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Introduction.

In this paper we study the asymptotic behavior of nonexpansive mappings
and of one parameter semigroups of nonexpansive mappings in Banach spaces.
In [1], Baillon proved the first nonlinear ergodic theorem for nonexpansive
mappings in Hilbert spaces. Reich extended Baillon’s result to uniformly
convex Banach spaces which have Fréchet differentiable norms and Bruck
simplified the original argument of Reich. The weak convergence of trajecto-
ries of one parameter semigroups of nonexpansive mappings was studied by
Baillon [2], Bruck [7], Pasy [16], Miyadera and Reich [17]. In section 2,
we give ergodic theorems for nonexpansive mappings in uniformly convex
Banach spaces which satisfy Opial’s condition. In section 3, we consider a
necessary and sufficient condition for the weak convergence of trajectories of
nonexpansive mappings and one parameter semigroups of nonexpansive mappings
in Banach spaces.

1. Preliminaries and notations.

Let C be a closed convex subset of a Banach space E. A mapping T :C—E
is said to be nonexpansive if

I Tx—Tyl=lx—yl for all x, yeC.

A one parameter semigroup S={S(¢): t=0} of nonexpansive mappings on C is a
family of nonexpansive mappings of C into itself satisfying the following con-
ditions

1.1) S(s+)x=S(s)SW)x for s, t=0 and x<C;
(1.2) 1SHx—SHy|=|lx—yll  for t=0 and x, yeC;
(1.3) SO)x=x for xeC;

(1.4) thrzn SHx=St)x for t, t,=0 and x<C.
—to
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We define S,x=3 T*x/n for nz1 and x&C, and denote by F(T) and F(S)

the set of fixed points of T and the set of common fixed points of S, respec-
tively. In the following, — and — indicate strong and weak convergence,
respectively. Let E* be the dual of E, ¢(r) a continuous strictly increasing
function on R* with ¢(0)=0 and ¢(+o0)=+oc0. The duality mapping J, with
respect to ¢ is given by

Jo()={x*c E*: (x, x*)=|x| [ x*], IIX*IIZQD(IIkl!)}-

The duality mapping J, is said to be weakly sequentially continuous if J, is
single valued and x,—x in E implies that {/,x,} converges to J,x in the

weak* topology of E*. A Banach space E satisfies Opial’s condition if x,—x,
implies that

(1.5) lim inf|x,—x,l <lim inf[x,—x]|

for all x#x, It is known that is equivalent to the analogous condition
obtained by replacing lim inf by lim sup (see [9]). Note that if a Banach
space £ has a weakly sequentially continuous duality mapping J,, then E
satisfies Opial’s condition [9]. Let E be a Banach space, A be a subset of EXE
and xE. Then we define Ax={y€E: [x, y]l€A}, and set D(A)={xcE:
Ax#0}. A subset ACEXE is said to be accretive if for any [x;, y;]€ 4,
i=1, 2, there exists j& J,(x;—x,) such that

(yl—yz, ])20 .

An accretive set A with D(A)CC is said to be maximal accretive in C if it is
not properly contained in any accretive set B of EXE with D(B)CC. A
sequence {x,} CFE is said to be (weakly) almost convergent to a point x in E if

-1
(Weak-)liinzgoxkﬂ/n:x uniformly in i=1, 2, --- .

2. Nonlinear ergodic theorems.

THEOREM 2.1. Let C be a closed convex subset of a wuniformly convex
Banach space E which satisfies Opial’s condition, T :C—C be a nonexpansive
mapping with a fixed point, and xC. Then {T"x} is weakly almost convergent
to a fixed point of T.

To prove [Theorem 2.1, we need some lemmas.

LEMMA 2.1. Let F be a closed convex subset of a reflexive Banach space E

and {x,}CE be a boundqd sequence such that for each y<F, liinlixn—yll exists.

Then there exists y,=F such that
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(2.1) lim|x,—yol=min{lim|x,—yll: yEF}.

Proor. Let r=inf{lim|x,—yll:y€F}and D,={yeF:lim|x,—y|=r+1/k}

for k=1. Then for each k=1, D, is weakly compact convex and D,.,CD,.
Therefore [k\ D,+0 and this completes the proof.

Let F, E and {x,} be as in Lemma 2.I. Then we define

r({xa}, y)=lim|x,—yl, for yeF,

r({xx}, F)=min{r({x.}, y): yeF}.

