J. Math. Soc. Japan
Vol. 32, No. 2, 1980

Orbits on affine symmetric spaces under the action
of the isotropy subgroups

By Toshio OSHIMA and Toshihiko MATSUKI

(Received Aug. 17, 1978)
(Revised April 9, 1979)

Introduction.

Let G be a connected Lie group, ¢ an involutive automorphism of G and
H a closed subgroup of G satisfying (G,),CHCG, where G,={xeG|a(x)=x}
and (G,), is the identity component of G,. Then the triple (G, H, o) is called
an affine symmetric space ([7, p. 223 and p. 225]). Suppose thatYGEis real
semi-simple, and consider the double coset decomposition H\G/H.

In the case of a Riemannian symmetric space (G, K, §) of noncompact
type the double coset decomposition is the Cartan decomposition G=KA,K.
Secondly consider an affine symmetric space (GXG, 4G, o) where G is real
semi-simple, 4G denotes the diagonal of GXG, and ¢ is the mapping
(x, )=y, x) (x, yeG). If we identify GXG/4G with G in the natural way,
then the structure of AG\GXG/4G is, for the most part, known by the
following Harish-Chandra’s theorem (see [3, p. 102], [4, p. 556] and [12, p.
1137).

THEOREM. Let G’ be the set of regular elements in G, {i;}i=1, ---, r}
representatives of conjugacy classes of Cartan subalgebras in g, and J; the
Cartan subgroup associated with i;. Then

¢'=U U xfix
i=1 rEG
where Ji=];NG’.

In this paper we will extend this theorem to an arbitrary affine symmetric
space (G, H, o) such that G is real semisimple.

Let ¢ be the mapping of G into G defined by ¢(g)=go(g)™* for geG
(see [1], [8, p. 182]). Then G/G, and ¢(G) are diffeomorphic by this mapping,
and the H-orbits on G/G, correspond to the H-orbits on ¢(G) under the
action (h, x)—hxh ! (heH, x€¢(G)). Let g and b denote the Lie algebras of
G and H, respectively, and let the automorphism ¢ of g be the one induced
by the automorphism ¢ of G. Put q={Xeg|o(X)=—X}. A subspace q, of q
is called an A-subspace if the following two conditions are satisfied : (i) a, is
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maximal abelian in q; (ii) Every element of a, is a semi-simple element of g.
The centralizer A, of a, in ¢(G) is called the A-subset associated with a,.
Then every connected component of A, is diffeomorphic to expa, (§3, Prop-
osition 1). Consider the polynomial

det (t—ad (X))= 3 du(X)t*,  Xeq,

where d; are polynomial functions on q and n=dimg. Let 2 be the least
integer such that d,5£0. Then the elements of q’'={X<q|d(X)+0} are called
the g-regular elements. Next consider the polynomial

det (141 —Ad (x))= 2 Di)t,  xee(G).

Then the elements of ¢(G)={x=¢(G)|Dy(x)#0} are called the ¢(G)-regular
elements. Let {a,;|i=l} be a set of representatives of H-conjugacy classes of
A-subspaces and A, the A-subsets associated with a;;. Then we have the
following theorem (§ 6, [Theorem 2).

THEOREM. (i) q’=iKEJI Ad (H)ay; (disjoint union) where ay;=a,N\q". The

mapping i1 H/Zy(ag)Xai;—q’ defined by Ci(hZy(ay), YV)=Ad(h)Y (heH,
Yea};) is an everywhere vegular |W(ay;, H)|-to-one mapping where W(ay;, H)
=Ng(a3:)/ Z5(aq:).

(ii) Put go(G),-zhgihA{,ih'l where Au=AuNe(G). Then go(G)'ZikeJIgo(G),-

(disjoint  union). The mapping 92 H/ Zu(Auw) X Ali—@(G)  defined by
i(hZuy(Ay), y)=hyh™' (h€H, yE A%;) is an everywhere regular |W(Aq, H)|-
to-one mapping where W(Aq, H)=Ng(a3)/Zu(Aq).

Moreover we will prove the following results. For every affine symmetric
space (G, H, o), there exists a (finite) covering group G, of G such that
G,/(G2)o=G/H and (G2),\G./(G2),=H\G/H (Lemma 3J).

An element X of g is called semi-simple (resp. nilpotent) when ad (X) is
a semi-simple (resp. nilpotent) endomorphism of g. An element x of G is
called semi-simple (resp. unipotent) when Ad(x) is a semi-simple endomor-
phism of g (resp. x=exp X with a nilpotent element X of g). Then every
semi-simple element in q (resp. ¢(G)) is contained in some A-subspace (resp.
A-subset) (Corollary| to [Theorem 2). Moreover every element in q (resp. ¢(G))
is decomposed to the semi-simple component and the nilpotent (resp. unipotent)
component contained in q (resp. ¢(G)) with respect to the Jordan decomposi-
tion (§5, [Proposition 2).

The determination of H-conjugacy classes of A-subspaces is equivalent to
that of K,-conjugacy classes of f-stable maximal abelian subspaces of § (§7),
where (3, ¥, 6) is the symmetric Lie algebra dual to (g, %, o) (cf. [2, p. 1117),
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K.=KNH and K=Gy. This is studied in [9, §2]. which is a
corollary to [9, Theorem 2] gives an explicit construction of representatives
of H-conjugacy classes of A-subspaces.

