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0. Introduction.

For $G$ an arbitrary finite group, $ZG$ denotes the integral group ring and
$U(ZG)$ its group of units. We denote by $\epsilon$ the augmentation from $ZG$ to $Z$ and
by $V(ZG)$ the subgroup of units $u$ of $ZG$ with $\epsilon(u)=1$ ; clearly $ U(ZG)=V(ZG)\times$

$U(Z)$ . In this paper we study $U(ZD_{n})$ where $D_{n}$ is a dihedral group of order
$2n$ . Throughout this paper we assume that $n$ is an odd integer and all modules
are finitely generated left modules. Main results in this paper are the follow-
ing;

THEOREM A. $V(ZD_{n})$ is a semi-direct prOduct of a torsion free normal
subgrouP with $D_{n}$ .

THEOREM B. There are $\phi(n)/2$ conjugate classes in $V(ZD_{n})$ of subgroups of
$V(ZD_{n})$ isomorphic to $D_{n}$ if the order of the locally free class group $C(ZD_{n})$

of $ZD_{n}$ is odd. Here $\phi$ denotes Euler’s totient function.
By [3] $D(ZD_{n})=0$ if $n<60$ . Masley’s results in [5] show that values of $n$

satisfying the condition of Theorem $B$ and less than 60 are 3, 5, 7, 9, 11, 13, 15,
17, 19, 21, 23, 25, 27, 31, 33, 35, 39, 45, 51, 55 and 57. It seems to be an interest-
ing problem to delete the condition on $C(ZD_{n})$ in Theorem B.

Let $D_{n}$ be generated by $\sigma$ and $\tau$ with relations $\sigma^{n}=\tau^{2}=1$ and $\tau^{-1}\sigma\tau=\sigma^{-1}$ .
Set $S=ZD_{n}/(1+\sigma+\sigma^{2}+\cdots+\sigma^{n-1})$ . The key point in proving Theorems A and
$B$ is that the order $S$ behaves like a hereditary order as far as locally S-modules
concern. For example the locally free class group of $S$ is isomorphic to that of
the center of $S$ . For other applications of this property of $S$ , see [6].

For $n=3$ complete results are obtained by Hughes and Pearson [4]. Further
information on $V(ZD_{3})$ and especially on the torsion free normal subgroup in
Theorem A is found in the excellent survey article on the unit group of rings
by Dennis [2].

Recently K. Sekiguchi (Tokyo Metropolitan University) has extended
Theorem A to a metabelian group $G$ such that the exponent of $G/G^{\prime}$ is 1, 2, 3,
4 or 6, where $G^{\prime}$ denotes the commutator subgroup of $G$ .
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1. Semi-direct products.

Let $\overline{\sigma}$ and $\overline{\tau}$ denote the images of $\sigma$ and $\tau$ in $S$ respectively and let us set
$\omega=\overline{\sigma}+\overline{\sigma}^{-1}$ . We consider a pull back diagram

$ ZD_{n}Z\langle\tau\rangle s\downarrow=\downarrow$

where $F_{n}$ is a finite ring $Z/nZ$ From this diagram we have an exact sequence
(cf. [8], for example)

(1) $1\rightarrow U(ZD_{n})\rightarrow U(S)\rightarrow U(F_{n}\langle\tau\rangle/\langle-1, \tau\rangle)\rightarrow 1$ .

The exactness of the last map follows from the fact that the natural homo-
morphism $D(ZD_{n})\rightarrow D(S)$ is an injection ([3], [6]). By this sequence $U(ZD_{n})$

will be viewed as a normal subgroup of $U(S)$ . Since the center of $S$ is $Z[\omega]$

and $S$ acts on $Z[\overline{\sigma}](\cong S(1+\overline{\tau}))$ as $Z[\omega]$-endomorphisms in a natural way, there
is an injection from $S$ to $End_{Z[\omega]}(Z[\overline{\sigma}])$ . Because $Z[\overline{\sigma}]$ is a free $Z[\omega]$ -module
with basis $(1, \overline{\sigma})$ , we identify $End_{Z[\omega]}(Z[\overline{\sigma}])$ with $M_{2}(Z[\omega])$ , the ring of $2\times 2-$

matrices with entries in $Z[\omega]$ . An arbitrary element $a+b\overline{\tau}+c\overline{\sigma}+d\overline{\tau}\overline{\sigma}$ of $S(a$ ,
$b,$ $c,$ $d\in Z[\omega]$ ) is represented by the matrix

(2) $b\omega-c+da+b$ $a-b+c\omega c+d)$ .

