J. Math. Soc. Japan
Vol. 34, No. 3, 1982

Hadamard’s variation of the Green kernels of
heat equations and their traces I

By Shin 0zAwA

(Received Feb. 7, 1980)
(Revised Dec. 3, 1980)

§1. Introduction. Let £ be a bounded domain in R™ with smooth
boundary y. Let p(x) be a ¢~ real valued function on y and v, be the exterior
unit normal vector at x<y. For any sufficiently small ¢=0, let £. be the
bounded domain whose boundary 7. is defined by

Te={x+epx)vy; x=7}.

Let G.(x, y) be the Green’s function of the Dirichlet boundary value prob-
lem for the Laplacian, that is, G.(x, vy) has the following properties:

( —A;G(x, y)=0(x—y) x, yEL,
G.(x, y)=0 XET., yEL..

We abbreviate G(x, ) as G(x, y). For any x, ye satisfying x+y, we put
0G(x, y)=lim e7H(G.(x, y)—G(x, y)).
Then the celebrated Hadamard variational formula is the following:

(L) 36(x, =] 202D 960D iy,

where 0/0v, denotes the exterior normal derivative with respect to z and do,
denotes the surface element of 7 at z.

In [7], Hadamard proved the formula in the case that p(z) did not
change its sign. And he also proved it when 7y was of class C¢.

Proof of the formula for general p(z)eC=(y) can be found, for example,
in Garabedian [5], Garabedian-Schiffer [6]. Based on many authors derived
interesting facts about the Green’s function and the results about the theory of
functions of one complex variable. See Bergmann-Schiffer [2] and Schiffer-
Spencer [12]. Recently, new applications of the formula have appeared.

This research was partially supported by Grant-in-Aid for Scientific Research (No.
574061), Ministry of Education.
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See Aomoto [I], Fujiwara-Tanikawa-Yukita [4]. In Fujiwara-Ozawa [3], we
generalized the formula to the variational formulas of the Green kernel of
elliptic normal boundary value problems. See also Peetre [11].

In this note, in §3, we give the Hadamard variational formulas of the Green
kernels of the heat equations with the Dirichlet and the third boundary condi-
tion. In §4, §5 we give the Hadamard variational formulas of the traces of
the Green kernels of the heat equations with the Dirichlet boundary condition.

We now state the results in this note.

Let £ be a fixed number satisfying 0=k=1. Let U.(x, y, ) denote the
fundamental solution of the heat equation with the boundary condition that
is, U.(x, v, t) has the following properties (1.2), and [(1.4):

(12) (at—Ax)Us(x’ ¥, 2,‘):0 X, yege, t>0

0
13) (ke +1—B)Ux, »,H=0  xe7, yEQ, 1>0
(1.4) m Ux, y, )=8(x—3) %, yeL,

where 0/0v% denotes the exterior normal derivative with respect to x at the
boundary 7.. We abbreviate U(x, v, f) as U(x, y, t).
Put
oU(x, v, t)=l£i_{101 el Ux, v, )—U(x, y, 1))

for any x, ye£ and t>0 if the right hand side exists. Then we have the

following
THEOREM 1. If k=0, then 0U(x, y, t) exists and it is given by

(15 SUCx, 3, f)ZS:dTg oU(x, z, t—7) 0U(y, z, 7) o(2)da, .

Jr ov, v,

To state the next result, we shall use the following notation. We fix zey
and take an orthonermal basis (zj, -+, z,-;) on the tangent hyperplane at z.
Then we put

. oa ab @
1 4

(1.6) MVya(z), Vib(2))= E a2, (&)
for any a(z), b(z)eC=(y). The left hand side of is independent of the choice
of orthonormal basis on the tangent hyperplane.

We have the following

THEOREM 2. If 0<k=1, then

an U, v, t)z—S:drST<V7U(x, 2, 1—7), V,U(y, z, 2 p(2)da,
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Ei‘at S dfg Ulx, z, t—2)U(y, 2, t)p(2)do.

[ ae] Uk, 2 t-000, 2 D —(—DpHiEDp) o,

Here p=Fk~'(1—Fk) and H(z) denotes the first mean curvature of 7 at z with
respect to the inner normal vector.

