
J. Math. Soc. Japan
Vol. 34, No. 1, 1982

Remarks on a theorem of Fujita

By Steven ZUCKER

(Received May 12, 1980)

Introduction.

In [3], Fujita proves some results on certain natural vector bundles arising
from a K\"ahler fiber space (see our (2.2) and (2.14)). His methods are quite
direct; the general techniques of variations of Hodge structure and their degen-
eration, as developed by Griffiths, Schmid, Steenbrink, the author, et al. are for
the most part absent. This paper is the outcome of my attempt to discuss
Fujita’s results from this more general point of view. The advantage of doing
this may not be so apparent in the present instance, though it is likely to show
itself in future problems. One result in particular $((1.11))$ , on the Chern forms
of Hodge bundles, suggested to us by Griffiths, figures to be of general useful-
ness.

\S 1. Chern classes for Hodge bundles.

Let $S$ be a non-singular algebraic variety, and $V$ a flat complex vector
bundle on $S$ underlying a (real) polarized variation of Hodge structure of weight
$m$ . By this, we mean that we are given the following collection of data:
(1.1) i) A flat real structure on $V$,

ii) A non-degenerate flat bilinear pairing $(v, w)$ on $V$, and hence on sections
of $V$, which is defined over $R$ and is $(-1)^{m}$-symmetric,

iii) An orthogonal $C^{\infty}$ bundle decomposition

$V=$
$\bigoplus_{pq\in Z,p\dotplus q=m}H^{p.q}$

,

satisfying $\overline{H^{p,q}}=H^{q.p}$ .
iv) For each $r$ ,

$F^{r}=\bigoplus_{p\geqq r}H^{p.q}$

is a holomorphic sub-bundle of $V$,

v) The flat differentiation in $V$ with respect to a holomorphic vector field
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on $S$ maps $\mathcal{E}(F^{r})$ into $\mathcal{E}(F^{r- 1})^{1)}$

vi) For each $(p, q),$ $i^{p- q}(v,\overline{v})$ is positive-definite on $H^{p,q}$ .
Letting $\pi_{p.q}$ denote orthogonal projection of $V$ onto $H^{p,q}$ , and

$C=\sum i^{p-q}\pi_{p.q}$ (Weil operator),

we obtain the Hodge metric $\langle v, w\rangle=(Cv,\overline{w})$ on $V$, and also on all bundles $F^{r}/F^{s}$

$(r<s)$ .
The archetypical examples of the above are the systems of cohomology of

a family of compact K\"ahler manifolds ( $e$ . $g.$ , non-singular projective varieties).

For simplicity of notation, we assume that $H^{p,q}=0$ if $p<0$ or $q<0$ ; more-
over, we assume that $H^{m,0}\neq 0^{2)}$

There are well-known formulas for the curvature of Hodge bundles with
respect to the Hodge metric [4, (5.2)], which yield the assertion:

The holomorPhic vector bundle $F^{0}/F^{1}$ is negative, and $F^{m}=H^{m.0}$ is Positive
(not necessarily strictly in both cases).

From here on, let $S$ be a curve. Let $\overline{S}$ be the smooth completion of $S$ . We
will show that the Chern forms of all bundles $F^{r}/F^{s}(r<s)$ are bounded, and
hence square-summable, in the Poincar\’e metric on $S$ , and therefore represent
cohomology classes on $\overline{S}^{3)}$ under the following hypothesis. The flat bundle $V$

is associated to a representation $\rho$ of $\pi_{1}(S)$ on some finite-dimensional vector
space $V$ . Put $\Sigma=\overline{S}-S$ . Then we assume:
(1.3) HYPOTHESIS. The local monodromy transformations are unipotent, $i$ . $e.$ ,

for the homotopy class $\gamma$ of any small loop about a point of $\Sigma,$ $\rho(\gamma)$ is a uni-
potent transformation of $V$ .
(1.4) REMARK. By a standard argument (see [6, p. 230]) one knows that the
eigenvalues of all $\rho(\gamma)$ are of norm one. In case $V$ is defined over $Q,$ $e.g.$ , in
the geometric examples (cohomology systems), the eigenvalues must be roots of
unity, and thus $\rho(\gamma^{M})$ is unipotent for some positive integer $M$.

