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On the existence of harmonic functions in L?
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Let D be a domain in the n-dimensional Euclidean space R" (n=2), and let
Ap(D) (resp. H,(D)), 1<p<co, be the space of all functions in L?(D) each of
which is holomorphic (resp. harmonic) in D if n=2 (resp. n=3). Carleson [2]
proved in case n=2 that

i) if p>2 and Cy(R*—D)>0, 1/p+1/g=1, then A,(D) contains a non-con-
stant function;

i) if p>2 and 4, ((R*—D)<co, then A,(D)={0}. Here C, denotes the
Riesz capacity with respect to the kernel r*®, and 4, denotes the a-dimen-
sional Hausdorff measure.

To improve this result, it is convenient to use the Bessel capacity; the
Bessel capacity of index (a, 7), a>0, 1<r<co, is denoted by B, , (cf. Meyers
[4]). Further, we say that a class of functions is non-trivial if it contains a
non-constant function.

Our main aim is to prove the following theorems.

THEOREM 1. (i) If By (R*—D)=0, then Ay(D)={0}.

(ii) If p=2 and B, (R*—D)>0, then A,(D) is non-trivial.

(iii) If p<2 and R*—D contains at least two points, then Ay(D) is non-
trivial. .

THEOREM 2. (i) If B, (R™—D)=0, then H,(D)={0}.

(ii) If 2g=n and B, (R"—D)>0, then Hy(D) is non-trivial.

(iii) If 2¢>n, g#n and R*—D contains at least two points, then H,(D) is
non-trivial.

(iv) If ¢g=n and R"—DD{x° 0, —x°}, x°+#0, then Hy(D) is non-trivial.

REMARK 1. (i) If g<n<2q and D=R"—{x®, x®}, xP£x®, then Hy(D
={cu; ceR'}, where :

u(x)=|x—xP PP —x—x® |27,
(ii) If g>n and D=R™*— {x, x®}, xP=x®  then Hp(D)z{ i{,ciui; c;ER?

for =0, 1, -, n}, where
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U(x)= [ x—x D" — | x—x® 27"
_ i (x(,n__x(,z)) 0 lx_x(2)|z—n
i=1 ¢ ¢ axi :

0
axi

(iif) If g#n<2¢ and R"—D consists of one point only, then H,(D)={0}.

(iv) If g=n and R"—D consists of two points, then H,(D)={0}. If ¢g==
and R"—D consists of three points x®’, x®, x®, then a necessary and sufficien:
condition for H,(D) to be non-trivial is that 2x®P=x®4x® 2x®=x®4x® or
2x®=xD4x® holds.

REMARK 2. The following follow easily from Theorems 1 and 2.

(1) In case p=2, B;,(R*—D)=0 if and only if A,(D)={0}.

(2) In case 2¢g=<n, B, (R*—D)=0 if and only if H,(D)={0}.

The assertion (1) for the case p>2 is also an easy consequence of [3;
Theorem 5.17; the assertion (2) for the case 2g<n follows also from [3;
Lemma 5.3].

We give only a proof of Theorem 2, because Theorem 1 can be proved
similarly.

ProoF oF THEOREM 2. The statement (i) is an easy consequence of [1;
Theorem B] and the fact that H,(R™)={0}, which follows from the mean-value
property for harmonic functions.

Assume that the assumptions of (ii) are satisfied. Then we can find mu-
tually disjoint compact subsets K;, K, of R*—D such that B, ,(K;)>0 for i=1,
2. By [4; Theorem 16] there exist non-negative measures g, p, such that the
support of y; is included in K;, p«(K;)=1 and g, * g, LP(R") for each ¢, where
g. denotes the Bessel kernel of order 2. Set

uy(x)= (Jx—=x®PFr—|x—x®*"), =1, .-, n.

u(x)=SIx~y|2'”dp1(y)—glx—yl2""dﬂ2(y), xER™.

Then us Li(R™) and u=O0(|x|*"") as |x| — oo, so that uc H,(D).

Assume that 2¢>n and R"—DD{x®, x®}, x®P+=x®, If ¢<un, then the
function u in Remark 1 (i) belongs to H,(D). If ¢>n, then the functions u,, u,,
-, U, in Remark 1 (ii) belong to H,(D).

Finally assume that ¢g=n and R*—DD{x° 0, —x°%, x*#0. Then the function

v(=]x+x* =2z [+ | x—x"[*7"

belongs to Hy(D).
To prove Remark 1, it suffices to use the following result.
LEMMA. Let u be a tempered distribution in R™ such that

Au=0 on R"— {x®, -, x®}
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Then u is of the form
u(x= 3 ¢ DA x— x|+ P(x),

where ¢; ;€ RY, D*=(0/0x)*t -+ (0/0xn)** for a multi-index A=(Ay, -, A,) and
P is a harmonic polynomial.

As an application of we give a partial answer to Problem 2 in
[6] Assume hereafter p<2<gq. In the three cases listed below, H,(D) is non-
trivial and H,(D)={0}, so that the dual of H,(D) is not equal to H (D).

(1) Let 2p<n and 2g=<n. Find a compact set KCR" such that B, ,(K)=0 but
B (K)>0, and let D=R"—K, which is a domain on account of [5; Theorem 3].

(2) Let 2p=n, 2¢>n, g#n and D=R"— {xD, x®}, xD£x®,

(3) Let 2p=n, g=n and D=R"—{x°, 0, —x, x°+0.

Finally we note that if p<n<2p, g<n<2q and D=R"— {x, x®}, xD#£x®,
then both H,(D) and H,(D) are one-dimensional, so that the dual of H,(D) is
equal to Hy(D).
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