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§1. Introduction.

Let E be a locally compact Hausdorff space with countable base, & be the
o-field of Borel subsets of Eand X=(Q, F, F)iz0, (Xi)120, 01)s20, (P%)zer) be a
Hunt process on (F, &). The constructions of the (weak) potential kernel
of X were given by many authors ([6], [9], [11], [13]). In this paper we
shall give a construction by mean of time change and killing. Let A=(A4,);2,
be a non-trivial non-negative continuous additive functional of X such that
A, <oo a.s. for all t<co. Let K%, and G%. be the resolvent of the time
changed process corresponding to the additive functional A° and the potential
kernel of the subprocess of X corresponding to the multiplicative functional

(P40, respectively, where A¢ is defined by
t

A7={ I(X)dA,
0

for a Borel subset C of E. Then for a suitably chosen Borel subset C of E
there exists a potential kernel K¢ of K{ restricted to CXC and the kernel
defined by

K(x, dy)= G},c(x, dy)+ K}, Kc G, e(x, dy)

is a potential kernel of X. If there exists a dual Hunt process X of X rela-
tive to the invariant measure g of X then the kernels K and K defined as
above by A and AC are in dual relative to ¢, where A is the dual continuous
additive functional of 4. By these method, we can construct, explicitly, the
potential kernel of one dimensional non-singular diffusion processes.

§2. Construction of a potential kernel.

Throughout in this paper we shall assume that X is a recurrent Hunt
process on (E, £€), that is, it satisfies the following equivalent conditions (Azema-
Duflo-Revuz [I], Blumenthal-Getoor [5] problems 11.4.17-4.20).



152 Y. OsHIMA

() If Be&™ then either U(x, By=E* [ Ix(X,)dt]=0 or U(x, By=c».
0

(ii) If Be&™ then either P*[Tyz<oo]=0 or P*[Tg<o]=1.

(iii) The only excessive functions are constants.
Here &" is the o-field of the nearly Borel measurable subsets of E. Then,
from Azema-Duflo-Revuz [2], there exists a unique (up to the multiplicative
constants) o-finite invariant measure p¢ of X which is equivalent to UP(x, )

#E”[fowe“p‘l‘.,(X,)dt] for all xeE and p=0. Hence, in particular, any p-exces-

sive function is &-measurable ([5] proposition V.1.4).

Assume, furthermore, that we are given a non-negative continuous addi-
tive functional A=(A4,);z, of X satisfying A,<co a.s. for all t<o and P*[A.
=0]=1 for some xcE. Then, from [1], P*[A.=o0]=1 for all x€E. For
any Borel subset C of E define a continuous additive functional A° as in § 1.
Then A° vanishes on the complement of C. Denote b€ and b&* the classes of
all bounded &-measurable and all non-negative bounded £€-measurable functions,
respectively. For 7, p=0 and fbe, define

@1 Kyof(x)=E+[ | "e?40-r10x,)d A7

2:2) Grof(x) =B [ "e?4 A Xpat].

Then GhLe=U". Set Ky=K% z and G=Gj, .
THEOREM 2.1. (Nagasawa-Sato [10] Theorems 2.1 and 2.2). For any p, ¢>0,
r, s=0, feb& and Ceé,

(2.3) Ky of—Koo/+(0—DK} Koo f+(r—5)GhoKoe /=0,
(2.4) GRof— Gl fH(D—CReGl o f+(r—s)K2eGlof=0.

In particular, if K%l (resp. G2y ¢ (-, B)) is bounded for some r,=0, then Kjcf
(resp. G of) is bounded for arbitrary r>0 and feb& and, furthermore, (2.3) (rep.
(2.4)) holds for all feb& (resp. febe, f=0 on B°) and p, q, v, s=0 such that
p+r>0 and g+s>0.

Let v be the measure associated with A (see [2], [12]), that is, v(:)=
pKi(+). Then,

LEMMA 2.2. There exists an increasing sequence {E,} .=, of Borel subsets of
E satisfying &n)En:E, v(E,)<co and Kj g,l is bounded for every n.

