On the existence of harmonic functions in L^p

By BUI HUY QUI and Yoshihiro MIZUTA

(Received Oct. 25, 1979)

Let D be a domain in the n-dimensional Euclidean space R^n ($n \ge 2$), and let $A_p(D)$ (resp. $H_p(D)$), $1 , be the space of all functions in <math>L^p(D)$ each of which is holomorphic (resp. harmonic) in D if n=2 (resp. $n \ge 3$). Carleson [2] proved in case n=2 that

- i) if p>2 and $C_q(R^2-D)>0$, 1/p+1/q=1, then $A_p(D)$ contains a non-constant function;
- ii) if p>2 and $\Lambda_{2-q}(R^2-D)<\infty$, then $A_p(D)=\{0\}$. Here C_α denotes the Riesz capacity with respect to the kernel $r^{\alpha-n}$, and Λ_α denotes the α -dimensional Hausdorff measure.

To improve this result, it is convenient to use the Bessel capacity; the Bessel capacity of index (α, r) , $\alpha > 0$, $1 < r < \infty$, is denoted by $B_{\alpha, r}$ (cf. Meyers [4]). Further, we say that a class of functions is non-trivial if it contains a non-constant function.

Our main aim is to prove the following theorems.

THEOREM 1. (i) If $B_{1,q}(R^2-D)=0$, then $A_p(D)=\{0\}$.

- (ii) If $p \ge 2$ and $B_{1,q}(R^2-D) > 0$, then $A_p(D)$ is non-trivial.
- (iii) If p<2 and R^2-D contains at least two points, then $A_p(D)$ is non-trivial.

THEOREM 2. (i) If $B_{2,q}(R^n-D)=0$, then $H_p(D)=\{0\}$.

- (ii) If $2q \le n$ and $B_{2,q}(R^n D) > 0$, then $H_p(D)$ is non-trivial.
- (iii) If 2q > n, $q \neq n$ and $R^n D$ contains at least two points, then $H_p(D)$ is non-trivial.
 - (iv) If q=n and $R^n-D\supseteq\{x^0, 0, -x^0\}$, $x^0\neq 0$, then $H_p(D)$ is non-trivial.

REMARK 1. (i) If q < n < 2q and $D = R^n - \{x^{(1)}, x^{(2)}\}$, $x^{(1)} \neq x^{(2)}$, then $H_p(D) = \{cu : c \in R^1\}$, where

$$u(x) = |x-x^{(1)}|^{2-n} - |x-x^{(2)}|^{2-n}$$
.

(ii) If q > n and $D = R^n - \{x^{(1)}, x^{(2)}\}, x^{(1)} \neq x^{(2)}$, then $H_p(D) = \left\{ \sum_{i=0}^n c_i u_i; c_i \in R^1 \text{ for } i = 0, 1, \cdots, n \right\}$, where

This research was partially supported by Grant-in-Aid for Scientific Research (No. 574070), Ministry of Education.

$$u_{0}(x) = |x - x^{(1)}|^{2-n} - |x - x^{(2)}|^{2-n}$$

$$- \sum_{i=1}^{n} (x_{i}^{(1)} - x_{i}^{(2)}) \frac{\partial}{\partial x_{i}} |x - x^{(2)}|^{2-n}.$$

$$u_{i}(x) = \frac{\partial}{\partial x_{i}} (|x - x^{(1)}|^{2-n} - |x - x^{(2)}|^{2-n}), \quad i=1, \dots, n.$$

- (iii) If $q \neq n < 2q$ and $R^n D$ consists of one point only, then $H_p(D) = \{0\}$.
- (iv) If q=n and R^n-D consists of two points, then $H_p(D)=\{0\}$. If q=n and R^n-D consists of three points $x^{(1)}$, $x^{(2)}$, $x^{(3)}$, then a necessary and sufficient condition for $H_p(D)$ to be non-trivial is that $2x^{(1)}=x^{(2)}+x^{(3)}$, $2x^{(2)}=x^{(3)}+x^{(1)}$ or $2x^{(3)}=x^{(1)}+x^{(2)}$ holds.

REMARK 2. The following follow easily from Theorems 1 and 2.

- (1) In case $p \ge 2$, $B_{1,q}(R^2-D)=0$ if and only if $A_p(D)=\{0\}$.
- (2) In case $2q \le n$, $B_{2,q}(R^n D) = 0$ if and only if $H_p(D) = \{0\}$.

The assertion (1) for the case p>2 is also an easy consequence of [3; Theorem 5.1]; the assertion (2) for the case 2q < n follows also from [3; Lemma 5.3].

We give only a proof of Theorem 2, because Theorem 1 can be proved similarly.

