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The aim of this note is to prove the L? boundedness of some integral
transformations with rapidly oscillatory kernels. We generalize a part of
results in the previous paper [3] of this second author to the case of operators
with multiple symbols. Techniques are the same as used in [3] If our phase
functions are homogeneous of degree one, our operators coincide with a special
class of Fourier integral operators with amplitude functions of class S8, in the
notation of Hérmander [5]. Our result seems new even in this case. (See also
Eskin [2].)

As an application, we shall elucidate the role of the canonical mapping
associated with the phase function appeared in our previous paper [3).

We shall discuss only in the case that the dimension of the space is larger
than one. But minor changes of discussions will prove our results in the one
dimensional case.

§1. Assumptions.

In the present paper we assume the following assumptions.
(A-0) S;(x, &), j=1, 2, are real infinitely differentiable functions of (x, &) in
R*XR" n=2.
(A-I) There exists a positive constant C such that we have
0%S;(x
dee (22828
for any (x, &) in R*XR".
(A-II) For any multi-indices «, 8, |a|+|B]=2, there exists a constant C>0
such that |0%04S,(x, &)|<C.
(A-III) The function a(x, & ¥, ) is an infinitely differentiable function of
(x,&,9, 1) in R*XR*XR"XR" which together with its derivatives of all orders
are uniformly bounded.
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§2. Main theorem.

The following two linear mappings A and B are defined at least for arbi-
trary infinitely differentiable function f(x) with compact support.

@ Af(x)= ja(x, £y, nerSwn=SkaH-EVf (nydnd ydé ,

2) Bf (x)= [a(x, & y, e Svd-s:um+eo f(y)dndyde .

Here v is a real parameter greater than 1. These operators are Fourier inte-
gral operators if phase functions are homogeneous of degree one in the vari-
ables (3, 5, & (cf. [2], [5]. But we do not assume this homogeneity of phase
functions. Our main result is

THEOREM 1. If assumptions (A-0), (A-I), (A-II) and (A-III) hold, then there
exists a positive constant C such that we have

3) [AfIl=Co*™2|| fl
and
(4) IBfIl = Co*2| f1I,

for any feCy(R™) and v=1.

Here and hereafter we shall denote by C positive constants which will
take various different values in various occasions but will be independent of
y and f.

REMARK. We can so choose the constant C in the theorem as C/|al¢sn+1
is independent of a. Here |lalls: is the supremum of absolute values of all
derivatives of a of order not greater than /.

§3. Proof of the main theorem.

First we shall look for a global behaviour of the functions S;(x, &), j=1, 2.
PROPOSITION 1. Under the assumptions (A-0) and (A-II), the condition
(A-I) is equivalent to the following condition (A-1');
(A-1") There exists a positive constant C such that

|grad,(S;(x, £)—S;(x, )| =ClE—n],

Igradf(sj(xi 5)_51(.}}7 E))l?—_clx—yl9 ]:1: 27

for any x, y in R" and &, n in R™
PROOF. Since it is obvious that (A-I’) implies (A-I), we have only to prove
that (A-1’) follows from (A-I). We shall introduce new variables {; =0,,S(x, ).
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The Jacobian matrix of the correspondence §—{ is J=(0,055:(%, ))i,. The
condition (A-I) asserts that [det J/|=C>0. Since R™ is connected and simply
connected, the global implicit function theorem can be applied to our case
and the correspondence §—{ is a global diffeomorphism of R". See, for
example [6] Thus & becomes a function of x and {, which we shall denote by
&(x, {). The Jacobian matrix (0¢,&:(x, )z, is the inverse of (0,045:(%, §))e,
This implies that the (%, [) element of the matrix (0¢,:(x, )i, is uniformly
bounded. Setting {;=0,,S:(x, 7), we have

|&i—m ] =1&ux, ) —&ulx, T)]

=1 SC— O el (G+1—0C)at]
=clg=l.

