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——an example of moving boundary—

By Atsushi INOUE

(Received Aug. 27, 1976)

§1. Introduction.

Let 2 be a domain in R™ with smooth compact” boundary 0. That is, 2
is the interior or exterior domain of 0.

Consider the following Initial-Boundary-Value Problem (in short, I. B. V.P.
or mixed problem).

Oulx, H)=f(x, 1) in Q=0x(, T),
(1 1) u(x) O>:u0(x) b
ou .
5 @& O=u(x),
u(x, H»=0 on ZD:O<\£J§T6DQ(1‘)><{L‘} and
(1.2)
0u_ (% =0 on Sy= U ay2)x {8
8» 0=t=sT
0* no 0° . .
where O=——— 2 , v: the unit exterior normal of 02 and 0,£2(¢) and

o =1 0x3
oy 82(t) are open sets in 92 for each t=[0, T] which change with ¢ and satisfy

0pR2H) NN 2(1)=0, 0p2(1)\J oy 2(t)=0p2(t)\J oy Q2(t) =08, I'(t)=0p2() Naxy2():
(n—2) dimensional smooth manifold in R*. We write on}t,iTF(t)x {t}.

For the future use, we rewrite the boundary condition in the follow-
ing form.

1.2y Y(Z, z‘)%(%, H+A—Y(E&, HuX, )=0 on 2=002x[0, T],

1) This is assumed only for the sake of simplicity. If 82 is not compact, we
must add some uniformity assumption at oo in the following argument.
2) We represent the generic points in Q and a2 by x and %, respectively.
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where Y (%, t)=1 on Xy and =0 on Y.

The purpose of this paper is to investigate the following problems :

(I) Under what condition on I’, we can construct a ‘weak’ solution of
(1.1) with [1.2)?

(I) Does the solution has the ‘dependence domain’ or not?

(III) Does the regularity theorem proved in Hayashida [4], more explicitly
in Ibuki [5], hold in this case or not? ‘

We give affirmative answers to the problems (I) and (II), assuming that [’
is time-like.

- REMARK 1.1. The precise definition of time-like will be given in §2.
Roughly speaking, it means that [I'(¢) changes slowlier than the propagation
speed of the wave motion governed by .

Before stating our result, we give the following definition.
DEFINITION 1.2. A function u(x, t) is called a weak solution of the problem
(1.1) with (1.2) if it satisfies the followings.

‘Zf (x, = L0, T: LAQ)) and

J u(x, HeL=0, T: H(2))®,
(1.3)

{ u(+, HE V() for a.e.t.

0 0 j=1

ay (2 —%’Z~)dt+ST§(g;‘j, 88;7] Jat=Gu, 1, )+ {7,

holds for all test function n(x, H= L0, T: H'(Q)) such that

O, e L0, T LHQ), 7, T=0  and
1.5) 4 t
Lop(-, DEV()  for a.e.t

u(x, O):uo(x) ’
1.6
(1.6) ,,%1:7 (x, O)=u,(x).

Here, (, ) stands for the scalar product in L%*(Q) and for each ¢, we set
(1.7) Vot)={ve H(2); vlspec,=0}.

Then, we have

THEOREM A. Let I' be time-like. For any data {u,, u,, [} € V,(0)X LA(02)X
L¥Q), there exists a weak solution u(x, 1) of (1.1) with (1.2). Moreover, there
exists a constant C depending only on T and I' such that

3) H'(Q) stands for the usual Sobolev spacc of order /, with norm denoted by
N+0;- We write ||.|| instead of ||-||,. For any Banach space X, the space L?(0, T: X)
(1=p=<co) are defined as the space of X-valued p-summable function on (0, T). See
Lions-Magenes [9].



Mixed problem for O 635

18) |24 |+ = C e+ ol {17 s
Jor a.e. t€(0, T).

THEOREM B. Let I' be time-like. Then, the weak solution of (1.1) and (1.2)
1S unique.

THEOREM C. Let I’ be time-like. The weak solution of (1.1) with (1.2) has
the same ‘dependence domain’ as that of the free wave motion in the following
sense. For any point (x° t°)=Q, we consider the light cone C(x°, t9=1{(x, 1)
eR™ 1 | x—x°| <=1, t>0}. If the initial data {u,, u,} wvanish on C(x° )N
(2% {0}) and the exterior force [ vanishes on C(x°, t)N\Q, then we have

(1.9) SQSX(X, Hu(x, Helx, t)dxdi=0 for any ¢=C=(Q)

where Xx, )=1 on C(x*, t)YNQ and =0 otherwise.