It suffices to restrict the situation to a small punctured disc $\Delta^{*}$ in $S$ centered
at a point $ s\in\Sigma$ . We pull back $V|_{\Delta}*$ to the upper half-plane $\mathfrak{h}$ via the covering
map $\phi:\mathfrak{h}\rightarrow\Delta^{*},$ $\phi(z)=\exp(2\pi iz)$ , and recall the asymptotic analysis of the Hodge
metric given in [6, \S 6]. Choose a local basis for the canonical extension $\overline{V}$ of
$V$ to $\overline{S}$ [ $2$ , p. 91], flagged so as to induce bases for all $\overline{F}^{r}/\overline{F}^{s}$ (where $\overline{F}^{r}$ is
the closure of $F^{\tau}$ in $\overline{V}$, which turns out to be a sub-bundle, cf. [8, p. 190]).

Elements of the basis can be taken of the form (in terms of the coordinate
on b)

1) Our notation is: for a $ C\infty$ vector bundle $E,$ $\mathcal{E}(E)$ denotes the sheaf of germs of
$ C\infty$ sections; for a holomorphic bundle $E,$ $\mathcal{O}(E)$ is the analogous analytic object.

2) These normalizations can always be achieved by a shift of weight.
3) To see this, one can use either the zero-residue argument of [5, (1.2)], or the

$L_{2}$ representability of the cohomology of $\overline{S}[9$ , \S 6 $]$ .
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(1.5) $\tilde{v}(z)=\exp(zN)v$ $v\in V$ ,

where $N$ is the nilpotent logarithm of $\rho(\gamma)$ .
We will carry out the discussion only for the total bundle $\overline{V}=\overline{F}^{0}$ , the other

cases being similar (compare [9, \S 5]). Since the Hodge metric is not flat, it is
best to move $\tilde{v}(z)$ by a family of isometries $T(z)$ so that the resulting function

$T\circ V;\mathfrak{h}\rightarrow V$

registers the Hodge norm. It follows from [6, p. 253] that

(1.6) $T(z)i^{\{}(z)=\lambda(z)^{-1}[y^{l/2}(v+\psi(y))]$ ,

where $y={\rm Im} z,$ $l\in Z,$ $\psi(y)$ is a series in positive powers of $y^{-1/2}$ , and $\lambda:\mathfrak{h}\rightarrow$

$Aut(V)$ is “ close “ to the identity matrix as $ y\rightarrow\infty$ .
We first assume that $\lambda\equiv I$ . The main point is that $T(z)\tilde{v}(z)$ is dominated

by its leading term $y^{l/2}v$ . The integers $l$ which occur fall into certain patterns:
by decomposing the bundle into $SL_{2}$-components (see [6, (6.24)]), it suffices to
assume that $V$ is irreducible; and then, to simplify notation, we assume $V$ is
isomorphic to the basic structure $S(m)-cf$ . [$9$ , p. 435]. There then exists a
basis $\{\tilde{v}_{()}, \cdots , \tilde{v}_{m}\}$ of $\overline{V}$ such that the matrix of the Hodge metric $h=[h_{ij}]_{i.j=0}^{m}$ ,

is asymptotically

(1.7) $h_{ij}=\langle\partial_{i}, \partial_{j}\rangle\sim y^{m-(1/2)(i+j)}$ .
To estimate the metric connection form $\theta=(\partial h)h^{-1}$ , we note that

$h^{-1}=(\det h)^{-1}Adj(h)$ ,

and therefore one readily sees that

$(h^{-1})_{ij}=(\det h)^{-1}Adj(h)_{ij}\sim y^{-[m-(1/2)(i+j)]}$ .
Of course

$(\partial h)_{ij}\sim y^{(m-1)-(1/2)(i+j)}dz$

and so

(1.8) $\theta_{ij}=\sum_{k}(\partial h)_{ik}(h^{-1})_{kj}\sim\sum y^{m- 1-(1/2)(i+k)}y^{-[m-(1/2)(k+j)]}dz\sim y^{-1-(1/2)(i-j)}dz$ .

