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Introduction.

In this paper, we study the asymptotic behavior for ¢ (time)—oco of acoustic
waves which propagate in some inhomogeneous fluids filled in an exterior domain
2 of R™, requiring that the perturbation by inhomogeneous fluids is /long-range.
For each wave, the corresponding asymptotic wave function will be constructed
from the initial data (Theorem 3.1), and the asymptotic distribution of the wave
energy will be calculated by use of the asymptotic wave function (Theorems
5.1~5.3).

In case of homogeneous fluids, these problems have been studied by Wilcox
(cf., also Kitahara and Wilcox [9], where are developed the wave
propagation phenomena in anisotropic homogeneous media of strongly propaga-
tive class). The principal result there states that each solution wy(x, ) of the
d’Alambert equation

0.1 Fwolx, H=c?Awyx, t) in 2

(0,=0/0t, A is the Laplacian in R™ and ¢>0) is asymptotically equal for {—oo
to a diverging spherical wave of the form

0.2) Wi, z>:Vlgﬁr-<n-1>f2Fo<c—lr~t, 5 (r=lx|, i=x/|x]),

where the wave profile Fy(s, %), s€R, is calculated from the initial data.
Moreover, this result is used to the calculation of the asymptotic energy distri-
butions. In the function is called the asymptotic wave function. If
Q=R", the profile F(s, ¥) is the Radon transform of the initial data, and in
general case, it is modified by use of the Mgller wave operators in the scatter-
ing theory. . So, the asymptotic wave function [0.2) is closely related to the
translation representation of Lax-Phillips [2].

Now, in inhomogeneous fluids, the propagation of acoustic waves is governed
by a perturbed d’Alambert equation of the form
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1
2 — 2 [
(0.3) S2w(x, y=c(x)2p(x)V {p(x) Tw(x, t)},
where V is the gradient in. R™, and ¢(x) and p(x) represent the local speed -of
sound and the equilibrium density of fluid, respectively. The inhomogeneity of
fluid is called short-range if ¢(x) and p(x) satisfy for some ¢>0, p>0 and >0,

05 THe(x)—e} =009, V' {p(x)—p}=0G""")

(]1]=0, 1, 2) near infinity, where [=(/,, ---, [,) are multi-indices with |/|=[,+
.- +17,. In this case the influence of the perturbation on solutions at large ¢ is
negligible, and every solution is asymptotically equal for {—oco to a solution of
the free d’Alambert equation in R™ (see, e.g., Mochizuki or Reed-Simon
[7). Thus, in the short-range problem, the asymptotic wave function can be
constructed by the same method of Wilcox and forms also a diverging
spherical wave. On the other hand, /ong-range problems admit a weaker rate
of convergence of c¢(x) and p(x) themselves (in this paper we adopt a more
general class where c(x) and p(x) need not converge at infinity; see, Assump-
tions and Examples in §1). So, their influence remains on solutions at large ¢,
and the asymptotic wave function is no longer a diverging spherical wave.
The main purpose of this paper is to determine it as a modified diverging
spherical wave. The modification will be done by use of an approximate phase
for the steady state wave propagation problem. As a result, we can see that
the ordinary Mgller wave operators do not in general exist for our long-range
problem.

Our result is based on two spectral representations for the operator L=

—c(x)zp(x)v-{?(%AV} acting on the Hilbert space O=L2(2; c(x)2p(x)™") (a

precise formulation of L is given in §1). As will be seen, our long-range class
corresponds to the “oscillating ” long-range potentials in quantum mechanical
system introduced in Mochizuki-Uchiyama [6]. Namely, we are able to obtain
the approximate phase as an approximate solution of a Riccati equation. In the
present case, it is given for each = R— {0} by

(0.5) o(x, a):‘~z'aE(x)+l%w1 log r———;—log c(x);

§(x):STc(r’i)”‘dr’.

With this phase function, following the argument of [6], we construct in §2
unitary operators . : 9—LAR.XS™" ") (R,=(0, 00), R_=(—co, 0) and S"! is
the unit sphere in R™) which attain spectral representations for L (Theorem
2.2):
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(0.6) (F.Lf)o, X)=0[F.f(o, %), (0, F)ER.XS"*.

In §§3 and 4, we consider LZsolutions w(-,t) of For each initial
data {w(x, 0), 0, w(x, 0)} ={f.(x), fo(x)}, the corresponding asymptotic wave
function is defined by

©7) W, D=5V DR D IFE)—t, ),
where &£(x) is as given in (0.5) and the wave profile F(s, ¥) is a generalized

Radon transform of the initial data:
0.8 F(s, f)=‘2—?7%gk+exp{ias}E9‘+(f1+iL‘”2fz)](0, X)do

g xPlioS) [T (i L) (e, Do

Comparing with the spectral inversion formula of w(x, t), we obtain the
desired property

0.9) w(-, H—w>(-, t)lIZESde)‘ZP(X)‘IIw(x, H—w(x, 1)|2dx—0 as t—oco.

The stationary phase method will play an important role for this purpose.
Finally, in §5 we consider solutions of with finite energy. In this
case, the asymptotic wave functions are similarly constructed for the fluid
velocity Vw(x, t) and pressure 0,w(x, t), and they are applied to the calculation
of the asymptotic energy distributions. As will be seen, the corresponding
results of Wilcox [8; Lecture 8] are extended to our long-range problem.

§1. Assumptions and a Hilbert space formulation of the problem.

Let 2 be an infinite domain in R™ with smooth compact boundary 082
lying inside some sphere {x&R"; |x|=R,} (R,>0). We consider in £ the
following initial-boundary value problem for [(0.3):

2 _ 2 1
(1.1 tw(x, )=c(x) p(x)V-{fmew(x, t)}, (x, H)ELXR,
w(x, 1) or

(1.2) Bw(x, t)={ ]20, (x, )E0R X R,

{v(x)-V+d(x)}w(x, t)
(1.3) w(x, 0)=f,(x) and dw(x, 0)=fy(x), xef.

Here v(x)=((x), -+, va(x)) is the outer unit normal to the boundary and d(x)
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is a smooth non-negative function on 082, and thus, B represents the usual
Dirichlet or Robin boundary condition.
Throughout this paper, we require the following conditions on ¢(x) and p(x).
ASSUMPTIONS. ¢(x) and p(x) are twice continuously differentiable and are
uniformly positive in 2=02U0dRQ:

(c.]) 0<eiZc(x)S <0,
(p.1) 0< pr= p(x)= po<oo.,

Moreover, for some 0=<7r<1, 7/2<0,<1, 1/2<6;=<1 and (2+7)/4<d,<1 (the
requirement ¢;<1 (j=0, 1, 2) does not restrict the generality).