Notations.

Let G be a Lie group with Lie algebra g. Let 8 and 8, be subsets of g
and let S;, S; and S be subsets of G. Then

3:,B)={X€§|[Y, X]=0 for all Yeg,}
3.,(S:)={Xe8,|Ad () X=X for all yeS,},
Zs,8)={xeS,|Ad (x)Y=Y for all Ye3,},
Zs,(S:)={x€S;|xyx~'=y for all yeS,},
N5, (8)={x&S,|Ad (x)8,=8;} ,
Ng,(So)={x&S,[xS:x7*=S,} .

Let ¢ be an automorphism of G. Then

S,={xeS|o(x)=x} .

Let H be a closed subgroup of G. Then H, denotes the identity component
of H. Let W be a finite set. Then |W| denotes the number of the elements
of W.

§1. Definitions.

Let G be a connected Lie group, ¢ an involutive automorphism of G, and
H a closed subgroup of G satisfying (G,)CHCG,. Then the triple (G, H, o)
is called an affine symmetric space. Let g be a Lie algebra, ¢ an involutive
automorphism of g. Put H)={Xeg|e(X)=X}. Then the triple (g, b, o) is
called a symmetric Lie algebra. To every affine symmetric space (G, H, o)
there corresponds a symmetric Lie algebra (g, ), o) where g and Y are the
Lie algebras of G and H, respectively, and the automorphism o of g is the one
induced by the automorphism ¢ of G. We assume that G and g are semi-
simple for every affine symmetric space (G, H, o) and symmetric Lie algebra
(g, b, o) appeared in this paper.

Let (g, b, 0) be a symmetric Lie algebra. Put q={Xeg|o(X)=—X}.
Then g=Y%+q (direct sum).

DEFINITION. Let (g, %), o) be a symmetric Lie algebra. Then a subspace
a, of q is called an A-subspace if the following two conditions are satisfied :
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(i) a, is a maximal abelian subspace of q;

(ii) Every element of a, is a semi-simple element of g.

Let (G, H, o) be an affine symmetric space and (g, §), o) the corresponding
symmetric Lie algebra. Define a mapping ¢ of G into G by

o(g)=go(g)!, geG.

If p(g)=9p(g,) for gi, g:€G, then gi'gi=a(gi'g,). Hence gi'g,€G, and so
the mapping ¢ gives an injection of G/G, into G. For each element x of
G, define a transformation a(x) of G by

a(x)y=xyo(x)™', yEG.
Clearly G acts transitively on ¢(G) under the action of a and we have
(LD pxy)=a(x)p(y), x, y€GC.

Thus the H-orbit structure on G/G, is identified with the H-orbit structure
on ¢(G) under the action (h, y)—hyh ! (heH, y=¢(G)).

Let # be a Cartan involution of g commutative with ¢ ([2], [8, p. 153,
Theorem 2.17) and g=f+p the corresponding Cartan decomposition. Put
L=tNY, -=tNq, p.=bNY, and p-=p~q. Let K be the analytic subgroup of
G corresponding to £ Then the mapping (&, X, Y)—kexp XexpY is an

analytic diffeomorphism of A Xp.Xp, onto G ([8, p. 161], [10]). Thus we
have

(1.2) o(G)=a(K)expy-.

Though the following three lemmas are proved also in [8], we will give
them with proofs for the sake of completeness.

LeEMMA 1. ¢(G) is a closed submanifold of G.

PrOOF. If x€¢(G), then o(x)=x"'. Thus there exists a neighborhood V
of the identity in G such that ¢(G)NV=expqn\V. Since G acts transitively
on ¢(G) under the action of a, and since a(y) is a transformation of G for
every y€G, it follows that ¢(G) is a regular submanifold.

Next we will prove that ¢(G) is closed in G. Let Z denote the center of
G. Since ¢(Z) and p- are closed in K and p, respectively, it follows from
the Cartan decomposition G=K expp that ¢(Z) exp p- is a closed subset of G.
Let x be an element of G which is not contained in ¢(G). Then for every
ke K, there exist a neighborhood V of x in G and a neighborhood W of the
identity in K such that

a(MVNa(Zk)exp p-=0.
Hence

Vna(ZW-tE)expp-=0.
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Since K/Z is compact, there exists a neighborhood V’ of x in G such that
V'Nna(K)expp-=0.

This implies that ¢(G) is closed in G (see [1.2)). qg.e. d.

LEMMA 2. The number of connected components of G, is finite.

PrOOF. Since G,=K, expp., we have only to prove that the number of
connected components of K, is finite. Let ¢ be the center of ! and put
¥=[%, 1. Then I=c+¥ (direct sum). Let D and K’ be the analytic subgroups
of G corresponding to ¢ and Y/, respectively. Then K=DK’, K’ is compact
and DNK’ is a finite set. Since D, K’ and DK’ are o-stable, ¢ acts on
D/DNK’ and K'/DNnK’. Since the natural mapping K—D/DN\K'XK'/DNK'
is a finite covering, it is enough to prove that the numbers of connected
components of (D/DNK’), and (K'/DNK"), are finite, which is easy to prove.

gq.e.d.

