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Exceptional values for meromorphic solutions

of some difference equations
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1. Introduction.

In this note, we consider the non-linear difference equation

(1.1 y(x+1D=R(y(x)),

where R(x) is a rational function with the degree p, p=2.
Julia [1, p. 158] proved that
either there is a number 2 such that

1.2) A=RQ), R'(A=1,
or there is a number A such that

(1.3) A=R(2), |R'(A)|>1.

In either case, the equation has a meromorphic solution determined as follows.

Let A be a number for which holds. Putting

(1.2-1) y(x)=2A+1/w(x),
we obtain
Rm+D( ) o
(1.22) w<x+1):w(x>[1—ww<x> +} (m=1)

= R,(w(x)), with a rational function R,(x).
Further, if we put

(1.2-3) w(x)=w(x)™/A™ A:[»(m__l_"i) ! R<m+1>(z)]”’" ,
then we get

(1.2-4) o(x+1D=F(o(x)),

where

1.2-5) F=x+1+ 3 bxtim.
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The equation (1.2-4) was studied by Kimura [2], [3]. He obtained a local
solution ¢(x) such that

¢(x) is holomorphic in the domain
T
Dy(B, ¢)={|x|>B, |larg x—=| < 7—5}»
U{Im [xe *]>B} U {Im [xe**]<— B}
(1.2-6) and has an asymptotic expansion

s+ 3w (EE)] i DB, ),

X

where ano=c is arbitrarily prescribed, ¢ is an arbitrary positive
number, and B is a sufficiently large number depending on ¢ and ¢.

Then we obtain a meromorphic solution ¢(x) of (1.2-2) such that

/ ¢(x) is holomorphic in the domain D,(B, ¢) and

(L.2-7) a(x)NAx”m[lJrH%l “ka‘j’m(—lo%y]um
:Axllm[l+j2 &”x—j/m(Jog_x)k] i DYB. o

+k21 X

\and is continued analytically to |x|< oo, using (1.2-2).
Further, a meromorphic solution ¢(x) of is obtained by (1.2-1):
1.2-8) P(x)=2+1/3(x).

Let A be a number for which [1.3) holds. Then there is a solution ¢;(x) of
such that ¢;(x) is holomorphic in D(p)={x; [e**| < p}

(L.3-1) oAR)=2+ T r=fe") i Dlp)

for sufficiently small p, where ¢*=R’(1), and

(1.3-2) f2)=2+ 5;;,;,.;1 converges in |t|<p.
p

g(x) is continued analytically to | x| <oo, using [I.I}. Thus f;(¢) is also meromor-
phic in [#] <co.

We say that a value g is a maximally fixed value (mf-value)ffor R(x) if x=p
is the only p-fold root of the equation R(x)=pg; also we say that a pair (g5, gs)
(% o) is a maximally fixed pair (mf-pair) for R(x) if x=py, and x=g, are the
p-fold roots of the equations R(x)=p, and R(x)=p,, respectively. If we suppose
that there is a A for which holds, then it is easy to see that R(x) has no
mf-pair, and may have at most one mf-value. See below.
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Shimomura [6] showed that, if R(x) has an mf-value g, then any meromor-
phic solution y(x) of does not take p. See also [7]. For the convenience
of readers, we will prove this in

In this respect, it would be natural to conjecture that: if there is a value ¢
such that x=c is the k-fold root of R(x)=c (1=k=<p—1), then there would be
some values which are taken relatively sparsely by a meromorphic solution y(x)
of (1.I)

To consider this problem, we use some tools from the value distribution
theory of Nevanlinna [4], [5]. Let T()=T(r; f), N, a)=N(, a; f), and
m(r, a)=m(r, a; f) be the Nevanlinna characteristic, the counting function for
the value @, and the proximity function for a (]a|=o0), respectively, of a mero-
morphic function f(x) [4, pp. 165-167]. Then

(1.5) T(r)=N(r, a)+m(r, ©)+01), [4, p. 166].

We define (see [4, p. 266], [5, p. 147])

m(r, a)

(1.6) o(a, f)=0d(a)=lim inf — 1—1lim sup N, a)

T oo Tw -
0(a) is called the (Nevanlinna) deficiency of the value a, for f(x). If d(a)>0,
then a is said to be deficient or to be Nevanlinna exceptional value. d(a) is a
measure of the frequency in which the value a is taken by f(x). Thus, it would
be natural to inquire whether there may be some deficient values or not. Our
answer to this problem is:

THEOREM 1. Suppose 2 is a value for which (1.2) holds. Then, the solution
¢(x) in (1.2-8) has no Nevanlinna exceptional value other than a (possible) mf-value.

THEOREM 2. Suppose 2 is a value for which (1.3) holds. Then, the function
fa(x) in (1.3-1) and (1.3-2) has no Nevanlinna exceptional value other than (possible)
mf-values or mf-pair.

