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§0. Introduction.

Let II, be the class of all trigonometric polynomials of degree n or less.
If fis a continuous 2rz-periodic function, the n-th degree of approximation for
f is defined by
E.(f)= inf | f=T|= inf sup | f(x)—T(x)|.
rell, T

ell, 1z1sx

Let the class W (p=1) consist of all the 2z-periodic functions for which there
exists a (p—1)-th absolutely continuous derivative f*~¥(x), and | f®’(x)| =1 al-
most everywhere. The exact value of En(W“”):fsug, )En( f) is well-known.

. (=4

THEOREM A. (Favard [1], Akhiezer and Krein [2]) The degree of approxi-
mation of the classes W, p=1, 2, --- is given by

En—l(W(p)):Kpn—p ’ n:]-, 2; B
where

0.1) Kp=(4/n)k§0 (—1)* @D R4 1)-2-1

The class W™ conjugate to W consists of all conjugate functions f of
feW®, that is,

o= {7 fa=(—2/m) L fx+ )= fix— )] cot (/2)dt, fe WP,

The exact value of E,(W®) is also known.
THEOREM B. (Akhiezer and Krein [2]) The degree of approximation of the

classes W(p), P':l; 2; TN X gi'l/'en by
En—l(W(m):}%pn—p, n=1, 2, «-,

where

0.2) R,=W/z) §0(~1)w(2k+1}-p-1 .
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We can consider more general classes. Let w be a modulus function of
continuity, and let w(f, -) be the modulus of continuity of a function f. Let p
be a certain non-negative integer. Then W is the set of all 2z-periodic func-
tion f with the property w(f®, h)<w(h). We denote the class conjugate to
WP by WP. The following result was given by Kornei¢uk [5].

THEOREM C. If w is a concave modulus function of continuity we have

En s\(W)=@(x/n)w(x/n),

T/
0

En-l(Wi,}”)=(1/2)S "W OB /n—t)dt  (p=1,2, =),

where

0,.(0)=1/2, By(0)=(1/2)]

rin-x
0

@np'—l(t)dt (p:27 3} '“>'

The expression in[Theorem| C is not so simple. However, we know a simple
form relating to the exact order of decrease of E, ,(W®). Also, we have the
exact order of decrease of E,_,(W@).

THEOREM D. Let w be a modulus function of continuity. Then we have

Con Pw(1/n)SE,(WP)<3n ?w(l/n),

where C, is a constant depending on p such that

Cow(l/n)< w(ﬂ/4n)S[ 3 (—1)FP*O(2E41)"? sin 2k 1)t dt .

tisw/2 k=0
Also, if p=1 we have
Cpn~?w(l/n) S E(WP)<3n "w(1/n)

(see Akhiezer [3], and Timan [7, p. 507]).

In this paper we extend D to certain classes of functions with
many variables. If we apply our method to the case of one variable, we have
the following.

THEOREM D’. If w is a concave modulus funcz‘ian of continuity, we have
(Kpsi/mn " Pw(z/n) S En(WP)YS(K,/2)n™Pw(z /n),
for each p=1, 2, -, n=1,2, -, and
Bpur/mn P w(z /0) S En (WP S (K p/2n Pw(z /n),

for each p=1,2, -, n=1, 2, ---, where K, and ﬁp are the constants mentioned
in (0.1) or (0.2).

Some of the results relating to the approximation of functions of several



Approximation of certain classes of periodic functions 53

variables are found in the books or [8]. We need the following theorem in
the next section.

THEOREM E. ([8, Chapter 6, Theorem 7]) Let f(xi, -+, xs) be a continuous
2n-periodic function that has continuous partial derivatives 0%f/ox%, 0<k=<p,
1=1, 2, -+, s (p=0). Assume that the modulus of continuity of 0Pf/0x? with

respect to x; does not exceed a given modulus function of continuity w(h) for
i=1,2, -, s. Then

(0.3) En i (HIEMn~?w(l/n),

where E,_1.((f) is the degree of approximation for f by the trigonometric poly-
nomzials, with s variables x,, -+, x5, of degree n—1 or less, and M is a constant
depending only on p.

cannot be improved, that is, we are able to find a certain function f;,
with the property w(@?f.,/0x?, h)<w(h) for each i=1, 2, ---, s, such that

Miyn=?w(1/n)S En-i(f),

where M’, is some positive constant depending only on p (see [8, Chapter 9,
Theorem 1]).