For the remainder of this paper $U(S)$ will be viewed as a subgroup of
$GL_{2}(Z[\omega])$ by this representation. Let us set (2) equal to $\left(\begin{array}{ll}x & y\\z & u\end{array}\right)$ . Then we

have

(3) $a(\omega^{2}-4)=x\omega^{2}-(z-y)\omega-2(x+y)$ .
Since $\omega$ and $\omega+2$ are units in $Z[\omega]$ (note that $n$ is an odd integer), we obtain

LEMMA (1.1). An element $\left(\begin{array}{ll}x & y\\z & u\end{array}\right)$ of $M_{2}(Z[\omega])$ belongs to $S$ if and only if
$x+y\equiv z+u$ mod $(\omega-2)$ .

Let us set

$H=\{\left(\begin{array}{ll}x & y\\z & u\end{array}\right)\in GL_{2}(Z[\omega])|\left(\begin{array}{ll}x & y\\z & u\end{array}\right)\equiv\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ mod $(\omega-2)\}$ .

Then, $H$ is clearly a normal subgroup in $GL_{2}(Z[\omega])$ and $GL_{2}(Z[\omega])/H\cong GL_{2}(F_{n})$ .
The formula (3) and the exact sequence (1) imply that $H$ is contained in $V(ZD_{n})$ .

THEOREM (1.2). $U(ZD_{n})$ is the semi-direct product of $H$ with $\pm D_{n}$ .
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PROOF. By Lemma $(1, 1)$ we have

$U(S)/H=\{\left(\begin{array}{ll}x & y\\z & u\end{array}\right)\in GL_{2}(F_{n})|x+y=z+u\}$ .

If $\left(\begin{array}{ll}X & y\\z & u\end{array}\right)$ is an element of $U(S)/H$, then det $\left(\begin{array}{ll}x & y\\z & u\end{array}\right)=(x+y)(u-y)$ . Hence

the order of $U(S)/H$ is the number of triples $(x, y, u)$ such that $x+y$ and $u-y$

are both units in $F_{n}$ . Thus it is $n\phi(n)^{2}$ . By the exact sequence (1) we have

$[U(S):U(ZD_{n})]=\phi(n)^{2}/4$ .
Since $[U(S):H]=[U(S):U(ZD_{n})]\cdot[U(ZD_{n}):H]$ , the order of $U(ZD_{n})/H$ is $4n$ .
The natural homomorphism from $U(ZD_{n})$ to $U(ZD_{n})/H$ restricted to $\pm D_{n}$ is an
isomorphism, because $H\cap(\pm D_{n})=\{1\}$ . This completes the proof.

Let $\Phi_{m}(X)$ be the m-th cyclotomic polynomial and $S_{h}=S/(\Phi_{h}(\overline{\sigma}))$ for $h/n$ ,
$h>1$ . Since $S$ is the subring of $M_{2}(Z[\omega]),$ $S_{h}$ can be considered as a subring

of $M_{2}(Z[\zeta_{h}+\zeta_{h}^{-1}])$ where $\zeta_{h}=\exp(2\pi i/h)$ . Let us set $\omega_{h}=\zeta_{h}+\zeta_{h}^{-1}$ .
PROPOSITION (1, 3). $H$ is torsion free.
PROOF. Let $H_{h}=\{\left(\begin{array}{ll}X & y\\z & u\end{array}\right)\in GL_{2}(Z[\omega_{h}])|\left(\begin{array}{ll}x & y\\z & u\end{array}\right)\equiv\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ mod $(\omega_{h}-2)\}$

and let $\psi_{h}$ be the natural homomorphism from $H$ to $H_{h}$ . It is easy to check
that $H_{h}$ is torsion free if $h$ is a prime power. If $n=p^{m}$ where $p$ is an odd
prime, $H$ is torsion free since the natural homomorphism