This turns out to be |grad,(S,(x, §)—Si(x, ))| =C*'|&é—x|. Similar discussions
prove that |grads(Si(x, §)—S,(y, £))|=C|x—y|. The same arguments are valid
for S,(x, &).

Now we shall prove our [Theorem 1. Let A={0=g,, g1, &, --*} be the set
of unit lattice points in R" and {¢;(x)}5o be a partition of unity subordinate
to the covering of open cubes of side 2 centered at each of these lattice points.
We may assume that ¢;(x)=¢(x—g,), ¢(x)=0.

We shall first prove the inequality (3). We shall decompose the operator

A into infinite sum of operators which are almost orthogonal to each other.
(See Calderon and Vaillancourt [1]) Let p=(s,, 0y, S5, 05) € A* and

(5) A =p§4z4p )

where

(6) Apf(x)= fap(x, g, ¥, n)erSw=Sknd-EV f(y)dndyd§
and

7 a(x, &, 3, M) =a(x, §, 3, Ne(x—5)P(§—0.)P(y—3)P(n—0,)

for p=(s;, 04, S5 0,).
The adjoint A% of Ap, p’=(s], o}, sh, 03), is

(8) Aﬁ:g(n’)-——fap/(x’, gy, n/)e-‘iv(sﬂy"W')*Sz(x'-f')—e'!/')g(x/)dx/déldyl )

From these follows that
©) Ap A% g(2) = [kyp(x, 2)g(x)dx’

where



Boundedness of integral transformations 631

A0) kel )= [ay(x, & 3, WA W, T, 77, PePsevnvsmde/dy dydydg,
and

(11) ¢(x’ Ey Y, 7, ylv E/, x/):Sl(yy n)_SZ(xy E)—E'y—sl(y/y 77)+S2(x/7 EI)—l—E/y, .

Function £%,,(x, x’) is continuous in (x, x’)€R"XR"™ and vanishes if |o,—a}|
>2+/n. We shall denote by grad ¢ the vector of 5n components:

0ed = —0:S,(x, E)—Y,  0ap=0eS,(x", &)+,
ay¢ = aysl(y; 7])—5 ’ ay’¢ = _ay’sl(yl; 77)+§, ’
O = 04,S5,(3, 7)—0,5:(0", 1) .

If all of these vanish then y=3%/, £=& and x=x’. This point is contained
in the support of the integrand of only if |s;—s{|<2+n, |o,—0l| <240
and |s,—s5| <2+4/n. A differential operator of the first order

L,=|grad ¢| *grad ¢-V)
=|grad ¢[_2(a£¢'a&‘+ay¢'ay+av¢‘aﬂ+ay’¢'au'+aé'¢'a$)

is defined for x+x’. Since (L,—iv)e®*?=0, the expression

b2, 2) = ()" [a,(x, &, 3, Pay(n, 37, &, D) Li(e™¥)d&'dy' dndyds
is valid for x#x’ and (=0, 1, 2, ---. An integration by part give
(12) kpp(x, x') = (iv)“lfLi“‘(ap(x, &5, May (X, &, ¥, )e*?dé dy dydyds
for x# x’ and [=0,1, 2, 3, ---. Here L{ is the formal adjoint of L,, i.e.,,
(13) L¥f=—L,—div (|grad ¢|*grad ¢).

Now we need the following lemma.
LEMMA 1. For any positive integer | there exists a constant C,>0 such
that

(14) L¥ay(x, & 5, nay (¥, &, ¥, ) =Cilgrad ¢|*.

PROOF. Since L= —|grad ¢| *(grad ¢-V)+div (|grad ¢|~* grad ¢),
L ay(x, & 5, D)ap(x’, &y, 1)) is a sum of terms of the form (|grad ¢|*)
X (products of derivatives of ¢)(products of derivatives of a,a,) which is homo-
geneous of degree —!/ in ¢. This proves lemma.

In obtaining an upper bound of k,,(x, x’), we distinguish two cases.

Case 1.
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|s,—si| <3+/n, |s,—sh| <3+4/n and
lo,—a]| <3vn.

