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1. Introduction.

On a compact Hermitian manifold M, we define two differential operators,
i.e., the real Laplacian A=dd6+dd, and the complex Laplacian O0=4df+6d. In
this note we deal with these operators acting on differentiable functions. We
denote by Spec(M, A) (resp. Spec(M, 1)) the set of eigenvalues with multiplicity
of A (resp. O). It is an interesting problem to investigate the relationship
between the geometry of a smooth manifold and the spectrum of its Laplacian.

A Hopf manifold is well-known as the first example of a compact complex
manifold which does not admit Kaehler metrics. E. Bedford and T. Suwa ([1])
described explicitly the eigenvalues of A and [0 on Hopf manifolds. Some
isospectral results were also given by them. In this note we will describe (in
the eigenvalues of A and O on Calabi-Eckmann manifolds which
were discovered as the second example of non-Kaehler complex manifolds ([4]).
Some isospectral results will be given in [Theorem 6.4 and [Theorem 6.5

The author wishes to thank Professor K. Ogiue for helpful suggestions.

2. The complex Laplacian on Hermitian manifolds.

In this section we will find the relation between the complex and the real
Laplacians, and give formulas for the asymptotic expansion of the eigenvalues
of the complex Laplacian, making use of Gilkey’s Theorem.

Let (M, g, J) be a compact connected Hermitian manifold with Hermitian
metric g and complex structure J. By C*(M) we denote the space of complex-

valued differentiable functions on M with a scalar product {¢, ¢>=SMgogZd Ve,

where dV, is the Riemannian volume form on M. For the definition and the
fundamental properties of the complex Laplacian on Hermitian manifolds we
refer to Morrow and Kodaira [9]. Let £ be the 2-form defined by 2(X, V)=
g(JX, Y), which is called the Kaehler form of (M, g, J). Let { be the vector
field dual to —df2, where ¢ denotes the codifferential operator.
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PROPOSITION 2.1. Let O be the complex Laplacian acting on differentiable
functions on M. Then we have

20=A—iLg,

where Lg is the Lie derivation with respect to the vector field .

Proor. We get the above result after straightforward computations (cf.
[9D.

DEFINITION. A Hermitian manifold (M, g, J) is called semi-Kaehler if it
satisfies 62=0, or equivalently {=0 (cf. K. Yano [117, p.192).

REMARK 2.2. It is well-known that 0=1/2A holds as the operator acting
on forms of type (p, q) on Kaehler manifolds (cf. [9]). [Proposition 2.1 shows
that 0=1/2A holds as the operator acting on differentiable functions on semi-
Kaehler manifolds. The converse will be seen later in this section (cf. Corol-
lary 2.8).

If (M, g, ]J) is a Hermitian manifold, then so is (M, g, —J). Let O be the
complex Laplacian of (M, g, —J). Then the following is easily seen from
[Proposition 2.1l

PROPOSITION 2.3. Spec(M, 0O)=Spec(M, O).

Here we review the Gilkey’s results ([6], [7])). Let M be an m-dimensional
compact connected Riemannian manifold with Riemannian metric g and volume
element dV,. Let V be a smooth r-dimensional vector bundle over M and
D: C(V)—C=(V) a second order differential operator with leading symbol given
by the metric tensor. Let ¥ be any connection on the vector bundle V. We
denote by Dy the Laplacian on V defined by ¥V and g.

THEOREM 2.4. (Gilkey [6], [7]) Given a second order differential operator
D: C>(V)—C>(V) with leading symbol given by the metric tensor, there is a
unique connection N on V such that Dy—D is 0-th order operator, i.e., an
endomorphism of V.

We assume that V has a smooth inner product and D is a self-adjoint
operator. For D we consider only such a connection V on V as in
24. Let {45, A, ---} be the spectrum of D and let

3 exp(—t2) 7, (4x 1) ™ ao D)+ a D)+ af D)+ --)

be the asymptotic expansion. Then we have
THEOREM 2.5. (Gilkey [6], [7])

(D) afD)=r Vol (M, g)

@) al(D):r/6SMz'dVg—|—SMTr(E)dV,,
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3) az(D)::r/3605M{5f2——2]p|2+2|R|2}dVg

+ 1/3605M {30Tr(G(W?)+Tr(60c E+180E*)}dV,,

where E=Dy—D ; R, p, and t© denote the curvature tensor, the Ricci tensor, and
the scalar curvature of (M, g) respectively; W is the curvature tensor of N and
G(W?) is the endomorphism of V defined by GIW?)=g"*g*'W ; ;W n..

Now we apply the Gilkey’s results to our case and give formulas for the
asymptotic expansion of the complex Laplacian. In our case we take V=MXC,
the trivial complex line bundle over the Hermitian manifold M. We may
naturally consider a complex-valued function ¢ on M as a cross-section of V
and the complex Laplacian O as a differential operator acting on cross-sections
of V. Given a complex-valued 1-form w on M, we can define a connection V
on V by Vxp=Xo+o(X)p for any vector field X on M.