The curvature $\kappa$ is then given by

$\kappa_{ij}=\partial(\theta)_{ij}\sim y^{-2-(1/2)(i- j)}dz\Lambda d\overline{z}$ ,

and we have for the Chern form

(1.9) $\Phi=Trace(\kappa)\sim y^{-2}dz\Lambda d\overline{z}$ .

The right-hand side of the above is, up to a constant, the Poincar\’e area element,

which is, of course, of bounded Poincar\’e norm.
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(1.10) REMARK. Observe that (1.8) shows that $\theta$ is a bounded local section of
$\Omega_{s}^{1}$ (End $V$).

Let now $\lambda$ be arbitrary. In order that the preceding calculations be adapt-
able, it suffices to know that $\lambda(z)-I$ and its first and second derivatives are of
negative exponential growth in $y$ . Schmid needed the estimate only for the
matrix itself in [6]. However, if one adopts the point of view that $\overline{V}$ is the
central object, one can see readily via use of the frame given by (1.5) and by
[6, pp. 252-253] that we may choose $\lambda$ so that the estimate holds for all
derivatives of $\lambda$ ; cf. [1, pp. 89-91].

We summarize.
(1.11) PROPOSITION. Under Hypothesis (1.3), the Chem forms of the bundles
$F^{r}/F^{s}$ with respect to the Hodge metric are bounded in the Poincar\’e metric.

The above result is interesting because of the following corollary.
(1.12) COROLLARY. Under Hypothesis(1.3), the Chern form of the bundle $F^{r}/F^{s}$

with respect to the Hodge metric represents in $H^{2}(\overline{S}, C)$ the Chern class of the
canonical extension $\overline{F}^{r}/\overline{F}^{s}$ .

PROOF. See [5, Theorem 1.4], and recall that we have computed relative
to a basis of $\overline{V}$.
(1.13) REMARK. It is clear that when the local monodromy fails to be uni-
potent, the conclusion of (1.11) no longer holds. To see this, some generator of
$V$ can be taken to be of the form $\exp(2\pi i\alpha z)\tilde{v}(z)$ where $\alpha$ is a real number with
$0<\alpha<1$ (constant in each $SL_{2}$ component), and in the expression (1.5) for $\tilde{v},$ $N$

is the nilpotent logarithm of the unipotent part of $\rho(\gamma)$ . This changes the
matrix $h$ (from before) by a factor of $g(z)=\exp(4\pi i\alpha z)$ . Put

$h_{\alpha}=gh$ ,

the matrix of the metric in the present situation. The connection matrix
becomes

$\theta_{\alpha}=\theta+\partial(\log g)I=\theta+(4\pi i\alpha dz)I$ .
If $t$ is the parameter on $\Delta^{*},$ $2\pi idz=\phi^{*}(dt/t)$ , and $dt/t$ is not $L_{2}$ in the Poincare
metric.
(1.14) REMARK. The results of this section remain valid for higher-dimensional
$S\subset\overline{S}$ , so long as the compactifying locus $\Sigma=\overline{S}-S$ is a smooth hypersurface.
When dim $S>1$ , this is no longer a general situation.

\S 2. Application to the result of Fujita.

Let $\overline{f}:\overline{X}\rightarrow\overline{S}$ be a Kahler fiber space over the smooth curve $\overline{S}$ . That is, $\overline{X}$

is a compact K\"ahler manifold and $\overline{f}$ is surjective. Then $\overline{S}$ is compact, and the
general fiber of $\overline{f}$ is non-singular. Let $f:X\rightarrow S$ denote the mapping obtained
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by deleting the singular Pbers from $\overline{X}$ and their images from S. Set $\Sigma=\overline{S}-S$

as before, and put $n=\dim X$. One defines the relative dualizing sheaf
(2.1) $\omega_{\overline{x}/\overline{s}}=\Omega\frac{n}{X}\otimes\overline{f}^{*}(\Omega_{\overline{S}}^{1})^{\vee}$ .