In this case |x—x'|, |—&'| and |y—»'| <64/ in the support of the integrand
of (12). We can show that there exists a constant C >0 such that

(15) lgrad ¢| = C(|y—y'| +16—&'| +x—x]).
In fact, (A-I’) implies that

(16) lgrad ¢| = |0,5:(y, 7)—0,5,(¥", P =Cly—y'].

17 |grad ¢1=(19,S.(y, 7)—&1*+1—0,. Sy, n)+E& M)

=L (10,500 1=, 5.7, P +E—E)

1%

5 (16—81=12,5,(3, —0,S.(5, D)
= (16~ |—Cly—y')).
The last inequality is a consequence of (A-II). Similarly,
|grad | = - (1 —0:Sy(x, =31 +10::S,x", )+¥])
= - (1-0:Su(x, )+0:5,(x', &)

—10:Sx(x", §)—0e:So(x’, )| —y—=2"1).
Hence, by virtue of (A-I),

(18) lgrad §| = - |x—%/| —Cl§—&'| —Cly—'|.

These three inequalities (16), and yield inequality [15).
Combining [(12), (14) and [15), we have

[ oppr(x, x7)| < Cot@(x—s,)p(x'—s)

X =y [ 1= |+ 11— ) A=Ay —s)

X X(E—0)X(E' —aDX(n—0,)X(n—o3)dydEdndy’ d&’

for [=0,1, 2,3, ---, where X is the characteristic function of the ball of radius
3+4/n centered at the origin. We choose [>2n, then
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(A9 Ippx, 2= O 2yl plx—s)p(x —s)f | UE—a)U(y—s)dvdg
< J =y |+ E—g | lx—x' ) g dy’
< o (25T (s o —sp) | 5[

Case 2. At least one of |s,—s!|, |s,—s5|, |e,—0}| is greater than 3vn. We
can find a constant C such that |grad ¢|=C|grad ¢(s,, g4, S,, 0¥, s3, 01, S1)| on

the support of a,@,, where o; :-%—(aﬁ—ag). Hence for any integer [=0,
(20) ]kpp’(xi xl) l é Cv'lIgrad ¢(Sly 011 52’ o.éky Sg; U.{y S;) l -t
X P(r—s)0(x' —sDA(5-(a:—ab) .

We shall denote by X* the characteristic function for the set
|si—s;1 =3vn, |s,—si|<3+v/n,  |oy—ai|<34/n.

Using this notation, we can unite estimates (19) and into
@) k(x| S Cur(a—5)0(x —DU(5-(0,— 1)) (v~ x—'|-1®

_i—(l—X#)V_L/[grad ¢(51, 017 32; Uék, S;; 0‘17 SD I —l’)
for x#x/, [>2n and I'=0,1, 2,3, ---.
We shall look for an upper bound of j'l kpp(x, x’)|dx’. We divide this
integral into two parts: I :j [ Rpp(x, ') dX, 12:5. | kpp (x, ") d X/,
lz-2'Kp lz-z'|1>p

where p is any number 1>p>0. Making use of for [=2n+1, I'=3n+1,
we have

| L1 < Cx(—5-(a—ap) ) {-enrpn-12?

'}‘V_VP”grad ¢(Slv Uly 52; O';ky Sé; 0-;7 S;) | _LI(]‘_X#)} *
Next we use for [=3n+1, I'’=3n+1, and we obtain

|11 = C1(G(oa—0p) ) p7122

+”_l, |grad ¢<Sl, O3,y Sgy O'ékr Sg: O-{y Si)\_l(l—x#)) .

Consequently we obtain
22) [V, 1)’ = CA (o0 )"

>< (x#+(1_x#) |grad ¢(Sly 0'17 827 o-;ky S;, on si) | _L’) y
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if we choose p=v~'. We have the same upper bound for integral fl kpp(x, x')|d x.
This implies that

(23) | 4,451 < Cohylp, '),
where
(24) ha(, 1) =[2(F-(ou—)

/
X (U +(1—1%) | grad §(s,, 03, 52, 0%, sh of, SDI7] -

As a consequence of symmetry of our assumptions (A-0), (A-I), (A-II) and
(A-III), we obtain the same upper bound for [|A% A,|. Calderon and Vaillan-
court lemma (see [1]) proves inequality (3) if we can prove that the kernel
hy(p, p’) defines a continuous linear mapping in [*(4*). In order to prove this,
we shall look for an upper bound of %}hl( b, p).