PROOF OF THEOREM 2. The statement (i) is an easy consequence of [1; Theorem B] and the fact that $H_p(\mathbb{R}^n) = \{0\}$, which follows from the mean-value property for harmonic functions.

Assume that the assumptions of (ii) are satisfied. Then we can find mutually disjoint compact subsets K_1 , K_2 of R^n-D such that $B_{2,q}(K_i)>0$ for i=1, 2. By [4; Theorem 16] there exist non-negative measures μ_1 , μ_2 such that the support of μ_i is included in K_i , $\mu_i(K_i)=1$ and $g_2*\mu_i\in L^p(R^n)$ for each i, where g_2 denotes the Bessel kernel of order 2. Set

$$u(x) = \int |x-y|^{2-n} d\mu_1(y) - \int |x-y|^{2-n} d\mu_2(y), \quad x \in \mathbb{R}^n.$$

Then $u \in L_{po}^p(\mathbb{R}^n)$ and $u = O(|x|^{1-n})$ as $|x| \to \infty$, so that $u \in H_p(\mathbb{D})$.

Assume that 2q > n and $R^n - D \supset \{x^{(1)}, x^{(2)}\}$, $x^{(1)} \neq x^{(2)}$. If q < n, then the function u in Remark 1 (i) belongs to $H_p(D)$. If q > n, then the functions u_0 , u_1 , \dots , u_n in Remark 1 (ii) belong to $H_p(D)$.

Finally assume that q=n and $R^n-D\supset \{x^0, 0, -x^0\}$, $x^0\neq 0$. Then the function

$$v(x) = |x+x^0|^{2-n} - 2|x|^{2-n} + |x-x^0|^{2-n}$$

belongs to $H_p(D)$.

To prove Remark 1, it suffices to use the following result. LEMMA. Let u be a tempered distribution in R^n such that

$$\Delta u = 0$$
 on $R^n - \{x^{(1)}, \dots, x^{(k)}\}$

Then u is of the form

$$u(x) = \sum_{i=1}^{n} c_{i,\lambda} D^{\lambda}(|x-x^{(i)}|^{2-n}) + P(x),$$

where $c_{i,\lambda} \in \mathbb{R}^1$, $D^{\lambda} = (\partial/\partial x_1)^{\lambda_1} \cdots (\partial/\partial x_n)^{\lambda_n}$ for a multi-index $\lambda = (\lambda_1, \dots, \lambda_n)$ and P is a harmonic polynomial.

As an application of Theorem 2, we give a partial answer to Problem 2 in [6]. Assume hereafter p < 2 < q. In the three cases listed below, $H_p(D)$ is non-trivial and $H_q(D) = \{0\}$, so that the dual of $H_p(D)$ is not equal to $H_q(D)$.

- (1) Let $2p \le n$ and $2q \le n$. Find a compact set $K \subset \mathbb{R}^n$ such that $B_{2,p}(K) = 0$ but $B_{2,q}(K) > 0$, and let $D = \mathbb{R}^n K$, which is a domain on account of [5; Theorem 3].
 - (2) Let $2p \le n$, 2q > n, $q \ne n$ and $D = R^n \{x^{(1)}, x^{(2)}\}$, $x^{(1)} \ne x^{(2)}$.
 - (3) Let $2p \le n$, q=n and $D=R^n-\{x^0, 0, -x^0\}$, $x^0 \ne 0$.

Finally we note that if p < n < 2p, q < n < 2q and $D = R^n - \{x^{(1)}, x^{(2)}\}$, $x^{(1)} \neq x^{(2)}$, then both $H_p(D)$ and $H_q(D)$ are one-dimensional, so that the dual of $H_p(D)$ is equal to $H_q(D)$.

References

- [1] D.R. Adams and J.C. Polking, The equivalence of two definitions of capacity, Proc. Amer. Math. Soc., 37 (1973), 529-534.
- [2] L. Carleson, Selected problems on exceptional sets, Van Nostrand, Princeton, 1967.
- [3] V.G. Maz'ja and V.P. Havin, Use of (p, l)-capacity in problems of the theory of exceptional sets, Math. USSR-Sb., 19 (1973), 547-580.
- [4] N.G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand., 26 (1970), 255-292.
- [5] Y. Mizuta, On removable singularities for polyharmonic distributions, Hiroshima Math. J., 7 (1977), 827-832.
- [6] M. Nakai and L. Sario, Banach spaces of harmonic functions in L_p , Bull. Inst. Math. Acad. Sinica, 6 (1978), 415-417.

Bui Huy Qui

Department of Mathematics Faculty of Science Hiroshima University Hiroshima 730 Japan Yoshihiro MIZUTA

Department of Mathematics Faculty of Integrated Arts and Sciences Hiroshima University Hiroshima 730 Japan