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Let M be a differentiable manifold with a locally flat linear connection D.
Then, for each point p= M, there exists a local coordinate system {x?,---, x"}
in a neighbourhood of p such that D(dx*)=0, which we call an affine local
coordinate system. A Riemannian metric g on M is said to be locally Hessian
with respect to D, if there exists, for each point p= M, a real-valued function
¢ of class C” on a neighbourhood of p such that ’

2
g= % 731557 dxidx7,
where {x',---,x"} is an affine local coordinate system around p. Such the
pair (D, g) is called a locally Hessian structure on M. We know that for a
locally flat Riemannian manifold the pair of the Riemannian connection and
the Riemannian metric is a locally Hessian structure, and that a homogeneous
self-dual convex cone has a canonical locally Hessian structure (cf. [6]).

Let G be a connected Lie group and B a closed subgroup of G. The pair
(G, B) is called a symmetric pair if there exists an involutive automorphism
¢ of G such that (B,),CBCB,, where B, is the set of fixed points of ¢ and
(Bs), is the identity component of B,. If, in addition, B contains no non-trivial
normal subgroup of G, (G, B) is said to be an effective symmetric pair.

The aim of this paper is to prove the following

THEOREM. Let (G, B) be an effective symmetric pair. If M=G/B admits a
locally Hessian structure (D, g) such that D and g are invariant under G, then
M s affinely diffeomorphic and isometric (with respect to D and g respectively)
to a direct product

MyX M X -+ XM,,
where M, is a locally flat Riemannian manifold and the universal covering
manifold of M; (1<i<r) is an irreducible homogeneous self-dual convex cone
with a canonical locally Hessian structure.

1. In this section let (G, B) be a pair of a connected Lie group G and its
closed subgroup B which needs not be symmetric. Assume that G/B admits
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an invariant locally Hessian structure (D, g). Let g be the Lie algebra of G
and let b be the Lie subalgebra of g corresponding to B. For X=g we denote
by X* the vector field on M induced by the l-parameter group of transforma-
tions exp (—tX). We put Azn.Y*=—D. X* for X, Yeg. Let V be the tangent
space of G/B at o={B} and let f(X) and ¢(X) denote the values of Ax. and
X* at o respectively. Then we have (cf. [6])

€)) fis a linear representation of g in V,

2) q is a linear map of g onto V such that

g(LX, Y D=A(X)q(Y)—f(Y)q(X),

and the kernel of q coincides with b.
Let @ be an invariant volume element on G/B. If w has the expression
o=Kdx'N --- Adx™
in an affine local coordinate system {x', ---, "}, then the forms

a=3 ﬁgfﬁ& dxt,

1

R .
Da=3 0% log K

Ao dxtdx?
1,7 oxioxi ’

are called the Koszul form and the canonical bilinear form respectively. Let
«,, Da, denote the values of a, Da at 0. Then we have

3) a,(q(X))=Tr f(X),
4) Da,(q(X), (Y )=a,(f(X)q(Y)),
for X, Yegq (cf. [4], [6]).

Let {, > denote the inner product on V given by the Riemannian metric g.
Then <, ) satisfies the following condition (cf. [6])

© XY, (2))+<q(Y), f(X)q(Z))
=(AY)q(X), ¢(Z)>+<q(X), (Y)9(Z)) .

Let V* be the dual space of V and let f* be the representation of g con-
tragredient to f. We define a linear map y: g—V* by (y(X))(v)=<{q(X), v) for
Xeg, veV. Let d; denote the coboundary operator for the cohomology of
the Lie algebra g with coefficients in (V*, f*). Then the condition (C) is
equivalent to

(C/) df*T = O .