(25)  Zh(p, 1) = 31U (00— 0D)
2 p’
+31—29U(50,— D) grad §(s, 01, 5, F, 3, ofy DI
This first sum of the right side is smaller than a constant. The second is

26 SA—x(G(02—0b) grad §(s,, o, S0, 0%, 5, o, 5|~
pl

=cf a-mmu(5(a—a)
X (lgrad ¢(s,, 0y, s,, 0F, 53, 01, s1)| +1)" V2V ds{da{ds;do;
=cf | A=1U(5(0=0)) (14+10S,(51, 794531 + 10,550 70—
+ |0'f'—as§ Sl(sé; o) |+ |adzsl(s27 0'2)—80251(85, 05)]
+100; Su(st, o1)+s31} /2 dsidolds,day .
We introduce new variables t=0,,S,(s;, 01), t'za,,i Sy(s!, 67). Correspondences

s,—t, st are diffeomorphisms because of (A-I’). We have ldet( gz )’gc
1

and tdet( gi/ )lgc, with some constant C>0. We choose (2n—-é—l’)<—n,
1 .

then the right side is estimated as

Cl A+ 114851+ 5,—85 | + | ol—0y; Si(sh, 0)])" V¥t dsyd o
27) < Cf (145,55 o,

=C.
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As a consequence we obtained X h(p, p’) <C independent of p. Similarly,
<

S h(p, p)<C holds. These two imply that the kernel h,(p, p’") defines a

b4

bounded linear mapping in [*(4*). Our inequality (3) has been proved.
Inequality (4) is proved similarly. We shall present the proof briefly. The

operator B turns out to be

(28) B= X B,

pEA
and

B,f(x) :j'ap(x, £, , n)er S WO-SuDED £ (p)dpdydeE .
The adjoint of B, is

B;,g(yi) :j‘ap,(x/, &y, »r})e—’[V(Sl(y',f')—Sz(y'."?)+$“z’)g(xl)dx/d51dyl .

Putting B,B%g(x)= f byp(x, x)8(x)dx’, we have

(29)  bppi(x, X) =fap(x, £, 9, May(x’, &, Y, n)ed@EvmvEendel dy dydydg

where

gb:sb(x: E’ Y, 7, y/, 6/7 x/)
=509, §)—=S,(3, PFE&-x—S5.(y", §)+ S, (¥, p)—&'x".

Function b,,(x, x’) is continuous and b,,.(x, x’) #0 only if |s,—a}| <2+4/n. The
gradient of the function ¢ is

0ep = 0:5,(Y, H+x, Ogp = —0eSy (¥, ) —x',

0yP=0,5:(3, §)—0,5:(y, 1),

Oyp=—0,5,(', §)+0,:S:.(5", 1),

Opp =—0455(¥, ) +0,5,¥", 7).
If all these vanish, then x=x’/, £=§&’, y=y»’. We introduce differential operator
M,=(|grad ¢|~?)(grad ¢+V). The function b,,(x, x’) turns out to be
(30)  bpplx, x) =) M ay(x, &, 3, 1)@y, &, ¥, P)ePde dy dydyde

for x#x’ and [=0,1,2,3,-+. [Lemma I where L is replaced by M, still holds.
In case |s;—s{| <3v7n, |o,—al| <37, |s,—s;| <3+, an inequality |grad ¢|
=C(|ly—y'|+1&—&|+]x—x'|) holds. Consequently we have an estimate

(31) [bpp(x, x)| < CvHx—x' |2 to(x—s,)P(x' —s))X(a,—0%) .