LEMMA 2.6. Let wz—%i&Q, V the connection determined by w and Dy the
Laplacian defined by N and the Hermitian metric g. Then Dy—20 is a 0-th

1 . . :
order operator and D;——ZD:—4—|59121, where I denotes the identity transformation.

Proor. Applying [Proposition 2.1 we have

—20¢0=g""VVho+il*0,p
=g @0np—I0up)+iC*0s0,

where V is the Riemannian connection and I'%, is the Christoffel’s symbol with
respect to the Hermitian metric g. Since Dy is the Laplacian defined by V and
g, we have

—Dyp=g" (V)= V7, 3,0}
=g (V000 00+ pwn)— "4V 0}
=g {0,000+ 0npw;+0;0wn+ 0001+ ¢wr®;— I'520rp—I'ingw,}
=g"™M0;010— '%10,9)+28"" w;010+ 08" (0;01— [ 5rwr)+ g w0y, .
Therefore we get

(Dy—20)p=0C*—2g7*w;)0r o+ pdw— g’ " w;w, .

. 1. 1., 1. 1. .
Since (»:—7159, we see that 5(9—————2—25 £2=0 and a)j:—-—z—z(é.Q)jzfzg,-kC .
Thus we have (Dy—20)¢p=—¢g’"w,;0w, and hence Dy—20=1/4]62|*I.

THEOREM 2.7. Let {2y, A, -} be the spectrum of 20 on the Hermitian
manifold M and
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1:21 eXp(_th)L:O (4ﬂt)_m/2(ao+alt+a2t2+ _._)

be the asymptotic expansion. Then we have
(1) a,=Vol(M, g)
@) a1:1/6ngdvg+1/4SM|mmvg

3) a,=1/360] (5:'~2|p|*+2|R|%}dV,

+1/36()SM{—30] dof2|*+60/4c |62 1°+180/16]0214 dV, .

ProoF. By [Theorem 2.4 and Lemma 2.6, we can apply [Theorem 2.5 to the
case where D=20 and V is the connection defined by w:—%z’ﬁ,@. It is clear

that the curvature W of V is given by W=—iddoQ. Q.E.D.
By [Proposition 2.1, [Theorem 2.7, and the asymptotic expansion for the real
Laplacian, the following is easily seen.
COROLLARY 2.8. Let M be a compact connected Hermitian manifold. Then
Spec(M, 20)=Spec(M, A) if and only if M is a semi-Kaehler manifold.
REMARK 2.9. Gilkey has proved that the spectra of 11%° O%! and O%°

(O?? means the complex Laplacian acting on forms of type (p, q)) of a

Hermitian manifold determine whether the metric is Kaehler ([5)).
2.8 shows that the spectra of O and A of a Hermitian manifold determine

whether the metric is semi-Kaehler,

3. Complex structures and Hermitian metrics of Calabi-Eckmann manifolds.

In this section, applying A. Morimoto’s method ([8]), we introduce complex
structures on the product of two odd-dimensional spheres and define Hermitian

metrics compatible with the complex structures.

3.1. An almost contact structure on an odd-dimensional sphere.
DEFINITION. (cf. Blair [3]) Let M be a differentiable manifold of dimension

2n—+1. An almost contact structure on M is a triple X=(¢, &, ), where ¢ is a
tensor field of type (1, 1) on M, & is a vector field on M, and » is a 1-form on

M satisfying the following conditions:
(3.1) 7(§)=1
3.2) ¢*X=—X+n(X)¢ for any tangent vector X on M.

Let C™*! be a complex Euclidean (n-+1)-space with the standard complex
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structure f Let (5°**, g) be a unit sphere in C"*, i.e, S***'={ze C"*; |z||=1}
with the induced metric g. We define Y=(¢, &, ») on S***! by fz:z*E and
f(e*X)zz*ng—?y(X)z for ze S***! and X T,(52**), where ¢: S?**'—(C"*! is the
inclusion map. Then X=(¢, & ) on S***!' is an almost contact structure.
Moreover the almost contact structure 2 satisfies the following equations ([8]):

(3:3) VX, V)=¢(X, YD-[$X, Y1-[X, 6Y1-g[$X, $V]
H{(PX )N —(@V X} E
=0.
(3.4) | Lep=0.

The induced metric g on S*"*! is compatible with the almost contact structure
2 in the following sense:

3.5) g(@X, ¢Y)=g(X, Y)—n(X)n(Y) for any tangent vectors X, ¥ of S**+.
By (3.5) we immediately get the following :

(3.6) 7(X)=g(§, X) for any tangent vector X of S*"*!

3.7 8¢, H)=1.