(c.2) lirrloci,nf {re(x)—rdnc(x)} =0,

(c.3) 0,c(x)=0(r""), Vo,c(x)=0(@r"1"%),

(c.4) (V—20,)c(x)=0(r"1-%),

(c.5) —”_ZAC(X)E(V—faT)'(V——J?ar)c(x):O(r‘l‘zaz) ,
_ Apx) VD) N ymres,

(p.2) Va)==550 +3( ) )=o)

as r—oo, where r=|x|, ¥=x/|x| and 0,=0/0r.

In the above assumptions we do not require that the functions ¢(x) and
p(x) themselves converge at infinity. As we see in the following examples,
our theory includes some inhomogeneous fluids which are inhomogeneous also
at infinity.

ExaMPLE 1. Let ¢,(x) be a uniformly positive function such that

co(x)—co, Vleo(x)=0@171Me) (|1]=1,2) as r—co
for some 1/2<p=1. Then the function
c(x)=co(x)+a sin(log ) (|a|<co, small)

satisfies (c.2)~(c.5) with y=|a|(c§—a®™"* (<min{l, 4p—2}), d;=1 and Jd,=p.
ExAMPLE 2. Let c¢o(x) be as given above. Then the function

c(x)=c{x)+asinrs/rs 0=Ze<1/2; |a|<c,, small)

satisfies (c. 2)~(c.5) with y=¢|a|/c, (<min{l, 4p—2}), 6,=1—¢ and d,=p. Here
r® with ¢=0 is regarded as logr.
EXAMPLE 3. Let po(x) be a uniformly positive function such that

Do(x)=0(""'*) (]11=0, 1, 2) as r—co
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for some (2+7)/4<p=1. Then the function
p(x)=po(x)+bsinrt (0=e<(2—7)/4; |b| small)

satisfies (p.2) with d,=1—2e.
The steady state wave propagation problem for (1.1)~(1.3) is:

2 . 1 2y — :
W { — ()2 p(x)T { o vu} Su=f(x) in Q

Bu=0 on 082,
where k=¢+i7 is a complex number such that s R, and z=0. We put
(1.5) Uup=p(x)"?*u and fy(x)=p(x)"2f(x)

in Then we have

—c(X)HA=V (N} up—r up=fp(x) in £
(1.6) 4, or

Bpup———[ ]::O on 052,

{u(x)-V+dp(x)} up
where V,(x) is the function given in (p.2) and

v(x)-Vp(x)
2p(x)

Let §=L*2; c(x)2p(x)"?) be the Hilbert space with norm

(1.7 dp(x)=d(x)+ (x=08).

18) 171={{ oot st}

and let $,=L*2; c(x)"? be the Hilbert space with norm

19) Ie={] em -t fmrax} .

The norm of the usual L%space L* ) is given by

(110) I71={], 1rcorax} ™.

Under (c.1) and (p.1) the above three norms are equivalent :
(111) VEIFISIAISVEIL,

(1.12) AT Flo=ed £l

We define the operator L acting in 45 and L, acting in §, as follows:
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DL)y={ucsH Q) ; Buls0=0}
(1.13) { 2 L
Lu=—c(x) p(x)V-{WﬁfVu} for uca(L),
4‘ -CD(Lp): {upEHz(Q); BpuplaQ:O}
(1.14)
Lyupy=—c(x){A=V (XD} up for u,c€D(L,),

where H*( Q) (k=1, 2, ---) denotes the usual Sobolev space with norm
(1.15) Il ae={ 2 IV'fFIE 2.

iLisk
Then as is easily seen (cf., [4], [7]), we have the

LEMMA 1.1. (a) Both L and L, are positive selfadjoint operators. Moreover,
they are unitary equivalent to each other:

(1.16) L=]pLyJ5"»
where J,: 91— is the multiplication operator defined by
(1.17) Jofo=Vp(X)fo(x)  for f,€9:.
(b) Let V be the multiplication operator given by c(x)*V ,(x). Then we have
(1.18) L,=L,+V,

where L, is the operator L, with V ,(x)=0.

The relations [(1.16) and [1.18) will be used in the next section to obtain
spectral representations for L. In the remainder of this section we shall use
the positivity of L to obtain solutions of the initial-boundary value problem
(1.1)~(1.3). Our concern will be restricted to the solution in § or the solution
with finite energy.

Let H be the positive square root of L:H=+/L>0, and let 9(H) [or
D(H-Y)] denote the domain of H [or H™*]. Then for given initial data {f;, f2}
e P LYX{D(H)NDH )}, (1.1)~(1.3) is reduced to the evolution equation

(1.19) wh+Hw®)=0, w0)=f1, 0,w0)=f:

in . Thus, we can write down the solution of (1.1)~(1.3) as follows:

(1.20) w(+, H)y=cos(Ht)f;+H * sin(Ht)f, .

Note that t—w(-, )e H¥Q) (=0, 1, 2) is (2— k)-times continuously differentiable
in te R. We put

(1.21) wi(+, )=Hw(-,t) and wy(-, H)=0.w(:, t).

Then the wave energy at time ? is given by
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(1.22) E(w, 2, h=|w.(, DII*+lws-, DI

We define 9(H) [9(H )] to be the closure of D(H) [9(H"1)] in the norm
WHfII CIH*f]|]. Then since 9(H) and 9(H ') are both dense in $, we have the

LEMMA 1.2. H [H™] can be extended to a unitary operator from D(H)
[D(HY] onto §. The extended operator will be denoted by H [H*].

By means of this lemma we can easily verify the following _

PROPOSITION 1.1. (a) For {fi, f2} EOXD(H) and t= R we define the weak
solution w(-, ) of (1.1)~(1.3) as follows:

1 . T 1 : R
(1.23) w(, t)—-—?exp{—th}(fl—l—zH‘lsz- 5 €XP {tHt}(fi—iHf5).
Then it is an extension of (1.20) and t—w(-, t) remains continuous for all t< R.
Moreover,

(1.24) lw(, DISIFNHIHT SN for any teR.

(b) For {fi, fot€DH)XD and te R we define the pair {wi(:, ), wy(+, i)}
as follows:

wi, 0= exp (—iHi) (Af+if o+ - exp liH) (Afi—if

(1.25)

wil-, t):—%exp{——z’Hi} (Bf \+if)+ —;—exp (Hty (Hf,—if) .
Then it is an extension of (1.21) and t— {w.(-, 1), ws(-, 1)} EDX D remains continuous
for all te R. Movreover, the wave energy defined by (1.22) and (1.25) is inde-
pendent of t€ R :

(1.26) Ew, 2, )=E(w, 2, O=|Hf.[*+ f.l*.

REMARK 1.1. 9(H) is the so-called Beppo-Levi space.

§2. Spectral representations for L.

In this section we shall construct spectral representations for L. A semi-
abstract theory of [6; I] is applicable (under a slight modification) to show the
principle of limiting absorption for [1.6). Then following the same argument
of [6; II], we can have unitary operators &,:$—L* R.xS" ') which diag-
onalize L.