In the other case, of being —%—(aﬁ—a;),
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‘grad Sb(x; E; y, 77: y/, E/a xl)l ;Clgrad ¢(519 017 321 o-;k, sév U{y S{)[
in the support of the integrand of [30). Therefore we obtain
(32) |bpp (%, )| < CX(0,—05)P(x—$)P(x' —s1)
XX | x—x' |- (L=X*)w~¥ | grad ¢(s,, 03, S3, 0%, S5, 01, )| 7F)

for [=2n+1, 2n+2, -+ and ’=0,1, 2, 3, ---. Consequently, just as in the pre-
vious discussions, we have

(33) |1 BpBy||< Cyv=*"hy(p, '),
h'Z(pv p/) = X(Gz—oé)(X*+(l—X*)]grad ¢(SI’ 0y, Sy aéks Sé) O'iy S{) I -l')1/2 .

Just as before we obtain X X¥X(o,—0o}) =<C and
<
(34) %}(1—1*)X(az—aé)lgrad &(s1, 01, S, 0F, S5, 01, S| 7
= Cf X(0,—02)(1+105,5,(a5, 0,)+5,|+105:S:(s3, 01)+ 5]

+ |aozsz(32y 03‘)—80252(85, o) |+ IaszS1(32, 0'1)"‘33252(32; o)l

+1 =y, Si(sl, o1)+0y, Sulsh, o))V dsidatdsiday .
The change of variables /= —88,2 Si(s5, a1) proves that the right side of (34) is
majorized by

Cf(1+ Isit+05; Si(s3, o) |+ | sa—53] ¢/ +05, Salss, 0¥) )"V dsidt'ds;
<C.
These inequalities mean that D} A,(p, ') <C. Similarly, > h(p, p’) < C holds.
p’ »

Consequently the kernel h,(p, p’) defines a linear mapping bounded in [%(A4*).
Next we put B} B, f(7)= [b%,(y, 7)f(3)dn’. Then

b (0, 1) = [ 3%, &, 3, Dap(x, &, ¥/, p)erdxd dy dédy
and

D=, 3, & %, &, 5, 9')
=503, §N)—=S:(¥', ) +E& - x—5:(, E)+S:(y, P)—§-x.
The gradient of ¢, is
0yP1=0yS:(y, N —3,5:(3, &), 0y hy=0,:S:(¥’, §)—0,:S:(¥', 7'),
0z, = —x—0:5,(9, &), 0:¢;=0:S.(', &)+x,
0. =§&"—§.
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If all these vanish, then §’=¢, y=)’ and p=17’. Introducing a differential
operator M,=|grad ¢,| *(grad ¢,-V), we obtain expression for 7#7%’ and
1=0,1,2,3, -

B, )= ()" | MK@,(x, &, 3, Nap(x, €, ', 7')e*1dxdg’dy' dydé .
From this follows an estimate
(35) 155 7)1 S Cu( (s —5D) 99— 0.)0(y — 0

X =y | X* - (1—X*)w " | grad ¢i(os, Sy, 03, ST, 0, i, 03)|™)

for [=2n41, -+, and I’=0, 1, 2, ---, where X* is the characteristic function of
the set |&—&|<3+/7, |y—y'|<3+/n and |p—y’|<3vn.
Therefore we obtain || B} B,/ < Cv=*"he(p, D)%,

(36)  hu(p, )= (G-(ss— D)X+ A1) | grad §(as, s, 03, 55, 0f, 5 oD .
Here si“:—%—(sd—s{). As before
* _1._ / ¥ o/ o/ =/
g)(lﬂl )X< 2 (s “‘31)>|grad ¢1(0'2, S, Oy, ST, 01, S5, 09)|

< C X (F(51— )L+ 19 Sulss, 09— BuuSilsm 00|
=+ | st +aa181(327 o)+ o, —al|+ |aa1 Si(s5, 01)+sik|
+ Ia_,é Si(s5, 01)—05; Sa(s3, 02) )~ VPVdsidoidsidoy .

