Weak L-spaces are free L-spaces

By Munehiko ITŌ

(Received Sept. 6, 1980) (Revised Jan. 23, 1981)

1. Introduction.

In order to discuss the dimension theory, K. Nagami [4], [5] introduced the concepts of free L-spaces and weak L-spaces. He posed the following two problems in [5] and [4] respectively.

- 1. Does the class of weak L-spaces coincide with the class of free L-spaces?
- 2. Is the perfect image of a free L-space again a free L-space? (Problem 2.11.)

The main purpose of this paper gives a positive answer to the first problem. In Section 4 we give a partial answer to the second problem as follows.

The closed continuous image of a free L-space need not be a free L-space.

In this paper all spaces are assumed to be Hausdorff topological spaces. The letter N denotes the positive integers. For undefined terminology refer to [2]. The author thanks Professor K. Nagami for his guidance.

2. Definition.

DEFINITION 2-1. Let X be a space and F a closed subset of X. A family U of open sets is said to be an anti-cover of F if $U^*(=\bigcup \{U: U \in U\})=X-F$.

Let $\mathcal U$ be an anti-cover of F. For a subset S of X $\operatorname{St}_{\mathcal U}^i(S)$ is defined inductively by the formulae

$$\operatorname{St}_{\mathcal{U}}^{1}(S) = \operatorname{St}_{\mathcal{U}}(S) = \{U \in \mathcal{U} : U \cap S \neq \emptyset\} *,$$

$$\operatorname{St}_{\mathcal{U}}^{1}(S) = \operatorname{St}_{\mathcal{U}}(\operatorname{St}_{\mathcal{U}}^{1-1}(S)).$$

An open neighborhood W of F is said to be a canonical (semi-canonical) neighborhood of F with respect to U if $F \cap Cl \operatorname{St}_U^{\bullet}(X-W) = \emptyset$ for each $i \in N$ $(F \cap Cl \operatorname{St}_U(X-W) = \emptyset)$ respectively.

Let $\mathcal{W} = \{W_a : a \in A\}$ be a family of neighborhoods of F. \mathcal{W} is said to be an anti-closure-preserving family if $\{(X - W_a) \cup F : a \in A\}$ is closure-preserving.

DEFINITION 2-2. For a space X consider a pair $\mathcal{Q}=(\mathcal{F}, \{U_F: F \in \mathcal{F}\})$ such that \mathcal{F} is a family of closed sets of X and each U_F is an anti-cover of F. \mathcal{Q}

508 M. Itō

is said to be a *free* (weak) L-structure of X if \mathcal{F} is σ -discrete (σ -locally finite) and for each $x \in X$ and each neighborhood U of x there exist a finite subfamily $\{F_1, \dots, F_n\}$ of \mathcal{F} and a canonical (semi-canonical) neighborhood U_i of F_i ($1 \le i \le n$) such that $x \in \bigcap_{i=1}^n F_i \subset \bigcap_{i=1}^n U_i \subset U$ respectively.

A paracompact space X is said to be a $free\ (weak)\ L$ -space if X has a free $(weak)\ L$ -structure respectively.

3. Main theorem.

LEMMA 3-1. Let X be a monotonically normal space, F a closed subset of X and $\{W_a: a \in A\}$ an anti-closure-preserving family of open neighborhoods of F. Then there exists an anti-cover V of F such that each W_a is semi-canonical with respect to V.

PROOF. Let D be a monotonic operator in X. Set

$$\begin{split} U_x = & \text{D[}\{x\}, \ \{(X - W_a) \colon a \in A, \ W_a \ni x\} \text{*} \cup F \text{]}, \quad x \in X - F, \\ \mathcal{U} = & \{U_x \colon x \in X - F\}. \end{split}$$

Now we show that for every $a \in A$, W_a is semi-canonical with respect to \mathcal{U} . Set $G=\mathbb{D}[(X-W_a),F]$. From the definition of \mathcal{U} if $x\in W_a$ then $U_x\cap (X-W_a)=\emptyset$. Therefore if $U_x\cap (X-W_a)\neq\emptyset$ then $x\in X-W_a$ and $U_x\subset G$. This implies that W_a is semi-canonical with respect to \mathcal{U} . That completes the proof.

Now we note that every weak L-space is hereditarily paracompact and monotonically normal.