LEMMA 3. There exists a covering group G, (m,: G;— G the convering
map) such that o lifts to G, and that n7'(H)=(G,),. Moreover m, can be taken
to be a finite covering map.

PrROOF. Let G, be the universal covering group of G and =,: G,— G the
covering map. Then ¢ lifts to G,. Let Z denote the center of G,. Put
I'=¢(zi\(H)={go(g ) |gen'(H)}. Then I'Cr*(1)CZ and therefore I is a
subgroup of z7(1). Put G,=G,/I" and let rn,: G,—G be the covering map
induced from z,. Since I is o-stable, ¢ lifts to G,.. We will prove =n;!(H)
=(Gy),. If gl'Cri(H), then glo(gl)'=ga(g) ' I'=¢p(g)['=I" and therefore
gl'=(G,),. Hence n;'(H)C(G,),. Conversely suppose gl'e(G,),. (Gi)s=¢*(1)
is connected. In fact, let K, be the analytic subgroup of G, for f and define
K} and D as in Lemma 2. Then K,=K;XD, where K] and D are o-stable.
Since (G,),=(K,),expps, we have only to prove that (K),=(KD,X(D,), is
connected. Since D, is a vector group, (D,), is connected. For the connected-
ness of (K}, see [5, P.272]. Thus we have ={!(H)D(G,), and therefore
7 (H)=¢ *(I'). Since ¢(g)el, g=ni'(H). Hence (G,),Cr;'(H).

Note that z7/(G,)={geG:|¢p(g)=x (1)} and suppose that there exists a
o-stable subgroup I” of wi'(1) such that =7(1)/I"” is finite and that ¢o(z7%(G,))
NI"=¢(z7'(H)). Then we can easily prove in the same way that G,=G,/I”
satisfies the conditions of the last half of Lemma 3. Such a [” is given as
follows. Since zn7(1)/@(xi*(H)) is a finitely generated abelian group and since
oG,/ oz (H)) is finite (Lemma 2), it follows from the fundamental
theorem for finitely generated abelian group that there exists a subgroup I
of z7(1) such that z'(1)/I is finite and @(zi (G, )IN=e(zi(H). "=
I'No(l) is a desired subgroup of z{'(1). q.e.d.

The (finite) covering map =m,: G,—G obtained by induces a
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diffeomorphism G,/(G,),5G/H and a bijection (G,),\G./(G), 5 H\G/H.
DEFINITION. Let (G, H, o) be an affine symmetric space and (g, ), ¢) the

corresponding symmetric Lie algebra. Let a, be an A-subspace. Then the

centralizer A, of a, in ¢(G) is called the A-subset associated with a,.

For every Xeq, consider the eigenpolynomial

det (t—ad (X))= é di(X)t

of the endomorphism ad (X) of ¢ where ¢ is an indeterminate, n=dim g and
the d; are polynomial functions on q. Let %2 be the least integer such that
d 0.

DEFINITION. An element Xeq is said to be g-regular if d,(X)#0. The
set of g-regular elements is denoted by q’.

For every x=¢(G), put

det (t+1—Ad ()= 3 Dix)t".

Then D; are analytic functions on ¢(G) and D,%0.

DEFINITION. An element x€¢(G) is said to be ¢(G)-regular if D,(x)+0.
The set of ¢(G)-regular elements is denoted by ¢(G)’.

REMARK. Let G¢ be a connected complex semi-simple Lie group, ¢ a
complex analytic involutive automorphism of G¢, and Hy a closed subgroup
of G¢ satisfying (Geo)oCHcCGe,. Then H¢ is a complex subgroup of G¢ and
(G¢, He, 0) is an affine symmetric space. Let (g¢, )¢, o) be the corresponding
symmetric Lie algebra. It is well known that a complex endomorphism f
(such as ad X for Xegc or Ad x for x=G¢) of g¢ is semi-simple if and only
if it is semi-simple when g¢ is regarded as a 2n-dimensional real vector space
(n=dimc g¢). As for the q-regularity and the ¢(G)-regularity a similar state-
ment holds.

DEFINITION. Such an affine symmetric space (G¢, He, o) is called a complex
affine symmetric space and (g¢, Y¢, o) is called a complex symmetric Lie algebra.

Let (G, H, o) be an affine symmetric space and (g, §, o) the corresponding
symmetric Lie algebra. Let gc and Y be the complexifications of g and b,
respectively, and extend o to the complex linear automorphism of gc. The
inclusion mapping of g into g¢ is denoted by ¢. Let G¢ be a connected complex
Lie group with Lie algebra g such that the mappings ¢: g—gc and ¢ : gc—gc
lift to Lie group homomorphisms ¢: G—G¢ and o: G¢— Gg, respectively. A
complex affine symmetric space (G¢, He, o) satisfying the above conditions
will be called a complexification of the affine symmetric space (G, H, ¢). Every

affine symmetric space (G, H, o) has at least one complexification (G¢, (G¢)s, o)
where G¢=Int (g¢).
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§2. a,regular elements.

For an A-subspace a, of (g, b, o), let a,, be the complexification of a,.