The change of variables u:&,i S,(s}, 61) and v:as.z (s, 0,) proves that the right
side of (37) is not greater than

Cl (Grtss —sD)dst [ 1+ 1v=0,, Si(sh, D] +|o3—of |+ |uts¥]) ¥ dofdosdu=C,

if I’ is large enough.
This implies that Z}h (p, )< C. Similarly we have 2h3( p, p’)<C. Therefore

hy(p, p’) is the kernel of a bounded linear mapping in [ 2(/1*‘) This and Calderon-
Vaillancourt lemma prove inequality (4).

§4. Applications.

Let Si(x, &) and Sy(x, &) be as in §1 and ey(x, §), j=1, 2, be functions in
C*(R"X R™) uniformly bounded with their derivatives of all orders. We proved
in that operators E;, j=1, 2, defined by
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E;f(x)=(2m) [ e)(x, §eSimd v (y)dyde

are bounded in L%*(R™). More precisely, we proved that there exists a constant
C>0 such that |E;fI=Cv[fl, 1=1, 2.

Let @; be the canonical mapping defined by the generating function S;(y, &),
j=1,2. @, are diffeomorphism by (A-I). In connection with these mappings
we shall use notations: (z(y, &), 7(y, &) = @7 (y, &), and (x(¥, &), L(y, &) =
d)z(y, E)y i.e., 2267151(3’, 7]); Szaysl(y, 7]), yzaesz(X, €) and C:axsz(xy &).

THEOREM 2. Assume that e)(x, &)e,(y, n)=0 for any (x, &, ¥, n) such that
[x—x(y, ©) >+ 19—y, §)|°<d? Then for any integer =0 there exists a con-
stant C,=0 such that

IEz0 Bl < Cilvd) v~
ProOOF. Let f=C7(R™). Then

(38) E,oE, f(x)= (277)‘2”f ex(x, Eey(y, e SO EVISwDT (1)) dydyde,

where f,(9)=[e"7f(2)dz. We put ¢=g(x, & 3, ) =Six, =& ¥+, 7).

Then 0:¢ =0:Sy(x, &)—y, 0,6 =—E&4+0,5,(y, ). If all these vanish, then x=
x(y, 6), n=(y, &) hold. Thus on the support of e,(x, &)e,(¥, ») there holds in-
equality

10:41=10:5,(x, £)—y|
= —[0:5:(x(y, &), &)=y +10£S:(x, §)—0:S:(x(, &), &)
=10:S,(x, ©)—0eSu(x(3, §), O = Clx—x(y, §)! .
Similarly, we have |9,¢|=C|y—7(x, &)]. Consequently we proved |0:4|-|0,8|

=Cd on the support of the integrand of [38). We define differential operator of
the first order

—_— d . =~ .
P o a,1 08 00800

We have expression

ELE,f(x)=(2n) " (ivd)" [ P¥(ex(x, ey, D)e™f.(ndydyds,

where PF is the formal adjoint of P,. Since we can easily show that
P¥Fl(ey(x, E)es(y, 3)) satisfies condition (A-III), we obtain estimate

IEE, fll < Clvd) " f1I .

The graph of the canonical map @, is parametrized by independent vari-
ables (¥, ) of the generating function S,(y, 7). The canonical map @;' sends
this point to (x(¥, 1), &3, 7).

THEOREM 3. Assume that |&(y, n)—&|=d for any (€, y, p) on the support of
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ey, &)ei(y, n). Then we have estimate
IEFE fI = Ced) ' fl,

where | is any positive integer and C,; is positive constant independent of d and
v and f.

PROOF. By definition

(39) E¥E f(x)= (2ﬂ)“2"féz(y, £)ey(, M@ ivnf (p)dydyds

where ¢(x, &, ¥, 7)) =S:(3, 7)—Sx(y, §)+x-£. Since we can prove that |0,¢|=
10,S:(3, E(3, 7)—0,Ss(y, £)|=Cd on the support of the integrand of [39), the
same argument as in the proof of proves this theorem.

Theorems 2 and 3 will be used in [4].
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