We consider the exterior boundary-value problem

{ —Au+qg(x)u—r’c(x)Pu=c(x)2f(x) in £

(2.1)
B,u=0  on 0.
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Here ¢(x) stands for the functions ¢(x)=0 and ¢(x)=V,(x). Namely, it is a
real-valued continuous function on 2 behaving like

2.2) g(x)=0(r"1-%) as r—oco.

We define the selfadjoint operator M in $, as follows:

DM)={ucH¥L2); Byu|a=0}
(2.3) {

Mu=—c(x)*{A—q(x)} u for uep(M).

Note that M=L, if ¢(x)=0 and M=L, if g(x)=V p(x). Thus, M is lower semi-
bounded in §,, and the following ellipticity estimate holds for any u=9(M) (cf.,
€. g., Mizohata [3].

(24) lull ge=C{lIMull+llull}  for some C>0.

The selfadjointness of M shows that if x£* is non-real and f=9,, (2.1) has a
unique solution

(2.5) u=u(-, £; )=Ry&®f in P,

where R,(x?) is the resolvent of M. We shall show that the limit

(2.6) u(-, 0';f)=lifl(‘)l u(+, o+ic; f) (ceR.)

exists in some locally square integrable class. For this aim, we have only to

check two propositions which correspond to Assumptions 1 and 2 of [6; I].
will be a uniqueness result (or growth property) for solutions of

2.7 —Au—+q(x)u—o2c(x)2u=0 in 2.

[Proposition 2.2] will be related to the radiation condition, i. e., required properties
of an approximate solution k(x, x) of the Riccati equation

n—1
r

28) Ork+ k—k*g(x)—r*c(x)*=0(r"1)

will be summarized there. Here and in the following we put

(2.9) 0=min{d,, 6;, §;} and G6=min{d, 25,—1}.

In [6; I] is studied the equation
—Au+{Vi(x)+V(tu—Cu=f(x) in &,

where V,(x) is an “oscillating” long-range potential, V(x) is a short-range
potential and { is a complex number. A radiation condition is introduced based

on the function +/{—V,(x). In the present case this function should be
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replaced by xc(x)™*. Then a solution of is (cf., (8.15) of [6; I):

. 4, n—=1 d-¢c(x)
(2.10) k(x, g)=—ikc(x)*+ o 5e(x) "

PROPOSITION 2.1. For each o= R—{0}, let ucH%L.(Q) be a non-trivial solu-
tion of (2.7). Then we have for any B>7,

@.11) lim inf Rﬂg {18, |24+ |u |3 dS=c0,
R—oo S(R)
where S(R)={x;|x|=R}.
PrOOF, Note that
2(8—7)

2ﬁc(x)‘2+ra,c(x)‘2: c(x)?

o (ret)—rde(o} +

Then it follows from (c.1) and (c.2) that there exist constants R,=R, and
C;=0 depending on j such that
(2.12) 2Bc(x) 2 4-r0,c(x)2=C, for |x|=R..

By means of (2.2), (2.12) and the local version of (2.4), we can apply Theorem
1.1 of Mochizuki [5] to obtain the above assertion. Q.E.D.
PRrROPOSITION 2.2. We put

(2.13) II.={k=0+it; o= R, and =0},

and let k(x, &), (x, £)ERXII ., be as given in (2.10). Let K, be any compact set
of Il... Then there exist C;/=C(K.)>0 (j=2~6) such that for any (x, k)2 X K,,

(2.14) Bkt k() —rte(x) | SC+),
(2.15) | k(x, )| =Cs,

(2.16) Flm b(x, k)=+oc(x)*=C,,

@2.17) Re k(x, x)——";zr:-ﬁ— >Cort (B>
(2.18) [(V—%0,)k(x, k)| SCer1-2.

Proor. (2.15) and (2.16) are obvious from (c.1) and (c.3). (2.17) follows
from (c.2) since we have

1

n—1—8 .
Re b— ——=zc(x)" 14+ )

2r

{‘Bc(x)—rarc(x)}.

(2.18) follows from (c.3) and (c.4) since we have
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(V—J?ar)k=c(x)"2{z'x(V——5Ear)c(x)+—;—c(x)(v—faf)arc(x)*}--é—arc(x)(v——%ar)c(x)} .
Finally, follows from (c.3) and since we have

0.k+ n—:l k—k24qg(x)—£c(x)®

=gy AR (9] ye Grl) Q.E.D.

4r? " 2¢(x) 2¢(x) *

We denote by L%(£2), p= R, the space of all functions f(x) such that
(@.19) LAl={ Qe ol d < oo

DEFINITION 2.1. For solutions ue H2%.(2) of (2.1) with k=1, the radiation
condition at infinity is defined by

(2.20) UELi1ane(R) and (0,4 k(x, O} uc Lt 145(2),
where «, B8 is any pair of positive numbers satisfying
(2.21) 0<a=B=1, r<pB and a+B=2.

u satisfying [2.1) and [2.20) with k€I, [or II_] is called an outgoing [or
incoming| solution.

Now, with the aid of the above two propositions, we can follow the same
line of proof of [6; I] to obtain the following results (cf., Theorems 1~5 of
£6; ID.

THEOREM 2.1. (a) Let K. and a, B be as given above. Then for any
k€K, and f& Lipo(2) (which is dense in 9,), (2.1) has a unique outgoing
[incoming] solution u=u(-, &; f), which also satisfies

(2.22) ull-1-a02=Coll fllcaepyre s
(2.23) [{V+Zk(x, £)} u“(—1+B)/zécvnfﬂc1+ﬁ>/z ’

where C;=Cy(K.)>0 is a domain constant independent of f. Moreover, if k is
non-real, this solution coincides with the L*-solution (2.5).

(b) We extend Ry(k*) to real k=oc-+i0 by
(2.24) LR x((6+70)")f 1(x)=u(x, 6-+i0; f).

Then Ry(k*)f is continuous in L% 1 a2(2) with respect to (&, f)IT.X L3, py12(82).
Moreover, let R§(k?): Ltyay2(8)— L% 1-py;2(82) be the adjoint of Ry(k®). Then
we have for any (k, f)EII . X L% gy 15(2),

(2.25) Ry&Df=Ry(—E)f (£ being the complex conjugate of k).
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() Let {€x(2); A= R} be the spectral measure of M. Then for any pre-
compact set e€R, and f, g< Li1py:(82), we have

@2)  (€ulo)f, )= 7| (Rullo+i0")—Rul(—o+iOP}f, )ods,

bt
where =/ ¢e={c=R.; 6°ce} and ((,)) denotes the inner product in 9, or more
generally, a duality between L% i_4:(2) and L%.a2(8). Thus, the positive part
of M is absolutely continuous with respect to the Lebesgue measure on o*< R,.
REMARK 2.1. In case g(x)=0, we can choose d,=1 in So, the condi-
tion is represented in this case as follows:

(2.27) 0<a<pB=l, 7<pB and a+pB=min{28, 25,}.