Then a,, is an A-subspace of (gc, Y, o). Let @(a,.) denote the root system
of the pair (g¢, aqp). Then

Ay gc=3c(@p)ta,+ 2 gex  (direct sum)

A€Pag )

where ge,={Xegc|[Y, X]=AY)X for all Yea,}.

DEFINITION. An element Ye&a,, (resp. a,) is said to be a,.-regular (resp.
a,-regular) if A(Y)#0 for all 1€ O(a,,). The set of a,,-regular (resp. a,-regular)
elements is denoted by aj, (resp. aj).

Retain the above notations and put §e= X gcs §=8cNg, H=GNH and
PYSAC 1)
§=8§Nq. Then it follows from that

h=3s(a,)+h  (direct sum)
(2.2) {

q=a,+7q (direct sum).
LEMMA 4. The mapping { of H/Zy(a,)Xab into q defined by
C(hZH(aq)) Y):Ad (h)Y; hEH) Ye QS

is an everywhere regular |W(a,, H)|-to-one mapping onto Im &, where
W(a,, H)=Nu(a)/Zu(ay) .
PrOOF. If heH, X<h, Yea,, Y,=q, and t=R, then
Ad (hexp tX)(Y+1Y)=Ad ()Y +tAd (BT X, YI+Y)+o(t).

Since Y is a,-regular, the mapping —ad V|5 : B——»E is a bijection. Hence the
regularity of { follows from [2.2).

Assume Ad(h)Y,=Ad(h,)Y, h, h,=H and Y, Y,=dai. Since 3,(Y)
=3,(Y)=a,, it follows that Ad (h;'h,)a,=a, and that h;'h,&Ngy(a,).

: g.e.d.

It follows from that Ad(H)(a}) is an open subset of q. Since
q’ is an open dense subset of q, ¢’N\Ad (H)(a))+#0. Since q’ is Ad(H)-invari-
ant, we have q’N\aj#0. Let I' be an element of ¢’Nai. If Yeai then
3(Y)=3,I")=34(0;). Hence Yeq’ and ajCq’. It follows easily that a,MNq’=aj.

’

§3. Connected components of A,.

LEMMA 5. Let a, be an A-subspace of a symmetric Lie algebra (g, Y, o).
Then there exists a Cartan involution 8 of ¢ satisfying (i) 0 is commutative with
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o and (ii) a, is O-stable.

PrOOF. If Yeqi, then 3,(a)=3,(Y) is reductive in g ([10, p. 105]). Hence
3(a)=c+1 where ¢ is the center of 3,(a,) and [=[34(ay), 35(a;)]. Then a,Cc¢ and
IC3y(a,). Let a;, be a Cartan subalgebra of /. Then a=c+a;=ay+a, (ay=anh)
is a Cartan subalgebra of g and is o-stable. Let 6 be a Cartan involution of
g such that a is @#’-stable ([12, Proposition 1.3.1.1]). Since a is of’-stable,
there exists an x<Int(g) such that x6x~! is commutative with ¢ and that
x(a)=a ([9, Cemma 3J]). Put §==x0x"'. Then 6(a)=a. Since fo=gb, then
0(a,)=a,. g.e.d.

REMARK. Let @ be a Cartan involution of g commutative with ¢. Since
every Cartan involution of g commutative with ¢ can be written as hfh-?,
with an he Ad (H,) (8, p. 153, Theorem 2.17), it follows from that
every A-subspace is H,-conjugate to a f-stable A-subspace.

Let a, be an A-subspace and # a Cartan involution of g such that ¢f=0¢
and that 6(a,)=a, (Lemma 5)). Let A, be the A-subset associated with a, Let
f,%,%,p, by, p- and K be as in §1 and put a;_=a,Nf- and a,_=a,np-. Then
a;=ay_+a,_ (direct sum). Let x be an element of A, Following x can
be written as x=Fkexp Xo(k)™* where k=K and Xep.. If Yea;r_, then

Ad(kexp Xo(k) ' H)Y=Y.
Hence
Ad (exp X)Ad (o(B)"H)Y=Ad (7)Y .

Since Ad(c(k)" )Yt and Ad(k~)Y el it follows that [ X, Ad(e(k)"1)Y]=0
([12, p. 28, Lemma 1.1.3.7]). Therefore

Ad(ka(R)H)Y=Y.
When Ye<a,_, we have the same result. Summarizing, we have
(31) A,;={kexp Xo(k)'| k€K, Xep_, p(b)EZyx>(a,), XE3_(Ad (B)'a,)} .

Let u be a compact real form of go such that o(u)=u, and 7 the con-
jugation of g¢ with respect to u, which is a Cartan involution of gc. Put
h.=unbe¢ and q.=un\q¢. Let (G¢, He, o) be a complexification of (G, H, ¢) and
let U denote the analytic subgroup of G¢ corresponding to u.

LEMMA 6. e(U)=exp qu.

ProoF. In the compact symmetric space U/U,, every geodesic starting
from the origin is of the form exp (t X)U, with an X<=q. (¢ R). Since U/U,
is complete, U=exp(q.)U,. Hence ¢(U)Cexpq.. The reverse inclusion is
clear. q.e.d.

