J. Math. Soc. Japan
Vol. 29, No. 3, 1977

Fundamental solutions for operators of
regularly hyperbolic type

By Hitoshi KUMANO-GO

(Received Jan. 7, 1976)
(Revised Oct. 22, 1976)

§ 0. Introduction.

In a recent paper we have studied a global calculus of Fourier integral
operators on R", and, as an application, constructed the fundamental solution
E4(t, s) for the single equation of hyperbolic type:

{ Lu=Du—At, X,Du=f in (0,T) (T>0),

Ulpmo=1Uy,

(0.1)

where Ey4(f,s) is a Fourier integral operator with phase function ¢(Z, s; x, &)
and symbol e(t, s; x, &) of class Bi(S° (0=s=it=T).

In the present paper we shall construct the fundamental solutions for a
regularly hyperbolic system of first order operators and for a regularly hyper-
bolic operator of higher order in the exact form on R™. We shall first con-
sider a system with the diagonal principal part, and reduce this system to a
diagonal system (mod $~=) by the perfect diagonalizer (see Definition 2.2).
Then, the fundamental solutions for general operators will be constructed by
using the approximate fundamental solution (see for the equa-
tion [0.I)) We note that our method is applicable to the diagonalizable hyper-
bolic system of first order with constant multiplicity.

§1. Fourier integral operators.

For a point x=(x, -+, x,)€R™ and a multi-index a=(a,, -, a,) of non-
negative integers «; we use notations: |a|=a,+ - +a,, a!=a,!-- a,!, x*=
X1 xfn, 08=021 - 0%p, 0,,=0/0x,;, D¥=D% - Din, D, =—1i0/dx;, (x)=~1+][x]"

Let S denote the Schwartz space of rapidly decreasing functions, and let
B denote the space of C*-functions in R"™ whose derivatives of any order are

all bounded. For u=S the Fourier transform @(£) is defined by @(§)=
j‘e‘”‘fu(x)dx (x-E=x,&,+ - +x,&,). Let S™ denote the space of C”-symbols

in R*"
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(LD {p(x,8); Va, B, [0 DEp(x, )| =3C,, ™™ on R*™},

and define semi-norms [p[;™ ([=0,1,--+) by

[pli™ = MaXL inf {C, s of [1.I)} .

lat+pls

Then, the pseudo-differential operator P=p(X, D.) (denoted by P=$™) with the
symbol o(P)(x, &)=p(x, &) is defined by

(1.2) Pu(x)= [e'=5p(x, Ha(&)ds,  uessS (dE=(2m)""dE).

As in [6] the real valued C>-function ¢(x, &) is called a phase™ function,
when ¢(x, &) satisfies following conditions:

@) ¢, &)—x-E S,
(1.3) (i) [Vep(x, §)—El=(1—e) |1 +C (0<e =1, 0<Cy),
(iii) [V Ved(x, E)—I =(1—e) (0<e=1)
(compare with Hormander’s in [3]).

Then, the Fourier integral operator P=py(X, D,) (denoted by Pe8&%) with
phase function ¢(x, &) and symbol p(x, &) of class S™ is defined by

(14) Pau(x) = [e9=®p(x, Ou()ds,  ues.

We note that if we write

Pou(x)=[et= (e p(x, €)e)ds

Pu(x) = [e# (e 2p(x, €)a)ds
for p(x, £)eS™=NS™ and [(x, §)=¢(x, §)—x-&, then we can easily see that

(1.5) 57 (=NSH=5" (=N8™).

§2. Construction of fundamental solutions.

Consider the Cauchy problem of the form

1) { LU=DU+AYMHU+ACH)U=F in (0,T) (T>0),

U]t=0=U0,

where AYP(t)e 8,(87) on [0,T] (j=0,1). which means that A“(t) are [XI
matrices of operators of class S7, and the symbols o(AY’(¢)) are infinitely dif-
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ferentiable with respect to ¢ in the topology of S’/. For simplicity we also
assume that the symbol o¢(A®P())(x, &) is real valued.

DEFINITION 2.1. The operator L of (2.1) is said to be regularly hyperbolic,
when all the eigenvalues AP(¢, x, &) (j=1,--,1) of o(A“(t)) are real valued,
belong to B,(S!) on [0, T], and satisfy for a constant ¢,>0

(2.2) 125°(t, x, £)—AP(¢, x, &) =€) on [0, TIXR™ (j#]').

DEFINITION 2.2. i) The operator L of (2.1) is said to be diagonalizable,
when there exists N,(t)e 8,(8°) on [0, T] such that

(2.3) ldet (6(No(D)) ]| =4 on [0, T]xR®"
for a constant ¢;>0, and we can write
(24) o(No(1)) *a(AD(1)a(Ny(1)) = a (D)

for a diagonal matrix

APt 0
(2.5) a(DV(t)) = € 3,(SY) on [0, T].
0 A0 (t)
ii) The operator L of (2.1) is said to be perfectly diagonalizable, when

there exists N(t)e 3,(8° on [0, T] such that o(N(t)) satisfies (2.3) and we can
write

(2.6) LN{)=N({)(D,+2(1))  on [0, T] (mod B,(87))

for a diagonal 9(t)e B,(8') (N,(t), N(t) are called the diagonalizer, the perfect
diagonalizer for L, respectively).