Moreover (@, &, 5, g) is Sasakian, namely, the following differential equations

are satisfied (cf. [3]:

38 (V)Y =p(V)X—g(X, Y)E
(3.9) dn(X, Y)=g(¢X, Y)
(3.10) Vxé=¢X for any vector fields X, ¥ on S***%,

3.2 Complex structures on the product of two odd-dimensional spheres.
Morimoto ([8]) introduced an almost complex structure J on the product of
two almost contact manifolds M and M’ with almost contact structures Y=

(9, & n) and X'=(¢’, &, ') respectively by
JX+XN=¢pX—7(X)e+¢"(X")+n(X)E

for any tangent vector X of M and any X’ of M’. He has proved that the
induced almost complex structure J on MX M’ is integrable if and only if =0
and ¥’=0, where ¥ and ¥ are the tensor fields defined by [(3.3).

Now we shall introduce almost complex structures on the product of two
odd-dimensional spheres S*P*!'x S**!, Let X=(¢, &, ) (resp. 2'=(¢’, &, 1)) be
the almost contact structure on S??*! (resp. S??*!) given in 3.1. Then we define
a family of almost complex structures [, , (or simply J) on S2pix S+l g
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follows. For any tangent vector X of S?”*! and any X’ of S%+!,
.11 JX+X)=¢X—{a/bn(X)+(a>+b*)/by'(X")}§

+¢' (X)) + {l/bn(X)+a /by (X)}E,
where a, be R and b+0.
It is easily seen that J?*=—I, which shows that J is an almost complex
structure on S?2P+1x S0+l
Noticing that X=(¢, & %) and 2'=(¢’, &, ') satisfy ¥=0 and ¥'=0
respectively, we can prove the following by the same way as Morimoto [8].

PROPOSITION 3.1. The almost complex structure J defined by (3.11) is inte-
grable.

We denote by MZ:¢ the complex manifold S$??*!x S**' with the complex
structure J,,, defined by [(3.11).

3.3. A Hermitian metric on MZ2:¢.

We define a Riemannian metric g,,, (or simply g) on MZ:{ by
3.12) g=g:1Ta(n@n' +7'Q@n)+La*+b*—117'Qn'+ g2,
where g, and g, are the canonical Riemannian metrics on S?*#*! and S**!
respectively.

The following is easily checked.

PRrROPOSITION 3.2. The Riemannian metric g given in (3.12) is a Hermitian
metric on the complex manifold ME§.

From now on MZ2¢ denotes the Hermitian manifold with the metric g
given in [(3.12).

We shall give several remarks on the Hermitian metric of M%:%:

(1) In the case of a=0 and b=1, the Riemannian metric g, gives the
Riemannian product of (S??*!, g,) and (5**!, g,). For the sake of simplicity we
denote g, by g.

(2) In the case of ¢=0, the Hermitian structure of MZ:} coincides with
that of Hopf manifold M, in [1], where a=¢ 27®-i®,

(3) M%2, is biholomorphically isometric to the Hermitian manifold
(M%% —Ja.0)-

[Proposition 2.3 and this remark imply that Spec(M%Z , 0O)=Spec(M%%, O).

(4) In the case of ¢+0, M2:%, is biholomorphically isometric to the Hermi-
tian manifold (M4, —Ja.»)-

By [Proposition 2.3 and this remark, we have Spec(M2:%,, 0)=Spec(M2:4, 0I).
So from now on we assume that b is positive.

(5) M?g, is isometric to MZ:¢ as a Riemannian manifold, but not biholo-
morphic in general.

To show (3), (4), and (5) we prepare the following lemma.
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LEMMA. The diffeomorphism ¢, of S*P*' defined by ¢p(2)=(Zo, Z1, ***, Zp)
for z=(z,, 24, -+, 2p)ESPHICCP* has the following properties:

03g1=g1, (ep)xé=—&, OIn=—n, ¢ (Po)x=—(Pp)x°9.

Using the above we can prove that (id, ¢g): S'X S?*1—S1x S%+1 ig
a biholomorphic isometry from M%Z, to (M%%, —Ja.0), (@05, @g): S?PHIXS¥H—
S2p+ix §%t1 ig a biholomorphic isometry from MZ%:2, to (M%3, —J..»), and
(pp, 1d) 1 SPPHIX S S2P+ §2*+ g an isometry from MZ22, to MZ:4.

4. Some formulas for a Riemannian submersion.

In O’Neill studied fundamental equations of a Riemannian submersion.
We review some formulas which are useful in the sequel. Given a Riemannian
submersion 7: M—B, we denote by VE (resp. 4FE) a vertical part (resp. a
horizontal part) of a vector field £ on M. Following O’'Neill, we define two
tensor fields T' and A by

respectively, where V denotes the Riemannian connection on M. The tensor
field A is called an integrability tensor associated with the submersion.

DEFINITION. A basic vector field is a horizontal vector field X* which is
rm-related to a vector field X on B, i.e., n X¥=X, for all uesM. We some-
times call X* the horizontal lift of X.

LEMMA 4.1. Suppose X* and Y* are the horizontal lifts of X and Y. Then

(1) ([ X*, Y*]) is the horizontal lift of [ X, Y.

(@) Ky Y* is the horizontal lift of NxY, where V is the Riemannian con-
nection on B.