Let T.(t; ¢) denote the trace of U, x, y, f) on £., which is defined by
(18) Tt e):SQ Udx, x, Ddx .
For any >0, we put

0T ()=lim e™X(T(t; e)—T:(t; 0))

if the right hand side exists. Then we have the following
THEOREM 3. When k=0, then o0T.(t) exists for t>0 and

(1.9) OT 0=\ _0U(x, x, t)dx.
And the right hand side of (1.9) can be written explicitly as

(1.10) g ayaa Uy, w, t)( _ oo,

Let 0=A,=4,= --- be the eigenvalues of the Laplacian with the Dirichlet
boundary condition on y. We arrange them repeatedly according to their multi-
plicities. Let {¢;(x)}$; be an orthonormal basis of L*{2) consisting of eigen-
functions of the Laplacian. We assume that ¢,(x) belongs to the eigenspace
associated with 4;. It is well known that

(1.11) Ulx, v, )= g et ()pi(y) .

Therefore by and we have the following
THEOREM 4. If k=0, then

(L12) OTA)=t 3 ewgr(—g% (2)) p(x)da, .

Let 4;(¢) be the j-th eigenvalue of the Laplacian with the Dirichlet boundary
condition on 7.. In [7], Hadamard gave the following variational formula when
A;0)=1; is a simple eigenvalue

(L13) 52,:87( gf’ (2)) p(2)do.
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where we put
52j:11r51 e 1 (A:(e)—2,00)) .

The precise proof of was given in Garabedian-Schiffer when 2;(0) is
simple.
If 4; are all simple eigenvalue, we have by heuristic consideration

(1.14) 5TT(t):5( > e*:")
j=1
=t 3§20t
J=1

Put [(1.I3) into [1.14), then we get the formula [1.12).

In this note, we derive [1.12] without assumption on the multiplicities of
eigenvalues, since we use the fundamental solution of the heat equation to
derive [1.12).

Recently the author was informed by Professor Jiro Watanabe that he
obtained the variational formulas of the eigenvalues of the Laplacian with the
Dirichlet and the third condition with no assumption on the multiplicities of
the eigenvalues. He did not use the fundamental solution of the heat equation
for his studies. :

We make some remarks on this paper. For any 1€C\(0, ), let G.(x, y, A)
be the Green’s function of the Dirichlet boundary value problem for A—2, that
is, G.(x, y, A) satisfies the following properties:

( (A +DG(x, v, H=0d(x—) x, yeL,
Gx, y, H=0 XET, vy, .

For any x, ye{ satisfying x+y, put
0G(x, v, 2):11n;1 e M Gx, 3, H—Go(x, y, ).

Then, the Hadamard variational formula states that

3Gz, 2. ) 3C(y, 2, 2
3G(x, y, n=] LEL2D G2 D 5,

On the other hand, it is well known that U, is given by the Laplace transfor-
mation of G,, that is,

I
(115) Udx, 3, D=5 ¢1G.(x, 3, D2

for some path A in the complex plane. From [Theorem 1, we see that dU(x, y, )
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is the Laplace transformation of 6G(x, y, 2). Therefore assures the
commutativity of the Laplace transformation £ and d, that is, 6(LG)=_L(0G).
Then in a sense is thought as the Laplace transformation of the
Hadamard formula. We can give another proof of d(LG)=_-r(dG) by using
For this purpose, we need a kind of uniform estimate for ¢ %(G«(x, y, 4)
—Gox, 3, A))—0G(x, y, ) with respect to 2 on A. Such a uniform estimate is
not too difficult to give, of course not trivial, but here the author gives a direct
proof of [Theorem 1 using calculus concerning the heat equation. [Theorem 1|
enables us to prove which is the main aim of this note.

It is well known that we can derive information on the asymptotic behaviour
of the eigenvalues 1; when j—oo from the properties of 7,(t) when ¢ tends to
zero. From the following problem occurs. Give an asymptotic
properties of

= (a% (x))2

-ia\ oy

ey

when A—oo, In (See also Erratum in [9]) we gave an answer to this
problem. The author thinks as a crossline of the Hadamard formula
and the asymptotic properties of eigenfunctions at the boundary.