In [2], Cooper and Bardos consider the same problem with some non-linear
term. They impose to I’ some complicated conditions which imply that I’ is
‘time-like’. But it seems to the author that their conditions are very difficult
to check whether the given I’ satisfies them or not. In this sense, this paper
is the completion of the linear problem treated in [2].

On the other hand, there exists an interesting paper of Cehlov [1], where
the following problem is considered :

{—(D,+1a)*+(AD,, D)}ulx, )=0 for x>0, >0
u(x, 0)=D,u(x, 0)=0 x>0
(1.10) w(x, 1) zy20=h"(x’, 1) x:>kt, t>0

D, Do D, 0, =K, ) x <kt
Xy

where Dj:%r»ai—j, D¢:%~§T, x'=(xy -+, x,) and
1 0

A= Qg A”=(a;;) symmetric positive definite matrix. He considers the
0 A”

above problem when (i) |%2|<+/as and (ii) |k|>+/d,;. The case (i) is time-
like in our sense, so the case (i) is the very special case of ours. Using the
Laplace and Fourier transformations, he proves the precise results concerning
the regularity.

Lastly, we may believe that the method developed in this paper will be
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useful to solve the problem posed by Duvaut-Lions [3] p. 106: They consider
the following linear equation, which governs the deformed state of elastic body,
with the discontinuous boundary condition. ’

Fu o 0 o Lodn om0 o
at2 ’__j,gh ax]' {aijkh<x) 2< axh i axk )} i ]‘L’ m QXKO. T/
(111) ui:U,; on FU
1/ 0uy | Qup \ o
j'§hai]'kh<x>vj§< axh _l_ an )—‘—Fz on FF

where £ is the shape of the elastic body at equilibrium, the vector {u;(x, )}
presents the displacement from equilibrium position, v={y;} is the outerward
unit normal vector on 0%, and I’y and ['; are disjoint open subsets of 9%
satisfying 0Q=I,\II p="y Iy and I'y~\I'p=0. The coefficients a;;.,(x) are
assumed to be C=-functions satisfying the following symmetry and definiteness
conditions

Qijpn(X) =g ni(0 =154 (x)
a“khfijfkhZalEi,f” for any EUER, aq e pOSitiVe constant .

They treated this problem assuming that /'y and [’y are independent of 1.
And they propose that ‘L’abandon de cette hypothése semble conduire a des
problémes ouvert et fort intéressants.’
We announced Theorem A above in [8] whose proof will be given in §4.
We owe much to Professors D. Fujiwara and M. Wakimoto whose contri-
butions to the proof of are very essential to this paper.

§2. The transformation of class (E).

For the sake of self-containedness of this paper, we begin with citing the
definitions in [7].

DEFINITION 2.1. Let I' be a submanifold of codimension 1 of the lateral
boundary Y=002X[0, T] such that I'()=I"~P(f) is a submanifold of codimen-
sion 1 of the boundary 0 and ['({) are diffeomorphic to each other where
P)={(x, he R™; t=1°}. We say that [ is time-like if it satisfies the follow-
ing: For any #°<[0, T], there exists a positive number e, depending on #°
such that
(2.1) N I'c)c. U {(x,heR™; [x—X2|=|c—t"|} Y,

20 (¢0)

1tY-rlse
t0-7| ¢

for any ¢, 0=e<e,, where we put I'(t)=1"(0) for t<0, I'(t)=I"(T) for t>T.
To reformulate the condition (2.1), we remember the following: Let (3%
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be the unit exterior normal of 02 at #°=0Q. As I'(¢) is of codimension 2 in
R", there exists another unit vector m(%°, {°) orthogonal to »(%°) such that the
space spanned by »(%°) and m(X° ) forms the normal bundle of I'(t*) at %°
Then we have the following.

REMARK 2.2. Let us consider the trajectory of the ‘point’ of the intersec-
tion of I'(f) with the normal bundle of I'(¢") at ¥°. Then the condition
implies the condition (2.2) below.

(2.2) The speed of the trajectory at t=1¢" is smaller than 1 for each X°</"(z°).