For the proof of Theorems 1 and 2, we need the following theorems which
are of independent interest.

THEOREM 3. We have

1.7 lrif?o %L)Ip »  where Tr)=T(r; ).
THEOREM 4. We have
(19) lim T =p,  where TO=TC; £,

where c=e*|=|R'(D)|>1. (p=deg [R(x)].)
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2. Preliminaries.

LEMMA 2.1. Suppose there is a 2 for which (1.2) holds. Then R(x) has no
mf-pair, and may have at most one mf-value.
PROOF. Suppose R(x) has an mf-pair (g, p,). Put

(2.1 v(x)=[y(x)—ad/Ly(x)—pee]
then the equation is transformed to
(2.1 v(x+1)=Ry(v(x)),

in which R,(x) has an mf-pair (0, c0). Then, R,(x) must be of the form R,(x)
=K/x?, p=2 (K=const.). Put 2,=(1—p;)/(A—p,). Obviously 4,#0, co. Then
A=Ry(A)=K/28, 1. e., A,=KY®*D_  Then R'(A)=Ri(2)=—pK/I5'=—p+1, which
contradicts [(1.2).

Suppose g, and p, are two mf-values. Then, putting as in (2.1), we get the
equation (2.17), where R,(x) is of the form R,(x)=Kx?, p=2, from which we
again obtain a contradiction as above. Q.E.D.

LEMMA 2.2. Let p (or (p, p2) be an mf-value (or mf-pair for R(x)). Then,
any meromorphic solution y(x) of (L.1) does not take p (any of ;).

PROOF. Put u(x)=y(x)—p. Then becomes

(2.17) u(x+1)=Ry(u(x)),

in which Ry (x) has the mf-value 0, hence of the form R (x)=x?/Q(x), Q(0)=0.
Suppose u(x) has a zero of order £ at x=x,. Then, by (2.17), we see that x,—1
must be also a zero point of order 2/p. In general, x,—»n must be a zero point
of order k/p", which leads to a contradiction since 0<k/p"<1 if n is sufficiently
large.

The proof for mf-pair is similar, using the equation (2.1). Q.E.D.

Further, we need the following

LEMMA 2.3 (Kimura). Let F(x) be the function in (1.2-5). Put

FM(x)=x+n+Xu(x)+La(x),
where F™(x) is the n-th iterate of F(x), and

La(x)=AP (x)+ - FAM™(x),

2 . ne _
@2 1P (x)= Z:bj+m(x+v)‘”m, j=1, -, m.

Then, if x=D® for a sufficiently large B, where
(2.3) DP={|x|>B, Re x>0},

then we have
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= ARO[+ - R (0] +1

= | x4y |1+1m ’

(2.4) ()| <K

where K is a constant.

For the proof, see [2, p. 222, Theorem 9.1].

LEMMA 24. Let 0 be an arbitrary positive number. If B is sufficiently large
in (2.3), then we have

(2.5) |¢(x)/x—1|<8  for x=D?,

where ¢(x) is the meromorphic function defined by ¢(x):[g§(x)/A]”‘ with the
meromorphic solution ¢(x) in (1.2-7), and DB is defined by

(2.5) D3={|x|>B, Rex<0} U {|Im x| >B}.
PROOF. By the equation (1.2-4), we have from

O(x+n)=@(x)+n+Xn(d(x)+Lal@(x)) .
By easy estimations of (2.2) and we have
(2.6) o(x+n)/(x+n) —>1 as n—> oo

if x€D(B, e)N{Re x>0}. By asymptotic expansion (1.2-6) and we obtain
(2.5), Q.E.D.

3. Proof of Theorem 3.

Obviously, it suffices to prove the theorem for the function gZ(x) in (1.2-7).
In this section, T(»), N(r, a), and m(», a) denote the corresponding functions for

B(x).

We consider the equation
(1.2-2) w(x+1)=R(w(x)),

in which R,(x) is written as R(x) for simplicity. gg(x) is a meromorphic solu-
tion of (1.2-2), admitting asymptotic expansion (1.2-7).

By we have

LEMMA 3.1. For any 0>0, we have

3.1) |§(x)/Axtm—1]<8  for xeD?®,

provided B is sufficiently large.
By [4, p. 276], we have

3.2 T(r)~N(r, a) for a=F,

where E is a set of inner capacity 0. Since
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E'={a; a=R(), beE}
is also of inner capacity 0, we can choose a value a such that
if a=R(a}), j=1, -, p,
then a, a3, ---, ap are mutually distinct, and
asE, aj¢E, j=1,-,p.