The main line of the proof of the theorems will start in §3. §2 is devoted
to a preparatory lemma. We give proofs of theorems 1 and 2 in §3, a proof
of in §4. In §5, we give a proof of

The results in this paper were announced in [8], [9]. The reader may also
refer to in which we gave an expository statement on Hadamard’s varia-
tional formula of the eigenvalues of the Laplacian.

In a subsequent paper, we give the Hadamard variational formula of the
trace of the Green kernels of the heat equation with the third boundary condi-
tion.

§2. Examination of the s-dependence of U..

The main aim of this section is to prove which will be used in
a later section.

Firstly we give some notations. Let T be a positive number. Let J(T)=
2x(0, T) be the cylindrical domain which will be abbreviated as /. Put

d((x, 1), (y: S»Z(Ix—y[z_[“”_sl)l/?

for any (x,1), (y, s)e/J, where |x—y| is the Euclidean distance in R”. Let
Cc°(J) denote the space of continuous function in J. Put

lu(x, )—uly, s)|
d((x, b), (y, s)*

|u|g=supremum
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for any u=cC’J). Here 0<a<1. Put

fuli= sup |u(x, t)|+lull
x,tyed
and
ci)=Au; lluli<oo}.
If 0%+7u/9xf0t" is a continuous function for any multi-indices B, 7 satisfying
2|71+ | B|=m, then we define

[ 08+Ty
‘ oxfotr

J

lullmsra=

2171+ 181sm

a

for each integer m. We define the weighted Holder space ¢™**(J) as follows:

C’m““(])—{u ; ﬂ is continuous for any B
— " oxbor y BT

such that 2|7]+|8|<m and Jul4a<oco}.

We consider the following problem:

[ (2 —A)utx, D=1z, D (x, D]
2.0 u(x, 0)=0 xe
I (b2 +0—B)ulx, =b(x, D (x, DETXIO, T,

where % is a fixed constant in [0, 1] and where f(x, 1), b(x, Hec=(2x[0, T)).
For the sake of simplicity we assume that

(%f)(% 0)=0 and (%j?b)(x, 0)=0

for any j=0, 1, ---. Then the problem [2.I) satisfies the compatibility condition
of order oo in the sense of p. 98 of Solonnikov [13]. We abbreviate (£2x {0})u
{rx(, 1)} as B. A function g(x, ) in B is said to be of c™**(B) class if there
exists a function G(x, t)eCc™**(J) such that G=g on B. Put

lgl%+e=infimum |G 4a .
Gec™ta(y
G=gon B
The following two lemmas are well known.
LEMMA 2.1 (Solonnikov [13] p. 121). For any non negative integer m, there
exists a positive constant C, such that

(2.2) I lnsera =Cn(lglmsrsat | flmsa)



Green kernels of heat equations 461

holds for the solution of the problem (2.1). Here g(x,t) is equal to b(x,t) for
(x, )eyx[0, T) and g(x, 0)=0.

LEMMA 2.2. There exists a positive constant C which is independent of e
such that

(2.3) [Ux, y, | =Ct " exp(—C 1t x—y][?
and
2.4 max —(?——Us(x, Y, | SC =02 exp(—C 4 x—y|?)

1sisn| 0x;

holds for any x, ye 8., t>0.

If ¢ is sufficiently small and y= @2 is fixed, we can construct a family of
diffeomorphisms ¥, : 2—Q, with the following properties (2.6) and (2.7):

2.5) U (x)=x+ep(x)v, for any x<7.

(2.6) We consider the diffeomorphism ¥, as the R™-valued smooth functions on
2, that is, ¥.ec=(2, R™ equipped with the usual Fréchet space topology. We
assume that the image of the mapping

[0, €)= EH(%) 7,

is contained in a bounded subset of ¢*(2, R™) for any fixed m.
(2.7) There is a relatively compact subset K containing y such that

V(x)=x

on some neighbourhood K’ of K which satisfies K'&L.