Moreover, as 0f2 is compact, (2.2) implies (2.1},

By the translation, we may suppose that (0,0) represents the general point
in I'. Rotating the x-coordinates, if necessary, we may suppose that 002 is
represented locally by x,=f(x'), satisfying 0=/(0) and f,,(0)=0 j=1,2,---,n—1
and [’ is represented locally by x,_,=g(x”, t) satisfying 0=g(0,0) and g,,0,0)
=0 j=1,2,---,n—2 where x'=(xy, Xa, """, Xn_1), X" =(x1, X5, "+, Xn_2).

Then we have

ProposITION 2.3 [7]. If (0,0) belongs to I' and 02 and I'(0) are represented
locally as above, then the condition (2.1) tmplies that |g,(0,0)| <1.

Let us consider a level preserving transformation @ in R"*!, (y, s)=0(x, t).
More precisely, @ is given by y,=¢,(x, 1), j=1,2,---,n and s=t. By this trans-
formation, O is transformed to the operator L:

(2.3) L=L(y,s: Dy, Dy)

0 , 0¢; 0° 0p; 09,
82+ JZZI at 3 a% i-j= 1(E axk axk

0p: 09, B ¥azﬁ & 32¢L_ @ 82¢L__0~_
ot ot )aylay] ‘I—] 1( ot? kE:l axkz)

DEFINITION 2.4. We say that a transformation @ belongs to the class (E)
i 0¢; 0¢; 09, 6¢j>
0x, 0xy ot ot
is positive definite for (x, )edom @ (=domain of @). We denote it simply by

Q= (E).
It is clear that the matrix Eg4 is represented by

if the matrix E; whose (i, ) element is defined by

(2.4) Es="'54]Ss
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n n+1
00: . 00 —1
ot ot 1 0
06y 08a
where Se=| 0x, 0x; n+1 n+1
: : 0
09y . 00 :
0xn 0Xn 1

Now, we define a family of functions «a.(%, {) on 2% which approximate
suitably the characteristic function Y (&, ) of 2.

We denote a neighborhood of I" in R**' by N, such that N, \P(f) forms a
tubular neighborhood of I'(t) in R™. Here, we project the set N, \P(f) in R*™!
to R™ and identify it with the original one. We use this identification freely
if there will occur no confusion. Moreover, we suppose that N, is taken suffi-
ciently small such that for any point (2°, 1) N,\P(t,)"\2, there exists a unique
geodesic curve from (%9, #°) to I'(¢,) in 0f2. We define
@ (0, e Sw p(Mb_)ds

)

(2.5)

where po(s) is a function satisfying p(s)=p(—s)e C7(R), S_w p(s)ds=1, p(s)=0
and the support of p=[—1,1] and d(%° #°) is defined by
+geodesical distance from (%°, #°) to ['(z°)

{ if (&, e,
(2.6) 4@, 1°)=

—geodesical distance from (°, %) to I'(¢%)

if (&, 1ely.

We extend the function d(x° ¢°) to 1 or to 0 conveniently outside the neigh-
borhood N,.

Then, clearly we have

PROPOSITION 2.5. The function defined above satisfies the following:

(@) a. & HeC>) and I'. (=the boundary of D.) forms a submanifold of
codimension 1 in Y where D.={&, Nl ; a.% )=0}° A° stands for the interior
of a set A.

(b) The distance from I'. to I' is of order ¢ when & tends to 0.

© a.(%, t):% if & pel.

The following theorem is important in this paper.
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THEOREM 2.6. Suppose that I' is time-like. Then, for each (2, ), there
exists a neighborhood Vo, 0, and a transformation @ o, 0, (E) which transforms
Vo, to a neighborhood V of (0, 0) such that (1) Do, .00(Vge oo N2)=
Vri, 05 y=00 50 -, 32), y2>0}, (i) D o0, (Vzo,0,n0D=V n{(», 1) ; y.=0},
(i) DGo, 0, (VGo, oo NTUN=V {3, 8); yo=yn1=0}, (iv) the Jacobian of the
inverse transformation @gow is bounded on V and (v) the function

a(9, )= a.(Dgow(F,s)

is independent of s for (7,5)€ @G0, 10,(VGo, 0o\

REMARK 2.7. The above theorem was announced in [7] as Proposition 2.7
with a sketchy proof. But the proof there was not correct. In the following,
using the geodesic coordinate, we give the correct proof which is heavily due
to D. Fujiwara and M. Wakimoto.