In particular, we can choose 8=1 in [2.27).
Let R,(x*) and R,(x*) denote the operators Ry(x*) corresponding to M=L,
and M=L,. Then [1.18) and the ‘resolvent’ equation imply

(2.28) R)=R(){1—VR,&}  (kcIl,).

Here VR,(x*) is bounded in L% () by (c.1) and (p.2). For 2R let &(A)
be the spectral measure of the operator L. Then noting [(1.16), we have from
and (b), (¢) of the above theorem the

LEMMA 2.1. For any pre-compact set eER, and f, g€ L% p,:(2),
1 ) :
@29 ©@f =] (R(s+0)—R(—s-+i00)

T

{I=VRy(e+i00} J5'f, {1-VRy(a+i0)")} Jp'g)odo,

where (,) is the inner product in 9.
We put for any (x, )= Q2 X (R—{0}),

(2.30) o(x, o)z—z'a&(x)%—%——log r—%log c(x);

- . {S;c(sf)‘lds it r=|x|>R,
. X )= 0

if r=|x|=R,.
Then obviously
(2.32) 0-p(x, o)=k(x, +10) for r>R,,

and from (c.1), (c.4) and (c.5) we have the
LEMMA 2.2. Let N>1. Then there exists a constant Cs>0 such that for any
(x: U)E‘QX([_NJ O)U(O’ N]);
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(2.33) |(V—=%0,)p| =Cy(1+7)"%,
(2.34) |(V—%3,)-(V—%0,)p| =Cs(1+1) .
Our spectral representations for L will be based on the above two lemmas

(cf., [6; I1D).
For e R—{0} and f< L%.4(2), where B satisfies we put

(2.35) [F1(a, r)f](f)=\/%0 exp{p(r%, o)} [Ri((e+10)")fI(r%).

Then (2.32), and the Green formula show the following
proposition (cf., [6; II]; Propositions 1.3, 1.4, 2.1 and Lemma 3.2).

PROPOSITION 2.3. (a) Let a, B be any pair satisfying (2.27). Let (f, o)
Liipy ()X (R—{0}) and u,=R,(6+i0)2)f. Then there exists a sequence r,=
rila, B, f, o) diverging to co such that

(2.36) umgm (| ua | 2478 | (V+ 20,001, % dS=0,

l—oo

from which it follows that

@37)  tim| 1940, rof1*dSz=Zr (R0 +100) = Ri(— g +iOP} £, 1)

(b) Let feL¥$2) and ri=r/a, 1, f, o). Then the strong limit
(2.38) gl(a)f-——s-}im Fi(o, r)f in LAS™Y)
exists, and F.(g) is a bounded operator from LiL2) to L*S™™*) which depends

continuously on o< R— {0}.
() We choose &, B as follows:

(2.39) 0<a<f=l, r<f and @&+ f=<25=min{20, 46,—2}

(2.39) s stronger than (2.21), i.e., (2.27)). Then for any o= R—{0}, F:(o) can
be extended by continuity to a bounded operator from Lt (2) to L¥S™™).

Denoting the extended operator by F.(o) again, we have for any f& L% ()
and ¢ L¥(S™1),

(2.40) SSH F1(0) fadsgz}ggolgsn_l Fi(0, r)fEdSs,

where ri=r /&, B, f, o).
Now we put

(2.41) F(o)=F (o) {1=V R (e +:0)»} J;*, g R—{0}.
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Then by use of and [Proposition 2.3 we can prove the following
spectral representation theorem for L.
THEOREM 2.2. (a) Let F. be defined by

(2.42) [F.f 1o, )=[F(a)NZ) for (o, )eR.xXS" .

Then F . initially defined on L%.%:(82) can be extended to a unitary operator
from § onto §.=L* R.XS*), which will be denoted by F. again. Here the
norm || || of . is defined by

(243) 19203=(, 0|60, DI%dodSs  for g.B..
(b) For any bounded Borel function a(t) on R and any f€9, we have

(2.44) a(L)f——:iFi‘a(az)EFifzfglimS F*¥(o)a(o®)[F.f1(o, )do in 9,
ces Jean

+

where F%: H.—D is the adjoint of F ., F*(o): LA(S™ )= L% 1% :(2) is the adjoint
of F(o) and e.y=(1/N, N), e_y=(—N, —1/N).

We omit the proof of this theorem, since it can be done by the same
argument of [6; II] (Theorems and 4.1).

§3. Asymptotic wave functions for w(x, ).

In this section we return to the solution w(x,t) given by (1.23) of the
initial-boundary value problem (1.1)~(1.3).

The following spectral representations of w(x,t) is a result of
2.2 (b).

LEMMA 3.1. For given any initial data f={f:, fo} ESOXDH?), w(x,t) is
expressed as follows:

BD. G =gy sl explFiolFH0f 0, o,
, —ooje_ LN

where e_y y=(—N, —1/NYUA/N’, N') and

~ S E G0, ), (0, HeRxS™
(3.2)4 f+lo, )= 1 .
| o[ F—iH D))o, ), (o, HER-XST,
) :/lsftsm fi—iH )]0, 2), (0, )= Ry xS
R B
Sl E TS0, D), (o, DER-XS™,
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PrOOF. We use (2.44) with a(Q)=exp{—i+/ At} and =exp{iv/ At}. Then it
follows from (1.23) that

w(-, l‘):% 1img F*(o)exp{—i| o |t} [F.(fr+iH )]0, -)do
€xN'

1’ o0

N —co

4 %limg Fo)expli| 0|t} [Fo( fr—iT ) o, do.
exN

This and (3.2). imply (3.1).. Q.E.D.

We shall use the expression (3.1); to construct an asymptotic wave function
as t—oo corresponding to each solution w(x, t). For the sake of simplicity, we
omit the subscript + of 7.(s, %) and write it as f(o, £). (Note here that an
asymptotic wave function for {——oo can be constructed by the same method
if we use (3.1)_ in place of (3.1);. In the following, however, we do not enter
into this problem.)

LEMMA 3.2. Let §=L*(RXS*!) be the Hilbert space with norm

(33) 161=1[{,. jur 16800, DI2daas}

Then the map ~: HSX D(H Y2 f={f;, fg}—>f(a, e is unitary.
PROOF. Obviously §=.DH_. Thus, we have f= P and

HfHZ:% {1F+(fit H foll3 41 - (Fr—H f212)

1 —_— — —
:7{“ firtH 2 foll2 | fo—iH 7 fo P = o121 H 7 fell?
Since H': H(H)—9 and F.: P—H. are unitary (see Lemma 1.2 and [Theorem
2.2 (a)), this implies the assertion of the lemma. Q.E.D.
We introduce the following class of functions which is dense in §:
(3.4) Do={d(a, )eCY(RXS™Y); ¢(o, ¥)=0 near o=0}.

