Exceptional values for meromorphic solutions of some difference equations

By Niro YANAGIHARA

(Received Jan. 12, 1981)

1. Introduction.

In this note, we consider the non-linear difference equation

(1.1)
$$y(x+1) = R(y(x))$$
,

where R(x) is a rational function with the degree p, $p \ge 2$. Julia [1, p. 158] proved that

either there is a number λ such that

(1.2)
$$\lambda = R(\lambda), \quad R'(\lambda) = 1,$$

or there is a number λ such that

(1.3)
$$\lambda = R(\lambda), \qquad |R'(\lambda)| > 1.$$

In either case, the equation (1.1) has a meromorphic solution determined as follows.

Let λ be a number for which (1.2) holds. Putting

(1.2-1)
$$y(x) = \lambda + 1/w(x)$$
,

we obtain

(1.2-2)
$$w(x+1) = w(x) \left[1 - \frac{R^{(m+1)}(\lambda)}{(m+1)!} w(x)^{-m} + \cdots \right] (m \ge 1)$$

 $=R_1(w(x))$, with a rational function $R_1(x)$.

Further, if we put

(1.2-3)
$$\omega(x) = w(x)^m / A^m, \quad A = \left[\frac{-m}{(m+1)!} R^{(m+1)}(\lambda) \right]^{1/m},$$

then we get

$$\omega(x+1) = F(\omega(x)),$$

where

(1.2-5)
$$F(x) = x + 1 + \sum_{j \ge m+1} b_j x^{1-j/m}.$$

This work was partially supported by Grant-in-Aid for Scientific Research (No. 564041), Ministry of Education.

The equation (1.2-4) was studied by Kimura [2], [3]. He obtained a local solution $\phi(x)$ such that

$$(1.2-6) \begin{cases} \phi(x) \text{ is holomorphic in the domain} \\ D_l(B,\varepsilon) = \left\{ |x| > B, |\arg x - \pi| < \frac{\pi}{2} - \varepsilon \right\} \\ \cup \left\{ \operatorname{Im} \left[x e^{-i\varepsilon} \right] > B \right\} \cup \left\{ \operatorname{Im} \left[x e^{i\varepsilon} \right] < -B \right\} \end{cases} \\ \text{and has an asymptotic expansion} \\ \phi(x) \sim x \left[1 + \sum_{j+k \geq 1} \alpha_{jk} x^{-j/m} \left(\frac{\log x}{x} \right)^k \right] \quad \text{in} \quad D_l(B,\varepsilon) \,, \\ \text{where } \alpha_{m0} = c \text{ is arbitrarily prescribed, } \varepsilon \text{ is an arbitrary positive number, and } B \text{ is a sufficiently large number depending on } c \text{ and } \varepsilon \,. \end{cases}$$

Then we obtain a meromorphic solution $\tilde{\phi}(x)$ of (1.2-2) such that

(1.2-7)
$$\begin{cases} \tilde{\phi}(x) \text{ is holomorphic in the domain } D_{t}(B, \varepsilon) \text{ and} \\ \tilde{\phi}(x) \sim Ax^{1/m} \Big[1 + \sum\limits_{j+k \ge 1} \alpha_{jk} x^{-j/m} \Big(\frac{\log x}{x} \Big)^{k} \Big]^{1/m} \\ = Ax^{1/m} \Big[1 + \sum\limits_{j+k \ge 1} \tilde{\alpha}_{jk} x^{-j/m} \Big(\frac{\log x}{x} \Big)^{k} \Big] \text{ in } D_{t}(B, \varepsilon) \\ \text{and is continued analytically to } |x| < \infty, \text{ using (1.2-2)}. \end{cases}$$

Further, a meromorphic solution $\phi(x)$ of (1.1) is obtained by (1.2-1):

$$(1.2-8) \qquad \qquad \phi(x) = \lambda + 1/\tilde{\phi}(x).$$

Let λ be a number for which (1.3) holds. Then there is a solution $\sigma_{\lambda}(x)$ of (1.1) such that $\sigma_{\lambda}(x)$ is holomorphic in $D(\rho) = \{x \; ; \; |e^{\alpha x}| < \rho\}$

(1.3-1)
$$\sigma_{\lambda}(x) = \lambda + \sum_{j=1}^{\infty} \kappa_{j} e^{jax} = f_{\lambda}(e^{ax}) \quad \text{in} \quad D(\rho)$$

for sufficiently small ρ , where $e^{\alpha} = R'(\lambda)$, and

(1.3-2)
$$f_{\lambda}(t) = \lambda + \sum_{j=1}^{\infty} \kappa_j t^j$$
 converges in $|t| < \rho$.