PROOF OF THEOREM 2.6. As mentioned before, we may suppose, without
loss of generality, (£°, 1°)=(0,0) and 0 near 0 is represented locally by x,=7(x")
satisfying f(0)=0, /,,0)=0 for 1=j=n—1 and I’ near (0, 0) is represented locally
by x,=f(x) and x,_,=g(x”) satisfying g(0,0)=0, g.,(0,0)=0 for 1=;=n—2 and
12.(0,0)| <1.

Xn

Xx=(xy, Xy o0, Xa)

Q
L’

X
X
|
I
)
1
i
:
\>:< An-t
P
P (xy, xa o0y xpoy, X))

o0 Q1 (ilx, ), ++, Gaslx, 1), *, *)
xr '@t o)

Figure 1

For the point (x, H)= V.o, we define the following coordinate system which
gives the desired transformation @ at (0, 0).

yi=¢{x,t) for 1=5=n—-2,
{ Y =d(P, T (D)=, .(x, 1),

Ya=Xa—J(x)=¢a(x, 1),

s=t,

where P is the point on 02 represented by (xi, Xz, -+, X»-1, /(x7)), Q is the point

on I'(f) which gives the geodesical distance from P to I'(¢) and {d,(x, D)} 15jsn-2
are the components of Q in x-coordinate. (See Figure 1).

2.7) [
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It is clear from the definition above that the transformation @ satisfies the
conditions (i) (ii) (iii) and (v) in the theorem.

We shall claim that @ belongs to the class (E) and satisfies (iv). In order
to do so, we introduce another coordinate system in R". Let us define the
z-coordinate as follows:

Z;=X; for 1=;=n—2,
(238) 1 Zn =X —g(x",0),
Zn:xn—'f(x,) .

From the properties on f and g, we have

)0:( 0 ), for 1=i=n

aZi

2.9) (

0
0x;
where (X), means the vector field at 0. That is, the coordinate system (z, z,,
.-+, z,) gives the local coordinate system, orthogonal at 0. Moreover, the part
of 02 near 0 is given by {z; z,=0}, I'(0) is represented locally by {z; z,=2n-1
=0} and I'(t) is represented locally by {z; z,=0, z,_.,=g(z", t)—g(z", 0)}.
Using this coordinate system, we represent the transformation @ in (z,f)-
coordinate, that is,

{ Ji=¢iz1)
2.10 y~n~1—d(P, @)

1 Fu=z,

s=1

where P is the point P represented by z-coordinate, and {¢;},c;cn-» are the
components of @ (=@) in z-coordinate, more precisely, ¢; is defined by

211 Dz, )= [z1, =+, Znos, Zn-1+2(2",0),
2o+ (2", 2zt g(27,00),8) for 1=j=n—2.

Our problem is to prove the matrix E, is positive definite at (0,0). We
define the matrices S% and S} by

Oy 0yn 05, 0Fa
ot ot ot ot
0y Oy .| 9% T
(2.12) Sy=| 0x, 0x, and S%=| 0z 0z;
axn axn (z,2)=(0,0) azn azn (z,£)=(0,0) +
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LEMMA 2.8. The positivity of Eg at (x,)=(0,0) is equivalent to that of E@
at (z,)=(0, 0).
PrOOF. As noted in Ep="'SpJS%. On the other hand, we have easily

S4=8Y from [2.9). So Ey='S5/S5='85/5p=Ej. Q.E.D.
In the following, we use only the (z, f)-coordinte. We have easily,
LEmMA 2.9.

o9 ... ay"—L 0

ot ot

1 0 0

(2.13) Sy=

0 1 0 0

aj}'l . a5}“7','-1_ O

025 -1 azn—l

O «coeeevnenns 0 ‘ 1) r=0w0 -

LEMMmA 2.10.

(Do Dux O

02zp-1 0zn_1 = 0Zn_y

) :(O;'”)O) 1)-
€0,0)

Proor. Let us consider the point A, in 02 given by A.: (0,---,0,7,0) in
z-coordinate. Let 7. be the minimal geodesic from A; to I'(0). We denote the

Figure 2
intersection of 7. with I'(0) by B-: (w,(z), ws(z), --* , wa-2(7),0,0). We parametrize
the geodesic curve 7. by the arc length ¢ and the geodesical distance between
A, and B. is denoted by u(z) (=|d(A., I'(0))]). Then

Tz‘(O):(O) Tt O; 7, 0) ’
7‘?(”(7)):(“}1(7)’ w2<7->; Tt wn—Z(T>) 0’ 0) »
Tr(0'>:(71(7, O'), TZ(T,- 0): ) Tn—l(z': d): 0) fOI' Oé Uéu(f)

represents the minimal geodesic from A, to B..

