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\S 1. Introduction.

Let $\mathcal{H}$ be the Hilbert space $L^{2}(R^{n})(n\geqq 3)$ and let $\{H(t)=H_{0}+V(t), t\in R^{1}\}$

be a family of Schr\"odinger operators in $\mathcal{H}$ with a time-dependent perturba-
tion $V(t)$ , where $ H_{0}=-\Delta$ is the negative Laplacian in $R^{n}$ . We suppose that
$\{-iH(t);t\in R^{1}\}$ generates a unitary evolution group $\{U(t, s);-\infty<t, s<\infty\}$ .
Fundamental problems in scattering theory under these circumstances are as
follows. (1) When do the strong limits

$W_{\pm}(s)f=\lim_{t\rightarrow\pm\infty}U(t, s)^{-1}e^{-i(t-s)H_{0}}f$

exist for every $f\in \mathcal{H}$ and every $s\in R^{1}$ ? (2) If the above limits exist, how can
we characterize their ranges $R(W_{\pm}(s))$ , in particular, do their ranges coincide
(completeness of wave operators)?

The study of the problems has begun in recent years. However, most
works appeared so far are concerned with the problems under the assumption
that the perturbation $V(t)$ vanishes sufficiently rapidly as $|t|\rightarrow\infty$ so that $W_{\pm}(s)$

turn out to be unitary. In the case that the perturbation $V(t)$ is periodic in
time, on the other hand, the wave operators $W_{\pm}(s)$ are not unitary in general.
This case was first taken up by Schmidt [19] who proved, among other things,
the existence and the completenese of $W_{\pm}(s)$ , determining their ranges precisely.
In [19] this result was proved in the situation that $V(t)$ is an operator of trace
class for each $t$ ; and for $V(t)$ given by a potential $v(t, x)$ , it was conjectured
that if $v(t, \cdot)\in L^{2}(R^{3})\cap L^{1}(R^{3})$ the existence and the completeness of $W_{\pm}(s)$ would
hold.

The purpose of the present paper is to study the problems in the case
that the perturbation $V(t)$ is periodic in time and given by a time-dependent
potential $v(t, x)$ . We shall prove that the conjecture of Schmidt holds good
under weaker conditions. Namely, we first assume the following Assumption
(A.1).

$*)$ Partly supported by F\^ujukai-Foundation.
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ASSUMPTION (A.1). The function $v(t, x)$ is a real valued function defined
on $R^{1}\times R^{n}$ and there exists a positive constant $\omega$ such that

$v(t+\omega, x)=v(t, x)$ , $(t, x)\in R^{1}\chi R^{n}$ .

We further assume one of the following two assumptions.
ASSUMPTION (A.2). There exist constants $p$ and $q$ such that $1\leqq P<n/2<q$

$\leqq\infty$ and such that the functions $t\rightarrow v(t, \cdot)$ is an $L^{p}(R^{n})\cap L^{q}(R^{n})$ -valued absolutely
continuous function. If $n=3$ and $q<2$, we further assume that the function
$t\rightarrow v(t, \cdot)$ is an $L^{p}(R^{n})\cap L^{p}(R^{n})$-valued continuously differentiable function.

ASSUMPTION (A.3). There exist a constant $\delta>1$ and an $L^{\infty}(R^{n})$ -valued
absolutely continuous function $w(t, x)$ such that $v(t, x)=(1+|x|^{2})^{-\delta/2}w(t, x)$ .

Under Assumptions (A.1) and (A.2) with $q\geqq 2$ or under Assumptions (A.1)

and (A.3), $H(t)=H_{0}+v(t, x)$ defined on $C_{0}^{\infty}(R^{n})$ is essentially selfadjoint and the
selfadjoint extension $H(t)$ has the domain $H^{2}(R^{n})$ . Under Assumptions (A.1)

and (A.2) with $q<2$, the sesquilinear form $h$ defined by $h(f, g)=(H_{0}f, g)+$

$(v(t, x)f,$ $g$) for $f_{f}g\in C_{0}^{\infty}(R^{n})$ determines uniquely a selfadjoint operator $H(t)$

on $\mathcal{H}$ and $D(|H(t)|^{1/2})=H^{1}(R^{n})$ . Furthermore under these assumptions the
family of operators $\{-iH(t);t\in R^{1}\}$ generates a unitary evolution group
$\{U(t, s);-\infty<t, s<\infty\}$ (see Theorem 2.1 and Theorem 2.1’ below).

Our main theorem is as follows.
THEOREM 1.1. Let Assumptions (A.1) and (A.2) or Assumptions (A.1) and

(A.3) be satisfied. Then the strong limits

$W_{\pm}(s)f=\lim_{t\rightarrow\pm\infty}U(t, s)^{-1}e^{-t(t- s)H_{0}}f$

exist for every $f\in \mathcal{H}$ and $s\in R^{1}$ . Furthermore we have

$R(W_{\pm}(s))=\mathcal{H}_{ac}(U(s+\omega, s))$ .

In particular, the completeness of wave oPerators $R(W_{+}(s))=R(W_{-}(s))$ holds.
Here $\mathcal{H}_{ac}(U)$ stands for the absolutely continuous subspace of $\mathcal{H}$ with respect to
the unitary operator $U$ .

REMARK 1.2. Roughly speaking, (A.2) imPlies that $v(t, x)=O(|x|^{-2-\epsilon})$ as
$|x|\rightarrow\infty$ but some singularities are allowed. (A-3) implies $v(t, x)=O(|x|^{-1-\epsilon})$ as
$|x|\rightarrow\infty$ . The assumption on the decay rate of $v(t, x)$ as $|x|\rightarrow\infty$ in Assump-
tion (A.3) can not be weakened even in the t-independent case (see Dollard [5]).