§1. Notations and lemmas.

Let f(x;, -, xs) be a continuous function of s variables on an s-dimensional
torus K, the product of s circles K=(—=, =]. The space C[K“] consists of
such continuous functions, and f€C[K*®] has a norm

= max .
1A=, max  ifx, -, 5]

Let L'[K7] consist of all functions f with a norm

nfnl:S j | fCta, o, x| dxy -+ dxg<oo.
K K
We put

Ci(x)=cos kx (=0, 1, --), Si(x)=sin kx (k=1, 2, ).

We define the trigonometric polynomials of degrees n,, ---, n; (n; non-negative
integers, i=1, 2, ---, s) by

Tnl,-.-, ns(xlr ) xs>:k,;§1w,i=1,m,s Apy,e ksUkl(-xl) Uks(xs);
where U, denotes C; or S;. I, .., is a subspace of CLK ] consisting of all

trigonometric polynomials of degrees n;, -+, n,. The degree of approximation
for feCLK®] by I, .. n, is
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Enl.m,ns(f):T inf ”f—'T” .

Enl ..... n

Similarly,
Enpon (= _inf |/=T|,
rell

nl. ceor ns

is the degree of approximation for feL'[K] by II,, ... Let p;, -+, ps be
s non-negative integers. We write (ry, -+, r5)=(p1, ==+, ps) if s non-negative
integers r,, -, 7y satisfy r;=< p, for 1=1, ---, s. For the given integers p,, -, ps
we define the class of functions

F(Pr"Ps)

={rs rectkel, | | 1@ /oxe - 1/oxn s, o, 2l dxs - dxi<oo

for all (ry, -+, r2) With (s, -, 7)=(ps, -, P}
We consider the subclasses of F®P1r 2 Let
P{{pst; 9)={(ry, =+, rs); ri=0 or py, i=1, -, s, ri+ -+ +r:#0}.

Put
WP Ps) — {f; fe F(Pl"'l’s)’ ](a”s/axgs arl/ax'{l)f(xh - xs)l é]_ a.e.,

for all (ry, -+, ro)€ P({p;} ; $)}.
Let w be a modulus function of continuity, then we define
Wpr-ro={f; (67/dxPs - 871/0x 1) fe CLK @],
w((0"s/0x - 0" /ax DS, W)= w(h)
for all (r,, ---, 7rs) with (ry, -+, rs)€ P({p,} ; )},

where w(g, h) is the modulus of continuity of g, that is,

wg, )= max = [glaitty, -, xett)—glay, -, 2.

ISh,i=

Let W be a class of functions, then we denote the degree of approximation of
W by

Enl,...,ns(W>: ?-lél'pl;)] Enl.---, ns(f) .

Our main purpose is to estimate the exact order of E, .., (W), where W
is one of the classes

W(Pl“'ps) and qupl“'Ps) .

We use the following notations :
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C: if p is even,
Urip= . .
S if p is odd,
Tn;s:Tn,-.., n En;s(W)::En,m, n(W) ’
fETlst](xly Tty xs)_—_—(ars/ax"s's v arl/ax’,l-l)f(xlr STty xs) ’,
I({r;} ; s)={i; r;#0 and such that 1<i<s}.

We need several lemmas. Certain results in L!'-approximation are also neces-
sary for uniform approximation. The following is well-known in the case s=1
(see [8, Chapter 8]).

LEMMA 1. Let Tyell,,, .. A, and let f€eL'[K®]). Then T, is a polynomial
of best approximation of f if

[0 G, s x)sign e, =, 2)=Tolxs, -, 201dx -+ dxi=0
for all Tell,, ...

If f(xy, -, xs)—To(x1, -+, xs) vanishes only on a set of measure zero, this con-
dition is also necessary. '
We consider the kernels

DO(x)=—1/2, D(x)=(1/x) glk-p cos (kx—pr/2) (p=1,2, ),
and
ﬁrm(x):u/n)éz1 E-Psin(bx—pr/2)  (p=L,2, ).