LEMMA 4.2. (1) At each point, Ag is a skew-symmetric linear operator on
the tangent space on M.

(2) Let X and Y be horizontal vector fields on M. Then

AxY=1/20(X, Y7]).

LEMMA 4.3. Let X and Y be horizontal vector fields and V and W vertical
vector fields. Moreover let N be the Riemannian connection on the fibres. Then
we have

L NWW=T,W+I,W

@) VWX=H Ty X)+TyX
() VieV=AxV+WY(TxV)
@) VY =H(VsY)+A,Y.
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Furthermore if X is basic, then (N, X)=AxV.

Let R be the curvature tensor of M, R the curvature tensor of B, and R
the curvature tensor of the fibre. The horizontal lift R* of R is defined by
(R*uyng h¥, RE>={Rnn,he, hs), where h¥ is the horizontal lift of h; We remark
that the curvature tensor R is defined by

RyxyZ=Nx,y1Z —xNyZ+NyNxZ .

LEMMA 44. If U, V, W, F, are vertical vector fields and X, Y, Z, H, are
horizontal vector fields, then we have

©) <RyyW, Fy=(RyyW, F>—<(TyW, TyF>+<(TyF, T,yW>
(1) <RuW, X>=<(WyTWW, X>—<(WTHW, X>
@) (RxyY, Wy={(TxTHW, Y>>+ A)xY, W>—(TyX, TwY>+<{AxV, AW>
@2) (RywX, Y>=A(VyA)xY, W)—{(TwA)xY, V>+<AxV, AW

—AxW, AyVy—<TvX, TwY>+<TwX, TvY)
(3) (RxyZ, Vy=X(VzA)xY, V>+{AxY, TvZ>—<AyZ, TyX)>—<AzX, TvY>
@) (RxyZ, Hy={R%yZ, H)—2{AxY, AzH>+<{AyZ, AxH)>+<{A.X, AyH)>.

The proof of these results is found in \\

5. The real Laplacian and the complex Laplacian of MZ%:¢ and their eigen-
values.

It is well-known that the fibration z: (S??*1, g,)—CP? is a Riemannian
submersion with totally geodesic fibres S!, where CP? is furnished with the
Fubini-Study metric. Moreover & defined in 3.1 is a vertical vector field with
respect to the submersion. For any tangent vector X of S*?*, 5(X)§ is a
vertical part of X.

LEMMA 5.1. (1) Let X be a vector field on CP? and X* its horizontal lift.
Then we have

LeX*=[¢, X*]=0.

(2) Let A be the integrability temsor associated with the Riemannian sub-
mersion m. If X and Y are horizontal vectors on S***', then we have AxY =

<X, ¢Y)8.

PrROOF. (1) Since & is a vector field which is z-related to 0 on CP?, we
get

(L€, X*¥D=[r4§, 7L X*]1=[0, X1=0.
On the other hand by we have

7§, X*¥)=En(X*)—(Len)(X*)=0.
Thus (1) is proved.
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(2) The proof is found in [10].

Let 7, and 7z, be the submersions x;: S?**'—>CP? and r,: S¥+'—CP?
respectively. We put n=(m,, m;): SPP*' XS -CP?PXCP? It is easily seen
that =z (S?PHixS%+ 5)—>(CP?XCP? h) is a Riemannian submersion with
totally geodesic fibres T2=S!'x S* and & and &’ span the vertical subspaces with
respect to the submersion n, where & (resp. h) denotes the product metric on
S2PH1 §**t (resp. CPPXCP9. We consider the Laplacian A,, on (S***!, g)) as
a differential operator acting on differentiable functions on S2?*!x S?¢*! in the
following way; For o&C=(S*?*' X S**), A, o(x, x")=A4 % ¢(x) at (x, x’), where
¢z~ denotes the natural imbedding ¢, : S*PPH1-S2P+1Ix S20+ given by ¢..(x)=
(x, x’). The Laplacian Ag, on (S***!, g,) is considered similarly. For an arbitrary
point xCP?, let U, be a neighborhood of x in CP? and {e,, e,, -, esp} be a
local field of orthonormal frames on U,;. We denote by e¥ the horizontal lift
of ¢; on n7Y(U,) with respect to the submersion r,. Similarly, for an arbitrary
point x’CP? we choose U, and a local field of orthonormal frames {e}, :--, esq}
on U,. With respect to the Riemannian submersion =, ¢;* denotes the hori-
zontal lift of e; on n7*(U,). We put U=U,XU,. Then {e;, -:-, €sp, €1, ***, €3}
is naturally considered as a local field of orthonormal frames on U, and
{e¥, -+, efy, e*, -+, e:x} is considered as a local field of orthonormal vectors on
 U)=r7 (U)X 7z (Us).

The following is easily seen.

LEMMA 52. (1) e¥ and er* (1=5j=2p, 1=k =<2q) on n ' (U) are horizontal
lifts of e; and e;, with respect to the Riemannian submersion .