The composition of the paper is as follows. \S 2 is preparatory in nature
and two theorems concerning the existence of the evolution groups are given.
In \S 3, some lemmas which will be needed for the proof of the theorem are
collected. \S 4 is devoted to proving the theorem. \S 5 is an appendix and a
.sufficient condition for the existence of wave operators for Schr\"odinger opera-
tors with general time-dependent potentials will be given.
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Finally we shall list here some notations which will be used throughout
the paper. $L_{\gamma}^{2}(R^{n})(\gamma\in R^{1})$ denotes the class of all functions $f(x)$ on $R^{n}$ such
that $(1+|x|^{2})^{\gamma/2}f(x)$ is square integrable on $R^{n}$ . The inner product $(\cdot, \cdot)_{2,\gamma}$ and
the norm $\Vert\cdot\Vert_{2,\gamma}$ are dePned by

$(f, g)_{2,\gamma}=\int_{R^{n}}(1+|x|^{2})^{\gamma}f(x)\overline{g(x)}dx$ ,

$\Vert f\Vert_{2,\prime}\sim=(f, f)_{2,\gamma}^{I/2}$ .

When $\gamma=0$, we shall write $L_{0}^{2}(R^{n})=L^{2}(R^{n})=\mathcal{H}$ and $(\cdot, \cdot)_{2,0}=(\cdot, \cdot)$ etc. $H^{m}(R^{n})$

is the Sobolev space of order $m$ on $R^{n}$ with the usual inner product and the
norm. For any open domain $G\subset R^{n},$ $C_{0}^{\infty}(G)$ denotes the set of all infinitely
differentiable functions on $G$ with support compact in $G$ . For any separable
Hilbert space $X$ and any measure space $(M, \mathcal{B}(M),$ $dm$)

$,$

$L^{2}(M, X, dm)$ denotes
the Hilbert space of all strongly measurable X-valued functions $f$ with the norm

$\Vert f\Vert_{L^{2}(M,X)}=\{\int_{M}\Vert f(m)\Vert_{X}^{2}dm\}^{1/2}$

For any pair of Banach spaces $X$ and $Y,$ $B(X, Y)$ denotes the set of all bounded
operators from $X$ to $Y$ . We write $B(X)=B(X, X)$ . For any operator $T$ from
Banach space $X$ to $Y,$ $D(T)$ and $R(T)$ stand for the domain and the range
of $T$, respectively.

$\mathcal{F}_{x-\cdot\xi}$ stands for the Fourier transform from $R_{x}^{n}$-space to $R$“-space and is
defined by

$(\mathcal{F}_{x\rightarrow}D(\xi)=\overline{(2\pi}1_{-})^{n/2}--\int_{R^{n}}e^{ix\cdot\xi}f(x)dx$ .

$\mathcal{F}_{t\rightarrow n}$ stands for the Fourier transform from $[0, \omega]$ to $Z$ (the set of all integers)

and is defined by

$(\mathcal{F}_{t\rightarrow n}f)(n)=\frac{1}{\sqrt{}\overline{\omega}}\int_{0}^{\omega}e^{2\tau_{\vee}nti/\omega}f(t)dt$ , $n\in Z$ .

As is well known $\mathcal{F}_{x\rightarrow\xi}$ and $\mathcal{F}_{t\leftrightarrow n}$ are unitary operators from $L^{2}(R_{x}^{n})$ to $L^{2}(R^{n}\xi)$

and from $L^{2}([0, \omega])$ to $l^{2}(Z)$ , respectively. $C^{1}$ is the set of all complex num-
bers and $\Pi\pm_{=}\{\zeta\in C^{1} ; {\rm Im}\zeta\gtrless 0\}$ .

\S 2. Preliminaries.

In this section we shall give two theorems which guarantee the existence
of the unitary evolution group and make some definitions which will be needed
in the following sections.

THEOREM 2.1. Let Assumptions (A.1) and (A.2) with $2\leqq q$ or Assumptions
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(A.1) and (A.3) be satisfied. Then there exists a family of unitary operat0rs
$\{U(t, s), -\infty<t, s<\infty\}$ with the following properties:

(2.1) $U(t, s)$ is strongly continuous from $R^{1}\times R^{1}$ to $B(\mathcal{H})\cap B(H^{2}(R^{n}))$ ;

(2.2) $U(t, r)U(r, s)=U(t, s)$ , $-\infty<t,$ $s,$ $ r<\infty$ ;

(2.3) $\frac{dU(t,s)f}{di}=-iH(t)U(t, s)f$ and $\frac{dU(t,s)f}{ds}=iU(t, s)H(s)f$ ,

$f\in H^{2}(R^{n})$ ,

where the derivatives in these formulas are taken in the sense of strong deriva-
tives of $\mathcal{H}$-valued functions;

(2.4) $U(t+\omega, s+\omega)=U(t, s)$ , $-\infty<t,$ $ s<\infty$ .
THEOREM 2.1’. Let AssumPtions (A.1) and (A.2) with $n=3$ and $3/2<q<2$

be satisfied. Then there exists a family of unitary operatOrs $\{U(t, s),$ $-\infty<t,$ $s$

$<\infty\}$ with prOpertjes(2.2), (2.4) and

(2.1) $U(t, s)$ is strongl $y$ continuous from $R^{1}\times R^{1}$ to $B(\mathcal{H})$ and is weakly con-
tinuous from $R^{1}\times R^{1}$ to $B(H^{1}(R^{n}))$ ;

(2.3) $\frac{\grave{d}U(t,s)f}{dt}=-iH(t)U(t, s)f$ and $\frac{dU(t,s)f}{ds}=iU(t, s)H(s)f$ ,

$f\in H^{1}(R^{n})$ ,

where the derivatives in these formulas are taken in the sense of strong deriva-
tives of $H^{-1}(R^{n})$-valued functions.

Theorem 2.1 is an immediate consequence of Theorem 1 of Kato [13].

Theorem 2.1’ is Theorem II.27 of Simon [20] (see also Kisy\v{n}ski [15]).

REMARK 2.2. As a consequence of these theorems we have, for any $f$ and
$g\in H^{1}(R^{n})$ ,

(2.5) $(U(t, s)f,$ $g$) $=(e^{-t_{(i- S)H_{0}}}f, g)-i\int_{l}^{t}(v(r, \cdot)U(r, s)f,$ $e^{-t(r- t)H_{0}}g$) $dr$ .