 $\sigma_{\lambda}(x)$ is continued analytically to $|x| < \infty$, using (1.1). Thus $f_{\lambda}(t)$ is also meromorphic in $|t| < \infty$.

We say that a value μ is a maximally fixed value (mf-value) for R(x) if $x = \mu$ is the only p-fold root of the equation $R(x) = \mu$; also we say that a pair (μ_1, μ_2) $(\mu_1 \neq \mu_2)$ is a maximally fixed pair (mf-pair) for R(x) if $x = \mu_2$ and $x = \mu_1$ are the p-fold roots of the equations $R(x) = \mu_1$ and $R(x) = \mu_2$, respectively. If we suppose that there is a λ for which (1.2) holds, then it is easy to see that R(x) has no mf-pair, and may have at most one mf-value. See Lemma 2.1 below.

Shimomura [6] showed that, if R(x) has an mf-value μ , then any meromorphic solution y(x) of (1.1) does not take μ . See also [7]. For the convenience of readers, we will prove this in Lemma 2.2.

In this respect, it would be natural to conjecture that: if there is a value c such that x=c is the k-fold root of R(x)=c $(1 \le k \le p-1)$, then there would be some values which are taken relatively sparsely by a meromorphic solution y(x) of (1.1).

To consider this problem, we use some tools from the value distribution theory of Nevanlinna [4], [5]. Let T(r)=T(r;f), N(r,a)=N(r,a;f), and m(r,a)=m(r,a;f) be the Nevanlinna characteristic, the counting function for the value a, and the proximity function for a ($|a| \le \infty$), respectively, of a meromorphic function f(x) [4, pp. 165-167]. Then

(1.5)
$$T(r)=N(r, a)+m(r, a)+O(1), \quad [4, p. 166].$$

We define (see [4, p. 266], [5, p. 147])

(1.6)
$$\delta(a, f) = \delta(a) = \liminf_{r \to \infty} \frac{m(r, a)}{T(r)} = 1 - \limsup_{r \to \infty} \frac{N(r, a)}{T(r)}.$$

 $\delta(a)$ is called the (Nevanlinna) deficiency of the value a, for f(x). If $\delta(a) > 0$, then a is said to be deficient or to be Nevanlinna exceptional value. $\delta(a)$ is a measure of the frequency in which the value a is taken by f(x). Thus, it would be natural to inquire whether there may be some deficient values or not. Our answer to this problem is:

THEOREM 1. Suppose λ is a value for which (1.2) holds. Then, the solution $\psi(x)$ in (1.2-8) has no Nevanlinna exceptional value other than a (possible) mf-value.

THEOREM 2. Suppose λ is a value for which (1.3) holds. Then, the function $f_{\lambda}(x)$ in (1.3-1) and (1.3-2) has no Nevanlinna exceptional value other than (possible) mf-values or mf-pair.

For the proof of Theorems 1 and 2, we need the following theorems which are of independent interest.

THEOREM 3. We have

(1.7)
$$\lim_{r\to\infty} \frac{T(r+1)}{T(r)} = p, \quad \text{where} \quad T(r) = T(r; \phi).$$

THEOREM 4. We have

(1.8)
$$\lim_{r\to\infty} \frac{T(cr)}{T(r)} = p, \quad \text{where} \quad T(r) = T(r; f_{\lambda}),$$

where
$$c = |e^a| = |R'(\lambda)| > 1$$
. $(p = \deg [R(x)])$.

2. Preliminaries.

LEMMA 2.1. Suppose there is a λ for which (1.2) holds. Then R(x) has no mf-pair, and may have at most one mf-value.