In fact, for X, Y, Z=g we have
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((dpr)(X, Y))(9(2))
= Xr(YN(Z) =) (XN(Z)—r([TX, YDe(2)
=—g(Y), (X)q(2)>+<q(X), [(Y)(Z)>—<q([X, Y ), ¢(Z))
=—{q(Y), /(X)q(2)>+<q9(X), (Y)e(Z)>
—(fX)q(Y), (2)5+<A(Y)q(X), ¢(Z)> .

ProprosiTION 1. If G/B admits an invariant locally Hessian structure, then
G is not semi-simple.

PrOOF. Let d; denote the coboundary operator for the cohomology of the
Lie algebra g with coefficients in (V, f). Regarding ¢ as a 1-dimensional (V, f)-
cochain, we have (d;q)(X, Y)=/(X)q(Y)—f(Y)q(X)—q([X, YI)=0 for all X,Y
&g. Now assume that g is semi-simple. Since the cohomology group H'(g, (V, 1))
of the Lie algebra g with coefficients in (V, f) is zero, there exists an element
e<V such that g=dse. Choosing an element E<g such that g(E)=e, we have
g(X)=f(X)q(E) for all Xg. Since the cohomology group H'(g, (V*, f*)) of
the Lie algebra g with coefficients in (V*, f*) is zero and since d;y=0, there
exists an element c¢*< V* such that y=dsc*. Therefore

{g(X), (Y )= (X)) (Y )=dc*)(X))(q(Y))
=—c*(f(X)q(Y))
for all X, Y=g. In particular
(E), ¢(X)>=<q(X), ¢(E))=—c*(f(X)q(E))=—c*(¢(X))
for Xeg. Combining these with (C), we have
CAEN(X), q(Y)>+<a(X), [E)(Y))

={f(X)q(E), (Y )>+<{q(E), [(X)q(Y))

=<{q(X), ¢(Y))—c*(f(X)q(Y))

=2¢¢(X), ¢(Y)>.

This implies that f(E)-+'f(E)=2, where ‘f(E) is the transpose of f(£) with
respect to {,>. Taking the trace of the both sides of this formula we get
Trf(E)=dim V. On the other hand, since g=[g, ¢J, we have Tr f(E)=0, which
is a contradiction. Thus Proposition is completely proved.

2. In the following we always assume that (G, B) is an effective sym-
metric pair. Then there exists a subspace m of g such that

g=b+m (a vector space direct sum),

[b, b]ChH, [b, m]Cm, [m, m]CbH.

©)
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Since ¢ is a linear isomorphism from m onto V, for each u= V there exists a
unique element X,em such that

¢(Xy)=u.
We put

L,=f(X.),

and define a multiplication low in V by
(6) u-v=Lyw.

Then, by (5) the algebra V is commutative.
LEMMA 1. Let R, be the value of the curvature tensor jor the Riemannian
metric g at o. Then, for u, veV we have

Ro(u; U):‘—'[Lu, Lv] .
Proor. Identifying m with V by g, it is known that
R,(X,Y)Z=—[[X, Y], Z]

for X, Y, Zem (cf.[2]). Therefore R,(u, v)w=q(R( Xy, X,)X,)=—q([[ Xy, X,],
X D)=—f([ Xy, XoDq(X0)+7(X)q([ Xy, Xo)=—[Lu, LoJw, for u, v, weV.
QED.
LEMMA 2. For Web, f(W) is a derivation of the algebra V.,

Proor. Let uceV. Since ¢([W, X, D)=/(W)q(X,)—f(X)g(W)=f(W)u and
since [W, X,]Jem, we obtain [W, X,]1=X;u,,. Therefore we have (S {(W)u)-v
= Xsw)v=S[W, X, Dv=F(W) (X )v—F (X)W )v=F(W)(u-v)—u-(f(W)v).

QED.

For simplicity, we put a=a,, t=Da, Then the following formulas follow

from (3) and (4).

(39 a(w)=Tr L,,
4" (u, v)=alu-v).