In what follows we write

$U_{1}(t, s)=U(t, s)$ and $U_{0}(t, s)=e^{-i(t- s)H_{0}}$ .
$T$ is the torus $R^{1}/\omega Z$ and $(T, \mathcal{B}(T),$ $dt$) is the measure space naturally induced
on $T$ by the Lebesgue measurable sets and the Lebesgue measure on $R^{1}$ . We
write $X=L^{2}(T, \mathcal{H}, dt)$ and $Jkf_{\gamma}=L^{2}(T, L_{\gamma}^{2}(R^{n}),$ $dt$)

$,$

$\gamma\in R^{1}$ . Sometimes we consider
an element $f$ of $JC$ as $\mathcal{H}$-valued locally square integrable function on $R^{1}$ with
period $\omega$ .
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We define two families of operators $\{\mathcal{V}_{j}(\sigma), \sigma\in R^{1}\},$ $j=0,1$ , on $JC$ as

(2.6) $(\mathcal{V}_{j}(\sigma)f)(t)=U_{j}(t, t-\sigma)f(t-\sigma)$ , $f\in JC$ , $j=0,1$ .
Then $\{\mathcal{V}_{j}(\sigma), -\infty<\sigma<\infty\}$ forms strongly continuous unitary group on $JC$ .
We write the generator of this group as $-iK_{j},$ $j=0,1$ . $K_{j}$ is a selfadjoint
operator in $JC$ . $R_{0}(\zeta)=(K_{0}-\zeta)^{-1}$ and $R_{1}(\zeta)=(K_{1}-\zeta)^{-1}(\zeta\in C^{1}, {\rm Im}\zeta\neq 0)$ denote
the resolvents of $K_{0}$ and $K_{1}$ , respectively. $A$ and $B$ are the operators of mul-
tiplication by $a((t)=a(l, x)=|v(t, x)|^{1/2}$ and $b(t)=b(t, x)=signv(t, x)|v(t, x)|^{1/2}$ in
$JC$ . We put $U_{0}(t, 0)=U_{0}(t)$ .

\S 3. Lemmas.

In this section we collect some lemmas which will be used in the proof of
the theorem.

LEMMA 3.1. Let AssumptiOns (A.1) and (A.2) be satisfied. Then there exist
constants $C>0$ and $\epsilon(0<\epsilon<1)$ such lhat

(3.1) $\Vert AR_{0}(\zeta)Bf\Vert_{J\zeta}\leqq C\{\int_{T}\alpha(t)^{2}dt\}^{1/2}\{\int_{T}\beta(t)^{1+\epsilon^{-1}}dt\}^{\epsilon/(1+\text{\’{e}})}||f\Vert_{JC}$ ,

$f\in D(B),$ ${\rm Im}\zeta\neq 0$, where $\alpha(t)=\max\{\Vert a(t)\Vert_{L^{r}(Rn)} ; r=p, q\}$

and $\beta(t)=\max\{\Vert b(t)\Vert_{L^{r}(Rn)} ; r=p, q\}$ .
Hence $AR_{0}(\zeta)B$ has a bounded closure $Q(\zeta)\equiv[AR_{0}(\zeta)B]$ . Furthermore $Q(\zeta)$ has
the following prOperties:

(a) $Q(\zeta)$ is a $B(JC)$-valued analytic function of $\zeta\in\Pi\pm$ ;
(b) the analytic function $Q(\zeta)$ on $\Pi^{\pm}$ can be extended to $\overline{\Pi^{\pm}}$ as a uniformly

Holder continuous function with exponent $n/2P-1$ ;
(c) $\Vert Q(\zeta)\Vert_{B(j\zeta)}\rightarrow 0$ as $|{\rm Im}\zeta|\rightarrow\infty$ ;
(d) $Q(\zeta)$ is a compact operator in $JC,$ $\zeta\in\overline{\Pi^{\pm}.}$

LEMMA 3.2. Let AssumptiOns (A.1) and (A.3) be satisfied. Then $ Q(\zeta)\equiv$

$AR_{0}(\zeta)B({\rm Im}\zeta\neq 0)$ is a bounded operatOr in Jkr. Furthermore $Q(\zeta)$ has the
following properties:

(a) $Q(\zeta)$ is a $B(JC)$-valued analytic function of $\zeta\in\Pi\pm$ ;
(b) the analytic function $Q(\zeta)$ on $\Pi\pm can$ be extended to $\Pi\pm\cup(R^{1}\backslash (2\pi/\omega)Z)$

as a locally $H\delta lder$ continuous function;
(c) $\Vert Q(\zeta)\Vert_{B(.1C)}\rightarrow 0$ as $|{\rm Im}\zeta|\rightarrow\infty$ ;
(d) $Q(\zeta)$ is a compact operator for every $\zeta\in\Pi\pm\cup(R^{1}\backslash (2\pi/\omega)Z)$ .
LEMMA 3.3. Let AssumptjOns (A.1) and (A.2) or (A.1) and (A.3) be satisfied.

Then for every $\zeta\in C^{1}$ with ${\rm Im}\zeta\neq 0$ ,

(3.2) $R_{1}(\zeta)=R_{0}(\zeta)-[BR_{0}(\overline{\zeta})]^{*}(1+Q(\zeta))^{-1}AR_{0}(\zeta)$ .
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LEMMA 3.4. Let Assumpti0ns (A.1) and (A.2) or Assumpti0ns (A.1) and
(A.3) be satisfied. Then there exist closed null sets $e_{\pm}$ of $R^{1}$ such that for any
$\lambda\in R^{1}\backslash e_{\pm},$

$\lim_{\eta J0}R_{1}(\lambda\pm i\eta)=R_{1}(\lambda\pm i0)$ exist in $B(JC_{\gamma}, JC_{-\gamma})$ , where $\gamma>1$ under Assump-

tions (A.1) and (A.2), and $\gamma>1/2$ under (A.1) and (A.3).