LEMMA 7. A maximal torus contained in exp q. is a maximal abelian subset

of exp q..
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The proof of this Lemma is the same as that of [5, p. 247, Corollary 2.7].

Let a,c be a r-stable A-subspace with respect to the symmetric Lie algebra
(gc, be, o) and A, the associated A-subset with respect to (G¢, He, o). Put
a5, =0, Then a,,=a,,++v—1ag,

It follows from and that Z,w(a50)=Z4w>(a,,)=€XD aq,.
Hence it follows from (3.1) that A,, is connected. On the other hand
€XD 0, =€XP aq, EXP ~/—1a,, is a closed subgroup of G, since expa, is closed.

LEMMA 8. Aqe=€XD g -

ProoF. It is clear that A, . Dexpa,,. Since a(expa,,) acts on A,, and
acts transitively on exp a., and since A, is connected, it suffices to show that
there exists a neighborhood V of the identity in G¢ such that A;, NV Cexp ay.
Let V’ be a neighborhood of the origin in q¢ such that the restriction of the
exponential map to V’ is a diffeomorphism onto VNe(G¢) for some neigh-
borhood V of the identity in G,. Let Y be an element of V’ such that
exp Y€ A,,NV. Then e2¥Y,=Y, forall Y €aq,,. If V' is sufficiently small,
it follows that [Y, ¥,]=0 for all Y,=a,, which implies Y<a,,. g.e.d.

LEMMA 9. Let a, be an A-subspace and A, the associated A-subset. Then
every element of A, is semi-simple and 3,(Aq)=3,(a).

ProOF. Let (G, He, o) be a complexification of (G, H, o), a,, the complexi-
fication of a, and A,, the associated A-subset. Let y=A, Then Ad(y)
=Ad («(y)€Ad (4,,). Since A,,=expa,, it follows that y is semi-simple.
Let Xe3(a;). Then Ad(y)X=Ad((y)X=X because A,,=expa,, This
implies Xe3,(A4,). Hence 3,(a,)C3,(Aq). The reverse inclusion is clear. q.e.d.

It follows from (3.1) that every connected component of A, contains an
element of ¢(K). Let A,; (j&J) be the connected components of A, and let
k; (j€]) be an element of A,;Ne(K). Note that the subgroup expa, of G is
closed in G. This follows from the fact that the Lie algebra of the closure
of expa, is an abelian subspace of q and the fact that a, is maximal abelian
in q.

PROPOSITION 1. A=k expa, (j€]). If G is of finite center then [ is a
finite set.

ProOF. It is clear that A,;Dk;exp a,, so it suffices to prove A,;Ck;exp a,.
Since a(y) with a y<expa, stabilizes A,; and since a(exp a,) acts transitively
on k,;expa, we have only to prove that there exists a neighborhood V of
the identity in G such that 2,V A,,Ck;exp a,

Let V' be an open neighborhood of the origin in g such that:

@) V'==V'=a(V);

(i) the restriction of the exponential mapping to V’ is a diffeomorphism
into G;
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(iii) exp (V'Niglar)=exp V' NZg(ay).

Putting V=exp V’, every element x of VN\kj;'A4,; can be uniquely written as
x=exp X with an X& V'3, (a,) since k;'A;;CZs(a,). Then

x ki =o(kx)=Fk;*o(x).

Since Ad (k;)X=X (Lemma 9), exp (—X)=exp o(X). Hence Xe&q, which proves
Xea,. Thus we have k;VNA,;Ck;exp a,.

We have an open covering C={a(y)k,VNne(K))|ycsexpa_, j€]J} of
A,ne(K) in ¢(K). If J is an infinite set, there exist no finite subsets of C
which cover A,Np(K). Hence A;n¢(K) is non-compact. On the other hand,
if G is of finite center, then K is compact, so are ¢(K) and A,Ne(K), which
is a contradiction. g.e.d.

§4. A, regular elements.

Let (G, H, o) be an affine symmetric space and (g, §), ¢) the corresponding
symmetric Lie algebra. Let a, be an A-subspace and A, the associated A-
subset. Let Z be the center of G and L denote the analytic subgroup of G
corresponding to 3,(a,). Since the Lie algebra of Zs(A,) is 3,(a,) (Cemma 9),
Zg(Ap)DZL. On the other hand Ng(a,)CNgGs(a,))=Ng(L). Since 34a,) is
reductive in g and since rank (3,(a,))=rank g, it follows from [12, Proposition
1.4.2.47 that Ng(L)/ZL is finite. Hence Ng(a,)/Zs(A,) is finite, so is Ngy(a,)
/Zp(A,). Put

W(As, H)=Ng(a,)/Zn(As)

and put Ai=A,N¢(G)’. Then A; is an open dense subset of A,

LEmMMA 10. Let n be the mapping of H/Zy(A)X Ai into ¢(G) defined by
7(hZu(As), v)=hyh ' (heH, yeA). Then Im 5 is an open subset of ¢(G) and
n is an everywhere regular |W(A,, H)|-to-one mapping.

PROOF. Suppose h,yhil'=h,y,hst (hy, hoeH and vy, y,=Af. Then
Ad (h7'h)3g(a)=34(a;) and therefore Ad(h;'ha,=a,. Hence h;'h;&Ny(ay).
Conversely suppose h&Ny(a,). Then hZgla)h '=Zs(a,) and he(G)h '=¢(G).
Hence hAh~'=A, and therefore hAih~'=A;. Thus  is a |W(A,, H)|-to-one
mapping.