DEFINITION 2.3. E¢(t, s) (€ 8B,(8Y)) is said to be the approximate funda-
mental solution of (2.1), when E¢(t, s) satisfies

LE4t, s)=R(t s)e B,(5 0,T],
27) { (L, )=R(t,s)e B,(8™) on[0,T]

E¢(s, s)=1I (the identity matrix operator).
LEMMA 24. Let the operator L of (2.1) have the form
(2.8) LU=D U+t U+BY(HU,

where PV(H)e B,(8') and BO(t)e B,8°) on [0,T], and o(DV) has the form
(2.5) and satisfies (2.2). Then, L is perfectly diagonalizable.

COROLLARY. The regularly hyperbolic operator L 1is diagonalizable, and,
moreover, perfectly diagonalizable.

ProOF OoF LEMMA 2.4. Assume that the perfect diagonalizer of L has the
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form

(2.9) a(N(D)~ I+ 3 a(N(D)),

where a

(2.10) a(N2(t) = (ni"(1) ; n”(t)=0)€ B,5™)  on [0, T].

Then, the parametrix Q(¢t) of N(t) has the form

(2.11) Q) ~ T+ 3 (= DPo(( £ N1

~I+ S (M),

where M¢“*(t) belong to 8,(8$7*) and are determined by N V(¢), -+, N(2).
Then, we can write

(2.12) LN(t)= N(t)(D,+2()+F(1) (mod B,87)),
where F(t)e 8,(8°) and has the form

F(t)= QLD (D), N(O)]+Q(OBO(H)N(H)+ Q) D N(2) .
Then, noting [2.9) and [2.11) we can write

o(F)~ T o([9?, N])

+{U(B(0))+ i i O-(M(-V)[@(l)’ N(-v)])+ ilG(B(O)N(-u))

p=1 v=1

+ i o(MPB®)+ i “2 a(MPBON»)
p=1 =1 v=1

+ S (DN S S a(MODN?)}
v=1

p=1 y=1

Hence, we can rewrite o(F') in the form

(213) o(F(H)~ 3 (a(J)=a(I ),

where
{ o(J?)=0(DP)e(N " P)—a(NT"P)a(DP) € B,(57),

oI )= () € B(5™) (v=0,1,+),

and o(I'"®) are determined by ¢(9?), a(B®), a(N?), -+, a(N*). Now we
set

nG’ =P =AW (#k), =0(0G=k, v=L2--,

then, noting a(J?)=((AP—2’)-n7*""), we see that o(F(f)) is equal to a dia-



Fundamental solutions of hyperbolic type 403

gonal matrix asymptotically. Hence the perfect diagonalizer N(f) can be found

by [(2.9). Q.E.D.

PROOF OF COROLLARY. Let Ny(¢) be the diagonalizer for L and let Q,(¢)
be the parametrix of N,(tf). Then we can write

LN(t)= Ny(hL,  (mod 8,(8)),
where
Eo - Dt+QDA(I)NO+(Q0A(0)N0+QODLNO) ’

and using we see that L, has the form [2.8) Hence, by Lemma 2.4 we
can find the perfect diagonalizer N(¢) of L,, and setting N(t)=N,([t)N(t) we see
that N(¢) is the perfect diagonalizer for L. Q.E.D.

THEOREM 2.5. Let the operator L of (2.1) is regularly hyperbolic. Then,
for a small T, (0<T,<T) the approximate fundamental solution E¢(z‘, s) can be
found in the form

(2.14) Eyt, )= N()E, 4(t, 5)Q(s)+(I—N()Q(s))

where N(t) is the perfect diagonalizer of L and Q(t) is the parametrix of N(t)
such that (I-NHQ)eB,(85 =) on [0,T], and E,4(t,s) is the approximate
fundamental solution for L,=D,+ D) of (2.6). Moreover, adding some e >(t, s)
eB(5 ") (0=s=t=T,), the fundamental solution Eut,s) can be found in the

form
(2.15) Ext, s)=Eqt, s)+e=(t,s).

REMARK. When L is diagonalizable and 9°(¢) has the form

P 0 AP(t) 0
_@(1) — <. , Where U(@}l)) — ©
0 ol 0 29(8)

and {A°(1)}%i, satisfies [2.2), then, by the same procedure with the proof of
we can find N(t) such that 9(¢) of has the form: 9(¢)

.@l(ﬁt)_ 0

( 0 D0
construct the fundamental solution for such L. In Lax and Ludwig [§]
it seems that the approximate fundamental solutions are constructed for our
non-analytic case. We also note that in Eskinm the exact fundamental solu-
tions are constructed when R" is replaced by a compact C* manifold M.