We define the morphism U%*:c™+e(Q,)=f—-T*fcc™*(Q) by (T¥f)(x)=
f(W(x)) for x€R. Here c™**(£.) denotes the usual Holder space. This gives
the topological isomorphism between C™+%(£2,.) and c™**(£2) and it also induces
the topological isomorphism between C™**(y.) and C™*%(y). Also ¥} induces
the isomorphism

Uk ]:cm(Q,x[0, T) == c™«(2x[0, T))
W U]
g — (T¥xDg)
if we set (T*xDg)x, 1)=g(¥(x), t). Here the function space C™**(£2, %[0, T))
is the weighted Holder space which we introduced in the first part of this
section. We abbreviate ¥¥*XI as U%.

Now we state [Lemma 2.3 which will be useful in a later section.
LEMMA 2.3.

(2.8) im Y20 =Ulms242=0.
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Here we give a norm to WXU.—U considering it as a function of (x, t).
REMARK. Since tlin% U(x, y, )=0(x—y) (resp. }imOUs(We(x), Yy, H=0(x—y)),
-+ -+

then the function space Cc™*%(J) does not fit to the study of U(x, v, t) (resp.
U(¥(x), v, 1)) for each fixed y. However ¢c™**(J) fits to the study of U(x, v, t)
—(T*U.)(x, y, t), since we know from (2.7) that

Ulx, 3, )—(FEUN(x, v, HeC=(2X[0, T)).

Proor oF LEMMA 2.3. Let W(x, y, t) be the fundamental solution of the
heat equation in R". We know

W(x, v, t):(47rl‘)'"/2@“lx—y|2/4t .
Put

Lx, v, )=U.¥(x), v, )—W(¥(x), y, 1).
Then we have

W?U5<x7 Y, t)_U(x: ¥, t)
:Le(x’ Y, t)_‘LO(x, v, t)+W(wE(‘x>J Y, t)_W(x’ Yy, t) .
The function L. satisfies the following equations

0

(=TT (x, 5, 0=0  xe2, >0

0
(kg +U—R)Lx, 3,1
=c(h(x, DUNEL), 3, )

0
(kg A=) W), 3, 1) xey
lin(} L(x, v, )=0 xe8,

(2.9)

where h.(x, D) is the differential operator of the first order which has the form

0
ox*’

hi(x, D= 3 hi(x)

We know from (2.6) that the image of the mapping [0, &,)2e—hi(x) is con-
tained in a bounded subset of C*(R™) for each 7. Since y is fixed, L.(x, y, 1) is
a smooth function of (x, t) in 2 x[0, 7).

Simple calculations give

(210) W?Ax w:k‘l_Azzeas(x’ D) ’

where «.(x, D) is a differential operator of the second order which has the form

2

@) 3 a0 B B ),

1,j=1



Green kernels of heat equations 463

where a¥(x)=al'(x). Moreover there exists ¢,>0 such that the image of the
mapping

[0, ep) 2 e——al(x), Bi(x), ulx)eC>(R™)

is contained in a bounded subset of C*(R?").

Considering L. as a function of (x, ¢), we have by Lemma 2.1 and 2.2, [2.10)
2.11

(2.12) sup [[Lel+zea<oo
0<e<eg
for some ¢,>0.
In the next place, we consider

Me(x, Y, t>:Le(x; v, t)"—LO(X’ Y, t) .
This satisfles:

(—%—AI>ME(7C: Y, D=(T*A V' —A)Lx, ¥, 1) xe, t>0

(k aiz —}—(l—k))ME(x, , 1)

:6(h5<x, D)stwe(x)) ¥, t)

(bt =)W W), 3, =Wz, 3,8) w7, 150
Itlirol M(x, y, )=0 xe 8.

(2.13)

It follows from [(2.10), [2.11), [2.12) and LCemma 2.1 that

(2.14) sup |le M L.—Lo)|mrosa<<oo
0<e<sp

for some &,>0. Therefore L. converges to L, in C™*?*%(J) topology. By the
definition of L., we have

VU~ Ulinsora =N Le— Lol mszsat | TEW —Wlns2sa -

It is easy to see that YW —W converges to 0 in ¢™***%(J) topology, since we
have (2.6), (2.7). Summing up these facts, we get

§3. Proofs of Theorem 1 and Theorem 2.