Let heH, X, ye A, Y<a, and t<R. Then

hexp(X)vexptY(hexptX)?
=hyh~*exp (tAd(h)((Ad(y )—1)X+Y)+o(t)).

Since ye A4}, (Ad(y)—1)|3: 3—70 is a bijection. Thus it follows from
that 7 is regular and that Im » is an open subset of ¢(G)". g.e.d.
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REMARK. Let # be a Cartan involution of g commutative with o, K=Gy
and K,=KNH. Let a, be a f-stable A-subspace and A, the associated A-
subset. Put

W(aq; K+):NK+(aq)/ZK+(uq)
and
W(A,, K,)=Ng (a))/Zx ,(A,).

Then W(a,, H)=W(a,, K,) and W(A,, H)=W(A,, K,). This is proved easily by
using [12, Lemma 1.1.3.7].

The following lemma will be used in §6.

LEMMA 11. Let x be a semi-simple element of ¢(G). Let p be the mapping
of HX3(x) into ¢(G) defined by p(h, X)=hxexp Xh™' (heH, X€3,x)). Then
the rank of p at (1, 0) equals the dimension of ¢(G).

PROOF. Since the rank of the mapping p: GX3 (x)—G defined by p(g, X)
=gxexp Xg! equals the dimension of G ([12, Lemma 1.4.3.1]) and since
3(x)=235(x)+3,(x) (direct sum), we have only to prove the following. If a
curve 7,=plexptY, t X) (Yeq, X<35(x)) is tangent to ¢(G) at =0, then the
tangent vector to 7, at =0 is zero. This is proved as follows. The tangent
vector to a(r,)! at =0 is equal to that of 7,. Then comparing

o(r) 1=(exp(tY)xexpt Xexp(—tY)!
=exp(—tY)exp(—tX)xexptY

=xexp({(—Ad (x HY+Y—X)+0(1))
and
ri=xexp (t(Ad (x )Y —-Y+X)+o(1)),

we have Ad (x )Y —Y+ X=0 and therefore the tangent vector to 7, at =0
is zero.

§5. Jordan decomposition.

Let S; denote the set of semi-simple elements in g and N, the set of
nilpotent elements in g. Let X be an element of ¢ and X=X+ X, (X,eS,,
XreN,) be the Jordan decomposition of X. Then —X,—X,=—X=0(X)
=0(X;)+o(X,). It follows from the uniqueness of the Jordan decomposition
that o(X,)=—X; and ¢(X,)=—X,. Hence X;, X,=q.

Let S; denote the set of semi-simple elements in G and N; the set of
unipotent elements in G. Let x€¢(G) and x=x,x, (x;€S¢, x,EN;) be the
Jordan decomposition of x. Then x;lx;'=x;lx;'=x'=0c(x)=0(x)0(x,). It
follows from the uniqueness of the Jordan decomposition that o(x,)=x;' and
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o(xy)=x;'. Moreover since exp|y,: N;—Ng is a bijection, x,=exp X, for
some X,eN;N\q. Hence xuzgp(exp%X,OEgo(G). On the other hand, since
Ad(xs)Xn:Xm

x-":xsxu:a(exp %—Xn)xs .

Hence x,= a(exp (—w;—Xn))x €o(G).

LEMMA 12. If XeNyNaq, then there exists a Y <) such that [V, X]=2X.

ProoOF. It is known that there isa Yeg such that [V, X]=2X ([6, p. 100]).
Let Y=Y,+Y, (Y,e4, Y,=q). Since [Y,, X]=q and [Y,, X]h, we have
[Y,, X]=0 and therefore [Y;, X]=2X. g.e.d.

PROPOSITION 2. (i) Let Xeq and X=X,+X, be the Jordan decomposition
of X. Then X, X,=q and X,=(Ad (H)X)".

(i) Let x=¢(G) and x=x;x, be the Jordan decomposition of x. Then
x5, x0€@(G) and x,<(a(H,)x)"

This proposition can be proved in the same way as in [12, p. 106 and p.
1217 using

§6. The main theorems.

THEOREM 1. Let (G¢, He, 0) be a complex affine symmetric space and
(8¢, B¢, o) the corresponding complex symmetric Lie algebra. Let a,, be an A-
subspace and Ay, the associated A-subset. Then

(i) Themapping Cc:He/Zy(a40) X aio—qc defined by {c(hZy (aq,),Y)=Ad(h)Y
(h€He, YEy,) is an everywhere regular |W(ay,, He)|-to-one mapping onto qg.

(if) The mapping nc: He/Zg (qe) X Ase—(Ge)' defined by ne(hZy (aq,), Y)
=hyh™ (h€He, yE Aip) is an everywhere regular |Way,, Hc)|-to-one mapping
onto ¢(G,)'.

PROOF. Seeing and we have only to prove the
ontoness of {¢ and n¢. Moreover since d, and D, are holomorphic functions
on q¢ and o(G¢), respectively, q; and ¢(G¢)” are connected. Since Im{; and
Im 7¢ are open sets, it suffices to prove that Im {c and Im % are closed sub-
sets of q¢z and ¢(G¢)’ respectively.