Note that for each ¢=9, there exists a pre-compact set e€R— {0} such that
the support in o of ¢ is contained in ¢, that is, ¢(o, X)eC7(exS*"!). For any
o€, we put

(35) v, O)=—p—expl—plx, o)) §la, DYER),

(3.6) go(x, o)=—c(xP{A—=V ()} vy(x, 0)—0®vy(x, 0),

where p(x, o) and &(x) are as given in [2.8) and [2.9), and ¢(s) is a smooth
non-decreasing function of s=0 such that ¢(0)=0 and ¢(s)=1 for s>1/c, (vg
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and g, depends also on ¢. However, we do not specify it here). A straight
calculation gives

BT ge=gmctoexpi=p} {0+ 10,0 6,0 —0%ea) H+V(x)
+(V—£0,)-(T— 5070 (T—23,)p)* | pp— {(T—%0,)-(T— 209

—2AT—%0,)p -V} -+ {—Ag+2T - Vb ¢-2v¢-v¢]
=exp{—p(x, o)}{s(x, o).

Here (V—10,)-(V—%0,)6=0(r"*), V¢=0("), and A{pEx)} and V{PEx)N}
vanish in r>R,+1.

In virtue of and the above properties, we can easily
prove the following lemma.

LEMMA 33. Let ¢=9, and let e€R—{0} be a pre-compact set including
the support in o of ¢(o, X). Then there exists a constant Cy>0 such that for
any (x, o)eQXe,

(3.8) 101 4(x, )| SCo(14+7)-0+0  (1=0, 1, 2),
3.9) Lgo(x, @) SCo(147) DI 4r)- 04D,
(3.10) lvs(x, 0)| SCo(1-7)-n-vr2,

Moreover, we have
(3.11) {0:40-0(x, o)} vy(x, 0)=0 in (x,0)e{x; |x|>R+1} Xe,
(3.12) Byvg(x, 0)=0 on (x, c)soflXe.

Let & jB be as given in [Proposition 2.3 (c). Then implies that gge
L3:+%0(82), and it follows from (3.10)~(3.12) that vs gives an outgoing [or
incoming] solution of with ¢(x)=V,(x), f=g4 a=a& and p=pf. Namely,
we have

(3.13) vg(+, 0)=R (6 +i0)) g4+, o), oE<e.

PROPOSITION 3.1.  For any ¢(o, $)€D,, F*(o)P(o, )= L3 1% (2) is ex-
pressed as follows.

(3.14) F*o)p(o, )=—i[pvs+iJpR((—0o+i0)")g, .
PrROOF. For fe& L%.%/,(2) we put

(3.15) ' ur=R((0+10)") [ f=R:((6+10)°)f:;
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(3.16) S1={1=VR((e+:0))} S5/ .

Since fi€ L%.%2(f2), we can choose a sequence r,=r,(&, f, fi, o) as in Proposi-
tion 2.3 (a). Let 2(r)={x=2; |x|<r;}. Then by the Green formula, (3.11)
and we have

(3.17) =i, ) e ) dx
= —-z-SS(”) {aruﬂ;;"‘ ularv-?'} dS

:_.ZSSW <a,+a,p)u1v¢ds—js(m 2(Im 8,p)usvdS .

Here by (2.30), [2.31) and [3.5),

_Ss(m 2(Im arp)uﬂ;;dS:SS(m 20¢(x) usv4dS

=Ssn‘1\/—72;a exp{p(r %, o)l u(r%, o)p(o, £)dS3.
So, noting and letting [—oo in we have

(3.18) —if et uige—J5 g dx

=tim{ [0, rof X0, BdSs.

1o

By means of (c), the left side of [3.I8) equals

—i{{(Rp((a+i0)2) 5 f, gs))—((J5'f, vo)t =(f, iJp Rp((—0+i0)*)gs—1vy) .
On the other hand, by means of [Proposition 2.3 (c), the right side equals

Ssn_l[9’1(0){1—VRp((aJriO)Z)}J;‘f](ﬁ?)¢(0, %)dSz=(f, F*(a)¢(a, *)).

Thus, proves [(3.14). Q.E.D.
In (3.1). we assume that f(o, ¥)=f.(s, #) belongs to the class &,. Then
we can use the above proposition to obtain

(3.19) w(x, H=w(x, )+qgy(x, t),

where w=(+, t) and ¢7(-, 1) L% 1 4 ,:(2) are defined by

(3.20) Ww(-, )= %Snexp {—iath Jox(-, o)do,
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(321) g, t>=V%—Lexp{—z‘ot}f,,Rp<<—a+z'o>2>g7<-, 0)do.

The above integrals make sense since vy(:, ¢) and gj(-, o) both are continuous
in ¢ and have compact support. It will be shown that ¢3(-, ¢) tends to zero in
$ when t—co. Before doing this we extend the correspondence f—w>(-, ) to
arbitrary f={fi, f.} €9X D(H ') and prove some basic properties of w*(x, t),

including that w>(-, )9 (see [3.27)).
We put

—1

(3.22) F(s, &)= T/f'z;SRexp{ws} Ho, B)do.

The Parseval equality and show that

(3.23) [ egnos s, DIdsdSz=1F =1 ol + IHT Al

Thus, [3.22) can be defined for all f={f,, fo} DX D(H!) and the map f—Fe

L*RXS™ ') becomes unitary. In virtue of (2.30), [35) and [(3.20) we
have for fed,,

(3.24) w(x, t)=:/1——27¢(§(X))\/C(X)P(x)r""“”zF(E(X)—-t, x).

As is discussed above the right side is defined for all fe $. Since I, is dense
in §, we see that the correspondence f—w™(x, t) can be extended to arbitrary
feEOXD(H™) by

DEFINITION 3.1. For each f={f,, fo} €9XD(H*) the corresponding wave
profile F(s, ) L*(RXS"™ ") is the function defined by (3.22). Moreover, the
asymptotic wave function w=(x,t) corresponding to the solution (1.23) is the
modified diverging spherical wave defined by (3.24).

PROPOSITION 3.2. For any f={f1, fo} €OXD(H™) the asymptotic wave func-
tion w(x, t) satisfies the following properties:

(@) t—w>(-, ) is continuous for all t< R.

M) |lwe(-, || is monotone increasing in t€ R and

(3.25) lim (-, D= (LA,
(3.26) tl_{l’_ll” w>(+, H]=0.

,
Proor. Note that E(x):SR c(r'%)"'dr’ is monotone increasing and goes to
0

o as r—oo. We put s=&(x). Then ds=c(x)'dr and it follows from and
3.24) that
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(3:27) e, Olt=5 | dSs{” pereta 1 Pem—t, ldr

__1_ A7 2 ~Y |2

- ngn_ldsxg_tg/)(s-{-t) | F(s, 7)\ds.