If f» (p=1) is integrable, we have a representation

=2 fnat+| pra—nrowar

or
o ={ Dona—nromat,

where f is the conjugate function of f (see [7, p. 288, p. 315]). Thus we have
a representation for fe F®1?s ag follows.

LEMMA 2. Let p,y, -+, ps be the positive integers. For each fe FP1 P e
have

fx, ey xd=@m | (S s wdredxs

K
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TT D7 — £ )fEE 78ty oo, )ty - dty

1, THEPUPGES) SK SK i=1

+

But, if r;=0 for some j=1, ---, s we consider the integral

8
il . — ) FIT17sd
[ oV, momacei—topemate, -, t)dty - di,

as the integral

[ § o=t D= 0@ o - /0500 (ks -+, 1)
K K 5

=/2a)| - { | T Dot t )@ [t - 674/00f (1, -, 1)
Xdt, - dt; - di,.

We can define the “conjugate” class of Wwres or Wgupl...ps), that is, for
each positive integers p;, ===, ps

W(pr'-ps>:{f;fe Wer e fx o x,)

= S fI Doy — ) forvmsi(gy, -, to)d ity o dts} ,
K i=1

(1, THEPUPj1;8) SK

and

Wgreo={F; FaWgrso, fla, =, x)

S f_[BETiJ(xi_ti)fli?’r"rsj(th o, bty dts} ,
K i=1

(r1, ) EPUD1;8) SK

where D(t)=—1/2z. The following result is well-known (6], [7, p. 81]).
LEMMA 3. For each p=1, 2, --- we have

En_l(Dm)lngDm(t) sign Uy, ,(t)dt=K,n"?,

En_l<ﬁtp1)1:SKﬁm(t) sign Un,,()dt=K,n?.

Qur main lemma is
LEMMA 4. For each (ry, -+, rs)€ P({p;} ; s) (#0), we have

max [II ”D[Tﬂ”1Krinzﬂi§Enl—1,~--’ n3-1( II D),

tEIUrj18) 1#] €I ((T1;9)

= X II | Dway, _I;IQK””E” )
1

T geQcTir e 1€Irne
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where .IEIB | D3| ,=1. Also, we have

max T | D7), K, i< Enyosyingi_ IT D9,
i€l (rj);8) i#) 1€ ({T51;8)

< > T D), K i,

=5¢Qc1<(rj};8) €L UTj1;\Q
where TI |D7o)),=1.
=
PrROOF. Let r;#0, and let /=I({r;} ; s). By[Lemma Il and [Lemma J we have
En -1 ng-2( II D7),
el

= ”Lg D[Ti]"_Tnl——l, n3—1”1

= o | L DT D sign LI DO Ty di

el

z( | LI Dm0=To s n sl Unyy, T1 D70, - dix,
K K i€l iel,i#

J

:S S Dt Sign Unj;Tj H D[Ti]dxl dxs
K K el

i€l i#j

= I I D" Ky jn5™

1#j

Conversely, we must have the estimation from above. We put

Eo (D), =|DVI—T 1l for each i=1, -+, s.

Then it is sufficient to show
S S | T1 Diril— ]_—,[Tni—lldxl o dx
K K iel i€l
1.2)
= > II ID"9, II K,,ni"s,
8+QCI i€INQ 1€Q
for simplicity we denote by A; the second hand side. In the case of s=1 it

follows from [Lemma 3 For some s—1 (=1) we assume (1.2). Let »,#0, then
for s we have

SK... S | L D70— [T Tyl dxs - dx,

K i€l

A

SKS | TI Drrad—Dprst 11 Tni-lldxl"; dx,

K i€l t€l, 1#$

+ [0 T Tapi= I Tapsldn, e d,
K K iel

1€l i#s
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= D"s||;As-,+ By,
where Bs:HiEIl—Ls Thi-il1Krns™. But, by |Dra—T,,,|,=K,n;"" we have

”Tni-l”lé | D3], + K, yniTe.

Therefore we have
B;= 1I L[IDYd|,+ K, ni"]Kyni™
i€l,i#s
= TII ID"9|,Kpns"s+ I1 Kpynit.