LEMMA 3. For u,v,we 'V, we have

(1) [[Lu, L,], Lw]:L[u-w-v] ’
(ii) T(u' v, w):T(vi u- w) )

where [u-w-v]l=u-(w-v)—(u-w)-v.

PrROOF. Since ¢q([[Xy, Xo], Xou ) =7 Xy, Xo1)q(Xy) —F(Xu)q([ Xy, Xo])=
[Ly, Lyw=[u-w-v] and since [[X,, X,], X,]em, we have [[X,, X,], X, ]=
Xiwwo- Therefore we obtain [[L,, L,], L,1=[[ Xy, X,], Xu))=F(Xivwr)=
Ley.w. Applying this we have 7(u-v, w)—7(, u-w) = Tr Lvrw-v-uw =
—Tr Leyewwn=—Tr [[ Ly, Ly], Ly ]=0. QED.
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LEMMA 4. Let *f(X) denote the transpose of f(X) with respect to {,).
Then we have

(i) F(X)=f(X) for all Xem,
(ii) F(W)=—f(W) for all Web.

In particular f(g) is self-adjoint with respect to {, ).
PrROOF. We recall the condition (C);

S(Y)g(2), ¢(X)>+<q(Z), f(Y)q(X))
={f(Z)q(Y), (X)>+<q(Y), f(Z)q(X)) .

Let X, Y, Zem. Since V is commutative, we have <{g(Z), f(X)q(Y)) =
{fA(X)q(Z), q(Y)), which implies (i). Let X, Yemand Z=Web. Since ¢(W)=0,
it follows that {f(W)q(Y), ¢(X)>+<q(Y), f(W)q(X)»=0. Thus (ii) is proved.

QED.

LEMMA 5. Let Ker f denote the kernel of f. Then we have Ker fCm.

ProoFr. Let ZeKer f\b. For Xem we have [Z, X1em and ¢([Z, X])=
f(Z2)g(X)—f(X)q(Z)=0. Hence [Z, X]=0. For Web we have [Z, Wle
[Ker f, 6IN\[b, b]CKer fN\b. These imply that Ker /b is an ideal of g con-
tained in b. Since (G, B) is effective, it follows Ker fn\b={0}. Now suppose
that Xemand Web. Then f(X+ W)+ (X+W)=2f(X) and (X+W)—A(X+W)
=2f(W) by It follows that Ker f=Ker fnb+Ker fAm. Thus we
get Ker fCm. QED.

We set

(6) g(m)=[m, mJ+m,

Then g(in) is a subalgebra of g. Let G(m) be the connected Lie subgroup of
G generated by g(m) and put B(m)=G(m)"\B. Then we have

Q) G/B=G(m)/B(m).

By the definition of g(m) and by (i), f(g(m)) is self-adjoint with
respect to {,>. Let Vo,={v,eV; f(X)v,=0 for all Xeg(m)} and let V’ be the
orthogonal complement of V, with respect to {,>. Then, under the action of

flg(m)), V' is invariant and is decomposed into a direct sum V’'= i} V, of
mutually orthogonal, invariant and irreducible subspaces. We have t;;zln
V=Vy+Vi+ - +V,,
V- V.CV;, Vi-V,;={0} (t#7).
LEMMA 6. Put m;={Xem; ¢ X)eV;} 0=i<r). Then we have
(1) Ker f=m,,

®
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(ii) [m,, m;]={0} (0=i<j=r).

PrOOF. Let Xem, Then f(X)q(Y)=f(Y)q(X)=0 for all Y=em, and there-
fore XeKer f. Conversely, let XeKerf. Since Xem by we have
SV g(X)=f(X)q(Y)=0 for all Yem. Since g(m) is generated by m, we obtain
JF()g(X)=0 for all Yeg(m) and therefore X=m, Thus (i) is proved. Let
X,em; and X,;em;. By (8) we have f([ X;, X;Dv=7(X))f(X;)v—F(X,)[(X:)v=0
for all ve V. Therefore it follows [X;, X;JeKerfnb and so [X;, X;1=0 by
Lemma 5. QED.