The theorem of Fujita in question is
(2.2) THEOREM [3]. $\overline{\mathcal{E}}=\overline{f}_{*}\omega_{\overline{x}/\overline{s}}$ is numerically semi-positive.

The proof of (2.2) is reduced to showing that for any finite morphism
$\overline{\pi}$ : $\overline{T}\rightarrow\overline{S},\overline{\pi}^{*}\overline{\mathcal{E}}$ is pseudo-semipositive, $i$ . $e.$ , every quotient line bundle of $\overline{\pi}^{*}\overline{\mathcal{E}}$ has
non-negative degree. We will aim to show that this criterion is satisfied by a
different technique, using results on degenerating Hodge structures and Corol-
lary (1.12). Throughout this section, $V$ will be the cohomology bundle on $H^{n- 1}$

of a fiber of $f$.
We begin by remarking that

(2.3) $8\cong(\Omega_{S}^{1})^{\vee}\otimes\overline{f}_{*}\Omega_{X}^{n}$ .
(2.4) LEMMA. Let $\tilde{f}:\tilde{X}\rightarrow\overline{S}$ be another completjOn of $f:X\rightarrow S$ . Then

$f_{*}\Omega_{X}^{n}\cong\overline{f}_{*}\Omega_{X}^{n}$ ,

$i$ . $e.$ , the direct image sheaf is independent of the choice of smooth compactificatjOn

of $X$.
PROOF. The assertion is no more than the bimeromorphic invariance of the

space of holomorphic differential forms.
(2.5) REMARK. The isomorphism in (2.4) is given by the equality of the images
of each sheaf inside $j_{*}f_{*}\Omega_{X}^{n}(j:Sc\overline{S})$ .
(2.6) COROLLARY. With notation as in (2.4), and additionally $\mathcal{E}=\tilde{f}_{*}\omega_{\tilde{x}/\overline{s}}$ , there
is a canonical isomorphism $\mathcal{E}\cong\overline{\mathcal{E}}$ .

Thus, we may freely replace the given compactiPcation $\overline{X}$ by a manifold
obtained by applying Hironaka’s resolution of singularities, and assume there-
fore that $Y=\overline{f}^{-1}(\Sigma)$ is a union of smooth divisors (not necessarily reduced) with
normal crossings. We then have
(2.7) LEMMA. i) $\Omega_{X}^{n}(\log Y)\otimes\overline{f}^{*}\Omega^{1}s(\log\Sigma)^{\vee}\subset\omega_{X/S}$ (again, we regard both sides
as subsheaves of $j_{*}$ ( $\Omega_{X}^{n}\otimes f^{*}\Omega\S\eta$ , where $i:Xc\overline{X}$ ), with quotient supported on $Y$ .
Moreover, we have equality if and only if $Y$ is reduced.

ii) We also have

$\omega_{X/S}(-Y)\subset\Omega_{X}^{n}(\log Y)\otimes\overline{f}^{*}\Omega_{S}^{1}(\log\Sigma)^{\vee}$ .

PROOF. This is clear, since in the top dimension al ogarithmic pole on $Y$

(resp. $\Sigma$) is the same as a first-order pole on $Y^{red}$ (resp. $\Sigma$); and also, as
divisors on $\overline{X}$, we have

$ Y^{red}\leqq Y=f*\Sigma$ ,
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with equality precisely when $Y$ is reduced.
(2.8) COROLLARY. $\Omega_{X/S}^{n-1}(\log Y)\subset\omega_{X/S}$ , with equality if and only if $Y$ is reduced.
Moreover, $\omega_{X/S}(-Y)\subset\Omega_{\Sigma/S}^{n-1}(\log Y)$ .