$H\rightarrow H_{p^{m}}\times H_{p^{m-1}}\times\cdots\times H_{p}$

is an injection. Let $n=p_{1}^{m_{1}}p_{2}^{m_{2}}\cdots p_{r}^{m_{r}}(p_{1}<p_{2}<\cdots<p_{r})$ be the prime decomposition
of $n$ . We shall proceed the proof by the induction on $r$ and $m_{1}+m_{2}+\cdots+m_{r}$ .

Let $A=\left(\begin{array}{ll}1+a & b\\c & 1+d\end{array}\right)(a, b, c, d\in(\omega-2)Z[\omega])$ be an element of finite order of $H$.

By the induction assumption we can assume that $\psi_{h}(A)=1$ for every $h|n$ ,

$1<h<n$ . Here $a,$ $b,$ $c$ and $d$ belong to an ideal $\overline{\sigma}^{-k/2}F(\overline{\sigma})Z[\omega]$ , where $F(X)=$

$(1+X+X^{2}+\cdots+X^{n-1})/\Phi_{n}(X)$ and $k$ is the degree of $F(X)$ . Since $F(X)$ is divisible
by $(X^{n/p_{i}}-1)/(X-1)$ for $1\leqq i\leqq r,$ $F(\zeta_{n})$ is divisible by $\omega_{p_{i}}-2$ for $1\leqq i\leqq r$ and so
by $\Omega=\prod_{1\leq i\leqq r}(\omega_{p_{i}}-2)$ . Since $a(\zeta_{n}),$ $b(\zeta_{n}),$ $c(\zeta_{n})$ and $d(\zeta_{n})$ are divisible by $\Omega$ , we
see that

$\psi_{n}(A)\equiv\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ mod $\Omega$ .

Taking a suitable power of $A$ we can assume that the order of $A$ is a prime

$q$ . If $q$ is odd, $\psi_{n}(A)$ is similar to $\left(\begin{array}{ll}\zeta_{q} & 0\\0 & \zeta_{q}^{-1}\end{array}\right)$ over the complex numbers. Com-

puting the trace of $\psi_{n}(A)$ in two different ways, we have $2\equiv\omega_{q}$ mod $\Omega$ . This
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is a contradiction (note that $r\geqq 2$ ). If $q=2,$ $\psi_{n}(A)$ is similar to $\left(\begin{array}{ll}-1 & 0\\0 & 1\end{array}\right)$ or to

$\left(\begin{array}{ll}-1 & 0\\0 & -1\end{array}\right)$ over the complex numbers. This case also leads to a contradiction

by a similar method. Therefore $H$ has no element of finite order except an
identity.

2. Conjugate classes.

Let $G$ be a subgroup of $V(ZD_{n})$ of order $2n$ . Then, we have $ZG=ZD_{n}$ by
[1]. Theorem $(1, 2)$ implies that $G$ is isomorphic to $D_{n}$ . An isomorphism $f$ :
$D_{n}\rightarrow G$ can be extended to an automorphism of $ZD_{n}$ by linearlity. By

Glauberman’s theorem on class sums in group rings (cf. [7]), class sums of $D_{n}$

in $ZD_{n}$ coincide with class sums of $G$ in $ZD_{n}$ as sets and $f$ preserves class
sums (note that $f(V(ZD_{n}))\subseteqq V(ZD_{n})$ , namely, $f$ is a normalised automorphism).