LEMMA 2.2. Let F be a closed convex subset of a uniformly convex Banach

space E and A be a set of bounded sequences in E which satisfies the following
conditions:

(2.2) If {x,}=4, then for each y<F, lim||x,—yl| exists;
(2.3) if {xa}, {ya} €4, then there exists {z,} €4 such that

r({z.}, »=r({xa}, )
and

r({za}, y=r({ya}, ¥)  for all yeF.

Let r=inf{r({x,}, F): {xn} €4} and {{x}: i=1} be a sequence in A such that
liEn r({xP}, F)=r. Then there exists a sequence {z:;} CF such that r({x{}, F)=

r({xP}, z5) for all i=1 and it follows that {z;} converges to a point in F.
ProOF. The existence of {z;} is a direct consequence of Lemma 2.1. Now
we shall show that {z;} is a Cauchy sequence and hence {z;} converges to a
point in F. If r=0, then for each 7, j=1, there exists {y,} =4 such that
r({x®}, zo)=r({y.}, z:;) and r({x$}, z;)=r({y.}, z;) and hence we have

@4 2=z, Slim| ya—zel+Hlimll v ;1

=r({ya}, 20+7r({ya}, 2,)
=r({xP}, zo+r({xP}, z) .
Since lim r({x$P}, z)=limr({xP}, F)=0, {z;} is a Cauchy sequence. Let r+0.

If {z;} is not a Cauchy sequence, then there exists an ¢>0 such that for any
k=1, there exist j, j’=k with |z;—z; | >e. Choose ¢ so small that »>(r+c)
-(1—08(e/(r+c¢))), where ¢ is the modulus of convexity of the norm of E. Let
7, 7 be positive integers such that ||z;—z;| >e, »({xP}, F)<r+c, and r({xP}, F)
<r-+c and let {y,} be a sequence in A such that r({y,}, zo)<r({x®}, z;) and
r({ya}, z2))=r({x$}, z;). Then, by the definition of the modulus of the convex-
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ity, we obtain

(2.5) r({ya}, F)Sr({ya}, (zi+2,)/2)
zlinmllyn—(Zmsz)/ZH

=(@#+co)1—0o(e/(r+c))
<r.

This contradicts the definition of 7.

LEMMA 2.3. Let C be a closed convex subset of a uniformly convex Banach
space E which satisfies Opial’s condition, T : C—C be a nonexpansive mapping
with a fixed point, and {x,} CC be a sequence such that liTanllTx,,—xnlI:O and

lim|x,—y|l exists for all yeF(T). Then {x,} converges weakly to a point

ze€ F(T) such that r({x,}, 2)=r({x.}, F(T)).

PrOOF. By Theorem 8.4 of Browder [6], any weak subsequential limit of
{x,} is a fixed point of 7. Now we show that the conditions xn,—u, x.,—v
imply u=veF(T). If u++wv, then by Opial’'s condition,

(2.6) liirnllxni—ull=1iiml[xmi-—ull
< liimll Kmy—V
=lim[lxn,—v]
<1iimllxni—ul| .

This is impossible. Therefore {x,} converges weakly to a point ze F(T). Also
by using Opial’s condition, we can see that »({x,}, 2)=r({x.}, F(T)).

LEMMA 24 (Lemma 4, [10]). Let C be a closed convex subset of a uniformly
convex Banach space E, T : C—C be a nonexpansive mapping with a fixed point,
and xC. Then for each n=0,

2.7) Um||S,T*Tix—T*S, T x[|=0, uniformly in k=0.
LEMMA 2.5. Let C be a closed convex subset of a uniformly convex Banach

space E which satisfies Opial's condition, T :C—C be a nonexpansive mapping
with a fixed point, and x=C. Let {S;aT*nx} 420 satisfy that

(2.8) knui=k, for all n=1 and

lm|T*SenT*nx —SenT*n* 2 x| =0 uniformly in k=0.
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Then for each ye F(T), im|S,nT*nx—y|| exists and {S;nT *nx} converges weakly

to a fixed point of T.
PrROOF. Let yeF(T) and r=lim inf|S,;»T*»x—y|. For arbitrary &>0,

there exists no,=1 such that for any n=n,,
| T SpnT#nx—SynT*ntx|| <e/2
uniformly in £=0. Hence we choose n=n, such that