PrOOF. Since o(D)—ao(9P)e 8,(S°) on [0, T], by means of Theorem 3.2°
in [6] we can construct the approximate fundamental solution E,4(t, s) for L,
of the form

), where 9,(H)=9V()+B»() for some BP(#) e B,(8°, and
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E0,¢1(t) S) . 0
(2.16) Ey(t, s)= . 0=s=t=T)
0 E0,¢l(t) S)

for a small 7, (0<T,=T) which belongs to $i($°) and moreover to 3,(8°)
since D(1)e B,(8'), where ¢, (j=1,---,[) are the solution of

(2.17) 0.6+2P(t, x, Vo) =0  (0=s=<t=T,), ¢li-s=x-&,

which satisfy the conditions of [1.3). Then, using [2.6) we get the approximate
fundamental solution E4(¢, s) by [2.14). Next as in we set

(.19) Wit $)=—iR(t,s)  (=—iL,Ey),

Wit )= [ Wilt, )Wes(8, 946 (=23, )

<:f:f:1 _.,j:k—ZWI(t, s)Wi(sy, $o) =+ Wilsp_y, )

ds,ds, -+ ds,., (so= z‘)) )
and regard for any real t
Wt s)e8, W, ss)e8 (j=1,-,k—1 and s,=5).

Then, from a theorem on the theory of pseudo-differential operators of multi-
ple symbol (see [4] or [5]) we have for

F(t’ S5 8,00, Sk—l): Wl(ty Sl) Wl(sly 52) o I/Ifl(sk—h S)
an inequality

|0(F)(t, 9)]i =C* ( Max {[o(R(t, NIFD* (k=2,3,)

for any = and /,, where C and [/ are constants depending on 7= and [, (but in-
dependent of k). Hence, from we have

T§!

o, iy =tV <o T

(k=11

—_—

0

IA
IIA

N téTO)y

and consequently we see that W(t, s):kg W(t, s) converges in $,(87) for any

A t oA
z. Then, setting Eg(t, )=E(t, )+ [ Eglt, )W (8, 5)df and noting (1.6) we get
the desired fundamental solution E4(t, s) of L. Q.E.D.
Now consider the single higher order operator of regularly hyperbolic type

=1 =1 )
(2.19) L=Di+ X ait, X, D)D{+ Z} b;(t, X, D,)D{ on [0,T],
i=1 j=
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where a,(t)€ 8,(8'77) and b,(t)e B,(8'77"), and the roots A{P(t, x, &) (j=1, -, 1)
of the equation

[—
(2.20) 2 3 a,(t, % =0
]:
are real and distinct, and satisfy [2.2). Set for A=<{D.)
[0 —A oo 0 0 ceverenrennenns 0
o . . o | 1l
(2.21) AP = L. , A®YW)=
0 rrerenen 0 —A" T T L0 e 0
ao/l_(l_l) A al—l bo/l—(l—l) b bl—l

and let V be one of the Fréchet spaces S, 8, S’. Then, we have
THEOREM 2.6. i) The solution U(t)e B(V) of the Cauchy problem (2.1) for
U,V and Fe BXV) exists uniquely in (0, T,) and can be solved by

(2.22) U= Et, OUs+[ Eylt, OF (5)ds,

where E4(t,s) is the fundamental solution of L.
il) The solution u(t)e Bi(V) of the Cauchy problem

(2.23) Lu=fin (0,To), Di'ulime=¢; (=1,-,1)
for ¢;,€V and fe BYV) exists uniquely and can be solved by

ut) :]"izl A_(l_l)(ktg Ni(DEg, (8, 0)Q4;(0)+e5(2, 0) 4" g,
(2.24)

+[ AP N O Esy(t, 9Qul)+ e, ) (5)ds,

where N(t)=(N;(t)) is the perfect diagonalizer for L of (2.1) corresponding to
A (j=1,0) of (2.21) and F(t)=(0, ---, f(1))}, Q(t)=(Q;(1)) is the parametrix
Sfor N(t), and e;=(t,s) (j=1, ---,1) are appropriate operators of class B,(8 ).

REMARK 1°. Let H; be the Sobolev space {usS’; A'usL?*(R™)}. Then,
by means of the H,-theory of Fourier integral operators in (which states
that Py(=8%) maps H;,, continuously into H; for any H,) we see that the solu-
tion U(t) belongs to BYH)NBYH,_,) for U, H; and Fe B H,), and that the
solution u(f) belongs to BY(Hy - )NBi(Hgsr-s)N -+ NBUH,_,) for ¢, Hgypoj
(j=1,--,1) and fe BYH,). ,

2°. In Calderén and Mizohata [9] the problems [(2.1) and [2.23) are
solved by means of energy inequalities.

3°. The principal symbol of N(¢) is equal to

(Gerens Ay .
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PROOF. i) is clear. ii) Set U=(uy, ---,u,)" for u;=A"""Diu (j=1,--,1),
Uy=(¢y, -+, @) and F()=(0, -+, 0, f(#))". Then, we get the regularly hyper-
bolic system L of the form [2.1), and the diagonalizer N,(¢) of L is given by

) R 1

(No(8)) =

Hence, from the corollary of [Lemma 2.4 L has the perfect diagonalizer N(t).
Then the solution u(¢#) of the problem is given by u=4"“"u,, which is
represented by (2.24). Q.E.D.
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