From the above remark we have $f(\sigma+\sigma^{-1})=\sigma^{m}+\sigma^{-m}$ where $m$ is prime to $n$ .
Let $g$ be the automorphism of $ZD_{n}$ defined by $ g(\sigma^{m})=\sigma$ and $ g(\tau)=\tau$ . Changing
$f$ with $f\cdot g$ we can assume that $f$ is the identity map on $Z[\sigma+\sigma^{-1}]$ . Therefore
$f$ induces an automorphism on $V(ZD_{n})/H$ too.

LEMMA $(2, 1)$ . There exists an automorphism $f_{G}$ of $S$ such that (i) $f_{G}(D_{n})=G$ ,

(ii) $f_{G}$ is the identity on $Z[\omega]$ and (iii) $ f_{G}(\tau)=\tau$ in $V(ZD_{n})/H$.
PROOF. Let $f_{G}$ be the automorphism constructed above. Set $\sigma^{\prime}=f(\sigma)$ . In

$V(ZD_{n})/H$ we have that $\sigma^{\prime}=\sigma^{k}$ and $ f(\tau)=\sigma^{i}\tau$ . We choose an integer $tn$ such
that $mk\equiv i(mod n)$ . We define $f_{G}$ by setting $f_{G}(\sigma)=f(\sigma)$ and $f_{G}(\tau)=\sigma^{\prime-m}f(\tau)$

and extend this map to an automorphism on $S$ . Then $f_{G}$ satisfies three condi-
tions.

Let $M$ be the S-module $Z[\overline{\sigma}]\cong S(1+\overline{\tau})$ . $N$ denotes an S-module $Z[\overline{\sigma}]$ on
which $S$ acts through $f_{G}$ in Lemma $(2, 1)$ , that is, (i) $N\cong Z[\overline{\sigma}]$ as a $Z[\omega]-$

module and (ii) $\alpha\cdot m=f_{G}(\alpha)m$ for $\alpha\in S$ and $m\in Z[\overline{\sigma}]$ . By [6] $M$ is a Projective
S-module. Since $f_{G}$ induces an automorphism on $V(ZD_{n})/H$ by Theorem $(1, 1)$ ,
it is easy to see that $F_{n}\otimes_{Z[\omega]}M\cong F_{n}\otimes_{Z[\omega]}N$ as $F_{n}\otimes_{z[]}\omega S$-modules. This implies
that $M$ and $N$ are locally isomorphic, since $M$ and $N$ are projective S-modules
by [6].

We need the following result from [6].

LEMMA $(2, 2)$ . There is a locally free ideal $A$ of $Z[\omega]$ such that

$A\otimes_{Z[\omega]}M\cong AM\cong N$

and $A\oplus A$ is a free $Z[\omega]$ -module.
LEMMA $(2, 3)$ . $U(S)$ is self-normalizing in $GL_{2}(Z[\omega])$ .
PROOF. By simple computations, the image of $\sigma$ in $U(ZD_{n})/H$ is conjugate

to $\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)$ in $GL_{2}(F_{n})$ . Since the normalizer $G$ of the cyclic subgroup generated



Integral group ring of a dihedral group 707

by $\left(\begin{array}{ll}l & 1\\0 & 1\end{array}\right)$ is $\{\left(\begin{array}{ll}X & y\\0 & u\end{array}\right)|xu$ is an unit in $F_{n}\}$ , the order of $G$ is $n\phi(n)^{2}$ , which

shows that $G$ is conjugate to the image of $U(S)$ in $GL_{2}(F_{n})$ . This completes
the proof.

Let $C$ be the center of $GL_{2}(Z[\omega])$ . Then, $C$ is contained in $U(S)$ by Lemma
$(1, 1)$ .

