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1. Introduction.

In order to discuss the dimension theory, K. Nagami [4], introduced the
concepts of free L-spaces and weak L-spaces. He posed the following two
problems in [5] and respectively.

1. Does the class of weak L-spaces coincide with the class of free L-spaces ?

2. Is the perfect image of a free L-space again a free L-space ? (Problem
2.11)

The main purpose of this paper gives a positive answer to the first problem.
In Section 4 we give a partial answer to the second problem as follows.

The closed continuous image of a free L-space need not be a free L-space.

In this paper all spaces are assumed to be Hausdorff topological spaces. The
letter N denotes the positive integers. For undefined terminology refer to [2].

The author thanks Professor K. Nagami for his guidance.

2. Definition.

DEFINITION 2-1. Let X be a space and F a closed subset of X. A family
U of open sets is said to be an anti-cover of F if U =UJ{U: UeU})=X—F.

Let U be an anti-cover of F. For a subset S of X Sti,(S) is defined induc-
tively by the formulae ‘

St&(S)=Sty(S)={UcsU: UNS+0} %,
St&/(S) =Sty (StiFX(S)) .

An open neighborhood W of F is said to be a canonical (semi-canonical) neigh-
borhood of F with respect to U if FNCISt$(X—W)=0 for each ieN (Fn
CISt(X—W)=0) respectively.
Let w={W,: ac A} be a family of neighborhoods of F. 9% is said to be
an anti-closure-preserving family if {(X—W,)\JF: a= A} is closure-preserving.
DEFINITION 2-2. For a space X consider a pair =(F, {Ur: FEJ}) such
that & is a family of closed sets of X and each ¥y is an anti-cover of F. @
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is said to be a free (weak) L-structure of X if F is o-discrete (o-locally finite)
and for each x=X and each neighborhood U of x there exist a finite subfamily
{Fy, ---, F,} of ¢ and a canonical (semi-canonical) neighborhood U; of F;

(1=:=mn) such that x& (nWIFiC AIUiCU respectively.
i= i=

A paracompact space X is said to be a free (weak) L-space if X has a free
(weak) L-structure respectively.

3. Main theorem.

LEMMA 3-1. Let X be a monotonically normal space, F a closed subset of X
and {(W,: ac A} an anti-closure-preserving family of open neighborhoods of F.
Then there exists an anti-cover U of F such that each W, is semi-canonical
with respect to U.

PROOF. Let D be a monotonic operator in X. Set

U,=D[{x}, {(X—W,):acA, W,5x}¥UF], xeX-—F,
U={U,: x&€X—F}.

Now we show that for every a€ A, W, is semi-canonical with respect to U.
Set G=D[(X—W,), F]. From the definition of U if x€W, then U, \X—W,)
=0. Therefore if U, "\ X—W_)+#0 then x&€X—W, and U,CG. This implies
that W, is semi-canonical with respect to . That completes the .proof.

Now we note that every weak L-space is hereditarily paracompact and
monotonically normal.

REMARK 3-2. Let X be a weak L-space and (4, {Ur: FEF}) a weak
L-structure of X such that each €Uy is locally finite mod F (i.e. locally finite in
X—F). Set

UF)={FYW* . wC Uy, F\UW* is open}, Fe&g.

Then (F, {U(F): Feg}) satisfies the following conditions.
1. Each U(F) is an anti-closure-preserving family of open neighborhoods of F.
2. For each x€ X and each neighborhood U of x there exist a finite sub-
family {Fy, -, Fu} of F and a member U; of UF;) (1=5i<n) such that

x e (51Fic [SlUiCU.

Conversely, let 4 be a o-locally finite family of closed sets and
(4, {<V(H): Hest}) satisfies the above two conditions. Let <V, be an anti-
cover of H constructed from <V(H) as in Lemma 3-1, He4%. Then
(4, {Vy: HE4}) is a weak L-structure of X.

THEOREM 3-3. Let X be a weak L-space. Then X is a free L-space.