By Lemma 3.0, a as well as a} are not taken by ¢(x) in D?, if >0 and B are
suitably chosen. Thus, if » is sufficiently large, then

(3.3) gN(r, a)ZNGr+1, @)+0(log 1= §N<r+a(r), al,
where
(3.3) e=V[V+12—B*—1P+B*—r=0(1/r".

By (3.2) and [3.3), with the supposition on a, aj, we obtain

3.4) pA4+o(INTN=T(r+1)+0(log N = p(1+o(I)T(r+&(r)) .

Especially, we get

(3.4 T(r+1/2)=p(1+o(1)T (7).
Since T(r) is a convex function of log», we obtain for 0<e<1/2,

[log (r+1/2)—log (r+¢&)]T(r)+[log (r+¢)—log r 1T (»+1/2)
@5 Trre= log (r+1/2)—log r

log(1+¢/7) vli)g(l—{—e/r)
log (14-1/2r) log (14+1/2r)

Since log (1+¢(r)/r)/log (1+1/2r)—0 as »r— oo, we obtain by (3.5)

=T+(p—D T(r)+o(1)- T®).

3.5) Tor+er)/Tr) — 1 as r —> 0o,
hence by [3.4), we obtain (1.7) for ¢(x) instead of ¢(x). Q.E.D.

4. Proof of Theorem 4.

In this section, T(»), N(r, a), and m(r, a) denote the corresponding functions
for f;(#) in (1.3-2). f,;(t) satisfies the equation

(4.1 fie®)=R(f2®), e*=R'Q).

As in §3, we take a set E of inner capacity 0 and a value «, as in (3.2)
and (3.2"), respectively. Write ¢=|e®|. By we have
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(4.2) :21N<r, a)~N(cr, a)

as easily seen, from which we have (1.8) as in §3. Q.E.D.

5. Some preliminary lemmas.

LEMMA 5.1. Let g(x) be a meromorphic function such that its characteristic
T()=T(r; g) satisfies (1.7) or (1.8). Then the inequality in the second fundamental
theorem of Nevanlinna [4, p. 246] holds without any exception of values r.

PROOF. Let g(x)=c,x"+c¢,41x*"*+ -+ (¢,#0). Then, in [4, p. 244, Lemma 1],
we have

’

(5.2) m(r, §—>< 11+3log|1/c,| +2 log*(1/r)+4log* p

+3log* +41og*™T(p, g)

p—r
for all values of » and p (0<r<p<oo). If (1.7) or (1.8) holds, take p=r-+1 or
p=cr in respectively. Then the Theorem on the logarithmic derivative
[4, p. 245] is valid without any exceptions, and our Lemma follows. Q.E.D.

For an integer m=1, let R™(x) be the m-th iterate of R(x). For a value q,
we denote by A,(a) the set of roots (p™ in number) of the equation a=R™(x),
counting multiple roots according its multiplicities. Write

(5-3) Am<a): {a_(im): ]:l, Tty pm} y
and
(5.3 A(a):"QlAm(a)U{a}.

Then, obviously
(5.4) Z_)EIN(r, a§™)=N@r+m, a)+0O(og r).
=

Let 7,7 co. We have the following dichotomy : either

(5.5) there is an increasing sequence {k;} of positive integers with the
property: for each h, there is a subsequence {r{¥} of {r.} such
that {r{**»} is a subsequence of {r{»} and

(5.5 mrP +kn, A)=zm@r®, a), n=1,2,-- for m=1, -, h,
where {k,}=1{k,(a)} depending on a, or

(5.6) there is a subsequence {r3} of {r,} for which we can find an
integer k,=Fk,(a) such that, for each 2=*%,,

(5.6") m(rk+k, a)<m(rs, a)
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if n=n,, where n, is a sufficiently large number depending on k.
PROPOSITION 5.2. Let a be a value such that A(a) in (5.3") consists of mutu-
ally distinct values. Let r, T oo.
(i) Suppose (5.5) holds for {r,+k}, 0Sk<k¥* (R¥<co) and a. Then

N(ratk, a)

5.7 lim =1, 0Zk<k*. (k* is a positive integer or oo.)

[indd T(rn+k)
(i) Suppose (5.6) holds for {r,} and a. If

N@%, a)

5.7) lim =1-9, 0=0,

e T(rE)
then

" .. Noi+k, a)
B.77) htyr,l..lonf TOER

Proor. (i) Obviously, it suffices to prove for the case k£=0. Assume,
taking a subsequence if necessary,

(5.8) }11_1:1;10 (N(ry, a)/T(ra))=1-0, 0>0.

=1—0/p* when k=k,.