LEMMA $(2, 4)$ . The normalizer of $D_{n}$ in $GL_{2}(Z[\omega])$ is $D_{n}\cdot C$ .
PROOF. Let $X\in GL_{2}(Z[\omega])$ satisfy $XD_{n}X^{-1}\subseteqq D_{n}$ . Then $X$ belongs to $U(S)$

by Lemma $(2, 3)$ . By projecting $\sigma$ to $U(S_{h})$ for every $h|n,$ $h>1$ it is easy to
see that $ X\sigma X^{-1}=\sigma$ or $X\sigma X^{-1}=\sigma^{-1}$ . If $ X\sigma X^{-1}=\sigma$ , we have $ X\tau X^{-1}=\sigma^{i}\tau$ . Taking
an integer $j$ such that $2j\equiv i(mod n)$ , we see that an inner automorphism of $S$

induced by $X\sigma^{-j}$ is the identity on $S$ . Hence $X\sigma^{-j}\in C$ . If $X\sigma X^{-1}=\sigma^{-1}$ , we can
conclude that $X\in D_{n}\cdot C$ by a similar argument.

Finally we can prove,
THEOREM $(2, 5)$ . There are $\phi(n)/2$ conjugate classes of subgroups in $V(ZD_{n})$

isomorPhic to $D_{n}$ if the order of the locally free class group $C(ZD_{n})$ is odd.
PROOF. By [6], $C(Z[\omega])\cong C(S)\cong C(ZD_{n})$ . Since $C(ZD_{n})$ has no 2-torsion,

$M$ and $N$ in Lemma $(2, 2)$ are isomorphic. Therefore a subgroup $G$ of $V(ZD_{n})$

isomorphic to $D_{n}$ is conjugate to $D_{n}$ in $GL_{2}(Z[\omega])$ . Hence $G$ and $D_{n}$ are con-
jugate in $U(S)$ by Lemma $(2, 3)$ . Let $X$ and $Y$ be elements of $U(S)$ . Then,
$XD_{n}X^{-1}$ and $YD_{n}Y^{-1}$ are conjugate in $V(ZD_{n})$ if and only if there exists $ Z\in$

$U(ZD_{n})$ such that $Y^{-1}ZX$ belongs to the normalizer $D_{n}\cdot C$ of $D_{n}$ in $U(S)$ . This
condition is the same as $Y^{-1}X\in U(ZD_{n})\cdot C$ since $XU(ZD_{n})X^{-1}=U(ZD_{n})$ . Hence
the number of conjugate classes of subgroups of $V(ZD_{n})$ isomorphic to $D_{n}$ is

$[U(S):U(ZD_{n})\cdot C]=\phi(n)/2$ .

3. Remarks.

After the manuscript of this paper was completed the paper [9] by Fr\"oh-
lich, Reiner and Ullom came to the author’s attention. Theorem $(4, 3)$ in [9]

gives a proof of Theorem $B$ when $n$ is an odd prime but without the restric-
tion on the order of $C(ZD_{n})(\cong C(Z[\zeta_{n}+\zeta_{n}^{-1}])$ . Namely,

THEOREM $B^{\prime}$ . When $n$ is an odd Prime, the number of conjugate classes in
$V(ZD_{n})$ of subgroups of $V(ZD_{n})$ isomorphic to $D_{n}$ is equal to

$(\phi(n)/2)\cdot|C(ZD_{n})_{2}|$ ,

where $C(ZD_{n})_{z}=\{x\in C(ZD_{n})|2x=0\}and|C(ZD_{n})_{2}|$ is the order of $C(ZD_{n})_{2}$ .
We note the following simple lemma.
LEMMA. $(3, 1)$ . Let $f$ be an automorphism of $ZD_{n}$ such that $f(D_{n})=D_{n}$ and

$f$ is the identity on the center of $ZD_{n}$ . Then, $f$ is an inner automorphism of
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$ZD_{n}$ .
This lemma shows that the number of conjugate classes in $V(ZD_{n})$ of

subgroups of $V(ZD_{n})$ isomorphic to $D_{n}$ is equal to the order of Outcent( $ ZD_{n}\rangle$

(for the definition of Outcent $(ZD_{n})$ , see [9]). This observation and Theorem
$(4, 3)$ in [9] imply Theorem $B^{\prime}$ .

It seems reasonable to conjecture that Theorem $B^{\prime}$ holds for an arbitrary
odd integer $n$ .
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