|SenTknx—y|| <r+e/2.
Then

(2.9) | Senta T Frt1x—y||
=|(TH*n+1x4Thrtitig 4 oo 4 Thnrdt¥i-ig) ol y|
=[|{(TH*n+1x4 oo f-Thnt1t2"-15)/om
(T hasrt+2 g oo L Thaad2t 10y 90} /9 — )
=||(SeaT *n+1x+4S,n T En+1+2" ) /12—y ||
S(|SeaTkrtr1x —TEr+1-knS, Tk | 4| Tkn+1-knS,, Tknx —y|)/2
+(|Sen T ¥r+142" x — T knt1-kn+2tG  Thay||
F (| Thn+1-kn+2S, TR x — yl|)/2
=(e/2+r+e/2)/2+4(e/2+r+e/2)/2
=r—+e.
Similarly, we obtain [|Sgn+:T*»+ix—y||<r+e for all 7=0. Therefore

lim|S;nT*nx—y]|

exists. While the condition (2.8) implies

limnsupllTSznT”"x—SznT’?"xll
§li1£nllT52nTknx—SgnTk"+1x I +1i1£n”SgnTkn+1x—‘SgnTanI|
=1i7anHTkn+2"x——T"’"xH/2”
=0.

Hence by we obtain that {S,»T*7x} converges weakly to a fixed
point of T.
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PROOF OF THEOREM 2.1. By there exists a sequence {S,»T*=x}
in E which satisfies the condition (2.8). We set A={SonT*2x : hy=kn, hur1=ha
for all n=1}. Then each element of A satisfies the condition (2.8). For sim-
plicity, we set A,,x=S:T"nx for each sequence {h.}..: of integers. By
we have that for any {A,,x}e4 and yeF(T), li;nllAhnx—yII

exists and {A,,x} converges weakly to a fixed point of 7. While if {As,x},
{Amnx}e/l and h,=m, for all n=1, then the condition (2.8) implies that for
each yeF(T),

(2.10) lim||Ap,x—y
<lim| Ay, x—T*» "5 A, x| Hlim| THe "0 A, x—y|
Slim| Spn T ™ot tn-ma x — Tha-m Sy, T | lim]| Ay x —
:1iTILn||Amnx——y|| .

Therefore A satisfies the conditions (2.2), (2.3) for F=F(T). Now we set
r=inf{r({An,x}, F(T)): {An,x} €4}. Then there exists a sequence {{A,®x}:
i=1} in A such that limr({A,®wx}, F(T)=r. By there exists a

sequence {y;} CF(T) such that r({Arrx}, F(T))=r({Aswx}, yi) for all i=L
Also by it follows that {y;} converges to a point y in F(T). If
we set h,=max{h{”: 1=i=n} for all n=1, then it follows that {4, x}e4

and
r({An,x}, y)=limr({Ap, 2}, 33)

=limr({Ax,x}, ¥4)

=r.

Therefore »({An,x}, F(T))=r({As,x}, y)=r and {A,,x} converges weakly to
y. Moreover we obtain that each {A, x}<=4 such that m,=h, for all n=1
converges weakly to y. In fact, if m,=h, for all n=1 and A, x—z (Fy),
then

2.11) lim|| Ap,x—zl| <lim| A, x—y]|
<lim|| A, x—y|

=r.

This contradicts the definition of r. Also, we can see that A, i sneix—y as
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n—co uniformly in £=0 and /=0, since #( {Ahn”ngn”nx-}, y)=r for all sequences
{k:} and {7,} of integers. Now we show that {S,T°x}n.: converges weakly
to y uniformly in /=0. For »n and m with m> h,,

@212) S, Tix= S T*ix/m

k=0

:(nnz_lTk+ix+2n( 121 SznThn+k2"+ix>+ mif Tk+ix>/m
E=0 k=0 k=hgp+j2"
where m=7-2"+h,+r, r<2™ Since {S,T*n**¥"+ix} ., converges weakly to y
uniformly in £ and 7, we obtain that {S,T%x}..: converges weakly to y,
uniformly in ¢=0.

REMARK. In [Theorem 2.1, we do not know if ‘Opial’s condition’ is essen-
tial. But if C is compact, it is easy to see that we need not ‘ Opial’s condition’.

COROLLARY 2.1. Let C be a compact convex subset of a uniformly convex
Banach space E, T : C—C be a nonexpansive mapping and x=C. Then {T"x} is
almost convergent to a fixed point of T.