PROOF. Suppose R(x) has an mf-pair (μ_1, μ_2) . Put

$$(2.1) v(x) = [y(x) - \mu_1]/[y(x) - \mu_2],$$

then the equation (1.1) is transformed to

$$(2.1') v(x+1) = R_2(v(x)),$$

in which $R_2(x)$ has an mf-pair $(0, \infty)$. Then, $R_2(x)$ must be of the form $R_2(x) = K/x^p$, $p \ge 2$ (K = const.). Put $\lambda_2 = (\lambda - \mu_1)/(\lambda - \mu_2)$. Obviously $\lambda_2 \ne 0$, ∞ . Then $\lambda_2 = R_2(\lambda_2) = K/\lambda_2^p$, i. e., $\lambda_2 = K^{1/(p+1)}$. Then $K'(\lambda) = R'_2(\lambda_2) = -pK/\lambda_2^{p+1} = -p \ne 1$, which contradicts (1.2).

Suppose μ_1 and μ_2 are two mf-values. Then, putting as in (2.1), we get the equation (2.1'), where $R_2(x)$ is of the form $R_2(x)=Kx^p$, $p\geq 2$, from which we again obtain a contradiction as above. Q. E. D.

LEMMA 2.2. Let μ (or (μ_1, μ_2)) be an mf-value (or mf-pair for R(x)). Then, any meromorphic solution y(x) of (1.1) does not take μ (any of μ_i).

PROOF. Put $u(x) = y(x) - \mu$. Then (1.1) becomes

$$(2.1'') u(x+1) = R_3(u(x)),$$

in which $R_3(x)$ has the mf-value 0, hence of the form $R_3(x)=x^p/Q(x)$, $Q(0)\neq 0$. Suppose u(x) has a zero of order k at $x=x_0$. Then, by (2.1"), we see that x_0-1 must be also a zero point of order k/p. In general, x_0-n must be a zero point of order k/p^n , which leads to a contradiction since $0 < k/p^n < 1$ if n is sufficiently large.

The proof for mf-pair is similar, using the equation (2.1'). Q. E. D. Further, we need the following

LEMMA 2.3 (Kimura). Let F(x) be the function in (1.2-5). Put

$$F^n(x) = x + n + \chi_n(x) + \zeta_n(x)$$
,

where $F^{n}(x)$ is the n-th iterate of F(x), and

(2.2)
$$\begin{cases} \chi_n(x) = \chi_n^{(1)}(x) + \cdots + \chi_n^{(m)}(x), \\ \chi_n^{(j)}(x) = \sum_{\nu=0}^{n-1} b_{j+m}(x+\nu)^{-j/m}, & j=1, \cdots, m. \end{cases}$$

Then, if $x \in \widetilde{D}^B$ for a sufficiently large B, where

(2.3)
$$\tilde{D}^B = \{ |x| > B, \text{ Re } x > 0 \} ,$$

then we have

$$|\zeta_n(x)| \leq K \sum_{\nu=0}^{n-1} \frac{|\chi_{\nu+1}^{(1)}(x)| + \dots + |\chi_{\nu+1}^{(m)}(x)| + 1}{|x+\nu|^{1+1/m}},$$

where K is a constant.

For the proof, see [2, p. 222, Theorem 9.1].

Lemma 2.4. Let δ be an arbitrary positive number. If B is sufficiently large in (2.3), then we have

$$(2.5) |\phi(x)/x-1| < \delta for x \in D^B,$$

where $\phi(x)$ is the meromorphic function defined by $\phi(x) = [\tilde{\phi}(x)/A]^m$ with the meromorphic solution $\tilde{\phi}(x)$ in (1.2-7), and D^B is defined by

$$(2.5') D^B = \{ |x| > B, \text{ Re } x < 0 \} \cup \{ |\text{Im } x| > B \}.$$

PROOF. By the equation (1.2-4), we have from Lemma 2.3

$$\phi(x+n)=\phi(x)+n+\chi_n(\phi(x))+\zeta_n(\phi(x)).$$

By easy estimations of (2.2) and (2.4), we have

(2.6)
$$\phi(x+n)/(x+n) \longrightarrow 1$$
 as $n \longrightarrow \infty$

if $x \in D_l(B, \varepsilon) \cap \{\text{Re } x > 0\}$. By asymptotic expansion (1.2-6) and (2.6), we obtain (2.5). Q. E. D.

3. Proof of Theorem 3.

Obviously, it suffices to prove the theorem for the function $\tilde{\phi}(x)$ in (1.2-7). In this section, T(r), N(r, a), and m(r, a) denote the corresponding functions for $\tilde{\phi}(x)$.