LEMMA 7. If we set

g=[m;, m;]+m,
for 0<i<r, then we have

(1> g(m):g0+g1+ ”Jf'gr,
(ii) a; 1s an ideal of g(m).

PrOOF. Since [m;, m;]={0} (i#Jj), (i) is trivial, and [g;, g;1={0} (@#J).
Therefore, to prove (ii), it is sufficient to see [[m;, m;], m;JCm,;. This follows
from the fact that [[m;, m;], m;]JCm and q([[m;, m;], m;])=,(m;, m;])g(m;)C
f@V,CV,. QED.

LEMMA 8. For Xeg; we denote by fy(X) the restriction of f(X) to V.
Then f; (1<1<r) is a faithful irreducible representation of g; in V.

Proor. We fix 7 between 1 and r and suppose f,(X)=0. Since f(g;) is
generated by f(m;) and since f(m;)V,;={0}, we have f(X)V;={0} for j#i.
Therefore /(X)=0. Since Ker fng;=m,N\g;={0} by X=0 and so f;
is faithful. Let U; be a subspace of V; invariant under f;(g;). Since f(g;,) is
generated by f(m;) and since f(m;)U;={0}, we have f(g,)U;={0} for j+#i.
Therefore U, is a subspace of V; invariant under f(g(m)), and so U;={0} or
V;, which proves that f; is an irreducible representation. QED.

3. In this section we prove the following

PROPOSITION 2. Under the same assumptions as in Theorem, assume further
that f is a faithful irreducible representation of g in V. Then the universal
covering manifold of G/B is an irreducible homogeneous self-dual convex cone.

Before proving this proposition, we prepare some results.

We put U,={u,eV; 7(u,, v)=0 for all v&V}. By (i) we have
(u-u,, v)=1(u,, u-v)=0 for u,eU, u,veV. Hence fm)U,CU, Let u,sU,,
veVand Web. Then, from it follows that =(f(W)uy, v)=Tr Liswyup-»
:TrLf(W)(u(,-m“‘TrLuo-(f(W)m:Tl'f(Xf(WXuo-v))—T(uo, FWH)v)=Trf(CW, Xuo-v:‘)zo-
This implies that f(b)U,cU,. Therefore f(g)U,CU,. Since f is an irreducible
representation, we have U,={0} or V, which means that r is non-degenerate
on V or z=0 on V.
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Assume that =0 on V. Let ¢ be an element of V such that {e, ud=a(u)
for all usV. By (4) and (i) it follows that <{e-u, vd>=<u-e, vd>=
e, u-vy=a(u-v)=t(u, v)=0 for all u,veV. Hence L,=0. Therefore we have
(e, ey=ale)=Tr L,=0, and so e=0. Thus we obtain

(a) a(u)=0 for all ucV.

Since g admits a faithful irreducible representation, g is a reductive Lie
algebra (cf. [T]). Let g=c+8, where ¢ is the center of g and & is a semi-simple
part of g. Then it is clear ¢=cn\b+c\m. Let Cecn\b. Then f(C)qg(X)=
J(C)g(X)—F(X)q(C)=¢q([C, X])=0 for all Xem. Hence f(C)=0. Since f is
faithful, it follows that C=0. Thus we have

(b) ccCm.

Let C=c and let P(x) be the minimal polynomial of f(C). We shall prove
that P(x) is an irreducible polynomial over the real number field R. In fact,
assume P(x)=Q(x)R(x), where Q(x) and R(x) are polynomials over R whose
degrees are less than that of P(x). If we put U=Q(f(C))V, then the subspace
U of V is invariant under f(g). Since f is an irreducible representation, it
follows that U={0} or V. In the case U={0}, we have Q(f(C))=0, which
contradicts the fact that P(x) is the minimal polynomial of f(C). In the case
U=V, Q(f(C)) is non-singular. From Q(f(C))R(f(C))=P(f(C))=0, it follows
R(f(C))==0, which is also a contradiction. Therefore P(x) is an irreducible
polynomial over R.