(i) Im{c is closed in gz. Suppose Im ¢ is not closed in qz. Then there
exists an Xe(Im{c)*Nqe such that XeeIm {e. Let X=X,+ X, be the Jordan
decomposition of X. Then it follows from that X,=(Ad (He)oX)
and therefore X, ((Im {c)*Nae)—Im Cc.

Let £ be the mapping of YcX3,.(X,) into q¢ defined by &(Y, Y)=e*" (X,+Y))
(Yebe, YVi€3(Xy). Then the differential of & at (0, 0) is given by the linear
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map (Y, Y))—Y,+[Y, X,] of HcX3,,(X;) onto qc. Hence Im & contains a neigh-
borhood of X; in q¢ and therefore Im éNIm {c#0. Thus 3,(X)NImEc#0. Let
Y, be an element of 3,,(X)NIm{c. Then Y,=Ad(h)Y, for some heH; and
Y:€ai,. Therefore 3,,(Y.)=Ad (h)3,o(Y:)=Ad (h)a,,. Since X;&3,,(Y>), we have
Xs€Ad (h)a;,CIm{¢ a contradiction.

(ii) Im pcis closed in ¢(G¢)’. Suppose that Im 7¢ is not closed in ¢(G¢)'.
Then we have a semi-simple element x contained in ((Im 5¢)*Ne(G¢))—Im %
by a similar argument given in (i). Let p be the mapping of Hc¢Xexp 3q,.(x)
into ¢(G¢) defined by #(y, y)=yxy,y ' (y€He¢, y:€exp3q(x)). Then it follows
from that Im g contains a neighborhood of x in ¢(G).

We put W=NgGec(aec))/Zs(aq;). Then W is finite as is stated in the
beginning of §4 and for every w&W the natural mappings w: a,,—3.(0s.)
and w: A~ (Zg(aq0))0 are well-defined. Let W={weW|w(Y)#Y for some
Yea,} and

(6.1) Ay ={ye Al |w(y)*y for all weW’}.
C C

Then Aj, is a dense open subset of A,, since W’ is finite.

Thus Im pN\pc(He/Zx (aq,) X Aip)#0, and therefore there exist h€H¢ and
€AY, such that Ay,A~! is commutative with x. Put x,=h~'xh. Then x, is
commutative with y; and x;&Im n¢. Since

Ad (x)3(YD)=35c(¥1)

we have Ad (x1)350(000)=30(00;). Hence x,&Ng (yo(a,0). Since y,€ A, it
follows from that x,&€Z;.(a,,) and therefore x,€A;, which is a con-
tradiction. q.e.d.

THEOREM 2. Let (G, H, o) be an affine symmetric space and (g, 9, o) the
corresponding symmetric Lie algebra. Let {a,;|i€I} be a set of representatives
of H-conjugacy classes of A-subspaces and A,; the A-subset associated with ag;.
Then

(i) q’:ikEJIAd (H)a}; (disjoint union) and the mapping C;: H/Zg(ag:)Xal;

—q’ defined by i(hZy(ay), Y)=Ad(h)Y (heH, Y=ay,) is an everywhere regular
| W(ag:, H)|-to-one mapping.
(ii) Put @(G)izth)HhAéih‘l. Then go(G)’:_EUIgo(G)i (disjoint union) and the

mapping 7;: H/Zy(Aw) X Ati—@(G)' defined by 1nshZy(Ad), y)=hyh™* (h€H,
ye Al is an everywhere regular |W(Aq, H)|-to-one mapping. Moreover if the
affine symmetric space (G, H, o) has a complexification (G¢, He, 0) such that
t: G—G, 1s injective, then Zy(Ay)=2Zy(ay:) and W(Ay, H)=W(ag, H).

ProoF. (i) Disjointness is clear. In view of Lemma 4 it suffices to prove
q’ClgIAd (H)as;. Let Xegq’. It follows from (i) of that 3,,(X) is
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an A-subspace of (gc, fc, o). Since 3,,(X) is stable by the conjugation of g.
with respect to g, 3,(X) is an A-subspace of (g, b, ). Hence there exist an
i€l and an h< H such that 3,(X)=Ad (h)a,; and therefore X< Ad (h)ag;.

(i) In view of it suffices to prove that go(G)’Ciggo(G)i and

that i\eJIgo(G),- is disjoint union. Let x€¢(G)" and let (G¢, H¢, ) be a com-

plexification of (G, H, ¢). Then it follows from that ¢(x) is
contained in the A-subset A, associated with some A-subspace a,, of (gc, bc, o).
Clearly a,,=3,.,(x) because x is ¢(G)-regular. Hence 3,(x) is an A-subspace of
(g, B, o) and therefore xehA,;h ! for some i=] and h=H. Disjointness of
ikejlgo(G)i and the last statement is clear. g.e.d.

COROLLARY. (i) Let Xeq. Then X is semi-simple if and only if X 1is
contained in some A-subspace.

(ii) Let x=¢(G). Then x is semi-simple if and only if x is contained in
some A-subset.