(2) For feC=(S*?*'xS**), A, and A, are expressed as follows;

— A, f=(Hess /)€, &)+ 3 (Hess f)c, ef)

g, f=(Hess f)E, &)+ 3 (Hess et ei¥),

where Hess f denotes the Hessian of f with respect to the metric g.

Let V and % be the Riemannian connections with respect to the metric
tensors g and § on S2P*1% S%+! respectively. Moreover let V be the Riemannian
connection with respect to 2~ on CP?XCP".

LEMMA 5.3. The Riemannian metric g has the following properties.

(1) The vector field & (resp. €) on S*?*'Xx S**! is a Killing vector field with
constant length 1 (resp. (a®+4b%)"*) with respect to the metric g.

(2) Veb=V:8&' =VL'=V,:5=0.

3) m: (8P S%H ) —(CP?XCPY h) is a Riemannian submersion with
totally geodesic fibres.

(4) Horizontal distributions associated with the Riemannian submersion
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i (S S*H o) (CPPXCPY h) and the submersion m: (S?P+1x S+, §)—
(CP?XCPY h) are identical.
(5) Let ef and ei* be vector fields on n~*(U) defined in Lemma 5.2. Then
we have
Ves;e}"z\ae;e}" and V%*e{*:ik*ei*.

(6) Volume elements with respect to g and § have the following relations;
dV,=bdV; and Vol(S?P+' X S**1, g)=b Vol(S?P+1x S¥*1, &).

Proor. (1) Noticing that & is a Killing vector field of (S??*!, g,) and
Len=0, we see that & is a Killing vector field of (S*?*!XS%**!, g). By the
definition {(3.12) we have g(§, §)=g.(&, §)=1. Similarly for &’.

2) (1) implies that V=0 and V.§'=0. Let {ef, ::-, e¥,
ei*, -+, e;¥} be a local field on =~*(U) given in Then {¢§, &,
ef, -+, efp, et*, -+, esx} is clearly a local field of linear frames. By
we have Lgef=0, Lee;*=0, Lgef=0, and Lgep*=0. Therefore we get

2g(Ve€', ef)=6g(&’, eN)+&'g(§, ef)—efg(§, &)
+g(L&, &1, eN+glef, €], §N+ g€, LT, D)

=0
and
2g(N:E7, er*)=Eg(&’, er*)+E& g(§, ex*)—er*g(€, &)

+g([&, &0, e+ g(len*, &1, EN+ (&, [ex*, &)
=0.

Moreover it is easily seen that g(V¢£’, £)=0 and g(V:£’, §)=0. Hence we have
Ve£’=0, which, together with [£, §]=0, implies V¢&=0.

(3) and (4). Let X* and Y* be any two vector fields in {e¥, -+, e¥,, e1*, ---,
e;¥}. Then the vector fields X* and Y* satisfy g(X*, &) =g(X*, &)=5Y* &)
=g(*, §)=0, p(X*)=29"(X*)=9p¥*)=9"(Y*)=0 and g(X*, Y*)=h(X, V), where
#X*=X and zY*=Y. Similarly we have g(X¥*, §) =g(X*, &)=g(* &)=
gY*, &)=0 and g(X* Y*)=g(X* Y*)=h(X,Y). These facts imply that
7 (S S%H ) (CPPXCPY% h) is a Riemannian submersion and that hori-
zontal distributions associated with two Riemannian submersions are identical.
Moreover (2) shows that the fibres are totally geodesic submanifolds.

(5) It follows from (4) that ¢¥ and e,* are basic vector fields with respect
to the Riemannian submersion r: (S?P*'x S%+! o)—(CP?xXCP? h). By
4.1 (2) and we have

H(Tey ) =To0)*=H(Vege})  and
V(g e})=1/2V ([e¥, ef)=V (Ve e}) .
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Therefore we get V. e}“:eev{ ef. Similarly we can prove V.se; —V rer.

(6) For any point of z*U), {§ &, e¥, -, efp, e1*, -+, ei¥} is an ortho-
normal basis with respect to the metric §. The metric tensor g is represented
with respect to this basis by

Therefore (6) is proved. (We remark that b/ is assumed to be positive.)
Q.E.D.

We shall find the vector field { (defined in §2) for the Hermitian manifold
MZ2:¢ in the following lemma.

LEMMA 54. {=-—2p&—2¢4&".

PROOF. We use the local field of frames {£, &, ef, -+, e¥p, e1*, -, ese} on
X (U). It is easily seen that {§, (§’—a&)/b, e¥, ---, efp, e1*, -+, ei¥} is a local
field of orthonormal frames with respect to g. Therefore we have

C:(v$])5+(v<e' —af)/b])((é’_ a&)/b)
+ BTy e+ B (TeDek*.