PrROOF. The proof is similar to the proof of Revuz [12], Theorem IILI.
Set C=E, r=0, p=¢=s=1 at then we have

KiGif=U/—Gf=sUf
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HKIGHF =, > = [_fx)pd)

for any feb&,. If f is a strictly positive p-integrable function then 0<Gif=
| fl<oo and, since U'f and U'f—Glf are l-excessive ([5], 111.4.10),
Gif=UY—(U'f—Gif) is a fine continuous Borel measurable function on E.
Therefore the sets E,={x:G}f(x)=1/n} are fine closed Borel subsets which
increase to £ as n] oo and satisfy Ki(x, E,)<n| f| and

V(En) = npKiGif =y, f) <.

LEMMA 2.3. The measure v is the unique invariant measure of K{ and
which is equivalent to KY¥x, ) for any x€E. '

ProOF. The invariance and uniqueness were proved by Revuz pro-
position III.4. Clearly the measures K{(x, -) and Ki(x, -) are equivalent, so
we shall prove the equivalence of v and Ki(x, -). Obviously Ki(x, B)=0 implies
v(B)=0. Suppose, on the contrary, that Ki(x, B)>0 for some x€FE and Be&
then, since Ki(-, B) is 1-excessive ([5] Proposition IV.2.4), there exists a fine
neighbourhood W of x such that K{(y, B)=a>0 for all ye W. Therefore,

v(B)= [ m(dy)K ¥y, B)Z ap(W)>0
since U'(x, W)>0.
By there exists an &x&-measurable density g%(x, y) of Ki¥(x, -)

relative to v since & is countably generated. For a set B€¢& such that 0<v(B)
< oo, a positive integer n and a real number r=(1/2, 1), define

(2.5) K(B,r,n)= {x €B: v{y e B:gl)x, y)> %} > rv(B)}

then B= QIK(B, 7, ).

LEMMA 24. If C is a Borel subset of K(B, vy, n) such that y(C)>2(1—r,)v(B)
for some n=l1 and r,=(1/2,1) then C=K(C,r,n) for any r<(1/2,1—
(1=ro)v(B)/v(C)).

LEMMA 2.5. If Ce¢& satisfies 0<y(C)<oco and C=K(C,r, n) for some n=1
and re(1/2,1) then

sup 31 Ko, )—Kle(y, M =ko<1.

el ye
The proofs of Lemmas 2.4 and are similar to the proof of Theorem II.1

¢

of Revuz [13], where he proved these results in the case At:f f(X)ds (febe,)
0

and y=y, so the proofs are omitted.

Take a positive integer k satisfying 0<v(E,)<oo, where E,=¢& is the set
introduced in Let B=E, at Lemma 2.4, then there is a subset
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Ceé of E, satisfying 0<y(C)<oc and C=K(C, r, n) for some r=(1/2,1) and
n=1. Obviously A%=co a.s. by v(C)>0and A° vanishes outside of C. More-
over, since vq(:)=v(-NC) is the measure associated with A°, v, is the invari-
ant measure of K{,. Hence, again similarly to Lemma IIL2 of [13],
LEMMA 2.6. Under the conditions of Lemma 2.5,
0 yo(g y— Pel) .
leélg ”(KI,C) (x, *) »(C) “§2kc-
THEOREM 2.7. p=constantXy,Gl .
PrOOF. From [Theorem 2.1,

GleKl e/ =K ef—Kl /=Ky f =[]

for any feb&,. Since A% =00 a.s. and Af<oo a.s. for all t<oo, for a strictly
positive bounded measurable function f, Ki.f(x)>0 for all xe E. Then, by
the similar argument to the proof of Lemma 22, there exists a sequence
{Fa}nz1, which increases to E such that Gi(x, F,) is bounded for every n.
Hence v¢Gi is a o-finite measure. Since G} (x, F,;) is bounded for all =,
again by [Theorem 21, for any f<b& which vanishes outside of some Fi,

Yo [—U—GY U f+KY, U f=0.
Integrating by v, it follows that
VCG?,of: VC'G(I),CUlf

since v is an invariant measure of K{.. Therefore voGi is an invariant
measure of X, hence, by the uniqueness of the invariant measure of X, the
theorem follows.