LEMMA 3.5. The strong limits

(3.3) $\mathcal{W}_{\pm}f=s-\lim_{\sigma\rightarrow\pm\infty}e^{i\sigma K_{1}}e^{-t\sigma K_{0}}f$

exist for every $f\in JC$ . Moreover we have

(3.4) $R(\mathcal{W}_{\pm})=JC_{ac}(K_{1})$ ,

where $JC_{ac}(K_{1})$ is the absolutely continuous subspace of ukr with resPect to the
selfadjoint oPerator $K_{1}$ . In Particular, $R(\mathcal{W}_{+})=R(\mathcal{W}_{-})$ .

REMARK 3.6. The proof of Lemma 3.1 will show that under Assumptions
(A.1) and (A.2) operators $AR_{0}(\zeta)A,$ $BR_{0}(\zeta)A$ and $BR_{0}(\zeta)B$ have the same pro-
perties as $AR_{0}(\zeta)B$ stated in Lemma 3.1. Hence the proof of Theorem 5.1 of
Kato [11] shows that the operatorsA and $B$ are $K_{0}$-smooth in the sense of
Kato [11], that is,

(a) $D(A),$ $D(B)\supset D(K_{0})$ ,
(b) there exists a constant $C>0$ such that

$\int_{R^{1}}\Vert AR_{0}(\lambda\pm i\epsilon)f\Vert^{2}j\zeta d\lambda\leqq C\Vert f\Vert_{X}^{2}$ ,

$\int_{R^{1}}\Vert BR_{0}(\lambda\pm i\epsilon)f\Vert_{J\zeta}^{2}d\lambda\leqq C\Vert f\Vert_{JC}^{2}$ , $\epsilon>0,$ $f\in JC$ .

Hence the formulas in Lemma 3.3 have a meaning under our assumptions.
In what follows we shall give the proof of lemmas. If we assume the

validity of Lemmas 3.1 to 3.4, Lemma 3.5 is an immediate consequence of
the abstract stationary theory of scattering (see Kato-Kuroda [14] or Kako-
Yajima [9]). We shall omit the proof of Lemma 3.5. We first Prove Lemma
3.4, admitting the validity of Lemmas 3.1 to 3.3.

PROOF OF LEMMA 3.4. Multiply both sides of (3.2) by $(1+|x|^{2})^{-\delta^{\prime}2}$ from
the left and right ( $\delta>1$ or $\delta>1/2$, according as the first or the second type
of assumptions is assumed). Since the function $(1+|x|^{2})^{-\delta^{\prime}2}$ satisfies the condi-
tions imposed on $A$ in Lemma 3.2 (or 3.3), the statement is an immediate
consequence of Lemma 6.2 of Kuroda [16]. (Q. E. D.)

For the proof of Lemma 3.1 the following lemma of Kato [11] is needed.
LEMMA 3.7 (Kato [11]). Let $f$ and $g\in L^{r}(R^{n}),$ $2\leqq r\leqq\infty,$ $n\geqq 1$ . Let $F$ and

$G$ be the oPerators of multiplicalion by $f$ and $g$ in $\mathcal{H}$ . Then for every $u\in D(G)$

we have
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(3.5) $\Vert Fe^{-itH_{0}}Gu\Vert\leqq(4\pi|t|)^{-n/r}\Vert f\Vert_{L^{r}(Rn)}\Vert g\Vert_{L^{r}(Rn)}\Vert u\Vert$ .
PROOF OF LEMMA 3.1. We shall first prove(3.1) for ${\rm Im}\zeta>0$ . The other

case can be proved similarly. Using Lemma 3.7 and the Laplace transform,
we see after a simple consideration that for any $f\in D(B)$ and for almost every
$t\in[0, \omega]$

(3.6) $(A(K_{0}-\zeta)^{-1}Bf)(t)=i\int_{0}^{\infty}e^{-is\zeta}a(t)U_{0}(s)b(t-s)f(t-s)ds$

$=i\int_{-\infty}^{t}e^{-i_{(}t-s)\zeta}a(i)U_{0}(t-s)b(s)f(s)ds$

$=i\sum_{n=-\infty}^{-2}\int_{m}^{(n+1)\omega}e^{-i_{(}t-s)\zeta}a(t)U_{0}(t-s)b(s)f(s)ds$

$+i\int_{-\omega}^{t}e^{-i(t-s)\zeta}a(t)U_{0}(t-s)b(s)f(s)ds=I_{1}+I_{2}$ .

Using the periodicity of $a(t),$ $b(t)$ and $f(t)$ , we have

$I_{1}(t)=i\sum_{n=-\infty}^{-2}\int_{0}^{\omega}e^{-i(t-s-n\omega)\zeta}a(t)U_{0}(t-s-n\omega)b(s)f(s)ds$ ,

$I_{2}(t)=i\int_{-\omega}^{t}e^{-i(t- s)\zeta}a(t)U_{0}(t-s)b(s)f(s)ds$ , $t\in T$ ,

where we write $f(t)=f(t-[t/\omega]\omega),$ $t\in R^{1}$ . By the use of Lemma 3.7 we have
with some constant $c>0$

(3.7) $\Vert I_{1}(t)\Vert_{3\iota}\leqq c\sum_{n=-\infty}^{-2}\int_{0}^{\omega}e^{{\rm Im}\zeta(t-s-n\omega)}$ min $(\Vert a(t)\Vert_{L^{r}}|t-s-n\omega|^{-n/r}\Vert b(s)\Vert_{L^{r}} ; r=p, q)ds$

$\leqq c\alpha(t)e^{{\rm Im}\zeta(t-\omega)}\int_{0}^{\omega}\sum_{n=-\infty}^{-2}\min(|t-s-n\omega|^{-n/r} ; r=P, q)\beta(s)\Vert f(s)\Vert_{3C}ds$ .

$Since\sum_{n=-\infty}^{-2}\min(|t-s-n\omega|^{-n/r} ; r=P, q)\leqq M$ for any $s,$ $t\in T$ with some constant $M$

independent on $s,$
$t$, we get

(3.8) $\int_{T}\Vert I_{1}(t)\Vert^{2}dt\leqq CM\int_{T}\alpha(t)^{2}e^{2{\rm Im}\zeta(t-\omega)}dt\cdot(\int_{T}\beta(t)\Vert f(t)\Vert_{\mathcal{H}}dt)^{2}$

$\leqq CM\int_{T}\alpha(t)^{2}e^{2{\rm Im}\zeta(t-\omega)}dt\int_{T}\beta(t)^{2}dt\cdot\Vert f\Vert_{j\zeta}^{2}$ .