From the equation (5), and V(Vese)=0, we get
(Ves Nef=Vex (J(€3))—J(Vex €3)
—Ve* (§(ei)— ¢'(Ve* e5)
="Ves (3 —('Ves eF)
=("Ves plef
=n(efef—gilef, e
=—£,

where ‘V denotes the Riemannian connection of (S?**! g,). Similarly we see
that (Vep[er*=—¢".
By Lemma 5.3 (2) we have

(Ve DE=Ve(JE)— J(Vek)
=Ve(—a/bs+1/b&")
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=—q/bVE+1/bVE
=0.

Similarly we see that (V:/))&'=(Vs J)é=(Ve J)&=0. Thus is proved.
We are now in a position to calculate the real Laplacian A, and the com-
plex Laplacian O, on M%:4.

PROPOSITION 5.5. For any complex-valued differentiable function f on ME:3,
we have

Def=0g fHDg, f—a?/D*LeLe f4(*—1)/b*Ls Lo f4+2a/b°LeLe f
and

200, f=Ag [+ L g, f—a?/b*LeLef+(b2—1)/b?Le Le f
+2a/b*LeLe f+2piLef+2¢iLe f .

Proor. We calculate A, on n~*U) using the local field of orthonormal
frames {£, (§’—a&)/b, e¥, ---, e¥y, ei*, --+, es¥} in the same way as in the proof
of Lemma 54. We denote by Hess, f and Hess f the Hessian of f with respect
to g and g respectively. Then we have

— A g f=(Hess, f)(§, &)+ (Hess, f)(§'—a&)/b, (§'—a&)/b)
+ 3, (Hess, £)(ef, el 3 (Hess, /el )

=(Hess, /)€, §)+1/b%(Hess, )&, §)
—2a/b*(Hess; )€, §)+a®/b*(Hess, f)(§, &)

+ 35 (Hess, /)et, e+ 3 (Hess, f)er¥, ef)

(2) implies that
(Hess; /)&, &)=LeLef—(Neb)f=LeLef,
(Hess, /)¢, §)=Le Lo f~(Ve§)f=Le Lef,  and
(Hess, /)&, §)=LeLe f—(Vef')f=LeLof
By (5) we have
(Hess, f)(ef, ef)=Les Les f—(Vesef)f
=Ly Loy f~(Ves e)f
=(Hess f)(e}, ).
Similarly we have (Hess,f)(er*, ex*)=(Hess f)(e;*, e;*). By 2) we
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see that
2p
- Agf: L§L5f+ E(HCSS f)(e}", e;k)‘i" Lgr LErf
+ Z(HeSSf)(ek y e +a’ /0P LeLef+(1—b%)/b*Le Lo f
—2a/b*L¢Le f
=—Ng, [, f+a?/b*LeLef+(1—b%/b*Le Le. f

—Za/szgLe,f.

By Proposition 2.]] and [Lemma 5.4 we see that 200, is expressed in the form of

this proposition. Q.E.D.

We shall describe the eigenvalues of the real Laplacian and the complex

Laplacian on M24 Let Ay=—4 E be the standard Laplacian on C"*.,

0*
0z,0%;
Let 4. be the space of harmomc polynomials of type (%, [), i.e., the poly-

nomial f on C™*' such that A,f=0 and f(z):I | kZH LC,wz"E”, where p=
pi=k,Ivi=

(tor p1 "+ » o) and v=(vy, vy, ---, v,) are (n+1)-tuples of non-negative integers,
lpl= }_,Z‘ Ui |v|= iouj, and zH=z40z1 ... zhin ZV==ZPoZ¥1 ... Zka,
j=0 i=
LEMMA 5.6. Let S®™*! be the unit (2n+1)-sphere in C"*' and & be the
vector field on S*™*' given in 3.1. Moreover let A, be the Laplacian on S*"**
with respect to the metric g induced from the standard FEuclidean metric on
C™*, Then
A f=(k+Ik+[4+2n)f  and
Lef=i(k—0Df,
for fEy,, restricted to S,
PrROOF. The first equality is well-known ([2]). From the definition of &

we see that the integral curve ¢(8) of & through z< S*"*! is given by ¢(6)=e’z.
Therefore we have

Lef@)= fe")] oo

d

=——-e'*DIf(2)] 9=

deg
=i(k—0f(2).
THEOREM 5.7. (i) The eigenvalues of A, on M%$ are
(kD +1+2p)+(s+1)(s+1+2¢)+a*(k—1)?/b*—2a(k —)(s—1)/ b
+A=b5(s—1)%/b* R, I, s, t€Z".
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(ii) The eigenvalues of 20, on MZE% are
(R+D(R+1+2p)+(s+1)(s+t+2¢9)+a*(k—1)*/b*—2a(k—I1)(s—1)/b*
+A=b5)(s—1)?/b*—2p(k—1)—2q(s—1) k, 1, s, teZ",

where Z* denotes the set of non-negative integers.