For simplicity, we shall assume, in the following, that the constant of the
equals to 1, that is, p=vcGl .

COROLLARY. If there exists a local time A for X at x,€ E then the measure
Gi(x,, +) 1s the invariant measure of X, where G} is the kernel defined by the
local time A as before. |

For xC and Be¢& define a kernel K, by

_ 3 n _ve(B)
(26) Ko(x, B)=I(x, BAC)+ [ (K8e)"(x, B—307 |
where I is the identity kernel. From K, is well defined and

K(x, -) is a bounded signed measure which vanishes outside of C for all xeC.
LEMMA 2.8. For any febe&,

(27) (I~K%o)Kef=f~—igy<ve /> on C.
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Let D be the set of all feb& such that G{|f| is bounded. Then D con-
tains all functions feb& such that /=0 on F¢ for some n, where F, are the

sets in the proof of In particular, if X is strong Feller, any
bounded measurable function which vanishes outside a compact set is con-
tained in D ([5] 111.5.16, 5.18). Define a kernel K on E by

(2.8) K(x, B)=Gl¢(x, B)+ K}, K:GY c(x, B).
THEOREM 2.9. If f€D then Kf is bounded and satisfies

(29) (U—pU)is=Urf~SELCL 1.
If, moreover, {u, f>=0 then
(2.10) (I—-pUP)Kf=U>f

that is, K is a potential kernel of X.
PrOOF. If feD then the boundedness of Kf is obvious. Moreover, from

Theorem 2.7, f is p-integrable. Let r=¢=0 and s=1 at [2.4), then
(2.11) PUPG o f=K§ Gl [+ Gl f[—U*S.

Similarly, let p=s=0, ¢=1 and p for 7, then

(2.12) PUPKS cg= Kb oK, cg+ Ky, cg— Kb cg

for any geb&. Since KB (x, -) vanishes outside of C, by setting g=K:G) ¢ f,
we obtain from [Theorem 2.7 and [Lemma 2.8

(2.13) pUPKY cKoGY o f = KB oK3 o KeGY o f+H KN cKcGhyo f
_Kg,CKCG(l),Cf

:Kﬁ’,c<Kc ?,cf“G?,cf+—v(—1C—)“ {ve, G?,cf>>
+ KoK oG o f~KEoKcGl o f
p (.
=~ KpoGlof+-LE8E 0 C -, 4K oK oGof

From and we obtain
- pUPKf=pUR,c f+DPUPKY cKcGY o f

= Kf— U+ C) 1.
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§3. The case when the dual process exists.

In this section we shall assume that X is a recurrent Hunt process on E
with the invariant measure g and that the dual Hunt process X of X relative
to p exists. Let U?(dx, y) be the resolvent of X then for any febe, and p>0,

e FO?y= [[ (D0, y)u(dy) = [ ADU LR ds) =511, £

Hence g is an invariant measure of X. It is well known that, for any p>0,
there exists a bimeasurable function u?(x, y) satisfying

(1) U*(x, dy)=uP(x, y)u(dy) and U*(dx, y)=p(dx)u?(x, y),
(ii) uP(-,y) and uP(x, -) are a p-excessive and p-coexcessive functions for
any y and x, rvespectively.

Set u(x, ¥)=lim u?(x, y) then u(-, y) and u(x, -) are an excessive and a coexces-
p—0

sive functions, respectively.
LEMMA 3.1
u(x, y)=oco for all x, y.

