On the existence of harmonic functions in L^{p}

By Bui Huy Qui and Yoshihiro Mizuta

(Received Oct. 25, 1979)

Let D be a domain in the n-dimensional Euclidean space $R^{n}(n \geqq 2)$, and let $A_{p}(D)$ (resp. $H_{p}(D)$), $1<p<\infty$, be the space of all functions in $L^{p}(D)$ each of which is holomorphic (resp. harmonic) in D if $n=2$ (resp. $n \geqq 3$). Carleson [2] proved in case $n=2$ that
i) if $p>2$ and $C_{q}\left(R^{2}-D\right)>0,1 / p+1 / q=1$, then $A_{p}(D)$ contains a non-constant function;
ii) if $p>2$ and $\Lambda_{2-q}\left(R^{2}-D\right)<\infty$, then $A_{p}(D)=\{0\}$. Here C_{α} denotes the Riesz capacity with respect to the kernel $r^{\alpha-n}$, and Λ_{α} denotes the α-dimensional Hausdorff measure.

To improve this result, it is convenient to use the Bessel capacity; the Bessel capacity of index $(\alpha, r), \alpha>0,1<r<\infty$, is denoted by $B_{\alpha, r}$ (cf. Meyers [4]). Further, we say that a class of functions is non-trivial if it contains a non-constant function.

Our main aim is to prove the following theorems.
Theorem 1. (i) If $B_{1, q}\left(R^{2}-D\right)=0$, then $A_{p}(D)=\{0\}$.
(ii) If $p \geqq 2$ and $B_{1, q}\left(R^{2}-D\right)>0$, then $A_{p}(D)$ is non-trivial.
(iii) If $p<2$ and $R^{2}-D$ contains at least two points, then $A_{p}(D)$ is nontrivial.

Theorem 2. (i) If $B_{2, q}\left(R^{n}-D\right)=0$, then $H_{p}(D)=\{0\}$.
(ii) If $2 q \leqq n$ and $B_{2, q}\left(R^{n}-D\right)>0$, then $H_{p}(D)$ is non-trivial.
(iii) If $2 q>n, q \neq n$ and $R^{n}-D$ contains at least two points, then $H_{p}(D)$ is non-trivial.
(iv) If $q=n$ and $R^{n}-D \supset\left\{x^{0}, 0,-x^{0}\right\}, x^{0} \neq 0$, then $H_{p}(D)$ is non-trivial.

Remark 1. (i) If $q<n<2 q$ and $D=R^{n}-\left\{x^{(1)}, x^{(2)}\right\}, x^{(1)} \neq x^{(2)}$, then $H_{p}(D)$ $=\left\{c u ; c \in R^{1}\right\}$, where

$$
u(x)=\left|x-x^{(1)}\right|^{2-n}-\left|x-x^{(2)}\right|^{2-n} .
$$

(ii) If $q>n$ and $D=R^{n}-\left\{x^{(1)}, x^{(2)}\right\}, x^{(1)} \neq x^{(2)}$, then $H_{p}(D)=\left\{\sum_{i=0}^{n} c_{i} u_{i} ; c_{i} \in R^{1}\right.$ for $i=0,1, \cdots, n\}$, where

[^0]\[

$$
\begin{aligned}
& u_{0}(x)=\left|x-x^{(1)}\right|^{2-n}-\left|x-x^{(2)}\right|^{2-n} \\
&-\sum_{i=1}^{n}\left(x_{i}^{(1)}-x_{i}^{(2)}\right) \frac{\partial}{\partial x_{i}}\left|x-x^{(2)}\right|^{2-n}: \\
& u_{i}(x)=\frac{\partial}{\partial x_{i}}\left(\left|x-x^{(1)}\right|^{2-n}-\left|x-x^{(2)}\right|^{2-n}\right), \quad i=1, \cdots, n .
\end{aligned}
$$
\]

(iii) If $q \neq n<2 q$ and $R^{n}-D$ consists of one point only, then $H_{p}(D)=\{0\}$.
(iv) If $q=n$ and $R^{n}-D$ consists of two points, then $H_{p}(D)=\{0\}$. If $q=n$ and $R^{n}-D$ consists of three points $x^{(1)}, x^{(2)}, x^{(3)}$, then a necessary and sufficien: condition for $H_{p}(D)$ to be non-trivial is that $2 x^{(1)}=x^{(2)}+x^{(3)}, 2 x^{(2)}=x^{(3)}+x^{(1)}$ or $2 x^{(3)}=x^{(1)}+x^{(2)}$ holds.

REMARK 2. The following follow easily from Theorems 1 and 2.
(1) In case $p \geqq 2, B_{1, q}\left(R^{2}-D\right)=0$ if and only if $A_{p}(D)=\{0\}$.
(2) In case $2 q \leqq n, B_{2, q}\left(R^{n}-D\right)=0$ if and only if $H_{p}(D)=\{0\}$.

The assertion (1) for the case $p>2$ is also an easy consequence of $[3$; Theorem 5.1]; the assertion (2) for the case $2 q<n$ follows also from [3; Lemma 5.3].

We give only a proof of Theorem 2, because Theorem 1 can be proved similarly.