As for $I_{2}(t)$ we proceed as follows. Since $\gamma(s)\equiv\min(s^{-n/r} ; r=p, q)\in L^{1+\epsilon}((0, \infty)\rangle$

for some positive constant $0<\epsilon<1$ we have by Young’s inequality and H\"older’s

inequality,
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(3.9) $\int_{T}\Vert I_{2}(t)||_{f\zeta}^{2}dt\leqq c\int_{T}\alpha(t)^{2}dt\int_{T}dt\{\int_{-\omega}^{t}e^{{\rm Im}\zeta(t- s)}\gamma(t-s)\beta(s)\Vert f(s)\Vert ds\}^{2}$

$\leqq 2c\int_{T}\alpha(t)^{2}dt\cdot\{\int_{0}^{\infty}(e^{{\rm Im}\zeta\cdot s}\gamma(s))^{1+\epsilon}ds\}^{\frac{2}{1+6}}$

$\times\{\int_{T}(\beta(s)\Vert f(s)\Vert)^{\frac{2+2\epsilon}{1+3\epsilon}}ds\}^{\frac{1+3\epsilon}{2+2\epsilon}\cdot 2}$

$\leqq 2c\int_{T}\alpha(t)^{2}dt\cdot\{\int_{0}^{\infty}e^{(1+\epsilon){\rm Im}\zeta\cdot s}\gamma(s)^{1+\epsilon}ds\}^{\frac{2}{1+\epsilon}}$

$\times\{\int_{T}\beta(s)^{\frac{1+\epsilon}{\epsilon}}ds\}^{\frac{2\epsilon}{1+\epsilon}}\{\int_{T}\Vert f(s)\Vert^{2}ds\}$ .

Combining (3.8) and (3.9) we obtain the desired resuIt. Statement (a) is obvious.
Statement (b) can be proved easily by the use of the inequality

$|e^{is\zeta}-e^{it\zeta}|\leqq\min(2, |t-s|)$

and similar calculations used in the proof of (3.1). Statement (c) is proved
by (3.8), (3.9) and the use of dominated convergence theorem. Finally we
prove statement (d). Let $a_{k}(t)\in C(T, C_{0}^{\infty}(R^{n}))(k=1, 2, )$ converges to $a(t)$

in $L^{2}(T, L^{p}(R^{n})\cap L^{q}(R^{n}))$ and $b_{k}(t)\in C(T;C_{0}^{\infty}(R^{n}))$ converges to $b(t)$ in
$L^{1+\div}(T, L^{p}(R^{n})\cap L^{q}(R^{n}))$ where the constant $\epsilon$ is the same constant as
appeared in (3.9) (we have chosen $0<\epsilon<1$). Let $\delta_{k}>0$ converges to $0$ . Then
similar calculations used for proving (3.9) and (3.8) show that the operator $G_{k}$

defined by

$(G_{k}f)(t)=i\int_{\delta_{k}}^{\infty}e^{-is\zeta}a_{k}(t)U_{0}(s)b_{k}(t-s)f(t-s)ds$ , $ f\in<\chi$

converges to the operator $Q(\zeta)$ in operator norm topology of $B(JC)$ . Therefore
it is sufficient to prove that $G_{k}$ is a compact operator in $\chi$ . To prove this
we note that the operator $G_{k}$ is Hilbert-Schmidt type with Hilbert-Schmidt
norm

$\int_{0}^{\omega}dt\int_{0}^{\omega}ds\int_{R^{n}}dx\int_{R^{n}}dy$

$\times|a_{k}(t, x)(\sum_{n=-\infty}^{0}\frac{\exp(-\frac{i|x-y|^{2}}{(2|i-s-n\omega|)^{n^{\prime}2}})}{(2|t-s-n\omega|)^{n/2}}\chi_{k}(t-s-n\omega))b_{k}(s, y)|^{2}$

which is dominated by constant times
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$\int_{T}dt\int_{T}ds\int_{R^{n}}dx\int_{R^{n}}dy|a_{k}(t, x)b_{k}(s, y)|^{2}<\infty$ .

Here $\chi_{k}(s)$ is the characteristic function of the interval $[\delta_{k}, \infty$ ). This concludes
the proof of the lemma. (Q. E. D.)

PROOF OF LEMMA 3.2. If $\delta>1$ , the lemma is a simple consequence of
Lemma 3.1. Hence we assume in what follows that $1/2<\delta\leqq 1$ . Since statements
(a) and (c) are obvious, we shall prove statements (b) and (d). Let $d(x)=$

$(1+|x|)^{-\delta/2}$ and let $D$ be the operator of multiplication by $d(x)$ in $JC$ . Since
$AD^{-1}$ and $D^{-1}B$ are bounded operators in $JC$ it is sufficient to prove that the
operator $P(\zeta)\equiv DR_{0}(\zeta)D$ is a compact operator in X for ${\rm Im}\zeta\neq 0$ and that

$B(JC)$-valued function $P(\zeta)$ of $\zeta$ can be extended to $\Pi^{\pm}\cup(R^{1}\backslash \frac{2\pi}{\omega}Z)$ as a locally

H\"older continuous function. By the Fourier transform $\mathcal{F}_{t\rightarrow n}$ we have