PROOF. We restrict p&4,,,(C?*) and ¢p=H, (C**) to S*!*' and S™*
respectively and consider their product ¢¢ on S*P*'x S*¢+!, By [Proposition 5.5
and we see that ¢¢ is an eigenfunction of A, with eigenvalue
given in (i) and it is also an eigenfunction of 200, with eigenvalue given in
(i). It is well-known that the functions of the form ¢¢, @&, ,(CP),
PEH;, (CY), b, I, s,teZ*, are dense in C=(S*+'xS%*! g) (2], where
C>(S?P*1x S+, &) denotes the space of complex-valued differentiable functions

¢3dV;. By

53 (6) we see that the functions of this form are dense in C=(S?P+!x S%*, g)
as well. Therefore eigenvalues of A, (resp. 20,) take the form of (i) (resp.
(ii)).

REMARK (i). It does not seem easy to find the dimension (multiplicity) of
each eigenspace. But the dimension of 4,,,(C™) is known ([1]):

n+k—I\/n+i—1 n+k—2\/n+{—2
A e Ry
k l E—1 [—1

REMARK (ii). [Theorem 57 for ¢g=0 coincides with the results of Hopf
manifolds in up to a constant multiple (cf. 3.3 (2)).

on S?P*1x S**+! with the scalar product <g, ¢>=S

S2P+1xg2q+1

6. Some isospectral results.

In the case of ¢=0 (i.e., Hopf manifolds), some isospectral results are given
in [1I]. We shall give some results in the case of ¢+0, using the formulas on
the coefficients of the asymptotic expansion.

Let A be the integrability tensor associated with the Riemannian submer-
sion 7w : (SEPHIX S¥F g)—(CP?XCP4 h). There exist two direct sum decom-
positions of the tangent space of S?P+!x S2¢*! at (x, x'):

T (o, 0y (SPHX SH)=T ,S*PHPT,, $**!
| =da,

where <V and % denote the vertical subspace and the horizontal subspace
respectively with respect to the Riemannian submersion z.

LEMMA 6.1. The integrability tensor A satisfy the following equations for
XY, ZeT, SN d and X', Y', Z'€T . SN
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(1) AxY=(X, ¢Y)§ () Vxé=¢X
AxY'=0 Vxé'=agX
Ax Y’ =X, ¢’Y"HE Vx.é=a¢p'X’
Vx.&'=(a*+b)¢' X’
(2) Axé=¢X (3) VeX=9¢X
Ax.é=a¢’ X’ VeX'=ag' X’
AxE’'=apX Ve X=a¢pX
Ax&'=(a*+b"¢' X’ Ve X'=(a®+b")¢' X’

(In (3) we assume X and X’
are basic vector fields.)

@) (VxAWwZ=XY, §Z>¢pX—<X, ¢Z>¢Y

(VxAy Z=—alX, ¢Z>¢'Y’

(VxAwZ'=0

(VxAy Z'=alY’, ¢'Z"5¢ X

(Vx Ay Z=alY, ¢Z>¢' X’

(VNx Ay Z=0

(Vx Ay Z'=—alX’, ¢'Z5¢Y

(x: Ay Z'=(a®+0) Y, ¢’ 250’ X' (X', ¢’ Z5¢'Y"}
(5) For any horizontal vectors V, W

(Ve AW =(Tz, A)yW=0,

where { , > denotes the metric tensor g and for the other notations we refer to § 3.
PrOOF. (1) is easily seen from (2) and ).
(2) We use again the local field {ef, ---, e¥,, ei*, -+, esf} given in
5.2. Then we have

2p 2q
Ay &= ng (Ax. &, efyef+ kgl (Ax.&, er*>er*
2p 2q )
=— j=21 &', Ax.efyef— kZ=)1 &', Axier®er*
2q
=— kZ=)1 E, (X!, ¢'er*>E e
2q '
=(a*+b?) kZ=)1 (' X', er*>ey*

=(a*+b2)¢' X" .
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Similarly we can prove the other equations in (2).

(3) We shall prove Vxé=¢X. First of all we see that W (Vx£)=0. In
fact we have

g(Vx§, £)=1/2 Xg(, £)=0  and
g(Vx§, §N=2Xg(§, §)—g(&, Vx&)=—g(§ Ve X)=0,

where we extend X to the basic vector field in a neighborhood of this point.
By (3) and (2) we see that

ViE=ArE+V(Td)=9X.

Similarly we can prove the other equations in (3).
(3) Using we can prove (3)’.

(4) and (5) We extend X, Y and Z to the basic vector fields in a neigh-
borhood of this point to obtain

(Vx Ay Z=Vx(AyZ)—AryvZ—Ary(Nx Z)
=Vx(Y, ¢Z256)—xY, ¢Z5E— A (KN Z)+<X, ¢ Z5&)
=X, @ZYE+Y, ¢ZydpX—NyY, ¢Z>E
—Y, ¢(NxZ)E—LX, ¢Z>¢Y
=Y, (Vx@)ZNE+LY, ¢Z>pX—<X, ¢Z>pY
=Y, v(é)X*<X, ZY56+LY, 925 X—<X, ¢Z5¢Y
=Y, $Z>6X—<X, $Z>$Y .