REMARK 3-2. Let X be a weak L-space and $(\mathcal{F}, \{\mathcal{U}_F : F \in \mathcal{F}\})$ a weak L-structure of X such that each \mathcal{U}_F is locally finite mod F (i. e. locally finite in X-F). Set

$$\mathcal{U}(F) = \{F \cup \mathcal{W}^* : \mathcal{W} \subset \mathcal{U}_F, F \cup \mathcal{W}^* \text{ is open}\}, F \in \mathcal{F}.$$

Then $(\mathfrak{F}, \{U(F): F \in \mathfrak{F}\})$ satisfies the following conditions.

- 1. Each U(F) is an anti-closure-preserving family of open neighborhoods of F.
- 2. For each $x \in X$ and each neighborhood U of x there exist a finite subfamily $\{F_1, \dots, F_n\}$ of $\mathfrak F$ and a member U_i of $\mathfrak V(F_i)$ $(1 \le i \le n)$ such that $x \in \bigcap_{i=1}^n F_i \subset \bigcap_{i=1}^n U_i \subset U$.

Conversely, let $\mathcal H$ be a σ -locally finite family of closed sets and $(\mathcal H, \{\mathcal CV(H): H \in \mathcal H\})$ satisfies the above two conditions. Let $\mathcal CV_H$ be an anticover of H constructed from $\mathcal CV(H)$ as in Lemma 3-1, $H \in \mathcal H$. Then $(\mathcal H, \{\mathcal CV_H: H \in \mathcal H\})$ is a weak L-structure of X.

THEOREM 3-3. Let X be a weak L-space. Then X is a free L-space. PROOF. Part 1. Let us prove that X has a weak L-structure $(\mathcal{H}, \{CV_H: CV_H: CV_H:$

 $H \in \mathcal{H}$) such that \mathcal{H} is σ -discrete.

Let $(\mathcal{F}, \{\mathcal{U}_F \colon F \in \mathcal{F}\})$ be a weak L-structure of X such that each \mathcal{U}_F is locally finite mod F. Let $\mathcal{F} = \bigcup_{i \in N} \mathcal{F}_i$ where each \mathcal{F}_i is locally finite, $\mathcal{F}_i \subset \mathcal{F}_{i+1}$ and $\mathcal{F}_i = \{F_a \colon a \in A_i\}$. For $F \in \mathcal{F}$ set

$$\mathcal{U}(F) = \{F \cup \mathcal{W}^{\sharp} : \mathcal{W} \subset \mathcal{U}_F, F \cup \mathcal{W}^{\sharp} \text{ is open}\}.$$

Take $i \in \mathbb{N}$. For $A' \subset A_i$ set

$$(\bigcap_{a \in A'} F_a) - (\bigcup_{a \in A_i \setminus A'} F_a) = \bigcup_{n \in N} K_n$$
 where each K_n is closed.

Take $j \in N$. Set $L(A') = K_j$. Then

$$\{L(A'): A' \in B_i^j\} = \{L(A'): A' \subset A_i, L(A') \neq \emptyset\}$$

is a discrete family of closed sets. So we can take a discrete family $\{D(A'): A' \in B_i^i\}$ of open sets such that $L(A') \subset D(A')$ for each $A' \in B_i^i$. Since \mathcal{F}_i is locally finite, for $A' \in B_i^i$ we can put

$$A' = \{a(A', 1), \dots, a(A', n_{A'})\}.$$

Take open sets G_1 , G_2 such that

$$L(A') \subset G_1 \subset Cl G_1 \subset G_2 \subset Cl G_2 \subset D(A')$$
.

For $1 \leq k \leq n_{A'}$ set

$$H(A')_{k_1} = F_{a(A', k)} \cap Cl G_1, H(A')_{k_2} = L(A').$$

Set

$$U(A')_{k_1} = (U \cap G_2) \cup (G_2 - \operatorname{Cl} G_1), \quad U \in \mathcal{U}(F_{a(A', k)}),$$

$$\mathcal{CV}(H(A')_{k_1}) = \{U(A')_{k_1} : U \in \mathcal{U}(F_{a(A', k)})\}.$$

Then the family $CV(H(A')_{k_1})$ is an anti-closure-preserving family of open neighborhoods of $H(A')_{k_1}$. Set

$$U(A')_{k2} = G_1, \quad U \in \mathcal{U}(F_{a(A', k)}),$$

$$\mathcal{CV}(H(A')_{k2}) = \{U(A')_{k2} : U \in \mathcal{U}(F_{a(A', k)})\}.$$

Obviously $CV(H(A')_{k2})$ is an anti-closure-preserving family of open neighborhoods of $H(A')_{k2}$. Now we note that

$$U(A')_{k_1} \cap U(A')_{k_2} \subset U \cap G_1 \subset U$$
.