1€T,1#8 €I

Thus, we have
[ D7 As o1+ Bs= As.

By the inductive method we have (1.2).
Similarly, we have also the estimations for the conjugate type. (q.e.d.)
LEMMA 5. For each jeI({r;};s) the function

Fharn, ey x)={ DAL ) sign Unr (x,— £ )d1,
belongs to W®r'P9 and then

(13) Enpsrng- s FD= NI 210, -+, O =K, 0575

Similarly, we see that the function

Fixs, -, x5)=SKﬁ”ﬂ(tj) sign Un . (x,— 1,)d 1,
belongs to WP and then
14) Enpesrsng-s FN=IFZ A0, -+, 0| =K, n775 .
PROOF. Let '
Eniovions=i(fD=Ifi=T a1 ns-1ll -

For each fixed point (x4, ***, Xj-1, Xj41, =+, X;) WE S€EE
Enl-l,---,ns—l(fj)zniax fi(xy, o, xs>_Tn1—1.~:, ns—-l(xls ey X))
f]
_Z_Enj—l(f](xh ty, Xj-1m vy Xjr1y Tt Xs))
=max|f (x5, -, x5
z4

(see [8, Chapter 8]). Thus, we have (1.3) Similarly, we have [1.4). (qg.e.d.)
Let w and w be two modulus functions of continuity. Then we denote by
Ey0)W) the degree of approximation of the class W by the class W, We
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know the exact value of Ew o (W), that is,
Eyo(Wi)=(1/2) max [w(h)—w(h)]

(see [8, Chapter 8, Theorem 8]). We can extend this to the case of many
variables (Theorem 2.2). To prove it we need the following lemma. We omit

its proof because it is not so difficult.
LEMMA 6. Let w be a modulus function of continuity, and let W(x) be defined
such that it is even and 2r-periodic, and

Wx)=w(x), 0=x==.
Then, for | x|, |y| =7 we have
W(x+y)=W(x)+W(y).
We use the notation” ||(xy, -+, xs)ll:m?xlxil. is applied to

estimate the exact order of decrease of E,_, (W), where w is concave

(Theorem 2.3). The following lemmas are used to estimate the exact order of

E oy (WL o). .
LEMMA 7. Let w be a concave modulus function of continuity. Then, for

each h, 0<hZm, there is an M=0 for which
(1.5) maXx [w(x)—Mx]=w(h)—Mh

0sxrsw

(see [8, Chapter 8]).
LEMMA 8. Let f satisfy the Lipschitz conditions

L6) [ fty ooy xekt, e, )= S, e, Xe e, 1) S[E, =1, s,
Then there is a constant M such that
1.7 Eqoy()SMnt.
Also, for each i=1, ---, s the function
filx e, 2= DOt sign Unplxi—tdts
satisfies the condition (1.6), and
(1.3) Enoy(f)2(m/2)n™t.

PROOF. follows from E, and has been obtained in
Lemma § (g.e.d.)
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§2. Theorems.

THEOREM 2.1. Let p,, -+, ps be the positive integers, then we have an esti-
mation

max K, niPisE, .. ;- (WPTPD)
€I UD L

> > IL D0, I K i,

(r1, T EP(1P;1;8) B#QCI (17r51;8) L€IUT51;\Q

PrOOF. The first inequality follows from We must show the
second inequality. Let P=P({p;}; s) and I=I({r;} ;s). Put

Enyoyng-i( ILDTE),= I 1 D"8=S0op gy

where Sp,_1,..n,-1 IS @ trigonometric polynomial of degree n,—1, -+, n,—1. For
each fe W®r 2 we put

K

Tn1—1,~--, ns-1<x1: Tty xs):(Zﬂ-)_sS B Sxf(xl; e, Xg)dxy o dxs

+ E S ...S Snl"l'“'ins—l(xl—tl, e xs_t‘)
@1, 1)EPJK K .
)(f[‘rl...rs](th TN ts)dtl dts .
Then we have
”f_Tnl_l"“r ns‘l”é Z Enl”l,..., ns'l(HD[Ti]>l B
€r ierl

(T, 78)