Before the proof of we shall give a lemma concerning the
Whitney extension of the fundamental solution of the heat equation U. The
idea using the Whitney extension of smooth function to prove our
is the same as in Fujiwara-Ozawa [3].

Let £ be an open bounded neighbourhood of the closure 2 of 2. Let
U(z, v, t) be-a smooth extension of U(z, y, 7) to @x2x(0, co) with respect to
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(z, v, ©) satisfying the following conditions:
(3.1) For any fixed compact subset K in £, then

lim sup lﬁ(z, y, T)|=0.
T-+0 yEK
Zeb\?)
3.2) Uz, y, 0)=U(z, », 7)
for any z€ 2, yef, r=(0, o).
We have the following which is crucial for our study.
LEMMA 3.1. There exists a real valued function C(y) such that the inequality

33 (2 ~A)0G 3, ] =CoXdisttz, 1)

holds for any ze @\Q, t€(0, o) and for any y=LQ. Moreover we can take C(y)

such that
sup C(y)< o
YyEK

for any compact subset K of L.

PrROOF OF LEMMA 3.1. We see that (d/0t—A,)U(z, v, t) is a smooth function
of (z, y, DERX2X(0, o) and it is equal to zero for any (z, y, )& 2 X 2x(0, co).
Therefore there exists C(y, t) which depends on y and ¢ such that

'(% —A )0z, 3, | =Cly, Didist(z, 7))

for any ze 9\2. By we can take C(y, t) as

supremum C(y, t)<oo
YEK,1E(0,)

for any fixed compact subset K of £.
ProOr OF THEOREM 1. Note that in this case £=0. By (3.1) we have

(3.4) Udx, v, )-U(x, v, t):—S:dT%<SQ Udx, z, t—o)0(z, v, t)dz)

for any fixed x, ye£2 and t>0. In the next place, we have

(35) Ue(x) Y, l‘)—-U(x, ¥, t)

:S:drgg AUx, z, t—2)0(z, y, ©)dz

-—SZdrSQ Udx, z, i—0)AU(z, v, ©)dz+0(e?)

by using Lemma 2.2 and [Lemma 3.1.
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By Green’s identity and by the Dirichlet boundary condition for U. at 7.,
we have

(3.6) Udx, y, )=Ulx, », 1)

¢ oU. ~
:—SOdTSTE< ot )(x, z, t—2o)U(z, v, t)dai+0(e?).
To simplify the right hand side of we require the following well
known
LEMMA 3.2. Let g(e, 2)=f(e, z4¢p(2)v,) be a function of (e, z)E(—eq, 0)X7,
then

3.7) ‘aaZGr fie, q)dos)

£=

= 70, An—DH @0+ (2)ee, 2| _dow.

where €, is a sufficiently small positive number and H(z) denotes the first mean
curvature of v at z.

Fix t>0. We apply to
ty oU ~
g(e, Z):SO<W)<’C’ z+ep(2)y,, t DU(z+ep(2)y,, v, 7)d7

for zey. Then we get

o, 0-]. 2

(x, 2z, t—7)U(z, y, 7)dt

=0

by the boundary condition for U at y. Therefore we have only to calculate the
term (dg/0¢)(e, z)].=o. By the mean value theorem and by the boundary condi-
tion for U at 7, we have

2
Z=20

O(z+ep@v,, v, f)zsp(Z)(gTU)(z, Y, T)

where z,=z+¢ep(2)0(z)v, for some 6(z) satisfying 0<@(z)<1. Then by

2.3 we get
(e s

The proof of is complete.
ProoF OF THEOREM 2. Also in the case 0< k=1, we have and (3.4).

By Green’s identity and by the boundary condition we get

t oU oU
s=o:S0 o, (x, z, t—-‘l‘)a—vz(z, v, T)p(2)dr .




466 S. Ozawa
(38) Udx, y,)—-Ulx, 3, 1)
_S:dfgre Udlx, z, t )(( )(Z v, z‘)—l—pU(z’ Y, T))dae—FO(ez)

where p=~k(1—*%). In order to simplify the right hand side of (3.8), we shall
give a geometrical observation. We fix zey and take an orthonormal basis

(zy, "+, Zn-1) On the tangent hyperplane at z and we consider (z,, ---, z,)-coordi-
nates as global coordinates in R”. Then we have
0 0z a+'__+azn_1ia +aznna_.

ovs v 0z 0vé  0zp-1 ov: 0z,

By simple calculus, we obtain

0z; 0
z J
for j=1, -, n—1 and
0z
Gt = O,

where

= ( nz—)l P (z)) 1/2.