The other equations in (4) and (5) are proved similarly.
PROPOSITION 6.2. Let 7, p, R be the scalar curvature, the Ricci tensor, and
the curvature tensor of MZE:§ respectively. Then we have

Vol(ME:)=0 Vol(S*P+1 x S*+1) g)

t=2p(2p+1)+4¢(g+1)—2(a’+b*)q

| p2=4p*2p+1)+8a’pq+4q(g+2)(a+b*)*—8¢(2q+2)(a®+b%)+2¢(2g+2)?

| R|*=8p+8(a*+b*)?q+4p(2p—1)+4¢(2g—1)+48a*pq
+24¢[1—(a*+b)]+[1—(a®+b%)1412¢(2¢+1),

where (SPPH1x S¥*1 §) is the Riemannian product of two wunit spherves and |R)|
and |p| denote the lengths of the curvature tensor and the Ricci tensor, respec-
tively.

PrROOF. The volume of AMZ:¢ is given in (6). We calculate 7,
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| 0|%, and | R|? using the formulas in and the results in Lemma 6.1l
PROPOSITION 6.3. The Kacehler form £ of the Hermitian manifold M2}
satisfies

0Q2=2{(p+aq)p+(ap+La®+b*]g)n'}
déQ2=2{(p+aq)dn+(ap+La*+b*]g)d 7'}
|6212=4{p*+2a pg+[a*+b"1g%)
|doR21*=8{p(p+aq)*+qlap+La*+b1?,

where 02| and |déR2| denote the lengths of the 1-form 62 and the 2-form déf2,
respectively.

PROOF. Since —df is the 1-form dual to the vector field &,
implies that §f2 is expressed as above. The other equations follow immediately.

THEOREM 6.4. If Spec(M2:3, A)=Spec(MZ2:%, A) and q is not zero, then
MZ2% is isometric to M5:% .

Proor. If Spec(M%% A)=Spec(M2:%, A), then the volumes of MZ:{ and
MZ%:%, are the same and the integrals of the scalar curvatures of MZ:'¢ and
M2:%, are the same ([2]). By [Proposition 6.2 we get b’=b and a’?=a? If
a’=—a, then 3.3 (5) implies that MZ%:? is isometric to M2:%, .

THEOREM 6.5. Assume that Spec(MZ:4, O)=Spec(M%:% , 0O) and q is not
zevo. Then we have b=b’.

(1) In the case of p=0 we have a’=a or a’=—a, i.e., M%%, is biholo-
morphically isometric to M%% or (M%5%, —Ja )

(2) In the case of p+0 unless a=a’, a and a’ satisfy the following rela-
tions:

(%) a+a’=—6p/(Bg—1)
(#%) aa’=b"+4(g+1)/(15¢°—3)+(135¢°—39)p*/(3g—1)*(15¢*—3) .

ProorF. By the formula for a, of the asymptotic expansion given in Theo-
rem 2.7 and [Proposition 6.2l we have b=b’. We calculate a, in
using [Proposition 6.2 and [Proposition 6.3 to get (a—a’)a+a’+6p/(Bg—1))=0.
Therefore in the case of p=0 we have a’=a or a’=—a. If a’=—a, then 3.3
(3) implies that M%<, is biholomorphically isometric to the Hermitian manifold
(M?L',qb, —Ja.0)-

Furthermore if p is not zero and a is not equal to «’, calculating a, we
get (xk),

COROLLARY 6.6. Assume that p+0 and 3p*=(q+1)3q—1)*. If Spec(MZ%:4, O)
=Spec(M%:%,, O), then a=a’ and b="b’, i.e., ME:} is biholomorphic and isometric
to M%i%.

PROOF. Since the system of the equations (*¥) and (xx) with respect to a
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and @’ in does not have real solutions under the assumption of
this Corollary, we conclude that a=a’.

REMARK (i). shows that for most values of (a, b), M2 is
determined from Spec(MZ2:§ 0O). We consider the case of ¢+#0 and 3p*>
(g+1)B3g—1)}, which is not refered to in [Corollary 6.6, If Spec(MZ%:§, O)=
Spec(M2:%, O) and if (a, b) is not on the curve in figure, then a=a’ and
b="b’, i.e., M2:? is biholomorphic and isometric to M2:% . But there is left the

possibility that for (a, b) and (a’, b) on the curve M%:§ and MZ%:% have the
same spectrum.

Figure. b

(a, ) (a’, b)

&

(—3p/(3g—1)

IR

- a

Figure.

a semicircle centered at (—3p/(3¢—1), 0) with the radius
24/13p2— (¢+1) 3¢—1)%}/(B¢—1)2(1542—3).

REMARK (ii). By we see that, in the case of p+0, 3p°=
(g+1)3q—1)% and a+0, MZ:§ is isometric to M22, as a Riemannian manifold
but Spec(MZ2:4, O)+Spec(M?2, 0O). This shows that the complex Laplacian
actually reflects the complex structures of Hermitian manifolds.
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