Let E, C, and T be as in [Theorem 2.1, and P be the metric projection on
F(T). It is known that if E is a Hilbert space and x=C, then {PT"x}
converges to a point in F(T) and which coincides with the weak limit point of

n-1
{kZOTkx/n} y (cf.[1]. In Banach spaces, we do not know whether the result

above holds. But if F(T) is compact, we have the following proposition.
PROPOSITION 2.1. Let C be a closed convex subset of a uniformly convex
Banach space E which satisfies Opial’s condition, T :C—C be a nonexpansive

mapping with a fixed point and x<=C. If F(T) is compact, then {P(?}:T%M)}
= nz1
converges to the weak limit point of {;:Tkx/n}nzl.
PrOOF. Let {PS,,x};1 be a convergent subsequence of {PS,x}. If we
set y=weak-lim S,x and z=lim PS, x, then
lim inf||S,,x—z|l=lim inf||S,,x—PSy x|
1 1

<lim infl|S.,x—y|.

Therefore by Opial’s condition, we have that y=z and this completes the proof.

3. Weak convergence theorems.

In this section, we study the weak convergence of trajectory {7T"x} of a
nonexpansive mapping 7 and the trajectory {S(t)x}:;., of a one parameter
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semigroup S of nonexpansive mappings. First we show the following theorem
due to Miyadera by using the result of section 2.

THEOREM 3.1. Let C be a closed convex subset of a uniformly convex Banach
space E which satisfies Opial’s condition, T : C—C be a nonexpansive mapping with
a fixed point, and x&C. Then {T"x} converges weakly to a fixed point of T if
and only if Weak-linm(T"‘“x—T"x):O.

PrOOF. By [Theorem 2.1, {T"x} is weakly almost convergent to a fixed
point of 7. Then follows from easy Tauberian condition (cf.
Lorentz [1I]).

PROPOSITION 3.1. Let C be a closed convex subset of a uniformly convex
Banach space E which satisfies Opial’s condition, T :C—C be a nonexpansive
mapping, and x<C. If {T"x} converges weakly to yeF(T), then {PT"x} con-
verges to v, where P is the metric projection on F(T).

ProoF. The strong convergence of {PT"x} is known [I8] So we are
sufficient to show that linm PT"x=y. If we set z:lim PT™x, then

Hm||T™x —z|| Elim|| T*x—PT"x||+lim||PT"x —z||
=lim||T"x—PT"x||
Slim|| T x—y| .

Then by Opial’s condition, we have z=y.

THEOREM 3.2. Let C be a closed convex subset of a uniformly convex Banach
space E which satisfies Opial’s condition, S={S({): t>0} be a semigroup of non-
expansive mappings on C which has a conmmon fixed point and satisfies S(s+t)=
S(s)S() for all t, s>0, and let x=C. Then {S{t)x}¢so converges weakly to a
common fixed point of S if and only if Weak-yﬁrorol(S(t—[— h)x—S()x)=0 for all h>0.

ProOOF. We are sufficient to prove ‘if part’. First we show that if
S(tp)x—u where t,—o0 as k-0, then ue F(S)= QOF(S(t)). We use the same

argument as in the proof of Proposition in [13]. Since Weak-ltim(S(t—l—s)x—S(t)x)
=0, for all s>0, we have that Weak-li;n St,+s)x=u for all s=0. By Opial’s
condition it follows that

r.m:——lim’z sup||S(te+s+t)x—ul
glimk sup|Str+s+t)x—St)ul

§limk sup|S¢e-+s)x—ul=r;
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for all s, t>>0. Therefore {r;} is convergent to r=inf{r,: s>0}. If »=0, then
there exists a sequence {S(s;)x} with s, { co which converges strongly to u.
Since 1kim S(sp+t)x=S®u for all t>0, we have that S¢®)u=u for all t>0. Let

r+0 and suppose that |S¢,)u—ul=¢ for some ¢>0 and ¢,>0. We choose an
€,>0 such that (r+eg[1—0d(e/(r+eo)]<r where 0 is the modulus of convexity
of the norm, and choose s,>0 such that »,_;, <r+e, for all s=s,. Then

1imk sup||S(te+s)x —SE)ul =r+e

and
1imk sup(|Str+s)x—ullSr+eo

for s=s,. Therefore we have that for each s=s,,

r§1imksupHS(tk+s)x—uH
<limk sup||S(tr+5)x —(SE)u-+u)/2|

=(r+e)ll—o(e/(r+en)]<r.