(2.14)
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So we have

(2.15) w(z)=7 {(z, u(z)) for 1=j=n—2 and 7,_(z, u())=0.

From the definition of ( azyi )0, we have
n-1

dr

(ﬂayf ) for 1=<i=n—2,
0Zn-1 /(0,0

(2.16)

du0) _ By"n_l)
dr 02n_1 /00y "

Differentiating the equation (2.15) with respect to r at =0, we have

dt ot oo dt
(2.17)
l 0o OTa0.0) | 072(0,0) du(O)
- or 0o dr
From r.(0)=(, ---, 0, 7, 0), we have '
(2.18) -6—7/%))*:5]:1;—1 and _?I%%_OL =—0jn-1

for 1<j<n—1.

Combining the relations (2.17) and (2.18), we have the desired relation.
Q.E.D.
By the lemmas 2.8, 2.9 and 2.10, we have from the easy calculation that
the matrix S% is positive definite if and only if
(2.19) 5( 93 ). <1.
i=1

ot Jav=w0

Let 7, be the minimal geodesic from 0 to I'({). We denote the intersection of
7. with I'(t) by B,: @), Ws(1), -+, Wr_o(t), W,_1(£), 0). We parametrize the

)
o)

Figure 3

curve 7, by the arc length s and the geodesical distance between 0 and B, is
denoted by #(t) (=|d(0, I'(t))|). Then
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?t(o):(or B 0) ’
7.@0)=@(1), Ws(2), -+, Wa1(8), 0),
?3(3):(?1(1‘, S)’ fZ(t) S)) T fn-—l(t; S), 0) for 0= Séa(t)

represents the minimal geodesic from 0 to ﬁt .

(2.20)

So we have
(2.21) W=7 ¢, (1)) for 1=j=n-1.

As 7,(t,0)=0 for 1=j=n—1, differentiating the equation (2.15) with respect to
t at t=0, we have

dir0) _ 5740,0) da(0)
(2:22) dt —  os  dt

07,0, 0)
0s

LEMMmA 2.11. =8, 01 Sor 1=j=n—1.

Proor. Let R, denote the Riemann metric on o0& induced from R" As
7.(s) is the minimal geodesic from O to I'(¢¥), 7,(s) is orthogonal to I'(¥) at
s=1(¢t), that is,

223) Re(Gou(-4),,, » ToT@)=0  for any 1

where (ft)*< ;S )zm:nz;)l o7t 1) ( 0 >Ec’ Ty,['(f) represents the tangent

1 s \ 6z
space at B, to I'(d).
Letting ¢ tend to 0 in (2.23), we have

1

©2.24) Rg(:g‘—a-r%%—o)(@z—i)o, T(I'(0))=0,
where TO(F(O)):{Zg ai(—a%—>o; aieR}.

Remarking that R 3(7382—, %)0:5” and holds, we have
i i

MZO for 1=i=n—2.
0s
On the other hand, 7.(s) is parametrized by the arc length s,
H drds) !:1 for any s.
ds |

From this, we have
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afn-l(o; O) —

a5 1.

Q.E.D.
LEMMmAa 2.12.

. di(0)
dt
PRrROOF. (See, Figure 3 described before). Consider the curve C: [0, ¢] — 082
defined by C(s)=(0, --- 0, g(0, s),0). Then C(0)=0 and C(H)sI'(t). As 7, gives the
minimal geodesic from 0 to [I'({), we have

|=12.0,01<1.

2.25) Oéﬁ(t)égtl&uds for any 1.
ol ds
As #(0)=0 and (2.25) holds for any ¢, we have the desired result. Q.E.D.
0V: \? _( dwi0) \z . . .
As < py )(z,t)=(0,0)_< T ) , combining the lemmas 2.11 and 2.12 with

we prove that Ej is positive definite.

Moreover, as the calculation above shows, if we take the neighborhood
Vo, 10, sufficiently small, the transformation @ o, 0, and its inverse transforma-
tion @7  have bounded derivatives. The end of the proof of

(0,10

§3. An energy inequality for the auxiliary problem.