We have the following
LEMMA 3.3. For an arbitrary fixed v(z)eC(R™),

(3.9) 135101 € “1{( }: —<Vy0(2), Vu(2))+ ,0(2) (2)

ov 0
) GO

Here z(e)=z+ep(2)v, and {,> denotes the inner product which is defined by (1.6).
PrOOF OF LEMMA 3.3. We have

(3.10)
= e gt aan)<<>>+( )00,
31D (22 )eteD= o @ +eple) v (2 +0(e
and
ov ov
(312) (4= )zten=—o-@+0()
J J

for j=1, -+, n—1. Summing up (3.10), (3.11) and (3.12), we have the desired
result.
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Now we continue the proof of [Theorem 2. By [Lemma 2.3 and Lemma 3.3

we obtain

. o0 .
G13)  tim s {(5)ee) 3, 9+ 06, 3, 9—(G e 3, DFpUC, 3, D)}
0*U
=(5rt 7 p 2 . Y2, 3, 9)p@—T,0), UG 3, D,
where p=k~'(1—k). Combining (3.13) with we have

2
(3.14) 5U(x, v, t):—S:dTSr—aa f{ (2 v, DU, z, t—)p(2)da,
t
—I—k"z(l—k)zgodfgrU(x, 2, t—U(, v, Dp(2)do,

—i—g:dTST(V,p(z), YUz, v, U, 7 t—)da, .

Now it is well known that the Laplacian A is represented as

a2

Wﬁ—V%Jr(n—l)Hl(z)

on the boundary 7. Here VZ denotes the Laplacian on the submanifold y of R”
with the metric induced from that of R®. Therefore we have

3.15)  6U(x, v, t):—S:dz-ST<VTU(x, 2, 1—12), VUG, v, Op(2)do,
—-S:drSTU(x, z, t—‘c)—a@z_—U(z, y, D)p(2)do,

+[Lae| pp—r—DHEU, 2 120G, 3, Do,
where p=Fk *(1—k). On the other hand, we have
¢ 19
(3.16) Sodt(g?grU(x, 2, t=0)U Gz, 3, Dp(@da.)=0,
for any x, yef and t>0. Hence we get the equality

3.17) [ d SU(x 5 1—2) s U(z, y, D)p(2)da,

0
~ ot

By (3.15) and [3.17) we obtain the desired result.

- d‘l‘S Ulx, z, i—0)U(z, 3, Dp(2)do, .



468 S. Ozawa

§4. Proof of Theorem 3.

In this section we give a proof of
We prepare some notations. We put |p|=max|p(x)|. Let I" be a fixed
zxey

tubular neighbourhood of 7. And let ¢,>0 be a small positive number such that
I'D{xeR~; dist(x, r)<de,|pl}.

Then 7,,CI. And we have y.CI for any ¢=(0, ). Let {I.}oc.c., be a family
of subdomains of £ such that I.CI.. when ¢’<e and I.C 282, for any (0, &,).
We assume that the boundary 7. of I. is smooth and it satisfies the following
properties :

(4.1) The inequality
(3/2)| ple=dist(x, 0(2NL.)=2|ple
holds for any x<7¥..

(4.2) For zeT, let a(z) be the unique point of y which satisfies dist(z, a(z))=
dist(z, 7). Assume that the mapping

alz,: fe2z——alz)er

is a smooth diffeomorphism between 7. and y whose Jacobian satisfies 27'<
|det Jac(a|;,)| £2 for any e€(0, ¢o).

By (4.1) we see that dist(x, 7)<dist(x, 0(@2NL2.))+clp|=3|ple for any x 7.
if 0<e<eo. Therefore 7.l for any e=(0, &0). So the mapping al7, is well
defined because 7.CI.