Proor. Part 1. Let us prove that X has a weak L-structure (4, {Vy:
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Hesdt}) such that 40 is o-discrete.
Let (¢, {Up: FEF}) be a weak L-structure of X such that each Up is
locally finite mod F. Let E?:'gvih where each &, is locally finite, F;CF ;41

and F;,={F,: acA;}. For FeF set
UF)={F\JW* . 9wCUp, F\UW* is open}.
Take ieN. For A'CA; set
(GQ,FG)—(‘;EH\A’F,I):”\E)NK” where each K, is closed.

Take jeN. Set L(A")=K;. Then
{L(A": A’eBi}={L(A"): A'CA;, L(A")+0}
is a discrete family of closed sets. So we can take a discrete family
{D(A"): A’ BJ} of open sets such that L(A")CD(A’) for each A’eBj. Since
g, is locally finite, for A’ B we can put
A'={a(A’, 1), -+, a(A’, nu)}.
Take open sets G,, G, such that
L(ANCG,cCl G,CcG,cCl G, D(A").
For 1=k=<n, set

HAY u=Faow, vbNCL Gy, H(A")p=L(A").
Set
UAY u=UNGI\I(G,—Cl Gy), UcUFacur, 1),

VHA) ) ={UA N UeUFocar, 1)} -

Then the family <V(H(A’),,) is an anti-closure-preserving family of open neigh-
borhoods of H(A’),. Set

UAN =G, UeUFuu,w),
V(H(AN )= {U(ANpe: U U(Fpcar, 1))} -

Obviously <V(H(A’);s,) is an anti-closure-preserving family of open neighborhoods
of H(A’);,. Now we note that

U(A)uinU(A)CUNG,CU .

For convenience’ sake we put H(A"),,=0 and SV(H(A)y)={0} for k>n, and
h=1, 2. Since Hin={H(A)rr: A’€Bj} is discrete for (7, j, B, )& NXNXNX
{1, 2}, then

H={H: HEIH s, (G, J, b, WENXNXNX AL, 2}}
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is o-discrete. By Remark 3-2, we have only to check that (4, {<V(H): He4(})
satisfies the two conditions of Remark 3-2.

Let xX and W a neighborhood of x. Then there exist Fy, -, Fo,€%F
and U, eU(F;) (1=:/<m) such that x& (7% F,C fn\ U,cW. We can assume that
=1 i=1

F, -, F,e%, for some neN. Let A/={acA,: xF,}. Then there exists
jEN such that A’eBj and x<L(A’). Also we can assume that F;=F,c4 »
(1=i=m). Then {H(A")in:1=i=m, h=1, 2} CH, U(A)inE V(H(A )ir) 1=i=m,
h=1, 2) and

D3

xe
h

| H(AC ("il Ui(A’)ithn\l U,cw.
2 he,e v=

Actually 4 constitutes a network of X.

Part 2. For Fe%, where (4, {Up: FEJ}) is a weak L-structure of X
such that & is o-discrete, we construct an anti-cover <V of F satisfying the
following condition.

If U is a semi-canonical neighborhood of F, then U is a canonical neighbor-
hood of F with respect to V.

Let Uy be locally finite mod F. By induction we define a sequence Uk,
U%, --- of locally finite (mod F') anti-covers of F. Set Uy=%Uy. If we define a
locally finite (mod F') anti-cover Uk, then the family

Ly

O={Int(X—w*): sy UL X—* is a neighborhood of F}

is anti-closure-preserving. Therefore we have an anti-cover U’ constructed
from © as in Lemma 3-1. Let 4! be a locally finite refinement of U’ in X—F.
Let {G;: 7N} be a family of open sets such that

X=G,2ClG;,2G, -, iQV_GiZF.
Set Wy as follows.
szm{Uele Ui: 2€UNA(Gi—Cl Girs), EGi—Gopy,
Yp={U,: x€X—F}.