As the auxiliary problem to the problem (1.1) with [1.2}, we consider the
following 1. B. V. P.

Oun H=r(6 ) i Q,
(3.1 u:(x, 0)=1t.(x)
2,
] aaz? (x, 0)=u,.(x) on
(3.2) a (% 1) aal:s & D+(0—a.® D H=0 on I

where the function «.(%, t) is defined in [Proposition 2.5, and the data {u..(x),
(%), f(x, t)} are ‘suitably’ defined. Then we have

THEOREM 3.1%. Let the data {ue(x), u(x), f.(x, D} of (B.1) belong to the
space C(Q)XC(@)xC=(D). If they are compatible® of order oo at t=0, then
there exists a solution u.x, )eC=(Q) of (3.1) with (3.2). Moreover, the pheno-
menon governed by (3.1) with (3.2) has the same dependence domain as that of

4) In this theorem, the compactness of 32 is superfluous.
5) The definition of the compatibility is given in [7].
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the Cauchy problem for O in the whole space R™.

As was proved in that the function «.(%, f) constructed in Prop-
osition 2.5 satisfies the assumptions (a) and (b) in [7], we have the above
result.

Now we prepare two function spaces to construct the suitable data {u,.(x),
Ue(x), fo(x, D} from the given data {u.(x), u,(x), f(x, D)}.

V%(D(Q) is the completion with the norm |- v,y of all functions ueC=(Q),

each of which vanishes in a neighborhood of {f€02: a.(%, #)=0} and [uly,

< oo where
_l_as(i’ t)
o a (X, 1)

|u(X)|*dX .

o= lelincar g

Hié(t)(Q) is defined through

H? (D)= {uEHZ(Q) s ad®, 1) —gf— +(1—a.® )Hu=0 on ag}.

PROPOSITION 3.2. Let the data {uy(x), u:(x), f(x, O} of the problem (1.1) with
(1.2)" belong to V,(0)X L* ()X L¥Q). Then sufficiently small >0, there exist the
data {ue(x), u(x), fo(x, t)} such that

() they belong to (Hiecw()NC(D)NX(V aecor(@)NCD) X (HHQ)NCHQ)),

(ii) they are compatible of order oo at t=0 and

(i) {uoe(x), wse(x), felx, )} converges to {uy(x), us(x), f(x, )} in V,o(0)X L (2)
X L¥HQ).

This proposition is easily verified if we take into account the following
lemma due to Hayashida [4].

LEMMA 3.3. For any usV,(0), there exists a sequence {u;} CC=(Q) satisfying

—aav—ujZO on 0y2(0) such that each u; vanishes in a neighborhood of 9,2(0) and

u; converges to u in H'(Q).

9

n ax]'

such that (a) Zlﬁj(f, Dy X)=0 on (& H, (b) by the transformation @ o, 0,
=

PROPOSITION 3.4. There exists a vector field X(x, t):—aat——l— é_,‘l Bi(x, 1)

X(x, t) is transformed to —éas— n Voo for each (X°,10el’'(t") and (¢) |B;F, D]
<1 for 1=£j<n.

ProoOF. Let )Z'(x, 1) be defined by

5 @
o

63 X d=@Fhe(2)=5 %

in V(”o, 0
=] as axj x0,¢0) »

where @zo.0(y, 0)=():(3,5), =+, Pa(y,5),5). By easy calculation, or rather by
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.. o 0, .
definition, we have that > —agg’—vj:O on 2X\VGo, 0. In fact, v is represented
j=1

by v= ’(Ifli/.l_[_{g‘f'l;——zn On the other hand, differentiating the equality
Va=0n(P1(y,9), -+, Pu(y,9),s) with respect to s and using ¢,(x, H=x,—f(x’) in
we have

0x; 0s os =77 Bs

(3.4) 0= 3 O0n 005 _ 00n . O

Differentiating y;=¢(:(y,s), -+, ¥a(y,5),s) with respect to s, and remarking
and the proof of we have

35) (@ﬂ)(y <L

From taking a smaller neighborhood Vo, .0, of (%, #) contained in V3o, 0,
we have

/ é:( 89[).7 o@(qo t[))) <l in V(:;O,LO) .