We begin the proof of [Theorem 3. We divide the term e~ (T, (t; e)—T,(¢; 0))
into three parts. Put

4.3) e ;:>:e-1(&(2 U, t)dx—gg\g Utx, x, dx)
Rev=e U, x, 0=Ulx, x, O)dx

and

(4.4 Ji(e, t)=e'lgl Ux, x, )-Ulx, x, H)dx .

Then

T =Tt )= 2 Jule, .

By Lemma 23 we get
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45) lim /e, t):SrU(x, %, Dp(x)dos
=0

and

4.6) lim (¢, )=0.

Therefore we have only to prove the following claim to prove
CLant. lim /i, t):SQ5U(x, %, Ddx .
To estimate the term Jy(e, ) we study e-dependence of U.(x, x,?). A pair

(e, x, t) satisfying x<l., t>0 is called a nice pair. If (¢, x, ) is a nice pair
and ¢<(0, &), then

xel.C N 2,
o< u<le
and Ux, x,t) and U(x, x, t) are well defined. Now we show an explicit rep-
resentation of U.x, x, )—U(x, x,{) by using the mean value theorem. It is
easy to see that there exists e,(x)€(0, ¢,) such that x& [\ £, holds for any

o<pu<le(2)
fixed x=£. By and by we see that the mapping

0, e.(x))2e—U.x, x, t) is of C'-class with respect to ¢ for any fixed x=Q,
t>0. Therefore, there exists #(e, x, t) such that 0< (e, x, {)<1 and the equality

(47) UE(x) X, t)_U(x: X, t)-_"eaUsﬂ(s,x,t)(x; X, t)

holds for any pair (e, x, t) satisfying x€292,, t>0. Of course holds for
any nice pair. We abbreviate @(e, x, t) as 0 if there is no fear of confusion.

In the following we shall represent the term dU.s(x, x, t) explicitly. We
fix t and ¢6. For any sufficiently small & satisfying 0<&<(1—8)e, there is the
unique function

peo(y 5 E)EC(ren X (0, (1—0)e))
such that the set 7.5.: can be written as
Teor:=1{y+Ep0(y; ENY; yET 0}
and the mapping
Teo+iDy—>9+&p.0(y; By
+is bijective. Here v¢’ denotes the exterior unit normal vector of 7., at y. Then

by we can represent 0U.,(x, x, t) explicitly as follows:
For any nice pair (e, x, t) we have

0U.4(x, 2, t—7) 0U.4(x, 2, 7) (2)do’
Te ove? ove? Pe0l2)00:"

4.8) 8U.o(x, x, t):g:drg
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where do:’ denotes the surface element of 7.4.

Now we divide Ji(e, t) into two parts. For any fixed >0, ¢>0, let
U.(x, x, t) be a smooth extension of U.(x, x,?) to the whole space R™ with
respect to x. Then U.x, x, )=U.x, x,t) for any x=Q. For any fixed
e=(0, ¢,/2), we have Ji(e, )=/,(¢, 1)+ Ji(e, t). Here

“9) e ={, O, x, D=V, x, D)dx
and
(410 Hen=] e ()Ox, x, D-Ulx, x, )dx

gg/2

=S e Ulx, x, )—Ulx, x, )dx .
150/2

It should be remarked that ¢ (U.(x, x, )—U(x, x, )X(x) is a measurable func-
tion of x in 2 when we fix ¢ and ¢.

We give two lemmas which are crucial to our study of Ji(e, ?).

LEMMA 4.1. We put

R(x, )= sup |e"A(x)(U.x, x, )—Ul(x, x, 1))|
0<e<eq/2
for any x€\1.y5, t>0. Then R(x, t)<co for any x&8\I. ., t>0, and

S Rx, )dx < oo
9\150/2

holds.
LEMMA 4.2. There exists a positive continuous function C(t) of t such that

sup [e7'(Udx, x, H—Ul(x, x, )| =C@E)

0<e<ep/2

holds for any x&l.,, t>0.