We show that this <V, is the required. Take a semi-canonical neighborhood U
of F with respect to Uy. By induction on i we claim that

For /=1, <V refines Uk, so the assertion is trivial. Let ne<N. Assume that
the assertion is true for /<n. Put

G ={U,: x€G,~—F},
CVQ-:CVF_CVl .
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Then <, refines U}, VN X—G,)=0 and WfCX—G,,;,. Therefore we have
St&, (X—U)CStyp(--(Sty(X—=U)) NN X—GCrs1)

and the induction is completed. Hence U is a canonical neighborhood of F
with respect to V.

It is easy to check that this (&, {Vy: FEJ}) gives a free L-structure for
X, and the proof is completed.

4. Example.

DEFINITION 4-1. Let X be a free L-space and x=X. The free L-character
of x, denoted by X;(x), is larger than n if the following condition is satisfied.

For every free L-structure (F, {Up: FETF}) of X there exists a neighborhood
W of x (depending on (F, {Up: FEF})) such that if xeF;=F and U; is a canoni-

cal neighborhood of F; (1=<i<n) then <Q Uy)—W 0.

We say X (x)=n if Xz (x)>n—1 and X (x)Pn.
ExXAMPLE 4-2. Part 1. For each ;&N we construct a free L-space Y, con-
taining a point o; such that X,(o;)>7i—1.
Let
C.={n, b): b=0 or 1/m, meN}CR? neN,

A={(n, 0): neN},
X=(\ C)/4,

g: KJIVCn——-—>X the natural quotient mapping.
ne

Then g is a closed mapping so X is a Lasnev space. Therefore X is a free
L-space (see [3], Theorem 1.6 and [4]). Let Y,=X* Then Y, is a free
L-space (see [4], Theorem 1.3). Let

o=g(A),
B,=g(C,), neN,

0;=(0, -, 0)EY ;.
We prove that X (0;)>7—1.
Let (¢, {Up: FE9}) be a free L-structure of Y, and

{(Fly R Fi—l)n: nEN}:{(Faly oy F"'i-l): OiEFajegy léjél‘—l}.
Let ¢: NXN—N be a one-to-one and onto mapping and

B(m7 n):Be(m,n); (my n)ENXN-
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Letters G(m, n), (m, n)e NXN denote sets satisfying the following conditions.

1. GOm, n)CB(m, n), (m, n)eNXN.
2. Each G(m, n) is a neighborhood of o in B(m, n).

We determine a neighborhood W of o; which is required in Definition 4-1 as
follows.

For (Fy, -+, Fi_)re{(Fy, -+, Fi_)a: neN} we determine {G(k, n): neN}
and set

G={G(k, n): (k, n)ENXN}*,
wW=G".

We determine {G(k, n): nEN}.
Let

I=(NVA{0 —(N* A, -, 0O})
be an index set. Set
B(k, 0)= {o},
S(a)=B(k, n)X--XB(k, n;), a=(ny, -, ny)€l.

Define P;: X'—X by Pjxy, -, xg)=x; and T;: X'=X*"* by Tixy, -, x)=
(xb vty Xji-1 X1, 7 xl) for 1§]§Z.

Case 1. J\=ji F;|sce> isn’t a neighborhood of o0; in S(a) for some a<l.

Without loss of generality, we can assume that a=(0, n,, -+, n;). Let
{gn: neN}zS(a)——;QFj. Then there exists {G(k, n): neN} such that for
each neN,

if go€UeUp and FE{Fy, -, F;_} then UNTTY(T(gn)
2PH(G(k, n)NT1H(T1(ga).