PROOF (cf. [12, p. 105 and p. 120]). (i) Let X be a semi-simple element
in q. Consider the map & of H)x3,(X) into q given by &Y, Y,)=e*d¥(X+Y))
for Yeb, Y,€3(X) (cf. the proof of [Theorem 1). Then the image of &
contains a neighborhood of X in q. Thus there is a g-regular element /" such
that I'=e*¥(X+Y,) for some Y€} and Y,=3,(X). Since X+VY, is also g-
regular, 3,(X+Y),) is an A-subspace containing X. The converse
assertion follows from the definition of A-subspaces.

(ii) Every element of an A-subset is semi-simple (Lemma 9). Conversely
let x be a semi-simple element in ¢(G). Define an analytic function ¢ on
30(x) by

0(Y)=det ((Ad (x exp Y)—1)| aacar-vg) -
Then 6(0)#0. Put 3,(x)'={Y€3,(x)|0(Y)#0}. Since hknghx exp 34(x) h~* contains

a neighborhood of x in ¢(G) Lemma 11), there exists a ¢(G)-regular element
y such that yexexpi,(x). Then 3,(y) is an A-subspace (Theorem 2). Let
Xe3(y). Since x is semi-simple, g=3,(x)+(Ad(x)—1)g (direct sum). There-
fore X can be written as X=X+ X, for some X,€3,(x) and X,e(Ad (x)—1)g.
Since 3,(x) and (Ad(x)—1)g are Ad(y)-stable, we have (Ad(y)—1)X,=0. Then
X,=0 because yexexpi(x). Hence X=X,=3,(x). Thus 3,(»)C3,(x). This
implies that x is contained in the A-subset associated with the A-subspace
3a(¥)- qg.e.d.

§7. H-conjugacy classes of A-subspaces.

Let @ be a Cartan involution of g commutative with ¢. Then as is stated
in the remark following every A-subspace is Hj,-conjugate to a 0-
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stable A-subspace. Moreover two f-stable A-subspaces are H-conjugate if and
only if they are K,-conjugate. Here we put K,=KNH and K=G,4. This is
proved easily by using [12, Lemma 1.1.3.7]. Hence in order to determine
the H-conjugacy classes of A-subspaces, we have only to consider the K-
conjugacy classes of f-stable A-subspaces.

Let £, ¥, f.,p, p. and p_ be as in §1 and extend ¢ and 4 to the complex
linear automorphisms of g¢. Put g=f,++/—1f_.++/—1p,+p_, =t ++/—1f,
=+ —1Ip,+p-, §=0|, and 3=0|_. Then the triple (g, T, §) is a symmetric
Lie algebra dual to (g, §, ¢) and & is a Cartan involution of § commutative
with 4. For a f-stable A-subspace a,=ar_+a,_ of (g, b, @), @,=+—la,_+a,_ is
a f-stable maximal abelian subspace of §=+/—1f_+p_. Hence the problem is
reduced to the determination of the K,-conjugacy classes of f#-stable maximal
abelian subspace of @, which is studied in [9, §2].

Theorem 2 of can be rewritten as the following Let
a:_ be a maximal abelian subspace of f. and let a,=a:_+-a,_ be a maximal abelian
subspace of q containing a... We fix this A-subspace a, in the following.
Put @,=+/—1la:_+a,_ and let @(d,) denote the root system of the pair (g, @,).
Put @(a;)={AcP@,)|H,=~'—1a,_} where H, is the unique element of 4,
such that A(H)=B(H,, H) for all Hea, (B( , ) is the Killing form of g¢).

Let a; (i=1, ---, k) be elements of @(a;_) and X,, (=1, ---, k) be non-zero
elements of §,, where g,,={Xeg|[Y, X]=ay(Y)X for all Yeq,}. Then
{Xa,, -+, Xa,} is said to be a P-orthogonal system of @(a.)) ([9]) if the follow-
ing two conditions are satisfied:

(i) Xa;€p for i=1, -, k,

(i) [Xa; Xo;1=0 and [X,,, 0(X,)1=0 for i, j=1, -+, k, i#].
Two p-orthogonal systems {X,,, -, Xa,} and {Yy,, -, Y;,} are said to be
conjugate under W(a,, K,) if there is a we W(a,, K;) such that w(g]:RHai>
= 3 RH;,

THEOREM 3. There is a one-to-one correspondence between the H-conjugacy
classes of A-subspaces and the W(a,, K,)-conjugacy classes of p-orthogonal systems
of @(av). The correspondence is given as follows. Let P={X,,, -, X,,} be

a p-orthogonal system of @(ar.). Put r:«/:Tg,‘klRHai, a¥ ={Hea,_| B(H, 1)
=0}, of =a,_+ éR(Xai—a(Xai)) and a¥=a¥ +at. Then the Wia, Ki)-con-

jugacy class of p-orthogonal systems of @(ar.) containing P corresponds to
the H-conjugacy class of A-subspaces containing af. Moreover if X,, is nor-
malized such that 2a(H,)B(X,,;, 0(Xa;)=—1 for i=1, ---, k, then
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(@F)o=Ad (exp 5 (Xa, +0(Xay) - exP 5 (Xay+0(Xa ) ade

(in a complexification (G¢, He, o) of (G, H, a)).
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