(3.10) $(\mathcal{F}{}_{t\rightarrow n}P(\zeta)f)(n)=dr_{0}(\zeta+2n\pi/\omega)d(\mathcal{F}_{t\rightarrow n}f)(n)$ , $n\in Z$ ,

where $d$ is the operator of multiplication by $d(x)$ in $\mathcal{H}$ and $r_{0}(\zeta)=(H_{0}-\zeta)^{-1}$ .
Here we note the following fact. Let $\epsilon$ be a positive constant and

let $\varphi(x)$ be an infinitely differentiable function such that supp $\varphi\subset[\epsilon, \infty]$ and
$\varphi(x)=1,$ $ x>2\epsilon$ . Denote by $\Phi$ the operator of multiplication by $\varphi$ . Define the
operator $U$ as $(Uf)(r, )=r^{(n-2)^{\prime}4}f(\sqrt{r}\cdot),$ $f(r\omega)=f(x),$ $ x=r\omega$ . Then $U$ is a
unitary operator from $L^{2}(R^{n})$ to $L^{2}(R^{+}, L^{2}(S^{n-1}),$ $dr$) and transform the operator
$H_{0}$ to the operator of multiplication by $r$ . Furthermore $ U\Phi$ maps $H^{\delta}(R^{n})$ to
$H_{0}^{\delta}(R^{+}, L^{2}(S^{n-1}),$ $dr$) boundedly, where $H_{0}^{\delta}(R^{+}, L^{2}(S^{n-1}),$ $dr$) is the usual Sobolev
space with the boundary condition $f(O)=0$ . As is well known elements of
$H_{0}^{\delta}(R^{+}, L^{2}(S^{n-1}),$ $dr$) are $L^{2}(S^{n-1})$-valued uniformly H\"older continuous functions.

Using the above fact, we can easily see, by a routine method of scattering
theory that for any $\epsilon>0,$ $dr_{0}(\zeta)d$ is a $B(\mathcal{H})$-valued uniformly H61der continuous
function of $\zeta$ on $\Pi\pm\cup(R^{1}\backslash (-\epsilon, \epsilon))$ . Hence statement (b) is obvious from (3.10).

Compactness of $P(\zeta)$ is an immediate consequence of (3.10) and the following
facts: (1) $dr_{0}(\zeta)d$ is a compact operator in $\mathcal{H}$ : (2) for any fixed $\zeta\in\Pi^{\pm}\cup(R^{1}\backslash $

$(2\pi/\omega)Z),$ $\Vert dr_{0}(\zeta+(2\pi/\omega)n)d\Vert_{B(\mathcal{H})}\rightarrow 0$ as $ n\rightarrow\pm\infty$ . (Q. E. D.)

PROOF OF LEMMA 3.3. Let $f(t)$ and $g(t)$ be $H^{1}(R^{n})$-valued continuous func-
tions on $T$. Then by Theorem 2.1 and Theorem 2.1’ we have

$(U_{1}(t, s)f(r),$ $g(r))=(U_{0}(t, s)f(r),$ $g(r))$

$-\int_{l}^{t}(a(\tau)U_{1}(\tau, s)f(r),$ $ b(\tau)U_{0}(\tau, t)g(r))d\tau$ .

Hence we have

(3.11) $((e^{isK_{1}}f)(t), g(t))_{\mathcal{H}}=(U_{1}(t, t-s)f(t-s),$ $g(t))_{\mathcal{H}}$
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$=(U_{0}(t, t-s)f(t-s),$ $g(t))_{\mathcal{H}}$

$-\int_{o}^{s}(a(r+(t-s))U_{1}(r+(t-s), t-s)f(t-s)$ ,

$b(r+(t-s))U_{0}(r+(t-s), t)g(t))_{\mathcal{H}}dr$

$=((e^{isK_{0}}f)(t), g(t))_{\mathcal{H}}$

$-\int_{0}^{s}((Ae^{irK_{1}}f)(r+(t-s)), (Be^{i(r-S)K_{0}}g)(r+(t-s))_{\mathcal{H}}dr$ .

Hence, integrating (3.11) with respect to $t$ on $T$, we get

(3.12) $(e^{isK_{1}}f, g)_{J^{\prime}}.=(e^{iSK_{0}}f, g)_{x}-\int_{0}^{s}(Ae^{irK_{1}}f, Be^{i(r-s)K_{0}}g)_{1C}dr$ .

Since $e^{isK_{0}}$ is a strongly continuous ( $e^{isK_{1}}$ is a weakly continuous) group on
$\mathcal{L}=L^{2}(T, H^{f}(R^{n}),$ $dt$), there exist constants $\eta>0$ and $C>0$ such that $\Vert Ae^{tsK_{1}}\Vert\leqq$

$Ce^{\eta|S|},$ $\Vert Be^{tsK_{0}}\Vert\leqq Ce^{\eta|s|}(s\in R^{1})$ . Let $|{\rm Im}\zeta|>\eta$ . Then by the use of the Laplace
transform and Fubini’s theorem it follows easily from (3.12) that

$(R_{1}(\zeta)f, g)_{x}=(R_{0}(\zeta)f, g)_{x}-(AR_{1}(\zeta)f, BR_{0}(\overline{\zeta})g)_{X}$ , $|{\rm Im}\zeta|>\eta$ .
Since the set of all $H^{1}(R^{n})$ -valued continuous functions is dense in $fC$ we get
for $|{\rm Im}\zeta|>\eta$

(3.13) $R_{1}(\zeta)f=R_{0}(\zeta)f-[BR_{0}(\overline{\zeta})]^{*}AR_{1}(\zeta)f$ , $f\in C(T, H^{1}(R^{n}))$ .
Multiplying both sides of (3.13) by $A$ and noting $\Vert Q(\zeta)\Vert\rightarrow 0$ as $|{\rm Im}\zeta|\rightarrow 0$, we
have $AR_{1}(\zeta)f=(1+Q(\zeta))^{-1}AR_{0}(\zeta)f$ for sufficiently large $|{\rm Im}\zeta|$ . Replacing
$AR_{\lfloor}(\zeta)f$ in the right hand side of (3.13) by this expression we get for suffi-
ciently large $|{\rm Im}\zeta|$

(3.14) $R_{1}(\zeta)f=R_{0}(\zeta)f-[BR_{0}(\overline{\zeta})]^{*}(1+Q(\zeta))^{-1}AR_{0}(\zeta)f$ .
In (3.14) the left hand side is a $cX$-valued analytic function of $\zeta\in\Pi\pm and$ the
right hand \S ide is a $JC$-valued meromorphic function. Therefore we see that
the equation (3.14) holds for any $\zeta$ with ${\rm Im}\zeta\neq 0$ . Since the operators appear-
ing on each side of (3.14) are bounded in $JC$ we get the desired result.