For convenience' sake we put $H(A')_{kh} = \emptyset$ and $CV(H(A')_{kh}) = \{\emptyset\}$ for $k > n_{A'}$ and h=1, 2. Since $\mathcal{H}_{ikh}^j = \{H(A')_{kh} : A' \in B_i^j\}$ is discrete for $(i, j, k, h) \in N \times N \times N \times \{1, 2\}$, then

$$\mathcal{H} = \{H: H \in \mathcal{H}_{ikh}^{j}, (i, j, k, h) \in N \times N \times N \times \{1, 2\}\}$$

510 M. Iтō

is σ -discrete. By Remark 3-2, we have only to check that $(\mathcal{H}, \{\mathcal{CV}(H): H \in \mathcal{H}\})$ satisfies the two conditions of Remark 3-2.

Let $x \in X$ and W a neighborhood of x. Then there exist $F_1, \dots, F_m \in \mathcal{F}$ and $U_i \in \mathcal{U}(F_i)$ $(1 \leq i \leq m)$ such that $x \in \bigcap_{i=1}^m F_i \subset \bigcap_{i=1}^m U_i \subset W$. We can assume that $F_1, \dots, F_m \in \mathcal{F}_n$ for some $n \in N$. Let $A' = \{a \in A_n : x \in F_a\}$. Then there exists $j \in N$ such that $A' \in B_n^j$ and $x \in L(A')$. Also we can assume that $F_i = F_{a \in A', i}$ $(1 \leq i \leq m)$. Then $\{H(A')_{ih} : 1 \leq i \leq m, h = 1, 2\} \subset \mathcal{H}, U_i(A')_{ih} \in \mathcal{V}(H(A')_{ih}) \ (1 \leq i \leq m, h = 1, 2)$ and

$$x \in \bigcap_{\substack{i=1\\h=1,2}}^m H(A')_{ih} \subset \bigcap_{\substack{i=1\\h=1,2}}^m U_i(A')_{ih} \subset \bigcap_{\substack{i=1\\h=1,2}}^m U_i \subset W.$$

Actually \mathcal{H} constitutes a network of X.

Part 2. For $F \in \mathcal{G}$, where $(\mathcal{G}, \{\mathcal{U}_F \colon F \in \mathcal{G}\})$ is a weak L-structure of X such that \mathcal{G} is σ -discrete, we construct an anti-cover \mathcal{O}_F of F satisfying the following condition.

If U is a semi-canonical neighborhood of F, then U is a canonical neighborhood of F with respect to CV_F .

Let \mathcal{U}_F be locally finite mod F. By induction we define a sequence \mathcal{U}_F^1 , \mathcal{U}_F^2 , \cdots of locally finite (mod F) anti-covers of F. Set $\mathcal{U}_F^1 = \mathcal{U}_F$. If we define a locally finite (mod F) anti-cover \mathcal{U}_F^i , then the family

$$\mathcal{O} = \{ \operatorname{Int}(X - \mathcal{W}^*) : \mathcal{W} \subset \mathcal{V}_F^i, X - \mathcal{W}^* \text{ is a neighborhood of } F \}$$

is anti-closure-preserving. Therefore we have an anti-cover \mathcal{U}' constructed from \mathcal{O} as in Lemma 3-1. Let \mathcal{U}_F^{i+1} be a locally finite refinement of \mathcal{U}' in X-F. Let $\{G_i: i \in N\}$ be a family of open sets such that

$$X=G_1\supset Cl\ G_2\supset G_2\cdots$$
, $\bigcap_{i\in N}G_i=F$.