As 02 is compact, there exists a finite family of points (&}, #)=/" such that
(i) the neighborhood VT:VGO,@) and the transformation d);/:@(;oJ%E(E) satisfy

the properties enumerated in [Theorem 2.6 and (ii) Np= U V, contains the closure

of ¢,-neighborhood N, of [' in R™'. Let {p,}] be a partition of the unity
subordinate to the covering {V;}. Then defining §,(x, ¢) by

B, D=3 pulr, 0285 (@, R, 1),

we have the desired function, where R, is the transformation composed only
from the translation in (x, f)-axis and the rotation in x-axis, ¢;7 is the com-
ponent of @7, Q.E.D.

Now, we present our main theorem in this section.

THEOREM 3.5. Let u.(x, 1) be the solution of (3.1) with (3.2). Then, we have
the following energv inequality.

3.6) luee(e, DIP e, DI, = Dl o0

T
+{, 17, 9leds

for each t<[0,T] where C is the constant independent of the data and e,
0=¢=e,.

Proor. For the notational convention, we denote u.(-, 1) by v(-,?) or v(f.
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By integration by parts, we have

3.7 Re (Tu(-, 1), X(-, (-, D)=L+ LO+15)

where

1= (F 1001+ 5 1T )+~ Re 3300, 800,00,
10=Re| 3 {020, 8124002, 0)— 2 (B2 00,0, 02,0}

S I OORAORCION OO

ov(X, t
I{)=—Re Sagv%x;-)—

(0, 0+ 3 B, v (%, 1)d%.

Here, we used the fact that i; B,&, Dyv;(X)=0 on 3.
=

Our problem is to calculate the term I,(¢).

(3.8) S s(f)df—g Sag 5 ren 1ai;(x )T) ;X(X o)v(%, 7)|*dxdr

l—a, 1
o E SOSa S(Zh #O__ijf—x;) 9 X&) vV pAZ, O v(X, 7)|2d¥de

1—a, ~; 1 a
- ? SSWR{WVM) afy 2 2 l \/Pr v(J, 0)1°] orrp-1dido .

aely, g)#0 de(y; 0)

Here we used the facts that the integral is only effective on Np, 3 p,(%, 1)=1 near
v

I'. As +/p; has compact support in V;, and &.(J, ¢) is independent of ¢ on
each @,R,(V,n2), we have, by integration by parts,

69 (Low= 3 fp. 205D Lo o

yinBwes” o0 a:(%, 1)
l—a(%,0) 1 o .
- 2 e, w0 7| (Yer i O
VNP8

“E.,SS"’ chvmz)l a3, 0) 1

ey, 0)#0 a. (y, o)

] \/Pr u(d, 0)|? (](mfRT) ndjdo .

The last term in (3.9) is calculated as follows:

ESSQrRI(sz) aE(y’;) L l(«/p, v)(F, 0)12( Py ——Jorp- 1)

7 ag(y, g)#0 (X_(y,

X ](_d;;fRy) - 1f<w;»R,v> -1dydo
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_ ¢ ].”—C(a(f, T) _l_ ~ 29/ ~
—Sogﬂ‘f@wo al¥, ) 2 [v(® D)I*AR, 7)dide

where

13, 9= 2 [(pTrmp-s) -1 | @, RG, )

T

and bounded by M on Nrn\2. Remarking that
t
[v@1*—lv(0)*=2 ReSO(v(S), vy(s))ds,
we integrate over (0, #) and we have

(3.10) %Hv(t)“% +%Saa~ 1—a.(% 1)

Il S VA BN 2 g
asTozo (%, 1) |v(%, H|*dX

o P .. L WP

a0z alX, 0)

+| IRe(/u(s), Xo(s)[ds+{ | Re(u(s), v,(s)ds
1 5 (@D, Biva ) —(wi0), B O

Hin@last| g, AToED

09 ~ o [V D1°14F, <) d¥dz

0Jasz(x,o)#0 ae(f, T)

where lvOlz=llv.D1*+ v+ é‘i lvz, (O] .

As |B,1 <1 by [Proposition 3.4 and the support of §; is compact, there exists d

such that |8;]=1—0 for 1=j<n. As all coefficients in (3.10) are bounded, we

have the desired inequality immediately from (3.10) by applying Gronwall’s lemma.
Q.E.D.

§4. Proof of Theorem A.