By we have the second inequality. (g.e.d.)
If we put EW(S)Omm(W;?"'“)): sup inf | f—gll we have

(00 (0
fEWw gEW

THEOREM 2.2. Let w and w be two modulus functions of continuity. Then
we have

Eww-o(WI2)=(1/2) m"ilx (w(h)—w(h)) .
PrOOF. Let W stand for the function defined by w as in Then
we put

g(xy, -, xg)= min  {flxgtty, e, 2o E) W, - 29D}

ety tlsw

Let |(x;—y1, =+, xs—¥s)|I=n. For each ¢; we can find an integer k(f;) such
that

v u=x;+t;—y;—2k(t)m, lu; | <.
Thus we have
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‘ g(xl) R xs)
= min {fiyitxit+ti—yy, -, ys+xs+,ts—ys)+W<||t1, o D)

Ity = tlsn

= min - {f(yi+us, o, Yot us)

ICty o tlis
+ Wl (uy—x,+ 3,2kt D7, -+, Us—xs+ys+2k(E)TD} .
Here, by we have
Wl(uy— x4y, +2k(t )7, -, us—xs+ s +2k(EHT)])
=W(lu;—x;+y;+2k(t)x|)  (for some j=I1, ---, s)
=W(lu;—x;+;1)
=W(u;D+W(lx;— ;D
=W (uy, -, udDFWH =1, -, 25— 35D .
Therefore, we see
&lxy, o, x)=8(y1, -y Y)W (i —y1 -+, 21— 3D
Consequently, we have
lg(xy, =) x)—=g(ys, =, ) =W =y, -+, 25— 29D
Now, if we consider the function
go=g+d,  d=(1/2)max {wh)—w(h)}
we see g, W%, and since
0= flxy, -, xs)—g(xs, -, x5
=[xy, o0, x)—fxatty, o, xstt) [ —o([[(Ey, -, E)ID
(for some ¢y, ==+, t5)

§w(“(t1y ) ts)”>_w(H<t1y ) ts)”)y
we have

[ f—gll=d.

To complete the proof, we have to construct a function fo= W ®, which
cannot be approximated by any function ge W% ® with an error <d. Define
a 2rx-periodic function

Jolxs, =, x)=wl(xy, -+, x))  for l(xy, -, 2l =7

If |(x;—y =, xs—ys)| =7 we can find two points (x}, -+, xi) and (3}, -+, %)
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for which x,—2k;r=x}, y;—2jm=y; for some integers k; and ji (=1, -+, 3),
and J|(x}, -, xDIZx, 1(¥} -, yoOll<m. Then we have | x,—y;|=min{|x;—yil,
|xi+yil}. Let (x5, -, xDll=1xi| SI(¥i, -, ¥OI=1yj], then we see

| folxs, = 2)=fol3n = ¥y = 1fo(xt, =y 2)—Fo(yi, o5 99)]

sw( x| =1y1D
sw(l y;l—1x3D)
Sw(min{| xj—y5l, [x5+ ;1)
=w(|x;— ;1)
Sw(ll(xi—yu 5 xe— sl

Thus f,e WE®. Let ge W& and |[(xy, -+, x5)| ==, then we have

2l fo—gl = folxs, ==+, x)| — | 8(xy, -, 25)—g(0, -+, 0)]

Zw(l(xy, -, 2)D—0(l(xy, -+, x)I).
Therefore we see

| fo—gl=d. (g.e.d.)

THEOREM 2.3. If w is a concave modulus function of continuity we have
an estimation

A/2)w(x/n) = En-ys(WE ) =w(Cn™),

where C is a constant.
Proor. If f belongs to WQ®, where w,(t)=¢, it satisfies the Lipschitz
conditions [T.6). Thus, by there is a constant C such that

(2.1) En i (Wi )=Cn"1.

Let M=0 denote a value of M for which holds, with A=2Cn*. By Theo-
rem 2.2, for each fe W, there exists ge W with w,({)=Mt such that

I f—gl=1/2)[w2Cn ) —M2Cn™")].

By [2.I), there is a trigonometric polynomial T,_,,; of degree n—1 or less such

that
lg—Tn ysll=EMCn™t.