PROOF. Let y be an arbitrary point in £ then, for any non-empty nearly
Borel cofine neighbourhood W of y, #(W)>0 since U?(W, y)>0 for any p>0.
Moreover, we may assume that p(W)<co for all small W (see IV.1). For
such W, the recurrence of X implies that

qu(x, Wp(dy)=v(x, W)=oco for all x< E.

Hence from the cofine continuity of u(x, :) the lemma follows.

From Cemma 3.1, X is a recurrent Hunt process. Let A be the continuous
additive functional of X given in §1 and v be the measure associated with A
in §2. Then by Revuz [12] VIL1 (cf. and [7]), there exists a polar set P
and a continuous additive functional A of X restricted to E—P satisfying
A,<oo a.s. for any t<co and which is associated with v. By the recurrence
of X’, A,=c a.s. Since ¢ and v do not charge for any polar set, u(P)=
v(P)=0.

Define K7, o(B, ») and G;.o(B, y) as and by (X, A), then there
exists a Borel subset C of E— P satisfying 0<v(C)< o, C=K(C, r, 1)=K(C, , n)
for some r=(1/2,1) and n=1 from Lemma 24, where K(C, r, n) is defined as
by (X', fi). For such C define K.(B,») and K(B,y) by means of K?,c
and Glc as and for BCE—P, y=eE—P. Set K(B,y)=0 for BCP,
ye& P and

K(B, y)=pKU,(B, »)+U,(B, y)
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for BCE, yeP. Then K is a potential kernel of X. Let D be the set of all
functions feb& such that G .|f| is bounded.
THEOREM 3.1. For any f, ge DN\D,

(3.1) J gDOEfDudx)= [ gRG)()pdy).

ProOOF. Let f, gEDmﬁ, then by the definitions of K and K, it is enough
to prove <#’ g><vC, G?,Cf>:<VC, gG(l),C><yy f> and

B2 [ e@EL o) =] g6ho(Rer(N)pd)

for all n=0. It is known by theorem VIIL.2 that there exists a bimeasur-
able function g9 (x, ¥) such that

0 c(x, dy)= g% o(x, Mpldy), G o(dx, v)= p(dx)g9 o(x, ¥)
K o(x, dy)=g%c(x, y)vo(dy) and K3 o(dx, y)=vo(dx)g),o(x, ¥)

for all x€ F and ye E—P. Hence we have

[ (0K1,6G e f0) ) = [ [ [ 2()8h,c(x, 988,003, DA pdx)ve(dy)u(dz2)

= [ 868 cRY,0(2)f(2) ld2).
Similarly holds for arbitrary n=0. From [Theorem 2.7,

Ly 2{ve, ?,cf>: {ve, gé?,c><#yf>:</«!, gxXu 1.

Hence the theorem follows.

§4. Examples.

Let X be a non-singular recurrent diffusion process on @Q=(—o0, c0) with
natural scale and speed measure m. Let A be the local time of X at 0 and
h, (resp. h,) be the strictly positive non-decreasing (resp. non-increasing) solu-
tion of the following equations.

(4.1) dh*(x)=0 for x=0,
(4.2) h*(0)—h"(0—) = h(0),
(4.3) hihy—hhs =1.

Then the Green function gf(x, y) is given by
(4.4) gi(x, ») =gy, ) =hy(0)h,(y) and x=y
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(see [8], 5.6 and problem 4.11.9). Hence for any continuous function f with
compact support,

(45) Gi(x) = {_ai(x, )A)m(dy)

which shows that G0, dy)=m(dy) is the invariant measure and

(4.6) K(x, dy)= ]lef‘ly[_zIx“yl‘f—“l m(dy)

is a potential kernel of X by the [Corollary| of [heorem 2.7l and Theorem 3.9.
If X is a recurrent non-singular diffusion process on @=[0, o) or Q=[0, 1]
with natural scale and speed measure m, then by solving [4.1), and

(4.2) g1 (0)=g,(0)

we can see that is a potential kernel of X.
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