Let the data {u,(x), u,(x), f(x, t)} of the problem (1.1) belong to V,(0)x L3(£2)
X L*Q). Then, by [Proposition 3.2, there exist the data {u..(x), u,.(x), f(x, D},
for sufficiently small ¢>0, which satisfy the conditions (i)~(iii). Moreover, as

(D€ V,(0) and a.(f, t):% on I'(8), we have

S 1—aZ, 0)
?z‘?(?,ﬂ)#o a(%, 0)

4.1) [uo(x) [PdZ=Cllu,l?,
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where the constant C is independent of e.
From the inequality and the remark above, we have

42) e+l g A=%ED

~ 2 gn
wz(Z,t)#0 ae(f, t) lus(x, t)l dx

<Cllwl+uli+{] A9l dsh,

where C is independent of e.

So taking a subsequence suitably from {u.(x, ©)}.>,, if necessary, we may
suppose that

(a) there exists a function u(x, {) which is a limit of u.(x, {) weak starly in
L=, T; H£)) and weakly in H'(Q), and

(b) {u.(x, t)} converges to v(x, ) in weak starly in L=(0, T; L*£2)). But
necessarily v=u,.

Multiplying a test function 7(x, ) to (3.1), we have by integration by parts,

T T n
43 = e p0dt+] B ey ma

=(t1e, n(O))J}Sf(fe,adpggx A-a® 8

S te ol D) u(x, Hyn(x, t)dxdt

where {u.} is itself assumed to be a subsequence.
As n(x, )e V() a.e.t, we calculate the boundary integral

l1—a.(%, D) JU
(44) ‘Sggew,n#o a(, 1) ul®, (%, Hdxdt

< % 2%t i~ NEP T
:\/Hzlus(x, D |*didt \/_Hzxs(x, D17, b)*didt
where X.(%, H)=1 on axy20)—{(&, He2; a&, )=0}, and =0 otherwise. Apply-

ing Lebesgue’s convergence theorem, we see that the boundary integral con-
verges to 0 when & tends to 0.

So, making ¢ tend to 0 in [4.3), we have, for any test function 7,

(45) |, 70+ 3 (e o=, 9O+ (7, dt.

LEMMA 4.1. Let X(&, 1) be the characteristic function of 0,2(0), and let u
belong to HX(2). Then, u belongs to V(t) if and only if

4.6) gagxoz, Du®SEDAT=0  for any $(F)=C(RQ) .
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This lemma is easily proved by applying the well-known technique of
elliptic boundary value problems. See Lemma 3.2 of [6].
For any ¢(¥)=C=(0£2), we have, by Lemma 4.1,

A7) Smx@, Du(E, Dp(E)dx= gﬂqu(ﬁ, Du(F, HPE)dF=0.

This stands for u(-, H = V() a.e. t.

Then, following the same argument as was done in [6], we have the desired
result. See also Lions-Magenes [9].

Moreover, from the inequality the inequality follows.

§5. Proof of Theorem B.

Let u be a weak solution satisfying u#,=0 and
T n
(5.1) So {—(u,, 7];)%—%‘1 (Uz; 92 dt=0 for any test function 7.

We claim that u=0.
To prove this, we consider the following ‘adjoint’ problem.

On=u in @,
(5.2) {
(T)=n/(T)=0,
53) Y, t)—gg—m-m, 0p=0 on X.

From the argument in the preceding sections, reversing the time direction, we
have
LEMMA 5.1. As I' is time-like, there exists a function 7 such that

(5.4) 7€L>0, T; HX(Q)),  7,.€L=0, T; L*9Q))

and 75(-, He V() for a.e. t,
T n T
(55) [, =0 70+ 0y 72 ar=| (0, war

holds for any ve L0, T; HY(Q)), v, L0, T; HXQ)), v(-, D V) for a.e. t,
and

(5.6) v(0)=v,(0)=0.

From the definition of weak solution, as the function » in (5.1), we take
the solution 7 in Lemma 5.1. Moreover, as the function v in [5.5), we may
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T
0

take u of (5.1). These mean that S [u(t)||2dt=0. This is,what we want to prove.

Q.E.D.

COROLLARY OF THEOREM B. As the weak solution u of (1.1) with (1.2) is

unique, that sequence {u.}.>, itself converges to u where u. is the solution of the
auxiliary problem (3.1) with (3.2).

Finally, Theorem C is easily proved by remarking that the approximating

solution u.(x, t) has the dependence domain independent of e.

[6]
L7]

L8]

(9]
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