PROOF OF THEOREM 2. The statement (i) is an easy consequence of [1; Theorem B] and the fact that $H_{p}\left(R^{n}\right)=\{0\}$, which follows from the mean-value property for harmonic functions.

Assume that the assumptions of (ii) are satisfied. Then we can find mutually disjoint compact subsets K_{1}, K_{2} of $R^{n}-D$ such that $B_{2, q}\left(K_{i}\right)>0$ for $i=1$, 2. By [4; Theorem 16] there exist non-negative measures μ_{1}, μ_{2} such that the support of μ_{i} is included in $K_{i}, \mu_{i}\left(K_{i}\right)=1$ and $g_{2} * \mu_{i} \in L^{p}\left(R^{n}\right)$ for each i, where g_{2} denotes the Bessel kernel of order 2. Set

$$
u(x)=\int|x-y|^{2-n} d \mu_{1}(y)-\int|x-y|^{2-n} d \mu_{2}(y), \quad x \in R^{n}
$$

Then $u \in L_{\text {loc }}^{p}\left(R^{n}\right)$ and $u=O\left(|x|^{1-n}\right)$ as $|x| \rightarrow \infty$, so that $u \in H_{p}(D)$.
Assume that $2 q>n$ and $R^{n}-D \supset\left\{x^{(1)}, x^{(2)}\right\}, x^{(1)} \neq x^{(2)}$. If $q<n$, then the function u in Remark 1 (i) belongs to $H_{p}(D)$. If $q>n$, then the functions u_{0}, u_{1}, \cdots, u_{n} in Remark 1 (ii) belong to $H_{p}(D)$.

Finally assume that $q=n$ and $R^{n}-D \supset\left\{x^{0}, 0,-x^{0}\right\}, x^{0} \neq 0$. Then the function

$$
v(x)=\left|x+x^{0}\right|^{2-n}-2|x|^{2-n}+\left|x-x^{0}\right|^{2-n}
$$

belongs to $H_{p}(D)$.
To prove Remark 1, it suffices to use the following result.
Lemma. Let u be a tempered distribution in R^{n} such that

$$
\Delta u=0 \quad \text { on } \quad R^{n}-\left\{x^{(1)}, \cdots, x^{(k)}\right\}
$$

Then u is of the form

$$
u(x)=\sum_{i, \lambda} c_{i, \lambda} D^{2}\left(\left|x-x^{(i)}\right|^{2-n}\right)+P(x),
$$

where $c_{i, \lambda} \in R^{1}, D^{\lambda}=\left(\partial / \partial x_{1}\right)^{\lambda_{1}} \cdots\left(\partial / \partial x_{n}\right)^{\lambda_{n}}$ for a multi-index $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ and P is a harmonic polynomial.

As an application of Theorem 2, we give a partial answer to Problem 2 in [6], Assume hereafter $p<2<q$. In the three cases listed below, $H_{p}(D)$ is nontrivial and $H_{q}(D)=\{0\}$, so that the dual of $H_{p}(D)$ is not equal to $H_{q}(D)$.
(1) Let $2 p \leqq n$ and $2 q \leqq n$. Find a compact set $K \subset R^{n}$ such that $B_{2, p}(K)=0$ but $B_{2 . q}(K)>0$, and let $D=R^{n}-K$, which is a domain on account of [5 ; Theorem 3].
(2) Let $2 p \leqq n, 2 q>n, q \neq n$ and $D=R^{n}-\left\{x^{(1)}, x^{(2)}\right\}, x^{(1)} \neq x^{(2)}$.
(3) Let $2 p \leqq n, q=n$ and $D=R^{n}-\left\{x^{0}, 0,-x^{0}\right\}, x^{0} \neq 0$.

Finally we note that if $p<n<2 p, q<n<2 q$ and $D=R^{n}-\left\{x^{(1)}, x^{(2)}\right\}, x^{(1)} \neq x^{(2)}$, then both $H_{p}(D)$ and $H_{q}(D)$ are one-dimensional, so that the dual of $H_{p}(D)$ is equal to $H_{q}(D)$.

References

[1] D. R. Adams and J. C. Polking, The equivalence of two definitions of capacity, Proc. Amer. Math. Soc., 37 (1973), 529-534.
[2] L. Carleson, Selected problems on exceptional sets, Van Nostrand, Princeton, 1967.
[3] V.G. Maz'ja and V.P. Havin, Use of (p, l) -capacity in problems of the theory of exceptional sets, Math. USSR-Sb., 19 (1973), 547-580.
[4] N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand., 26 (1970), 255-292.
[5] Y. Mizuta, On removable singularities for polyharmonic distributions, Hiroshima Math. J., 7 (1977), 827-832.
[6] M. Nakai and L. Sario, Banach spaces of harmonic functions in L_{p}, Bull. Inst. Math. Acad. Sinica, 6 (1978), 415-417.
BuI HUY QUI
Department of Mathematics
Faculty of Science
Hiroshima University
Hiroshima 730
Japan

Yoshihiro Mizuta
Department of Mathematics
Faculty of Integrated Arts and Sciences
Hiroshima University
Hiroshima 730
Japan

[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 574070), Ministry of Education.

