') - \partial_{s_2'} \, S_2(s_2', \, \sigma_2)|)^{-(1/2)l'} ds_1' d\sigma_1' ds_2' d\sigma_2' \,. \end{split}$$

The change of variables $u = \partial_{\sigma'_1} S_1(s'_2, \sigma'_1)$ and $v = \partial_{s'_2}(s'_2, \sigma_2)$ proves that the right side of (37) is not greater than

$$C \int \chi \left(\frac{1}{2} (s_1 - s_1') \right) ds_1' \int (1 + |v - \partial_{s_2'} S_1(s_2', \sigma_1')| + |\sigma_1 - \sigma_1'| + |u + s_1^*|)^{-(1/2)l'} d\sigma_1' d\sigma_2' du \leq C,$$

if l' is large enough.

This implies that $\sum_{p'} h_s(p, p') \leq C$. Similarly we have $\sum_{p} h_s(p, p') \leq C$. Therefore $h_s(p, p')$ is the kernel of a bounded linear mapping in $l^2(\Lambda^4)$. This and Calderòn-Vaillancourt lemma prove inequality (4).

§ 4. Applications.

Let $S_1(x, \xi)$ and $S_2(x, \xi)$ be as in §1 and $e_j(x, \xi)$, j=1, 2, be functions in $C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ uniformly bounded with their derivatives of all orders. We proved in [3] that operators E_j , j=1, 2, defined by

$$E_{j}f(x) = (2\pi)^{-n} \int e_{j}(x,\xi) e^{i\nu(S_{j}(x,\xi)-y\xi)} f(y) dy d\xi$$

are bounded in $L^2(\mathbb{R}^n)$. More precisely, we proved that there exists a constant C > 0 such that $||E_j f|| \le C \nu^{-n} ||f||$, j = 1, 2.

Let Φ_j be the canonical mapping defined by the generating function $S_j(y, \xi)$, j=1,2. Φ_j are diffeomorphism by (A-I). In connection with these mappings we shall use notations: $(z(y,\xi),\eta(y,\xi))=\Phi_1^{-1}(y,\xi)$, and $(x(y,\xi),\zeta(y,\xi))=\Phi_2(y,\xi)$, i.e., $z=\partial_{\eta}S_1(y,\eta)$, $\xi=\partial_{\eta}S_1(y,\eta)$, $y=\partial_{\xi}S_2(x,\xi)$ and $\zeta=\partial_xS_2(x,\xi)$.

THEOREM 2. Assume that $e_2(x,\xi)e_1(y,\eta)=0$ for any (x,ξ,y,η) such that $|x-x(y,\xi)|^2+|\eta-\eta(y,\xi)|^2\leq d^2$. Then for any integer $l\geq 0$ there exists a constant $C_l\geq 0$ such that

$$||E_2 \circ E_1|| \le C_l(\nu d)^{-l} \nu^{-2n}$$
.

PROOF. Let $f \in C_0^{\infty}(\mathbb{R}^n)$. Then

$$(38) \hspace{1cm} E_2 \circ E_1 f(x) = (2\pi)^{-2n} \int e_2(x,\,\xi) e_1(y,\,\eta) e^{i\nu(S_2(x,\xi)-\xi\cdot y+S_1(y,\eta))} \hat{f}_\nu(\eta) dy d\eta d\xi \;,$$

where $\hat{f}_{\nu}(\eta) = \int e^{-i\nu\eta z} f(z) dz$. We put $\phi = \phi(x, \xi, y, \eta) = S_2(x, \xi) - \xi \cdot y + S_1(y, \eta)$. Then $\partial_{\xi}\phi = \partial_{\xi}S_2(x, \xi) - y$, $\partial_y\phi = -\xi + \partial_yS_1(y, \eta)$. If all these vanish, then $x = x(y, \xi)$, $\eta = (y, \xi)$ hold. Thus on the support of $e_2(x, \xi)e_1(y, \eta)$ there holds inequality

$$\begin{aligned} |\partial_{\xi}\phi| &\geq |\partial_{\xi}S_{2}(x,\,\xi) - y| \\ &\geq -|\partial_{\xi}S_{2}(x(y,\,\xi),\,\xi) - y| + |\partial_{\xi}S_{2}(x,\,\xi) - \partial_{\xi}S_{2}(x(y,\,\xi),\,\xi)| \\ &\geq |\partial_{\varepsilon}S_{2}(x,\,\xi) - \partial_{\varepsilon}S_{2}(x(y,\,\xi),\,\xi)| \geq C|x - x(y,\,\xi)| . \end{aligned}$$