We consider the equation

$$(1.2-2)$$
 $w(x+1)=R(w(x)),$

in which $R_1(x)$ is written as R(x) for simplicity. $\tilde{\phi}(x)$ is a meromorphic solution of (1.2-2), admitting asymptotic expansion (1.2-7).

By Lemma 2.4, we have

LEMMA 3.1. For any $\delta > 0$, we have

$$(3.1) |\tilde{\phi}(x)/Ax^{1/m}-1| < \delta \text{for } x \in D^B,$$

provided B is sufficiently large.

By [4, p. 276], we have

$$(3.2) T(r) \sim N(r, a) \text{for } a \in E,$$

where E is a set of inner capacity 0. Since

$$E' = \{a ; a = R(b), b \in E\}$$

is also of inner capacity 0, we can choose a value a such that

if
$$a=R(a_j)$$
, $j=1, \dots, p$,

then a, a'_1, \dots, a'_p are mutually distinct, and

$$a \oplus E$$
, $a'_{i} \oplus E$, $j=1, \dots, p$.

By Lemma 3.1, a as well as a'_j are not taken by $\tilde{\phi}(x)$ in D^B , if $\delta > 0$ and B are suitably chosen. Thus, if r is sufficiently large, then

(3.3)
$$\sum_{j=1}^{p} N(r, a'_{j}) \leq N(r+1, a) + O(\log r) \leq \sum_{j=1}^{p} N(r+\varepsilon(r), a'_{j}),$$

where

(3.3')
$$\varepsilon(r) = \sqrt{[\sqrt{(r+1)^2 - B^2 - 1}]^2 + B^2} - r = O(1/r^2).$$

By (3.2) and (3.3), with the supposition on a, a'_j , we obtain

(3.4)
$$p(1+o(1))T(r) \leq T(r+1) + O(\log r) \leq p(1+o(1))T(r+\varepsilon(r)).$$

Especially, we get

(3.4')
$$T(r+1/2) \leq p(1+o(1))T(r)$$
.

Since T(r) is a convex function of $\log r$, we obtain for $0 < \varepsilon < 1/2$,

$$(3.5) T(r+\varepsilon) \leq \frac{\lceil \log{(r+1/2)} - \log{(r+\varepsilon)} \rceil T(r) + \lceil \log{(r+\varepsilon)} - \log{r} \rceil T(r+1/2)}{\log{(r+1/2)} - \log{r}}$$

$$\leq T(r) + (p-1) \frac{\log(1+\varepsilon/r)}{\log(1+1/2r)} T(r) + o(1) \frac{\log(1+\varepsilon/r)}{\log(1+1/2r)} T(r).$$

Since $\log(1+\varepsilon(r)/r)/\log(1+1/2r)\to 0$ as $r\to\infty$, we obtain by (3.5)

$$(3.5') T(r+\varepsilon(r))/T(r) \longrightarrow 1 as r \longrightarrow \infty,$$

hence by (3.4), we obtain (1.7) for $\tilde{\phi}(x)$ instead of $\psi(x)$.

Q. E. D.

4. Proof of Theorem 4.

In this section, T(r), N(r, a), and m(r, a) denote the corresponding functions for $f_{\lambda}(t)$ in (1.3-2). $f_{\lambda}(t)$ satisfies the equation

(4.1)
$$f_{\lambda}(e^{a}t) = R(f_{\lambda}(t)), \qquad e^{a} = R'(\lambda).$$

As in § 3, we take a set E of inner capacity 0 and a value a, as in (3.2) and (3.2'), respectively. Write $c = |e^a|$. By (4.1), we have

(4.2)
$$\sum_{j=1}^{p} N(r, a'_{j}) \sim N(cr, a)$$

as easily seen, from which we have (1.8) as in § 3.

Q.E.D.

5. Some preliminary lemmas.

LEMMA 5.1. Let g(x) be a meromorphic function such that its characteristic T(r)=T(r;g) satisfies (1.7) or (1.8). Then the inequality in the second fundamental theorem of Nevanlinna [4, p. 246] holds without any exception of values r.