This is a contradiction. Therefore we obtain that » is a common fixed point
of S. Next we show that there exists a yeF(S) such that lim P,S(t)x=y,
t -0

where P, is the metric projection on F(S). Since
d(t-+s)=|SE+s)x—PsSt+s)x|

=|SE+s)x—P:SO)x|
SISOx—PSHxl=d(®)

for s,t>0, {d®)}:>0 is convergent to d=inf{d(¥): t>0}. First, let d=0. For
s, t>0, we have

[ PeSE+s)x—PsSE) x|l
=[1PeSt+8)x —SE+8)x [+ SE+s)x —P:S(®) x|
=[PSE+9)x—SE+)x [+ I1SEx — PSS x|
=d(t+s)+d(@).

Since 1}}5 d(t)=d=0, it follows that {P,S(t)x} is convergent to a point y< F(S).

Next, let »>0. If {P,S()x} does not converges strongly, then there exists a
sequence {P;S(t,)x} with ¢, 1 oo which satisfies that for some ¢>0,

| PsS(t)x— PSSty x|=e¢ for all j, k=1 (j#k).
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We choose ¢’>0 such that (d+e&')[1—d(e/(d+¢'))]1<d, and t'>0 such that
d@)=<d+¢’ for all t=¢’. Then by the same argument again, we have that for
all t;>t,=t,

d=|SE)x—(PsS{E)x+PsS(te)x)/2]

(d+e")[1—d(e/(d+e"))]<d.

This is a contradiction. Therefore {P,S(t)x} converges strongly to a point
yeF(S). Now we prove that {S({)x} converges weakly to y:ltim P.S{t)x. Let

u———weak-likm S({t.)x where t,—o0 as k—oo, Then usF(S). If u+y, then
lim|[S(te)x—y | =lm[Sx)x—PSEe)xl]
élikaS(tk)x—uH
<lim|S(t)x—yll.

Therefore we have that u=7y and this completes the proof.

THEOREM 3.3. Let C be a closed convex subset of a reflexive Banach space
E which has a weakly sequentially continuous duality mapping J,, S={S(): t=0}
be a one parameter semigroup on C such that F(S)#0 and

D={xeC: ltirf)l(x—S(t)x)/t exists}
is dense in C, and let x<C. Then {St)x}:s0 converges weakly to a common

fixed point of S as t—co if and only if weak-ltim(S(H—h)x—S(z‘)x):O for all
h>0.

PROOF. By the assumption, there exists an accretive set ACE XE such
that D(A)=C, A is maximal in C, and

@1 ——rjt-S(t)z%—AS(t)zEO (a.e. 1) for z=D(A).

Let ve D(A) and we Av. If we set @(t):SZ(p(s)ds for ¢=0, then [3.0J implies
that for any z= D(A),

OIS®x =)= 0(US©z—2D= (w, J,o—S@aNde

for t=s=0. Since D(A)=C, the inequality above holds for all zeC. In partic-
ular,

(32) OUSOx o)~ OUS©x—o) =\ (0, J0—S@)x)dz
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for t=s=0. Suppose that S(t;)x—y with ¢, 1 co. Then by we have that
3.3) —@(r)é@(||S(tk+T)x—vll)—(D(HS(Z‘k)x—vH)éS:(w, J,(w—S(t+7)x))dt

for T>0, where r=sup{|S#x—v|: t>0}. Since Weak-£im(5(t+r)x—S(t)x)=0
for each >0, we have that Weak-lilren Sir+7)x=y for all z>0. Therefore, if

k—oco, (3.3) implies that —@()/T=(w, J,(v—y)). Since T is arbitrary, we
obtain

(3.4) (w, J,(v—y)=0 for all v D(A) and we Av.

implies that 0 Ay because A is maximal accretive in C. Therefore
S@y=y for all t=0. Now it is enough to show that if S¢,)x—y=F(S) and
St x—z= F(S) for sequences {t,} and {t,} with ¢, 1co and ¢, oo, then y=
ze F(S). Since E satisfies Opial’s condition, this follows from the same argu-
ment as in the proof of Lemma 2.3

COROLLARY 3.2. Let C be a closed convex subset of a wuniformly smooth
Banach space E which has a weakly sequentially continuous duality mapping J,,
S={SG): t=0} be a one parameter semigroup of nonexpansive mappings on C
with a common fixed point of S, and x&C. Then {S(t)x}:z0 converges weakly to
a common fixed point of S as t—oo if and only if Weak-lti_{n(S(H—h)x—S(t)x)zO
for all h>0. N

Proor. If E is uniformly smooth, then the generator A, of S(¢) has a
domain dense in C (cf. Baillon [3]). Therefore follows from
Theore 3.
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