Set \mathcal{C}_F as follows.

$$\begin{split} &U_x = \bigcap \{U \in \bigcup_{j=1}^i \mathcal{U}_F^j \colon \ x \in U\} \bigcap (G_i - \operatorname{Cl} G_{i+2}), \quad x \in G_i - G_{i+1}, \\ & \mathcal{C}V_F = \{U_x \colon \ x \in X - F\} \,. \end{split}$$

We show that this \mathcal{C}_F is the required. Take a semi-canonical neighborhood U of F with respect to U_F . By induction on i we claim that

$$\operatorname{St}_{\mathcal{O}_{\mathbf{p}}}^{i}(X-U) \subset \operatorname{St}_{\mathcal{O}_{\mathbf{p}}}^{i}(\cdots(\operatorname{St}_{\mathcal{O}_{\mathbf{p}}}(X-U))\cdots) \cup (X-G_{i+1}).$$

For i=1, CV_F refines CV_F , so the assertion is trivial. Let $n \in N$. Assume that the assertion is true for i < n. Put

$$CV_1 = \{U_x: x \in G_n - F\},$$

 $CV_2 = CV_F - CV_1.$

Then \mathcal{O}_1 refines \mathcal{O}_F^n , $\mathcal{O}_1^* \cap (X - G_n) = \emptyset$ and $\mathcal{O}_2^* \subset X - G_{n+1}$. Therefore we have

$$\operatorname{St}^n_{\mathcal{C}_F}(X-U) \subset \operatorname{St}_{\mathcal{C}_F^n}(\cdots(\operatorname{St}_{\mathcal{C}_F^1}(X-U))\cdots) \cup (X-G_{n+1})$$
 ,

and the induction is completed. Hence U is a canonical neighborhood of F with respect to \mathcal{C}_F .

It is easy to check that this $(\mathcal{F}, \{\mathcal{CV}_F : F \in \mathcal{F}\})$ gives a free L-structure for X, and the proof is completed.

4. Example.

DEFINITION 4-1. Let X be a free L-space and $x \in X$. The free L-character of x, denoted by $\chi_L(x)$, is larger than n if the following condition is satisfied.

For every free L-structure $(\mathfrak{F}, \{U_F \colon F \in \mathfrak{F}\})$ of X there exists a neighborhood W of x (depending on $(\mathfrak{F}, \{U_F \colon F \in \mathfrak{F}\})$) such that if $x \in F_i \in \mathfrak{F}$ and U_i is a canonical neighborhood of F_i $(1 \le i \le n)$ then $(\bigcap_{i=1}^n U_i) - W \ne \emptyset$.

We say $\chi_L(x) = n$ if $\chi_L(x) > n-1$ and $\chi_L(x) > n$.

EXAMPLE 4-2. Part 1. For each $i \in N$ we construct a free L-space Y_i containing a point o_i such that $\chi_L(o_i) > i - 1$.

Let

$$C_n = \{(n, b): b=0 \text{ or } 1/m, m \in N\} \subset \mathbb{R}^2, n \in \mathbb{N},$$

$$A = \{(n, 0): n \in \mathbb{N}\},$$

$$X = (\bigcup_{n \in \mathbb{N}} C_n)/A,$$

 $g: \bigcup_{n \in \mathbb{N}} C_n \longrightarrow X$ the natural quotient mapping.

Then g is a closed mapping so X is a Lašnev space. Therefore X is a free L-space (see [3], Theorem 1.6 and [4]). Let $Y_i = X^i$. Then Y_i is a free L-space (see [4], Theorem 1.3). Let

$$o=g(A),$$
 $B_n=g(C_n), n \in \mathbb{N},$
 $o_i=(o, \dots, o) \in Y_i.$

We prove that $\chi_L(o_i) > i-1$.

Let $(\mathcal{F}, \{\mathcal{U}_F : F \in \mathcal{F}\})$ be a free L-structure of Y_i and

$$\{(F_1, \dots, F_{i-1})_n : n \in \mathbb{N}\} = \{(F_{a_1}, \dots, F_{a_{i-1}}) : o_i \in F_{a_i} \in \mathcal{F}, 1 \leq j \leq i-1\}.$$

Let $e: N \times N \rightarrow N$ be a one-to-one and onto mapping and

$$B(m, n) = B_{e(m, n)}, (m, n) \in \mathbb{N} \times \mathbb{N}.$$

512 M. Itō

Letters G(m, n), $(m, n) \in N \times N$ denote sets satisfying the following conditions.

- 1. $G(m, n) \subset B(m, n)$, $(m, n) \in N \times N$.
- 2. Each G(m, n) is a neighborhood of o in B(m, n).

We determine a neighborhood W of o_i which is required in Definition 4-1 as follows.