Similarly, we have $|\partial_y \phi| \ge C |\eta - \eta(x, \xi)|$. Consequently we proved $|\partial_{\xi} \phi| + |\partial_y \phi|$ $\ge Cd$ on the support of the integrand of (38). We define differential operator of the first order

$$P_{\scriptscriptstyle 1} \! = \! \frac{d}{|\partial_{\varepsilon}\phi|^{\,2} \! + |\partial_{y}\phi|^{\,2}} (\partial_{\varepsilon}\phi \! \cdot \! \partial_{\varepsilon} \! + \! \partial_{y}\phi \! \cdot \! \partial_{y}) \, .$$

We have expression

$$E_2 E_1 f(x) = (2\pi)^{-2n} (i\nu d)^{-l} \int P_1^{*l}(e_2(x,\,\xi) e_1(y,\,\eta)) e^{i\nu\phi} \hat{f}_\nu(\eta) dy d\eta d\xi \; ,$$

where P_1^* is the formal adjoint of P_1 . Since we can easily show that $P_1^{*l}(e_2(x,\xi)e_1(y,\eta))$ satisfies condition (A-III), we obtain estimate

$$||E_2E_1f|| \le C(\nu d)^{-l}\nu^{-2n}||f||$$
.

The graph of the canonical map Φ_1 is parametrized by independent variables (y, η) of the generating function $S_1(y, \eta)$. The canonical map Φ_2^{-1} sends this point to $(x(y, \eta), \xi(y, \eta))$.

THEOREM 3. Assume that $|\xi(y,\eta)-\xi| \ge d$ for any (ξ,y,η) on the support of

 $\overline{e_2(y,\xi)}e_1(y,\eta)$. Then we have estimate

$$||E_2^*E_1f|| \leq C(\nu d)^{-l}||f||$$
,

where l is any positive integer and C_l is positive constant independent of d and ν and f.

PROOF. By definition

(39)
$$E_{2}^{*}E_{1}f(x) = (2\pi)^{-2n} \int e_{2}(y, \xi) e_{1}(y, \eta) e^{i\nu\phi(x, \xi, y, \eta)} \hat{f}_{\nu}(\eta) d\eta dy d\xi$$

where $\psi(x, \xi, y, \eta) = S_1(y, \eta) - S_2(y, \xi) + x \cdot \xi$. Since we can prove that $|\partial_y \phi| \ge |\partial_y S_2(y, \xi(y, \eta)) - \partial_y S_2(y, \xi)| \ge Cd$ on the support of the integrand of (39), the same argument as in the proof of Theorem 2 proves this theorem.

Theorems 2 and 3 will be used in [4].

References

- [1] A. P. Calderòn and R. Vaillancourt, A class of bounded pseudodifferential operators, Proc. Nat. Acad. Sci. U.S. A., 69 (1972), 1185-1187.
- [2] G.I. Eskin, The Cauchy problem for hyperbolic system in convolutions, Translation Math. USSR Sbornik, 3 (1967), 243-277.
- [3] D. Fujiwara, On the boundedness of integral transformations with rapidly oscillatory kernels. Proc. Japan Acad., 51 (1975).
- [4] D. Fujiwara, Fundamental solution of Schrödinger's equation on the sphere.
- [5] L. Hörmander, Fourier integral operators I, Acta Math., 127 (1971), 71-183.
- [6] J. T. Schwartz, Nonlinear functional analysis, Gordon and Breach Science, New York, 1969.

Kenji ASADA

Department of Mathematics
Faculty of Science
University of Tokyo
Hongo, Bunkyo-ku
Tokyo, Japan

Daisuke FUJIWARA
Department of Mathematics
Faculty of Science
University of Tokyo
Hongo, Bunkyo-ku
Tokyo, Japan