Here |¢(s+1)| <1 for all s+t=0 and ¢(s+t)=1 for s+t=1/c,. Thus,[3.23)and
imply the assertions (b). To verify (a) note that the Fourier transform
of F(s—t, %) in L*R; L¥S™™Y)) is exp{—z’oz‘}f(o, %). Then by the Parseval
formula we have

(3.28) lw=(-, H—w(-, t)]*

_1 ™ o B s e e
—zgsn_ldeW(S”F(S t, ) —F(s—t', %)|*ds

1 ~
< ~ . _ soan e N
=255n_1d5z3RleXp{ iot} —exp{—iot'} |*|f(o, ¥)|*da

for all real ¢t and ¢#’. Here |exp{—iot} —exp{—iot’} |?=4 for all real ¢, ¢ and o,
and |exp{—iot} —exp{—ict’'} |*—0 as t'—t for fixed ¢. Since fef):Lz(R xXSn-),
the Lebesgue theorem shows that the last integral of tends to zero as
t'—t. This proves the assertion (a). Q.E.D.

Now the principal result of this paper is stated in the following

THEOREM 3.1. For any initial data {fi, 2} EOXD(H™), let w(-, t) be the
solution in 9 of the initial-boundary value problem (1.1)~(1.3), given by (1.23),
and let w=(+, t) be the corresponding asymptotic wave function. Then

(3.29) limfw(., H—w(-, HI=0.

To verify this convergence theorem we require one more proposition, the
proof of which will be given in the next section.

PrROPOSITION 3.3. Let {(x, 6) be a function of (x, 0)=2X R satisfying the
following conditions:

(1) L(x, o) s continuous in x and twice continuously differentiable in o, and has
the support contained in B(R,)Xe, where B(Ry)={x;|x|>R,} and e=
(01, 0,)ER,.

(i) There exists a constant Cy1,>0 such that for any (x, o) B(R,)Xe,

(3.30) 10%(x, 0)| <Ci(l+7)18  (1=0, 1, 2).

Let G.(x, s, t) be the function of x€£, s, t R, defined by

(3.31) G.(x, s, t):\/mr“"'l”zgeexp{$i(azs+az‘—a§(x))}C(x, o)do.
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Then for any fixed t>0, G.(, s, t) is an D,-valued integrable function of s€ R,
and

(3:32) lim{"G. (-, 5, Dllds=0.

As a corollary of this proposition we can have the
LEMMA 3.4. For any fla, €D, let g¥7(x, t) be the function defined by (3.21).
Then we have q3(-, )e9 for any t>0 and

(3.33) limlgy(-, | =0.

Proor. Note that the support in ¢ of f (o, %) is contained in e_y, y=e_y\Uexy
=(—N, —1/N)U(1/N, N) if N>1 is chosen sufficiently large. In (3.7) with ¢=f
we divide {3(x, o) into two terms:

Er(x, 0)=C7 +(x, o)+C7, -(x, o),
where
(¥ (x, o) for (x, 0)E2XR.,

C?,i(x) 0):{
0 for (x, 0)€EQ2XR-.

Then implies that {7 .(x, =¢) both satisfy conditions (i), (ii) of the above
proposition with e=ey. Thus, if we put

G7, .(x, s, t)zx/'cTE)_r“"“”zSeNexp{ii(azs—i—at—af(x))}@, «(x, +o)da,
then
(3.34) 1£§S:|||G’f.t(', s, Dilds=0.
We put for z>0,
eNeXp{—iot}prp(ag—z'z')g?(-, o)do
+%Se_NeXp{—iat}]pRp(o“rif)g’f(-, o)do.

Then in virtue of we have

070 =75\ expi—iat | [TexpiLy—ot+iv)s} ds|art-, o)

N

+Vlgge_Nexp{—iat} fp[S:eXp{——z'(Lp—az—z":)s} ds]g}(-, o)do
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1 o . . '
:72:]pso eXp{Z(Lp+ZT)S} G?,+(': s; t)ds

1= S
+«7’2"]1’So exp{—i(L,—it)s} G7.-(-, s, )ds.
Thus,

1 o
(3.35) lg7.(+, t)llé:/:zzgo {IG7,+(, s, DIHNGF, (-, s, DI} ds<oo
for any t>0. Further, since we have for any he L%.%/,(2) and >0,

(g7..(+, ), h):z/l'—?S exp{—iat} (g7(-. o), Ry(a*+ir)J; h))do

€N
+5. expi—iati (g1, @), Rylo™—in)J7'W)da,

it follows fr'om (a), (b) and the Lebesgue theorem that

) 7 .
lrlgl(qf,r(-, ), h)= \/zge_N.Nexp{—wt}

X(g7(+, 0), Rp((a+i0)") Jp h)do=(g5(:, 1), h).

L%:%(82) being dense in 9, this and (3.35) imply that ¢3(-, t) is the weak
limit as 7 [ 0 of ¢7..(+, t) in § for any ¢>0. Hence, ¢7(-, 1) and we have
from and (3.35)

lgxC-, t)||§lixg¢ionfllq}‘,f(-, Hl—0 as t—oo,

which is to be proved. Q.E.D.
PrROOF OF THEOREM 3.1. As we see from Propositions [.1 (a) and 3.2 (b),

(3.36) lw(, H—w=(-, DI=w(-, DI+lw=C, D

(1 g UAIH Tl

for any {fi, fo} €OXD(H') and t>0. Note that the set Dy={{f1, fa} ;fe.@)o}
is dense in §X P(H™) by Then we can choose a sequence {fi;, fai}
(I=1, 2, --) in 9, which converges as [—oco to {fi, f.} in the topology of
DX D(HY). Let ¢q,(x, t) be the function ¢y(x, t) corresponding to the initial data
{f1, fu}. Then we have from and

) -
+(1 A= full T ol
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Here the second term of the right side tends to zero as [—oo, and for fixed any
[ the first term tends to zero as t—co by Thus, holds.
Q.E.D.
Before closing this section, we note that the asymptotic wave function
w>(x, t) is essentially a diverging spherical wave if the inhomogeneity of fluid
is short-range. This assertion will be proved in the following
PROPOSITION 3.4. Suppose that for some ¢>0 and p>0,

(3.37) c(x)—c=00r"1%) and p(x)—p=0@"1"% as r—oo.
Put

(3.38) we(x, f):Q/l—zfﬁ(T“Ro)«/JT""‘”’zFo(c‘17—1, %);

~1

Fils, )=y expliost o, )] (0, D)do,

J(o, B)=exp{—igc Ro—ice(RoX)} ; e(rf)zr{c"—*c(r’})"l}dr'.
Then we have
(3.39) tlimllw”(-, H—wg(+, H=0.
Proor. We have only to prove for f(o, )€, Note that

(3.40) we(x, H—wg(x, H=Xp(x){w>(x, H—wi(x, 1)}

+ *1“_:/2('3;(& (PENV () p(R) —glr— RV cp}r="DIF(E(x)—1, %)
+%st(r_zeaﬁﬁr*"*m{F<$<x>——t, B)—Focr—t, D)}

:Il<x’ t)+12(x1 t>+I3(x: t))

where Xz(x) is the characteristic functionon {x; |x| =R} (R>R,). The support
in x of I(x, t) being compact, we can apply the Riemann-Lebesgue theorem to
obtain

(3.41) (-, HI—0 as t—oo.
Further, by we have for some C,;>0,
(3.42) [11(-, Hi éCnR—lmva .