Assume that Lemmas K1 and K2 are proved, then we can apply the
Lebesgue dominated convergence theorem to the integral in when ¢
tends to zero and we finish our proof of Therefore we have only
to prove Lemmas and 4.2 to get

We use the following Lemma 43 to prove Lemma 4.1

LEMMA 4.3. There exists a positive constant ¢ independent of e<(0, &) such
that |x—z|=Clx—a(z)| holds for any x<I, and for any z<7.q, where a is the
mapping introduced in (4.2).

Proor. We fix e=(0, &,). We take x<I. and z=7.9. By (4.2) we have

| x—z| =dist(x, d(2N2.))
=@/Dlple.
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Therefore we have

Ii

e x—z|—@/2)|p|

0.

On the other hand |z—a(z)|<¢|p|, then we have
|x—a(2)| = x—z|+|z—a(2)]

=e(p+(G5/2)|pl).

u

v

Therefore we obtain

|x—a(2)| 7 x—z|=(u+6/2)p D (e+G/Dlpl)

=3/5.
We finish our proof.

PROOF OF LEMMA 4.1. We put ez(x):%gp {e; x=I.}. Then for any x&\I. s,

es(x)=<go/2. It is easy to see that
(4.11) Solipls—lxe(x)(ﬁe(x; x, )—U(x, x, 1))]

< sup |(Udx, x, )=Ulx, x, 1)

T 0<eseg ()

= sup |0U.e(x, x, )]
)

0<eseq (2

holds for any x=\I.,.. We put J\|Pil!=0§U<ID (sgplpa(z)l). Then by
e<leg 2€7,
and we get ’

@12)  [8Uulx, 5, DIZCClpN| de| (=)o

b
exp(—H(Cr(t—7)) | x—z|2)das?

for any pair (x, ¢) satisfying (x, e)€(f2\/,2) X (0, ex(x)). Here C, is a positive
constant independent of e. From [Lemma 43 we get

(4.13) exp(—t(Cr(t—1)) | x—2z|?)
<exp(—tCr(t—1) 1 C?| x—a(2)|?)

for any pair (x, ¢, z) satisfying (x, ¢, 2)€(\1,, (0, e3(x)), 7:6). We see that
the determinant of the Jacobian of the diffeomorphism

aly.g i Te0 2z alz)ET
between 7., and y satisfies

(4.14) 27'=|det Jac(aly )| =2
for any ¢=(0, &,). By the definition of R(x, t), (4.12), and

we obtain
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(4.15) R(x, DZCr|. drgr((t—r)f)*"“)/z

-exp(—t(Cr(t—1)C?| x—z|%)da,,

where C,=2C,C¥lpll. Therefore we obtain

~

S R(X, t)dx§C3S dUzStdrS <(t_z_)z_)—<n+1)/2
Ny 7 o JR®

cexp(—H(Cr(t—o) 't x—z|Yd x
<co,
We complete our proof of Lemma 4.1l
PROOF OF LEMMA 4.2. Since 7.4,N\(@NL2.)=0 for any ¢=(0, &), then there
is a positive constant @ such that dist(x, 7.9)>w for any e=(0, &/2) and

x€l.,5. The simple calculation leads to the existence of C(t) in [Lemma 4.2
The proof is complete.

§5. Proof of Theorem 4.

In this final section we give a proof of Since the right hand
side of is Lebesgue integrable, we can apply Fubini’s theorem. By the
properties of the fundamental solution of the heat equation, we have [1.I0) Put

(GRY) Ylz, )= Jé et (aa? (Z))z,

where ¢;(z) is the eigenfunction of the Laplacian. When we fix ¢, then we
have the uniform convergence in [5.2).

_0UG, w )
(52) Vile, =Yz =755

y:w:z'

This follows from which we prove later. By [1.9), [5.1) and [(5.2),
we complete the proof of
LEMMA 5.1. There exists a positive integer v and a constant C such that

(5:3) sup(2% ())'= €1

zey al)z

holds for any j=1, 2, ---.
Proor. By the well known a priori estimates, we have

(5-4) ll %’HHHm(Q) = Dm(”A<Pj“Hm(Q>+ l|€Djl7'“H(3/2)+m(r)>

for some constant D,, which depends on m. Here we use the L2-Sobolev norm.
By using (5.4) repeatedly we obtain
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loill zemy SCsAT .

By the Sobolev imbedding theorem, we get the desired result.
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