(Q. E. D.)

\S 4. Proof of Theorem 1.1.

We first remark that under our assumptions wave operators $W_{\pm}(s)$ exist
and $\wp_{\pm}$ are the operators of multiplication by $W_{\pm}(t)$ . If Assumptions (A.1)
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and (A.2) with $q\geqq 2$ or Assumptions (A.1) and (A.3) are satisfied, Theorem 5.1
in appendix is applicable. If Assumption (A.1) and (A.2) with $q<2$ be satisfied,
the existence and the properties given in Theorem 5.1 are consequences of
Lemma 3.3 of this paper and Corollary 1 of Theorem 4 and Theorem 6 of
Howland [7]. Therefore it is sufficient to prove the last statement of the
theorem. To prove the statement we proceed as follows. By Lemma 3.5 we
have $R(\mathcal{W}_{\pm})=JC_{ac}(K_{1})=JC_{ac}(e^{\ell\omega K_{1}})$ . On the other hand we get by the definition
of $e^{i\omega K_{1}}$ and property (2.4) that

(3.15) $(e^{i\omega K_{1}}f)(t)=U_{1}(t, t-\omega)f(t-\omega)=U_{1}(t+\omega, t)f(t)$

$=U_{1}(t, 0)U_{1}(\omega, 0)U_{1}(0, t)f(t)$ .
Writing the unitary operator of multiplication by $U_{1}(t, 0)$ (or $U_{1}(\omega,$ $0)$ ) as $\mathcal{U}_{1}$

(or $\mathcal{U}_{\omega}$), we have by (3.15)

(3.16) $e^{i\omega_{K_{1}}}=\mathcal{U}_{1}\mathcal{U}_{\omega}\mathcal{U}_{1}^{-1}$ .

Hence we can easily see that

(3.17) $d_{ac}(K_{1})=JC_{ac}(e^{i\omega K_{1}})=\mathcal{U}_{1}JC_{ac}(\mathcal{U}_{\omega})=\mathcal{U}_{1}L^{2}(T, \mathcal{H}_{ac}(U_{1}(\omega, 0)), dt)$ .

On the other hand, since $\mathcal{V}_{0}^{-1}$ is unitary we have

(3.18) $R(\mathcal{W}_{\underline{\neq}})=R(\mathcal{U}_{1}\mathcal{W}_{\pm,0}\mathcal{V}_{0}^{-1})=\mathcal{U}_{1}R(\mathcal{W}_{\pm,0})=\mathcal{U}_{1}L^{2}(T, R(W_{\pm}(O)),$ $dt$)

where $\mathcal{W}_{\pm,0}$ is the operator of multiplication by $W_{\pm}(O)$ . Comparing (3.17) and
(3.18), we get

(3.19) $R(W_{\pm}(O))=\mathcal{H}_{ac}(U_{1}(\omega, 0))$ .

Therefore by (3.19), Theorem 5.1 (b) and the unitarity of $U_{0}(s, t)$ we get

(3.23) $R(W_{\pm}(s))=R(U_{1}(s, 0)W_{\pm}(0)U_{0}(0, s))=U_{1}(s, O)R(W_{\pm}(O))$

$=U_{1}(s, 0)\mathcal{H}_{ac}(U_{1}(\omega, 0))=U_{1}(s+\omega, \omega)\mathcal{H}_{ac}(U_{1}(\omega, 0))$

$=\mathcal{H}_{ac}(U_{1}(s+\omega, \omega)U_{1}(\omega, 0)U_{1}(\omega, s+\omega))$

$=\mathcal{H}_{ac}(U_{1}(s+\omega, s))$ .

This concludes the proof of Theorem 1.1. (Q. E. D.)

\S 5. Appendix.

In this section we shall give a sufficient condition for the existence of
wave operators for Schr\"odinger operator with time dependent potentials. The
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theorem obtained in this section includes the result of Hack [6] for time-
independent potentials and the result of Morita (announced at the meeting of
Mathematical Society of Japan, April 1974) for a ” spreading-out ” potential,

$i$ . $e$ . for the potential of type $v(t, x)=\frac{1}{t^{\alpha}}q(t^{\beta}x),$
$\alpha,$ $\beta\in R$ . For proving the

theorem we shall use partial integration and the method of stationary phase
which was used by Buslaev-Matveev [2] to prove the existence of wave
operators for time independent long range potentials. We shall record in the
theorem an immediate consequence which is usually named as intertwining
property of the wave operators.

THEOREM 5.1. Let $v_{1}(t, x)$ and $v_{2}(t, x)$ be real valued funclions defined on
$R^{1}\times R^{n}$ such that:
(a.1) $v_{1}(t, x)$ is an $L^{\infty}(R_{x}^{n})$-valued function of $t\in R^{1}$ and there exists an integer
$k$ such that

$(1+|t|)^{-k}\Vert v_{1}(t, )\Vert_{L^{\infty}(R_{x}^{n})}\in L^{\infty}(R_{t}^{1})$ ;

(a.2) $v_{2}(t, x)$ is $L^{2}(R_{x}^{n})$-valued function of $t\in R^{1}$ and there exists an integer $k$

such that $(1+|t|)^{-k}\Vert v_{2}(t, )\Vert_{L^{2}()}c\backslash xn\in L^{\infty}(R_{t}^{1})$ .
SuPpose $v(t, x)=v_{1}(t, x)+v_{2}(t, x)$ has the following Properties;
(a.3) the operatOr valued function $V(t)$ defined by the multiplication by $v(t, x)$

is a $B(H^{2}(R^{n}), \mathcal{H})$-valued absolutely continuous function;
(a.4) for any constants $a$ and $b$ such that $ 0<a<b<\infty$

$\int_{-\infty}^{\infty}\{\int_{a<|y|<b}|v(t, ty)|^{2}dy\}^{1/2}dt<\infty$ .