PROOF. Let $g(x) = c_{\nu}x^{\nu} + c_{\nu+1}x^{\nu+1} + \cdots + (c_{\nu} \neq 0)$. Then, in [4, p. 244, Lemma 1], we have

(5.2)
$$m\left(r, \frac{g'}{g}\right) < 11 + 3\log|1/c_{\nu}| + 2\log^{+}(1/r) + 4\log^{+}\rho$$

$$+ 3\log^{+}\frac{1}{\rho - r} + 4\log^{+}T(\rho, g)$$

for all values of r and ρ ($0 < r < \rho < \infty$). If (1.7) or (1.8) holds, take $\rho = r + 1$ or $\rho = cr$ in (5.2), respectively. Then the Theorem on the logarithmic derivative [4, p. 245] is valid without any exceptions, and our Lemma follows. Q. E. D.

For an integer $m \ge 1$, let $R^m(x)$ be the *m*-th iterate of R(x). For a value a, we denote by $A_m(a)$ the set of roots $(p^m \text{ in number})$ of the equation $a = R^m(x)$, counting multiple roots according its multiplicities. Write

(5.3)
$$A_m(a) = \{a_j^{(m)}, j=1, \dots, p^m\},$$

and

(5.3')
$$A(a) = \bigcup_{m=1}^{\infty} A_m(a) \cup \{a\} .$$

Then, obviously

(5.4)
$$\sum_{j=1}^{p^m} N(r, a_j^{(m)}) \leq N(r+m, a) + O(\log r).$$

Let $r_n \uparrow \infty$. We have the following dichotomy: either

(5.5) there is an increasing sequence $\{k_h\}$ of positive integers with the property: for each h, there is a subsequence $\{r_n^{(h)}\}$ of $\{r_n\}$ such that $\{r_n^{(h+1)}\}$ is a subsequence of $\{r_n^{(h)}\}$ and

(5.5')
$$m(r_n^{(h)} + k_m, a) \ge m(r_n^{(h)}, a), n=1, 2, \cdots$$
 for $m=1, \cdots, h$, where $\{k_h\} = \{k_h(a)\}$ depending on a , or

(5.6) there is a subsequence $\{r_n^*\}$ of $\{r_n\}$ for which we can find an integer $k_0 = k_0(a)$ such that, for each $k \ge k_0$,

$$(5.6')$$
 $m(r_n^* + k, a) < m(r_n^*, a)$

if $n \ge n_k$, where n_k is a sufficiently large number depending on k.

PROPOSITION 5.2. Let a be a value such that A(a) in (5.3') consists of mutually distinct values. Let $r_n \uparrow \infty$.

(i) Suppose (5.5) holds for $\{r_n+k\}$, $0 \le k < k^*$ $(k^* \le \infty)$ and a. Then

(5.7)
$$\lim_{n \to \infty} \frac{N(r_n + k, a)}{T(r_n + k)} = 1, \quad 0 \le k < k^*. \quad (k^* \text{ is a positive integer or } \infty.)$$

(ii) Suppose (5.6) holds for $\{r_n\}$ and a. If

(5.7')
$$\lim_{n\to\infty}\frac{N(r_n^*, a)}{T(r_n^*)}=1-\delta, \quad \delta\geq 0,$$

then

(5.7")
$$\liminf_{n\to\infty} \frac{N(r_n^*+k, a)}{T(r_n^*+k)} \ge 1-\delta/p^k \quad \text{when} \quad k \ge k_0.$$

PROOF. (i) Obviously, it suffices to prove for the case k=0. Assume, taking a subsequence if necessary,

$$\lim_{n\to\infty} (N(r_n, a)/T(r_n)) = 1 - \delta, \qquad \delta > 0.$$

Take h so large that

$$(5.9) h \delta > 2.$$

Write $\{r_n\}$ for $\{r_n^{(h)}\}$ for simplicity. By

$$T(r_n+k_m)-N(r_n+k_m, a) \ge T(r_n)-N(r_n, a)+O(1)$$

$$1 - \frac{N(r_n + k_m, a)}{T(r_n + k_m)} \ge \frac{T(r_n)}{T(r_n + k_m)} \left[1 - \frac{N(r_n, a)}{T(r_n)} \right].$$

Letting $n \to \infty$, we get

$$\limsup_{n\to\infty} (N(r_n+k_m, a)/T(r_n+k_m)) \le 1-\delta/p^{k_m}$$
.