For $(F_1, \dots, F_{i-1})_k \in \{(F_1, \dots, F_{i-1})_n : n \in \mathbb{N}\}$ we determine $\{G(k, n) : n \in \mathbb{N}\}$ and set

$$G = \{G(k, n) : (k, n) \in \mathbb{N} \times \mathbb{N}\}^*,$$

$$W = G^i.$$

We determine $\{G(k, n): n \in N\}$.

Let

$$I = (N \cup \{0\})^i - (N^i \cup \{(0, \dots, 0)\})$$

be an index set. Set

$$B(k, 0) = \{o\},\$$

$$S(a)=B(k, n_1)\times\cdots\times B(k, n_i), a=(n_1, \cdots, n_i)\in I.$$

Define $P_j: X^i \to X$ by $P_j(x_1, \dots, x_i) = x_j$ and $T_j: X^i \to X^{i-1}$ by $T_j(x_1, \dots, x_i) = (x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_i)$ for $1 \le j \le i$.

Case 1. $\bigcup_{j=1}^{i-1} F_j|_{S(a)}$ isn't a neighborhood of o_i in S(a) for some $a \in I$.

Without loss of generality, we can assume that $a=(0, n_2, \dots, n_i)$. Let $\{q_n: n\in N\} = S(a) - \bigcup_{j=1}^{i-1} F_j$. Then there exists $\{G(k, n): n\in N\}$ such that for each $n\in N$,

Case 2. For each $a \in I$, $\bigcup_{j=1}^{i-1} F_j|_{S(a)}$ is a neighborhood of o_i in S(a).

$$(2-1) \quad (\bigcap_{j=1}^{i-1} F_j) \cap \{S(a): a \in I\} *\ni q \neq o_i.$$

In this case there exists $\{G(k, n): n \in N\}$ such that

$$q \in (\bigcup_{n \in N} G(k, n))^i$$
.

(2-2)
$$(\bigcap_{j=1}^{i-1} F_j) \cap \{S(a): a \in I\} *= \{o_i\}.$$

Without loss of generality, we can assume that

$$Cl((H_1 \cap S(1, 0, \dots, 0)) - \{o_i\}) \ni o_i$$

for some $H_1 = (\bigcap_{j=1}^{h_1} F_j) - (\bigcup_{j>h_1}^{i-1} F_j), 1 \le h_1 \le i-2.$

(2-2-1) For each $n \in N$,

C1 {
$$q: q \in (H_1 \cap S(1, 0, \dots, 0)) - \{o_i\},$$

| $(T_2^{-1}(T_2(q)) \cap S(1, n, 0, \dots, 0)) - H_1 | < |N| \} \ni o_i.$

In this case there exist $\{q_n: n \in N\} \subset (H_1 \cap S(1, 0, \dots, 0)) - \{o_i\}$ and $\{G(k, n): n \in N\}$ such that for each $n \in N$,

- 1. $H_1 \cap T_2^{-1}(T_2(q_n)) \supseteq P_2^{-1}(G(k, n)) \cap T_2^{-1}(T_2(q_n)),$
- 2. if $q_n \in U \in \mathcal{U}_F$ and $F \in \{F_{h_1+1}, \dots, F_{i-1}\}$ then $U \cap H_1 \cap T_2^{-1}(T_2(q_n))$ $\supseteq P_2^{-1}(G(k, n)) \cap T_2^{-1}(T_2(q_n)).$

Otherwise, without loss of generality, we can assume that

$$Cl((H_2 \cap S(1, 1, 0, \dots, 0)) - \{o_i\}) \ni o_i$$

for some $H_2 = (\bigcap_{j=1}^{h_2} F_j) - (\bigcup_{j>h_2}^{i-1} F_2)$, $1 \le h_2 < h_1$. We consider (2-2-1) for the 3rd-axis. If (2-2-1) isn't yet true then we continue analogously. Since $h_1 \le i-2$ and this program is valid to the (i-1)th-axis. Thus we come to (2-2-1) at finite times.

Now we show that this W is the required. Let $(F_1, \dots, F_{i-1})_k \in \{(F_1, \dots, F_{i-1})_n : n \in \mathbb{N}\}, F_j \subset U_j \ (1 \leq j \leq i-1) \ \text{and} \ \bigcap_{i=1}^{i-1} U_j \subset W.$

If Case 1 is true then for each $n \in \mathbb{N}$ there exists $p_n \in T_1^{-1}(T_1(q_n))$ such that

- 1. $p_n \in W$
- 2. if $q_n \in U \in U_F$ and $F \in \{F_1, \dots, F_{i-1}\}$ then $p_n \in U$.