On the other hand, s(x)=¢e(r¥)=0(r"?%) as r—oo, and
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_____:Z:: _ A p-(n-1)/2
Ia(x) t)— 2 V P {1 XR(x)} \/cp ¥

XSReXp (0 (E(x)—D) [1—exp{—ioe(x)} 1/ (s, H)do .

Thus, choosing N so large that No>1/2, we have

- k '
I, D12 5= (1= Xat}Vep s £ AEOL 16 e, 2

4+ Crp {1 —XAp(x)}p=(r-D/2-NI-5
where

G.ls, %):SRexp{ios}akf(a, Hdoe LARXS™ ).

Following the argument of Proposition 3.2, we then have

D
(3.43) 1, DIZCuR{ 3 1G sacaesn-n+1} -
(3.40)~(3.43) imply [3:39) Q.E.D.

§4. Proof of Proposition 3.3.

Noting (c.1), (2.31) and condition (i) on {(x, o), we put
4.1) e=c¢;min{l/2, o} >0,
4.2) Q,={xe2; |x]|<e(s+1)} and £2,=0-02,.

LEMMA 4.1. There exists a constant C.,>0 such that for any x<£2, and
S, tER+,

(4.3) |G.(x, s, )| SCrar~D1H(147) (s +1)2.
PROOF. Integrating by parts gives

(4.4) G.(x, s, )=~/c(x) r--D/2
><SG[{E‘&;ﬁémaa}zeXp{$i(g’23+0t—0’€(x>)}}c<x, O')do‘

:—«/E(“x)’r'm—””geexp{$1'<azs+at—ag<x)>} (205 +1—E(x)"?

X {02 —65Q20s+1—E(x))0,L+125*20s+t—E(x))C} do .

Here, since &(x)Zc; (r—R,), we have
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(4.5) 208+t—E&(x)=e(s+1) in (x, o), Xe.
Condition (ii) on {(x, ¢), (4.4) and imply Q.E.D.

The following lemma is obvious from the definition of G.(x, s, t).
LEMMA 4.2. There exists a constant Cy;>0 such that for any x<=£2, and
s, te R+

(4.6) |G(x, s, t)l <C157—(n-1)/2(1+r)_1_3.

LEMMA 4.3. There exists a constant C,>0 such that for any x €2,, s€(1, o)
and te R,

(4.7) |Gi(x, s, B)] §C1s7’_(n—l)/2(l-’r?’)—l“gs’l/2 .

ProoF. Let w(d) be a C»function of 1= R such that 0=Zw(A)=Z1, w(A)=1
for |A|=1/2 and =0 for |4|=1. We divide G.(x, s, t) into two parts:

(4.8) G.(x, s, )=~c(x)r*D2{H, (x, s, )+ H. x, s, )} ;

H. (x, s, t):Seexp{¢z‘<023+at—05<x>>}w<a~ac>c<x, oo,

H.(x, s, ={ exp(Fi(o’s+ot— o)} {l—alo— s} (x, 0)do,

where g.=(§(x)—1)/2s is the critical point of the phase function. For the sake
of simplicity we put

4.9 hix, s, t, o)=w(c—0o.)(x, o),

(4.10) hox, s, t, o)={l—w(e—0c.)}{(x, o).

It then follows from condition (ii) on {(x, ¢) that

4.11) |0Lhy(x, s, t, 0)| SCp(1+1)10  (I=0, 1,2 and j=1, 2),

where C;;>0 is independent of x=8,, s, ), te R, and o<e.
Note that
ols+tot—o&(x)=(6—0.)ts—oks
and

M, 5, 1, O)=hi(x, 5, 1, 00+(0—00| @ehi)x, 5, t, 0+ (0 —0))de .
Then we have for any sufficiently large N,

(4.12) exp{Fios} H, \(x, s, D=hy(x, s, 1, ac>SI_VNeXp{¢z'(a—ac>23}do

+{7 exo(Fito— 05} o =00 @R, 5, 1, 0t —0))dedo
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Here applying the Fresnel integral formula, we have

N —
(4.13) Ilvim S_Nexp{ii(o—ac)zs} do=+/mexp{Fni/4}s1/2,
On the other hand, since

im [ @,h)x, 5, 1, 0 (EN=02)de=0

»

by the Lebesgue theorem, we have integrating by parts and changing the order
of integration,

@19 1im| exp(Filo—o0'sH0—0] @ hi)x, 5, 1, Gt (o—0Ir)drds

:?z'(Zs)‘IS:z'drSZexp{?i(a——ac)%} @h)(x, s, 1, oet(o—0)0)do ,

where
2={0; 01— 0. Z(0—0)r=Z0,—0, and |(6—d.)| <1}

if we note that w()=0 for |A|=1 and h,x, s, t, 6)=0 for oEe=(0,, 02).
Taking account of (4.11) with j=1, we now have from (4.12)~(4.14) the follow-
ing inequality.

(4.15) |Hea(x, 5, )] SCir14+7)7 3o/ 7 s74/24(25) 12},

Next note that h.(x, s, ¢, 6)=0 in {c=¢; |6—0.|=1/2} and
(4.16) |20s+t—E&(x)|=s in {o<e; |o—0.|=1/2}.
Then integrating by parts gives

+i

H, (x, s, t):Se[m

aanp{¢z'<023+ot—as<x))}]hzda

———?igeexp{?i(azs—I—oz‘—-oE(x))} (20 s+1—E(x))18,h,

—25(20s+t—&(x))2h,} do .
Thus, by and (4.11) with j=2 we have

4.17) |H. ox, s, D) §c17(1+r)-1—5s~13§eda.

[(4.8), [(4.15) and [(4.17) prove Q.E.D.
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PrROOF OF PROPOSITION 3.3. Note the inequality

@18 [UG.C s Dlds=2{[T16.C, 5, Dlla,ds

+{ 6.0, s, Dllads+ {16 s, Dllo,ds}

By [Lemma 4.1 we have
= 1/2
IllGilllgl§C14(s—{—t)‘z{ggc(x)‘zr’"“(l—l—r)'z'z"dx}

=Cye(s+1)2.
By Lemma 42 we have for s€(0, 1],

= 1/2
mcimgzgcls{ggzc<x>-zr-n+1<1+,)-2_25dx}

oo

’S‘Clg{gsn—l dS;Ss(sH) (1+7’)“2"25d7’}1/2

éczo(ﬁt)gllz—(§ .