PROOF. One need only observe that the right-hand side in (2.7, ii) is natu-
rally isomorphic to $\Omega_{X/\overline{S}}^{n-1}(\log Y)$ , since we are in the top dimension.

We can now apply a theorem of Steenbrink [7, (2.11)], which implies (among

other things) that for $\mathcal{F}^{n-1}=;O(H^{n-1.0})\cong f_{*}\Omega_{X/S}^{n-1}$ ,

(2.9) $F^{n- 1}=:o(\overline{H}^{n- 1,0})\cong\overline{f}_{*}\Omega_{X/\overline{s}}^{n- 1}(\log Y)$ .

This yields the following assertion, which gives the key comparison of the
locally free sheaf $\overline{\mathcal{E}}$ and the canonical extension bundles discussed in \S 1.
(2.10) PROPOSITION. $\overline{\mathcal{F}}^{n-1}\subset\overline{\mathcal{E}}$ with equality if $Y$ is reduced. Also, $\overline{\mathcal{E}}\subset\overline{\mathcal{F}}^{n-1}(\Sigma)$ .
(2.11) DEFINITION. We say that a locally-free sheaf $\mathcal{A}$ on $\overline{S}$ satisfies condition
$P$ if for every Pnite morphism $\overline{\pi}$ : $\overline{T}\rightarrow\overline{S}$ , every quotient line bundle of $\overline{\pi}^{*}\mathcal{A}$ has
non-negative degree.

We are now in a position to prove:
(2.12) THEOREM ([3, pp. 785-786]). $\overline{\mathcal{E}}$ satisfies condition $P$.

As it was mentioned earlier, (2.2) is a consequence of (2.12).

PROOF. As it will become apparent during the course of the argument, the
discussion is unchanged if $\overline{\mathcal{E}}$ is replaced by $\overline{\pi}^{*}\overline{\mathcal{E}}$ , with $\overline{\pi}$ as in (2.11). Therefore,
we may as well assume that $\overline{\pi}$ is the identity mapping of $\overline{S}$ .

Let $\overline{\mathcal{L}}$ be a quotient line bundle of $\overline{\mathcal{E}}$ . We first assume that Hypothesis
(1.3) holds (unipotent local monodromy), so that we have $\Xi^{n- 1}\subset\overline{\mathcal{E}}$ by (2.10). Let
$\overline{\mathcal{M}}$ denote the image of $\overline{\mathcal{F}}^{n- 1}$ under

$\Xi^{n- 1}\rightarrow \mathcal{E}\rightarrow X$ .

It is enough to show that deg $\ovalbox{\tt\small REJECT}\geqq 0$ . We claim that the Chern form for $\overline{\mathcal{M}}$ in
the induced metric is non-negative and is $L_{2}$ in the Poincar\’e metric. The first
assertion is a standard fact about curvatures [4, \S 4], whereas the second fol-
lows from the calculations that led to (1.9) and (1.11). Since the degree of $\overline{\mathcal{M}}$

can be computed by integrating the Chern form over $\overline{S}$ , we see that

deg $\overline{\mathcal{M}}\geqq 0$ .

For the general case, we must prove first a rePnement of (2.10). At each
point $ s\in\Sigma$ , we may decompose $\overline{V}$ as

$\overline{V}=\overline{V}_{u}\oplus\overline{V}_{n}$ ,

into a summand $V_{u}$ with unipotent monodromy, and $V_{n}$ where the eigenvalues
of the monodromy are non-trivial roots of unity. Let $\mathcal{G}$ denote the extension
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to $\overline{S}$ of $\mathcal{F}^{n-1}$ which agrees with $j_{*}\mathcal{F}^{n- 1}\cap[\mathcal{O}(\overline{V}_{u})+t^{-1}\mathcal{O}(\overline{V}_{n})](j:Sc_{*}\overline{S})$ on $\Sigma$ .
Then:
(2.13) PROPOSITION. $\overline{\mathcal{G}}\subset\overline{\mathcal{E}}$ .