Then the family of anti-selfadjoint operatOrs $\{-iH(t)=-i(H_{0}+V(t))\}$ generates
a unitary evolution group $\{U(t, s)\}$ and the strong limits

$s-\lim_{t\rightarrow\pm\infty}U(t, s)^{-1}e^{-i(t-s)H_{0}}f=W_{\pm}(s)f$

exist for every $f\in \mathcal{H}$ . Furthermore wave oPerators $W_{\pm}(s)$ have the following
properties:

1) $W_{\pm}(s)$ are isometric operators in $\mathcal{H}$ ;
2) (intertwining Property)

$U(t, s)W_{\pm}(s)=W_{\pm}(t)e^{-\iota_{(t- s)H_{0}}}$ .

PROOF. We shall prove the existence of the strong limit only for $W_{+}(0)$ .
Other cases can be proved similarly. Put $\Omega(t)=U(O, t)e^{-itH_{0}}$ . Since $\Omega(t)$ is
uniformly bounded, it is sufficient to prove the existence of the limit of $\Omega(t)f$

for every element $f$ of some dense subset of $\mathcal{H}$ . We choose this dense subset
as $\mathcal{F}_{x\rightarrow\xi}^{-1}C_{0}^{\infty}(R^{n}-\{0\})$ . By the well known method of Cook [3] it is sufficient
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to prove that for any $f$ in this set there exists $\sigma>0$ such that

$\Vert V(t)e^{-itH_{0}}f\Vert_{\mathcal{H}}\in L^{1}((\sigma, \infty))$ .
First of all we shall investigate the asymptotic behavior of $(e^{-itH_{0}}f)(x)$ as $ t\rightarrow$

$\infty$ . Let the support of $(\mathcal{F}_{x\rightarrow p}f)(p)=f(p)$ be contained in

$\{p\in R^{n} ; 0<\alpha<|p|<\beta<\infty\}$ .
Let $0<\epsilon<\alpha/2$ . We first estimate the integral

(5.1) $(e^{-itH_{0}}f)(x)=-\sqrt{2\pi}^{\overline{n}}1\int_{R}ne^{-ix\cdot p-it|p|^{2}/2}f(p)dp$

in the region $|x/t|<\epsilon$ . In this region the phase function $-ix\cdot p+it|P|^{2}/2$ is
not stationary with respect to $p$ on the support of $\hat{f}$. Hence the partial in-
tegration shows that for any positive integer $j$ there exists a constant $C_{j}$

depending only on $j$ and $f$ such that

(5.2) $|(e^{-itH_{0}}f)(x)|\leqq C_{j}t^{-j}$ , $|x/t|<\epsilon$ .
Next we estimate the integral of (5.1) in the region $|x/t|>\epsilon$ . Put $x=ty$ and
$x/|x|=y/|y|=\omega\in S^{n-1}=the$ unit sphere in $R^{n}$ . Making the change of variables
$ p=|y|\xi$, we have

$(e^{itH_{0}}f)(ty)=-\sqrt{2\pi}^{\overline{n}}1|y|^{n}e^{it|y|^{2}/2}\int_{R^{n}}e^{-it|y|^{2}(\xi+\triangleleft\prime)^{2}/2}f(|y|\xi)d\xi$ .

Let $\eta(\xi)$ be a $C_{0}^{\infty}(R^{n}\backslash \{0\})$-function such that $\eta(\xi)=1$ on some small neighbour-
hood of $S^{n-1},\tilde{\eta}(\xi)=1-\eta(\xi)$ . We put

$ I_{1}(t, ty)=_{\overline{\sqrt{2\pi}}^{\overline{n}}}^{1}|y|^{n}e^{it|y|^{2}/2}\int_{A^{n}}e^{-it|y|^{2}(\xi+\omega)^{2}/2}\eta(\xi)f(|y|\xi)d\xi$

and

$ I_{2}(t, ty)=\frac{1}{\sqrt{2\pi}^{n}}|y|^{n}e^{it|y|^{2}/2}\int_{R^{n}}e^{-itly|^{2}(\xi+\omega)^{2}/2}\eta(\xi)f(|y|\xi)d\xi$ .

Then we get by the partial integration that for any positive integer $j$ there
exists a constant $C_{j}$ dependent only on $j$ and $f$ such that

(5.3) $|I_{1}(t, ty)|\leqq C_{j}t^{-j}|y|^{n-j}$ , $|y|>\epsilon$ .
Next we estimate $I_{2}$ . Using the polar coordinate in $\xi$-space we have

$I_{2}(t, ty)=\frac{1}{\sqrt{2\pi}^{n}}|y|^{n}e^{t\iota wI^{2}/2}\int_{0}^{\infty}e^{-it|y|^{2}r^{2}/2}r^{n-1}\{\int_{s^{n-1}}\eta(r\omega^{\prime}+\omega)f(|y|r\omega^{\prime}+y)d\omega^{\prime}\}dr$ .
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$I_{2}(t, ty)$ vanishes for $y$ in the exterior of some t-independent compact subset
$K$ of $R^{n}$ hence by the use of the stationary phase method we get after a
simple calculation that

1(5.4) $I_{2}(t, ty)=-\sqrt{2\pi}^{\overline{n}}(t/2)^{-n/2}e^{it|y\}^{2}/2}f(y)+O(t^{-(n+1)/2})$ , $ t\rightarrow\infty$ ,

where $O$ is taken uniformly with respect to $y\in K$. By (5.1) to (5.3) and the
conditions of the theorem we see that there exists $\sigma>0$ such that

$\Vert v(t, x)e^{-itH_{0}}f(x)\Vert_{L^{2}(1d<t\text{\’{e}})}\in L^{1}((\sigma, \infty))$

and
$\Vert v(t, x)I_{1}(t, x)\Vert_{L^{2}(|x|>i\epsilon})\in L^{1}((\sigma, \infty))$ .

By (5.4) we have

$\int_{|x|>\text{\’{e}} t}|v(t, x)I_{2}(i, x)|^{2}dx=t^{n}\int_{K}|v(t, ty)I_{2}(t, ty)|^{2}dy\leqq C\int_{K}|v(t, ty)|^{2}dy$ ,

where $C$ is a constant independent of $t$ . Hence we obtain the desired result.
Other statements can be proved by a routine method which has been used
for the time independent perturbations. (Q. E. D.)
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