Moreover, by Lemma 4.3 we have for se(1, ),
< -1/2 ~2,-n+1(] -2-25 4 e
G llay S Cias [, ey rnei(14)* 4 x}

SCus™ 2 {s(s 1)} 120,

Applying these inequalities in (4.18), we see that there exists a constant C;, >0
such that for any te R,,

[T1G., 5, DlldssCuf[] (sttrtds i [T ssstaeas)
0 0 1

The right side tends to zero when t—co. Hence, we have and the proof
is completed. Q.E.D.

§5. Asymptotic energy distributions.

In this section we return to the pair {w,(x, t), w.(x, 1)}, given by (1.25),
which determines the energy at time ¢ of the initial-boundary value problem
(L.1)~(1.3). We shall first follow the argument of § 3 to construct the asymptotic
wave functions w3 (x, t) (j=1, 2) corresponding to wx, ¢), and then apply them
to the calculation of the asymptotic distribution of the wave energy for large ¢.
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For f={f1, f2} €D(H)X$H we put

)’ (0) f)ER+XS”'1

=R

1 _—
7—?7 [9’+(Hf1+lfz)](0':

(5.1) filo, ¥)= 1
ﬁ[g-(ﬁfx—ifz)](d, %), (o, ) eR_xXS"*,
Then (1.25) and (b) give the following spectral representations for
wyi(x, t) (cf., Lemma 3.I):
1 G . ~
wix, )= —r= sli S 9 expl—iat) F*o)felo, )do,
2 N,N'—=x e—N,N’ 0"
{6.2) 1
wix, D=z slim | (—iexp(—iot) o) sa, )do.
, —>00, e_N’NI
We put
. —1 . o x .
Fi(s, %)= Vgﬂﬁexp {ios} me(o, %)do,
(56.3) _;
Fils, 9= o\ explios)(—ifslo, D)do .

Then since the map ~z: H(H)XP>f—fz$H is unitary (cf., Lemma 3.2), we have
for any fe D(H)XH,

5.4) [ pegns [Fs, DPdsaSz=IFelP=1AAI+I 51 G=1, 2

The function Fy(s, ¥) characterizes the profile of the asymptotic wave
function for wy(x, t) (see Definition 3.I). Namely, the corresponding asymptotic
wave function is defined by

5) w3x, D= SRV AP B IE(ER) 1, 2).

We put
(5.6) K(6,(0), 0:@); Co)={xe2; 6.)<&(x)<0:(), £Cy},

where 6,(t), 0.(t) are given for each t= R such that 0=<56,(1)<60,(t)<c and C,
is a measurable subset of S®"'. Then (5.3)~(5.5) prove the following
PROPOSITION 5.1. For any {f., fo} ED(H)XD we have

1 -t
6T wFC, Dk, oxmcp="3| dS| " 7 gls 7 Fls, )%ds.
0 i

01(

PROOF. Let Xx(x) be the characteristic function on K(6,(t), 8,(¢); C,). Then
we have '
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lwF(-, Dlkeo, o, 05005 0

=%S gn-1 dszszoxK<x>¢<5<x>>2c<x>-1le<£<x>—f» )|*dr.

Thus, putting s=&(x), we have (cf., Proof of [Proposition 3.2). Q.E.D.
COROLLARY 5.1. |lw3(+, t)|? is monotone increasing in t€ R and

(5.8) fim [w3(-, t)ilz=% {IHf P+ f0%

PrROOF. Note that [w,(-, t)|? is the quantity with 6,(1)=0, 8,(t)=c0
and C,=S""'. Then we see that it is monotone increasing in t= R and
follows from (5.4). Q.E.D.

By use of [5.2), [Corollary 5.1 and Propositions 3.1 and B.3, and following
the argument of the proof of [Theorem 3.1, we can prove the

PROPOSITION 5.2. For any initial data {fi, f:} ED(H)XP we have

(5.9) limjlw,(-, )—w5(-, DI*=0.

For any KCQ the wave energy in the set K at time ¢ is defined by
(5.10) E(w, K, )=w:(-, D%+ lws(-, Dllk .
Clearly, if {fi, fo} €D(H)X P, then
(5.11) E(w, K, )= E(w, 2, )=|Hf[*+ f.l?< oo

for every measurable set KC {2 and for all 1= R.

Now, the first result on the asymptotic energy distributions is the following
theorem which describes the asymptotic equi-partition of energy.

THEOREM 5.1. For any {f1, fo} ED(H)X we have

(6.12) lim[l,(-, t)llZZ%E(w, 2,00 (G=L2.

PROOF. follows from and if we note the inequalities

(5.13) fwi(-, Dl x=Iwi(, Dl +lwi, H—wF(, DI,
(5.14) lwi(-, Dl e=lwi(, Ollg—lwi-, H—wF(-,
which hold for every KCQ and t< R. Q.E.D.

Our next result is the following theorem which describes that the wave
energy is almost concentrated in an expanding spherical zone of constant
thickness for all ¢t large enough.

THEOREM 5.2. For any >0 and {f, fo} € D(H)X P there exist some constants
7>0 and to;=max{l, 5} such that for any t>t,
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(5.15) E(w, 2, 0)—e<E(w, Kt—7, t+7; S*), n=Ew, 2, 0).

PrOOF. By means of (5.4) and [Proposition 5.2, there exist >0 and t,=
max{l, »} such that

SS,,_I dS;[S::+S:]|Fj(s, ds=e/2 (=1, 2),

lwi(-, D—w5C, DIVEw, 2, 0)=e/12 (=1, 2)

for all £>t,. Note further that ¢(s)=1 for s=1. Then by [(6.10) and [(5.13) with
K=K(t—n, t+75; S*"), Proposition 5.1 and (5.4) we have

Blw, Kt—7, t+7; 5,02 3 {5] _ ass] 174, p1as
=3lw(-, D—w(-, DIV Ew, 2, 0}z Ew, 2, 0—¢

for all £>#. This proves the first inequality of The second inequality
is a result of Q.E.D.

Finally, we prove the following theorem which describes the asymptotic
distribution of energy in cones.

THEOREM 5.3. Let C be a cone in R™ with vertex at the origin:
(5.16) C=R,XC, (C, being a measurable subset of S™7*).
Then we have for any {fi, f2} €D(H)XH,

(5.17) lim E(w, 2C, t)=SSR |, D)*dodSz
—00 X 0

- %{SSRMOI [ (Hf 1 +if))o, £)*dodSz

+S§R_xcol[suﬁfl—z‘fz)](m £)[*dodSs}

PrROOF. Since 2N\C=K(0, oo;C,), it follows from [5.10) and [5.13) with
K=K(0, o ; C,) and Propositions B.], that

. 2
(5.18) lljil E(w, 2NC, t)=%£r£ ,E=1 i, Dl co,e: ¢

1 - .
=5 2. as:{" 1R, ppas.

Here by (5.3) and the Parseval equality,



(5.19)
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|" iR pras={" \sto, Do (=12

Equalities and (5.1) imply Q.E.D.
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