Take h so large that
(5.9) ho>2.
Write {r,} for {ri®} for simplicity. By
T(ratkn)—Nratkn a)=ZT(r,)—Nrg, a)+0(1),

 NGatbm a) o T 1 N(r, a)]
Trotkn) = Tatka) T(rn)
Letting n—o0, we get

lim sup(N(rn+km, a)/T(rpt+kn)=1—0/pkm.

n—oo

1

Then, by

k

. 1 »°m Emy <3 Trptkn) Ntk a)
(5.10)  limsup oo Z Nir, aj*=)=lim sup T T h

<pkm—§.
Let g=p*1+ --- +p*r. By the second fundamental theorem [4, p, 246],
n pim
(—2)T(r)< EIPZI N, aj*m)—N,(r)+S(r),
m=1 j=

where N;(»)=0 and S(#»)=0og [»T(r)]).
Let »r=r, and n—co, then we obtain by

h
=25 3 0n-0)=g— 3,
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which contradicts
(ii) By (5.6’), we have

N(ry+k, a) —1— m(ri+k, a) i o(1)
Trk+k) T(rk+k) T(ri+k)
>1— m(ry, @) T3 i o
T@r%) Tei+k) T(ry+k)
Letting n—co, we have (5.77). Q.E.D.

In particular, we have
COROLLARY 5.3. Let a be a value such that the set A(a) in (5.3") consists of
mutually distinct values. Then, a is not a deficient value.

6. Proof of Theorem 1—the first case.

Suppose there is a deficient value a. In this section, we suppose that
6.1) a#+R™a) for any m=1.
LEMMA 6.1. Under the hypothesis (6.1), we have
An(@)NAp (a)=void  if m=m'.
PROOF. Suppose aj™=ga{™> with m>m’. Then
a=Rm(af™)=R"™ (R™ (af")=R""™(a),

which contradicts the hypothesis (6.1). Q.E.D.
LEMMA 6.2. Suppose (6.1) holds. If m 1is sufficiently large and b€ Ap(a),
then A(b) (see (5.3")) consists of mutually distinct values.
Proof is obvious from the fact that the equation ¢=R(x) has multiple roots
only for finitely many c. Q.E.D.
PROPOSITION 6.3. Suppose (6.1) holds. Let v, Too. There is a number 0/,
0=0'=1, such that

6.2) lim inf (N(r,+m+Fk, a)/T(r,+m+E)=1—06"/p*

-0

for any k=1, provided m is sufficiently large.

PROOF. Let m be so large that holds, and let by, ---, b, be all
distinct values in A,(a), which appear in the multiplicities g;, -+, s, respectively.
Then g+ - +pp=p™ and

32 ;N (0, b)= Nirat-m, a)+0log 7).
=

We can suppose, taking a subsequence if necessary,

lim (N(r 5, bj)/T(rn))zl‘a.;, 5;’20, =1, -, h.
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Then, by [Proposition 5.2 (i) and (ii), we have

émMrﬁk, b)SN(@ra.+m+k, a)+0(log7)
and
31—,/ p)p Slim int (NGt by @)/ Tt 1)
Thus
1_1’—’?Jé(ﬂjaj/pm)éli%inf(N(rn+m+k, a)/TGrotm+k). Q.E.D.

In particular, we have
COROLLARY 64. Let a be a value for which (6.1) holds. Then, a is not a
deficient value.

7. Proof of Theorem 1—the final case.

Suppose there is a deficient value a. We suppose that a satisfies a=R™(a)
for some m=1. Considering R™(x) instead of R(x), we can suppose

(7.1) a=R(a).

Let b, (=a), by, ---, by be all distinct values in Ai(a), in the multiplicities g,
Ui, =+, tn, respectively. Then, each b;, j=1, satisfies obviously the hypothesis

(6.1). We note that pe+p+ - +pun=>».
Then

h
j:ZO#jN(r) b;)éN(r—}—l, a)+0(10g 7') .

For each b, j=1, ---, h, let m; be the integer for which [Proposition 6.3 holds
with b; instead of a. Put m=max(m,, ---, m,). Take r, T oo. Suppose

lim inf (N(rp+m-+k, a)/T(r,+m+k)=1l—ad, 0>0,

n—00

for a k. Then, by [Proposition 6.3,

@2 {0+ Buy-ay/ph]=1- 0y S
Zliminf (N@,+m+Ek+1, a)/T(ra+m+E+1).

N

Thus, if we write

h
6 =p=| pd+p* T35

00 =p | B Bps], 122,
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we obtain, using the arguments in [7.2) repeatedly,

lim inf (N(rp+m+k+1, a)/T(rp+m+k+0))=1—0® .

N ~—c0

Therefore we obtain
lim sup (N(p», )/T(pa)=1

for some sequence {p,}, which completes the proof of [Theorem 1. Q.E.D.

8. Proof of Theorem 2.

Proof is almost the same as in §§5~7, in which (»+1) is replaced by cr
(¢>1), using (1.8) instead of (1.7).
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