The polynomial P(x) is thus one of the forms x—A (A€R) or (x—A)(x—2)
(AeC, 2+A). Since f(C)=f(C) by (i) and (b), the eigenvalues of
f(C) are real. Hence it follows P(x)=x—2A (A€R) and f(C)=A. By (a) we
have 0=a(q(C))=Tr f(C)=2Adim V. Therefore f(C)=0. Since f is a faithful
representation, we obtain C=0. Therefore we have ¢={0} and ¢ is a semi-
simple Lie algebra, which contradicts Proposition 1. Thus we have so far
proved the following

LEMMA 9. <t is non-degenerate.

We recall now the following known results (A), (B).

(A) Let V be a commutative algebra with a multiplication u-v=L,v. Suppose

() [CLw Lo], Luwl=Liyeeos for u, v, weV,

(ii) the bilinear form t(u, v)=Tr L,., is non-degenerate, where [u-w-v]=
u-(w-v)—w-w)-v. Then V is a semi-simple Jordan algebra (cf. [7]).

(B) Let V be a real Jordan algebra. Then the following conditions are
equivalent.

(1) V is a formal real Jordan algebra.
(ii) The bilinear form t(u, v)=Tr Ly., 1S positive definite.
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(iii) There exists an inner product {,> on V such that {u-v, wd=<v, u-w)
for all u,v,weV (cf. [3].

In view of Lemmas 3, 4, 9, (A) and (B), we obtain

LEMMA 10. V is a simple formal real Jordan algebra.

We are now in a position to prove Proposition 2. Let G be the universal
covering group of G and let = be the covering pro;ectlon of G onto G. Denot-
ing by B, the identity component of 7z '(B), G/B0 is the universal covering
manifold of G/B. Since G is simply connected, there exists a linear repre-
sentation f of GinV such that df:f, where df is the differential of f Let
¢ be an element in V such that z(e, u)=a(u) for all uc V. Then ¢ is the unit
element in V and we have

9 [ X)e=q(X) for all X=g.

In fact,
(e -u, v)=t(u-e,v)=1(e, u-v)

=a(u-v)=t(u,v)

for u,ve V. Since 7 is positive definite, it follows that e-u=u-e=u for all
ue V. Hence f(X)e=q(X) for all Xem. By Lemma 2, f(W) is a derivation
of V for Web. Hence f(W)e=0=q(W) for Web. We have thus proved (9).
Let 2= f(é)e be the orbit of f(é) through e. Then £ is an irreducible
homogeneous self-dual convex cone in V (cf. [3], [7]). Let H:{ﬁeé; f(ﬁ)e
=e¢} and let D be the subalgebra of g corresponding to H. Then H=b. Indeed,
by (9) X is contained in % if and only if f(X)e q(X) 0. Hence B cH There-
fore we have the natural projection p: G/Bo~+.Q G/H and this map is a cover-
ing projection. Since £ is convex, it is simply connected. Hence p gives an
isomorphism from G/B, onto 2. This completes the proof of Proposition 2.

4. Proof of Theorem. Let G; be the connected Lie subgroup of G gener-
ated by g; and let B;=B(m)NG,. Then it follows from (7), (8) and Lemma 7
that M is affinely diffeomorphic and isometric (with respect to D and g respec-
tively) to the direct product

Go/ByXGy/B X -+ XG,/B,.

According to Lemmas 1 and 6, M,=G,/B, is a locally flat Riemannian mani-
fold. By Lemma 8 and by Proposition 2, the universal covering manifold of
M,=G;/B; (1<i<r) is an irreducible homogeneous self-dual convex cone. Thus
our Theorem is completely proved.
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