Case 2. For each a=1, gFjISCa) is a neighborhood of ¢; in S(a).
(2-1) (:Q_iij{sw): asl}*q+#o0,.
In this case there exists {G(k, n): neN} such that
q&(nLeJNG(k, n))*.
@2) (QF)N(S@): ash*={od.
Without loss of generality, we can assume that

CI(HiNS(L, 0, ==+, 0)—{o)> 04
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h i-
for some Hy=( N\ F)—( \J Fy), 1<h,<i—2.
J=1 J>hy
(2-2-1) For each neN,
Cl {4' qE(HlmS(]-’ 0) Tty 0))_ {Oi}i
[(TzX(TAg)NSA, n, 0, -+, )—H;| <IN} Do0;.

In this case there exist {g,: neN}CH;NS{,O0, -, 0)—{o;} and {G(k, n):
neN} such that for each neN,

L. HNT3 (T«gu))2 PGk, n)NTZ (T 5(gn)),
2. if ¢u€UeUyp and FE{Fy 11, -, Fioy} then UNHNT2 (T 5(gn))
2P Gk, n)NTZHT(gn)).

Otherwise, without loss of generality, we can assume that

CI((HnS(, 1, 0, -+, 0))— {0} )20

h qi-
for some sz((%1 F J-)—(_>Uh1 Fy), 1=h,<h,. We consider (2-2-1) for the 3rd-axis.
Jj= J 2
If (2-2-1) isn’t yet true then we continue analogously. Since h;=<:—2 and this
program is valid to the (/—1)th-axis. Thus we come to (2-2-1) at finite times.
Now we show that this W is the required. Let (Fy, -+, Fi_):E {(Fy, -+,
Fi-Da: neN}, F,CU,; (1=j=<i—1) and ﬁiU,-cW.
=
If Case 1 is true then for each neN there exists p,=T7Y(T1(g,)) such that

1. anEW,
2. if gu€UcsUyr and Fe{F,, -+, Fi_;} then p,cU.

Since (z(ji Fpnign: neN}t=0, {Sty, (Yi—U)): 1=j=i—1}¥D{g.: neN}. Thus
J= J

the fact Cl{g,: n<N}>o0; implies that Cl StCUFn(Yi—Un>9 0; for some n
(1=n=<i—1). Then U, isn’t a canonical neighborhood of F,.

i-1
Let Case 2 be true. Since we assume that N\ F;CW, so case (2-1) does not
Jj=1

hold. Thus (2-2) is true. Let (2-2-1) be true. Let us assume that we come to
(2-2-1) at one time. (Other case is proved analogously.) For each n=N there
exists p,&T5Y(Ty(gs)) such that

L. p.&W,
2. l'f anUquF and FE {Fh1+11 tty Fi—l} then anUmHl.

By the same reason, there exists n (h;<n<7) such that U, isn’t a canonical
neighborhood of F,.

Therefore X, (0;)>i—1.

Part 2. We define a free L-space Y, a space Z that isn’t a free L-space
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and a closed continuous onto mapping f:Y—Z.
Set Yz.ngi, Z=Y/E where E={0;: i€N} and f:Y—Z the natural

quotient mapping. It is enough to prove that Z isn’t a free L-space.

Let Z be a free L-space and (&, {Up: FE9I}) a free L-structure of Z.
Since f(Y)=Y,;, we can assume that Y;CZ, i€N. Then (¢, {Ur: FETF})|y,;
is a free L-structure of Y;. Let W, be a neighborhood of 0; constructed from
(4, {Ur: FET})ly, as in Part 1. Then W:ingi (in Z) is a neighborhood of

0=f(E). Thus there exist F,, ---, F, =9 and a canonical neighborhood U; of
F; (1={=<n) such that

D

o< F1C 5\1UiCW.

It

=1
Then Fily,,,€% |y, Uily,,, is a canonical neighborhood of Fily ,, in Y,
(1=:i=n) and

n n
0n+1e mlFiIYnﬂC nlUilYn+1CWn+1 .
1= 1=

But this contradicts to the construction of W,,;,. Thus Z isn’t a free L-space.
But Z is an M,-space (see ', Theorem 3 and [2], Theorem 54.11).

This example shows that an adjunction space of two free L-spaces need not
be a free L-space.
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