Since $(\bigcup_{j=1}^{i-1}F_j)\cap\{q_n\colon n\!\in\!N\}=\emptyset$, $\{\operatorname{St}_{U_{F_j}}(Y_i\!-\!U_j)\colon 1\!\leq\! j\!\leq\! i\!-\!1\}\, \mbox{\sharp} \supset \{q_n\colon n\!\in\!N\}$. Thus the fact $\operatorname{Cl}\{q_n\colon n\!\in\!N\}\ni o_i$ implies that $\operatorname{Cl}\operatorname{St}_{U_{F_n}}(Y_i\!-\!U_n)\ni o_i$ for some n $(1\!\leq\! n\!\leq\! i\!-\!1)$. Then U_n isn't a canonical neighborhood of F_n .

Let Case 2 be true. Since we assume that $\bigcap_{j=1}^{i-1} F_j \subset W$, so case (2-1) does not hold. Thus (2-2) is true. Let (2-2-1) be true. Let us assume that we come to (2-2-1) at one time. (Other case is proved analogously.) For each $n \in N$ there exists $p_n \in T_2^{-1}(T_2(q_n))$ such that

- 1. $p_n \in W$,
- 2. if $q_n \in U \in U_F$ and $F \in \{F_{h_1+1}, \dots, F_{i-1}\}$ then $p_n \in U \cap H_1$.

By the same reason, there exists n ($h_1 < n < i$) such that U_n isn't a canonical neighborhood of F_n .

Therefore $\chi_L(o_i) > i-1$.

Part 2. We define a free L-space Y, a space Z that isn't a free L-space

514 M. Itō

and a closed continuous onto mapping $f: Y \rightarrow Z$.

Set $Y = \bigcup_{i \in N} Y_i$, Z = Y/E where $E = \{o_i : i \in N\}$ and $f : Y \to Z$ the natural quotient mapping. It is enough to prove that Z isn't a free L-space.

Let Z be a free L-space and $(\mathcal{F}, \{\mathcal{U}_F \colon F \in \mathcal{F}\})$ a free L-structure of Z. Since $f(Y_i) \approx Y_i$, we can assume that $Y_i \subset Z$, $i \in N$. Then $(\mathcal{F}, \{\mathcal{U}_F \colon F \in \mathcal{F}\})|_{Y_i}$ is a free L-structure of Y_i . Let W_i be a neighborhood of o_i constructed from $(\mathcal{F}, \{\mathcal{U}_F \colon F \in \mathcal{F}\})|_{Y_i}$ as in Part 1. Then $W = \bigcup_{i \in N} W_i$ (in Z) is a neighborhood of $\bar{o} = f(E)$. Thus there exist $F_1, \dots, F_n \in \mathcal{F}$ and a canonical neighborhood U_i of F_i $(1 \leq i \leq n)$ such that

$$\bar{o} \in \bigcap_{i=1}^n F_i \subset \bigcap_{i=1}^n U_i \subset W$$
.

Then $F_i|_{Y_{n+1}} \in \mathcal{F}|_{Y_{n+1}}$, $U_i|_{Y_{n+1}}$ is a canonical neighborhood of $F_i|_{Y_{n+1}}$ in Y_{n+1} $(1 \le i \le n)$ and

$$o_{n+1} \in \bigcap_{i=1}^n F_i|_{Y_{n+1}} \subset \bigcap_{i=1}^n U_i|_{Y_{n+1}} \subset W_{n+1}$$
.

But this contradicts to the construction of W_{n+1} . Thus Z isn't a free L-space. But Z is an M_1 -space (see [1], Theorem 3 and [2], Theorem 54.11).

This example shows that an adjunction space of two free L-spaces need not be a free L-space.

References

- [1] G. Gruenhage, Stratifiable spaces are M_2 , Topology proceedings, 1 (1976), 221-226.
- [2] Y. Kodama and K. Nagami, Theory of topological spaces, Iwanami, Tokyo, 1974.
- [3] K. Nagami, The equality of dimensions, Fund. Math., 106 (1980), 239-246.
- [4] K. Nagami, Dimension of free L-spaces, Fund. Math., 108 (1980), 211-224.
- [5] K. Nagami, Weak L-structures and dimension, Fund. Math., 112 (1981), 231-240.

Munehiko ITŌ Institute of Mathematics University of Tsukuba Sakura-mura, Ibaraki 305 Japan