Then, by (5.4)

(5.10)
$$\limsup_{n \to \infty} \frac{1}{T(r_n)} \sum_{j=1}^{p^{k_m}} N(r_n, a_j^{(k_m)}) \leq \limsup_{n \to \infty} \frac{T(r_n + k_m)}{T(r_n)} \frac{N(r_n + k_m, a)}{T(r_n + k_m)} \leq p^{k_m} - \delta.$$

Let $q = p^{k_1} + \cdots + p^{k_h}$. By the second fundamental theorem [4, p, 246],

$$(q-2)T(r) < \sum_{m=1}^{\hbar} \sum_{j=1}^{p^k m} N(r, a_j^{(km)}) - N_1(r) + S(r)$$
 ,

where $N_1(r) \ge 0$ and $S(r) = O(\log [rT(r)])$.

Let $r=r_n$ and $n\to\infty$, then we obtain by (5.9)

$$q-2 \leq \sum_{m=1}^{h} (p^{hm} - \delta) = q - h \delta$$
,

which contradicts (5.9).

(ii) By (5.6'), we have

$$\begin{split} \frac{N(r_n^*+k,\ a)}{T(r_n^*+k)} = & 1 - \frac{m(r_n^*+k,\ a)}{T(r_n^*+k)} + \frac{O(1)}{T(r_n^*+k)} \\ & \geq & 1 - \frac{m(r_n^*,\ a)}{T(r_n^*)} \frac{T(r_n^*)}{T(r_n^*+k)} + \frac{O(1)}{T(r_n^*+k)} \,. \end{split}$$

Letting $n \to \infty$, we have (5.7").

Q. E. D.

In particular, we have

COROLLARY 5.3. Let a be a value such that the set A(a) in (5.3') consists of mutually distinct values. Then, a is not a deficient value.

6. Proof of Theorem 1—the first case.

Suppose there is a deficient value a. In this section, we suppose that

(6.1)
$$a \neq R^m(a)$$
 for any $m \ge 1$.

LEMMA 6.1. Under the hypothesis (6.1), we have

$$A_m(a) \cap A_{m'}(a) = \text{void}$$
 if $m \neq m'$.

PROOF. Suppose $a_i^{(m)} = a_{i'}^{(m')}$ with m > m'. Then

$$a = R^{m}(a_{i}^{(m)}) = R^{m-m'}(R^{m'}(a_{i}^{(m')})) = R^{m-m'}(a)$$

which contradicts the hypothesis (6.1).

Q. E. D.

LEMMA 6.2. Suppose (6.1) holds. If m is sufficiently large and $b \in A_m(a)$, then A(b) (see (5.3')) consists of mutually distinct values.

Proof is obvious from the fact that the equation c=R(x) has multiple roots only for finitely many c. Q. E. D.

PROPOSITION 6.3. Suppose (6.1) holds. Let $r_n \uparrow \infty$. There is a number δ' , $0 \le \delta' \le 1$, such that

(6.2)
$$\lim_{n \to \infty} \inf (N(r_n + m + k, a) / T(r_n + m + k)) \ge 1 - \delta' / p^k$$

for any $k \ge 1$, provided m is sufficiently large.

PROOF. Let m be so large that Lemma 6.2 holds, and let b_1, \dots, b_h be all distinct values in $A_m(a)$, which appear in the multiplicities μ_1, \dots, μ_h , respectively. Then $\mu_1 + \dots + \mu_h = p^m$ and

$$\sum_{j=1}^{h} \mu_j N(r_n, b_j) \leq N(r_n + m, a) + O(\log r)$$
.

We can suppose, taking a subsequence if necessary,

$$\lim_{n\to\infty} (N(r_n, b_j)/T(r_n)) = 1 - \delta_j, \quad \delta_j \ge 0, \quad j=1, \dots, h.$$

Then, by Proposition 5.2 (i) and (ii), we have

$$\sum_{j=1}^{h} \mu_{j} N(r_{n} + k, b_{j}) \leq N(r_{n} + m + k, a) + O(\log r)$$

and

$$\sum_{j=1}^{h} \mu_{j} (1 - \delta_{j} / p^{k}) p^{-m} \leq \liminf_{n \to \infty} \left(N(r_{n} + m + k, a) / T(r_{n} + m + k) \right).$$

Thus

$$1 - p^{-k} \sum_{j=1}^{h} (\mu_j \delta_j / p^m) \leq \liminf_{n \to \infty} (N(r_n + m + k, a) / T(r_n + m + k)). \quad Q. E. D.$$

In particular, we have

COROLLARY 6.4. Let a be a value for which (6.1) holds. Then, a is not a deficient value.