Therefore we have
| =T 1l =1/ 2w2Cn~)=w(Cn™?).

Let fa(xy, -+, xs) be an odd and 2z /n-periodic function such that
1/2)w2x,), 0=sx,=x/2n,

fn(xly R xs)"_—{
1/2w@r/n—2x), =w/2n=x,=x/n,



Approximation of certain classes of periodic functions 63

then we see f,e W, For each fixed point (x, ---, x;), the polynomial of
best approximation for the function f, with one variable x, is T,_,(x,)=0 (see
[8, Chapter 2]). Thus, for each fixed point (x,, -+, xs)

(2.2) En—l;s(fn):”fn'—Tn-l;s"zEnﬂ(fn):mIalxlfn(xh ey X)) :”fn” .
Consequently, we see that the polynomial of best approximation for f, with s
variables is T,-;,,=0. Thus, we have

En—l;s(W;gWO)):Z_En—l;s(fn): ” fn”:<1/2)w(7r/n) . ((l €. d>

THEOREM 2.4. Let p,, -+, ps be the positive integers, and let w be a con-
cave modulus function of continuity. Then we have

23 max (1/7)K pysanPiw(m /n) S En o WPE29)

= X > I D", II K, n~"i3w(C/n),
(ry,THEP §+£QCI i€I\Q i1€Q
where P=P({p;}; ), I=I({r;} ; s) and C is a constant.
ProOF. For each fe W{y1?s> we have a representation

fay ey xd=@e | o | At o t0dt - ats
+ S S 18__[D['l‘i](xi__ti)f["'l"'rs](tl, o t)dEy - dis.
(r1.+r)EPJ K K i=1

Let En-l;s(ﬁlD”“)1=|I f{lDE’ﬂ—Sn_l;slll, where S,_;;s is a polynomial of degree

n—1 or less, and let

Toslts, -+, 1)=Qa)| o | Aty ) t2dt - ats

T v SKSn—l;S(xl—tl, Tty xs—ts)f[rlmrsj(tly A t8>dt1 o dts .

(rl,u-,rs)ePSK
Then we see

“:f(xl) Tty xs)—'Tn—l;s(xlx Tty xs)]_[f(yh Tty ys)—Tn—l;s(ylx Ty ys)]l

= = | ]t prat) =Sty -, 1]
ry,TEP|JK K i=1
x[f[fr"?‘s](xl_tl, ) xs_ts>_f|:rlmrs](y1_tly R ys_ts)]dtl o dis

SO % B D7)y 5 130D

(ry.
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By we have
8
E..i ()=S0 . 2 Eu (11 D) Jw(Cn™).
(Tl,"‘,Ts)EP i=1

Thus, by .using Lemma 4 we obtain the second inequality in (2.3).
Next, we have to get the estimation from below. We consider an odd and
2n/n-periodic function such that

X, 0=x=xn/2n,
gn(x)=

T/n—x, n/2n=x=rw/n,
for n=1, 2, ---. For each p;, i=1, ---, s, we put

: gn(x) if p; is odd,
gi(x)=
gn(x—m/2n) if p; is even,
and then we define

hoi(xy, o, x)=n/m)w(w/n)g7 (xq) .

It is not difficult to prove h,,€ Wy ®. If we consider the function
fn;i(xl’ Tty xs) :SKD[pi](ti)hn;i(xl—tly ) xs_ts>dti

we see fn,, & WP P9 and

Sai(xe, =, xs)Z(n/fr)w(rr/n)SKD“’””(ti) sign Uy, p,+1(xs—t:)d ;.
Thus, we have

En ys(frd)Z fa;il 2 1[040, -, O =1/7) K}, 410~ Piw(z/n)
(see [(2.2)). : (q.e.d.)

By the same lines of consideration we obtain the following result.
THEOREM 2.5. Let by, -+, ps be the positive integers, and let w be a concave
modulus function of continuity. Then we have

max (1/m)K p,sin2w(m /n) < Eq 1, o(Wr9)

=L, 2 .2 I 10w, 0K ndJuwCn™),

(r1,+T9EP B+QCI iENQ

where C is a constant, and P=P(p;; s), I=I{r;; s).
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