PROOF. Fujita shows by calculation that generating sections of $\overline{\mathcal{E}}$ have
Hodge norm bounded away from zero. From (1.7) and the definition of $\overline{V}$,
alluded to in (1.13), the Hodge norm of a section $\sigma$ of $\overline{V}_{n}$ vanishes like $t^{\alpha}$

$(0<\alpha<1)$ at the origin, but that of $ t^{-1}\sigma$ blows up. The inclusion of (2.13)

follows immediately.
We will prove (2.12) by means of a base change $\overline{g}$ : $\overline{U}\rightarrow\overline{S}$ , such that (1.3)

holds on $\overline{U}$. With $g:U\rightarrow S$ the restriction of $\overline{g}$ , let $\overline{\mathcal{H}}^{n- 1}$ denote the canonical
extension of the Hodge bundle $g^{*}\mathcal{F}^{n- 1}$ on $U$ . Then by (2.13), coupled with the
definition of $\overline{V}$,

St $n-1\subset\overline{g}^{*}\mathcal{G}\subset\overline{g}^{*}\overline{\mathcal{E}}$ .

For $\overline{\mathcal{L}}$ a quotient line bundle of $\overline{\mathcal{E}}$ , let $\overline{\mathfrak{N}}$ be the image of .41 n-l in $\overline{g}^{*}\overline{\mathcal{L}}$ .
Then, since (1.3) holds on $U$ ,

$0\leqq\deg\overline{\mathfrak{N}}\leqq\deg\overline{g}^{*}\overline{\mathcal{L}}=(\deg\overline{g})(\deg \mathcal{I})$ ,

hence deg $\overline{\mathcal{L}}\geqq 0$ , and we are finished.
We can also reprove Theorem (3.1) of [3] along similar lines:

(2.14) THEOREM. There is a bundle decomposition

$\overline{\mathcal{E}}_{=}^{\sim}\overline{X}\oplus\Phi$ ,

where $R$ is trivial and $\overline{\mathcal{B}}^{\vee}$ has no sections.
PROOF. We use Proposition (2.13) again. At each $ s\in\Sigma$ , we have

(2.15) $j_{*}\mathcal{F}^{n-1}\cap(\mathcal{O}(\overline{V}_{u})\oplus t^{-1}\mathcal{O}(\overline{V}_{n}))\subset\overline{\mathcal{E}}$ .

There are natural dual pairings

$[O(\overline{V}_{u})\oplus t^{-1}\mathcal{O}(\overline{V}_{n})]\otimes O(\overline{V})\rightarrow O_{\overline{S}}$

$\mathcal{F}^{n- 1}\otimes \mathcal{F}^{0}/\mathcal{F}^{1}\rightarrow Os$ ,

the first from the definition of the canonical extension, and the second by
Hodge theory. Combining them with (2.15), we obtain

$\mathcal{H}\rightarrow(8)^{\vee}\subset\Xi^{0}/\overline{\mathcal{F}}^{1}=;\overline{\mathcal{G}_{t^{0}}}$

where $\mathcal{H}=tO(\overline{V}_{u})\oplus \mathcal{O}(\overline{V}_{n})$ .
By [9, (10.1)], every section of $\overline{\mathcal{G}_{t^{0}}}$ is induced by a flat section of $o(\overline{V})$ ,

which may be taken to be everywhere of type $(0, n-1)$ . Let $c\overline{\chi}\vee$ denote the
free sheaf on the space of flat sections of type $(0, n-1)$ that map into $(\overline{\mathcal{E}})^{}$, and
let
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$\phi;\overline{J}^{\vee}\rightarrow(\overline{\mathcal{E}})^{\vee}$

be the obvious mapping. Since $j\overline{\{}\vee is$ well-known to be a summand of $\overline{\mathcal{G}_{f}^{0}}$, it
necessarily also splits off of $\overline{\mathcal{E}}^{\vee}$ . By construction, every section of $\overline{\mathcal{E}}^{\vee}$ is actually

a section of $cf\overline{\zeta}^{}$ so the complementary bundle has no sections. This proves
(2.14).
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