7. Proof of Theorem 1—the final case.

Suppose there is a deficient value a. We suppose that a satisfies $a = R^m(a)$ for some $m \ge 1$. Considering $R^m(x)$ instead of R(x), we can suppose

$$(7.1) a=R(a).$$

Let b_0 (=a), b_1 , \cdots , b_h be all distinct values in $A_1(a)$, in the multiplicities μ_0 , μ_1 , \cdots , μ_h , respectively. Then, each b_j , $j \ge 1$, satisfies obviously the hypothesis (6.1). We note that $\mu_0 + \mu_1 + \cdots + \mu_h = p$.

Then

$$\sum_{j=0}^{h} \mu_{j} N(r, b_{j}) \leq N(r+1, a) + O(\log r).$$

For each b_j , $j=1, \dots, h$, let m_j be the integer for which Proposition 6.3 holds with b_j instead of a. Put $m=\max(m_1, \dots, m_h)$. Take $r_n \uparrow \infty$. Suppose

$$\liminf_{n\to\infty} (N(r_n+m+k, a)/T(r_n+m+k)) \ge 1-\delta, \quad \delta > 0,$$

for a k. Then, by Proposition 6.3,

(7.2)
$$p^{-1} \left[\mu_0(1-\delta) + \sum_{j=1}^h \mu_j (1-\delta'_j/p^k) \right] = 1 - \frac{\mu_0 \delta}{p} - p^{-k-1} \sum_{j=1}^h \mu_j \delta'_j$$

$$\leq \liminf_{n \to \infty} \left(N(r_n + m + k + 1, a) / T(r_n + m + k + 1) \right).$$

Thus, if we write

$$\delta^{(1)} = p^{-1} \left[\mu_0 \delta + p^{-k} \sum_{j=1}^h \mu_j \delta'_j \right],$$

$$\delta^{(l)} = p^{-1} \left[\mu_0 \delta^{(l-1)} + p^{-k-l+1} \sum_{j=1}^h \mu_j \delta'_j \right], \quad l \ge 2,$$

we obtain, using the arguments in (7.2) repeatedly,

$$\liminf_{n\to\infty} (N(r_n+m+k+l, a)/T(r_n+m+k+l)) \ge 1-\delta^{(l)}.$$

Therefore we obtain

$$\limsup_{n\to\infty} (N(\rho_n, a)/T(\rho_n)) = 1$$

for some sequence $\{\rho_n\}$, which completes the proof of Theorem 1. Q. E. D.

8. Proof of Theorem 2.

Proof is almost the same as in §§ $5\sim7$, in which (r+1) is replaced by cr (c>1), using (1.8) instead of (1.7).

References

- [1] G. Julia, Memoire sur l'iteration des fonctions rationnelles, J. Math. Pures Appl., 8e ser., 1 (1919), 47-245. Œuvres de G. Julia, t. I, 121-319, Gauthier-Villars, Paris, 1968
- [2] T. Kimura, On the iteration of analytic functions, Funkcialaj Ekvacioj, 14 (1971), 197-238.
- [3] T. Kimura, On meromorphic solutions of the difference equation $y(x+1) = y(x) + 1 + \lambda/y(x)$, Symposium on ordinary differential equations, Lecture Notes in Math., 312 (1973), 74-86, Springer-Verlag, Berlin-Heidelberg-New York.
- [4] R. Nevanlinna, Analytic functions, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
- [5] А.А. Гольдберг и И.В. Островский, Распределение значений мероморфных функцми, Москва, 1970.
- [6] S. Shimomura, Entire solutions of a polynomial difference equation, J. Fac. Sci. Univ. Tokyo Sect. IA, 28 (1981), 253-266.
- [7] N. Yanagihara, Meromorphic solutions of some difference equations, Funkcialaj Ekvacioj, 23 (1980).

Niro YANAGIHARA
Department of Mathematics
Faculty of Science
Chiba University,
Yayoi-cho, Chiba 260
Japan