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The role of boundary Harnack principle
in the study of Picard principle
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A nonnegative locally Holder continuous function P on 0<|z| =<1 will be
referred to as a density on £:0<]z|<1. Here we consider 2 as an end of the
punctured sphere 0<|z|=<+oco so that the point z=0 is viewed as the ideal
boundary £ of 2, the unit circle |z]=1 as the relative boundary 02 of £, and
the punctured closed unit disk 0< |z| <1 as the relative closure 2 of 2. Similar
notations are used for subregions of £. For example we denote by 02, and
2, the relative boundary |z|=a and the relative closure 0<|z|<a of the sub-
region £2,:0<|z|<a (a=(0, 1]) of £, respectively. A density P on £ gives
rise to an elliptic operator L=Lp on £ defined by

Lu=Lpu=Au—Pu, A=0%/0x%+0%/0y*?.

Since 6£2 is of parabolic character, there exists a unique bounded solution
e(z, a)=ep(z, a), referred to as the P-unit on 2,, of Lu=0 on £, with conti-
nuous boundary values 1 on 02,. We simply denote by e(z)=ep(z) the P-unit
e(z, )=ep(z, 1) on £. With the operator L= L, we associate an elliptic operator
L=Lp on 2, referred to as the associate operator to L=Lp, given by

Lv=Low=Av+2V1ogep- T, V=(0/0x, 0/0y).

After Bouligand we say that the Picard principle is valid for P at 62 if the
dimension of the half module of nonnegative solutions of Lu=0 on £ with
continuous boundary values 0 on 92 is 1. We also say that the Riemann theorem
is valid for L at 68 if the limit lim,_ ;0v(z) exists for every bounded solution v
of Lv=0 on £. Then we have the following duality theorem (cf. Heins [3],
Hayashi [2], Nakai [8]): The Picard principle is valid for P at §£ if and only
if the Riemann theorem is valid for L at 6. As a sufficient condition of the
Riemann theorem for L at 62 we have, what we call, the following boundary
Harnack principle for L at 0£2:

(1) For every a in (0, 1] there exists a Jordan curve K, in 2, which sepa-
rates 082 from 08, and satisfies C(K,; 2., L)=0(1) (a—0), where for every
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subregion S of 2 and compact subset K of S C(K; S, L) is the Harnack constant
given by
CK; S, L>=sup{f7g

; £, £=K and u is any positive solution of

Lu=0 on S with C? boundary values on 85}.

The boundary Harnack principle (1) for L at £ implies the following
boundary Harnack principle for L at 82 in the same fashion as (1) originally
considered by Kawamura [6]:

(2) For every a in (0, 1] there exists a Jordan curve K, in £2, which sepa-
rates 092 from 02, and satisfies C(Kq; 24, L)=0(1) (a—0), where C(K,; 2,, L)
is the Harnack constant given by the similar way in (1).

- The Riemann theorem for I at 6£2 follows from the boundary Harnack
principle (2) for L at 62 (cf. Kawamura [6). Thus we have the following
implications : (1)—(2)—‘ The Picard principle’.

The purpose of this paper is to give an estimate of the Harnack constant
C(K,; £2,, L) and apply it to the study of the Picard principle. In §1 we will
show that the boundary Harnack principle for L at £ follows from the Picard
principle for P at 2. Therefore, with the above implications, we can conclude
that the boundary Harnack principle for L and L, the Riemann theorem for L,
and the Picard principle for P are all equivalent to each other at 62. In §2
we will give the Fourier series representation of the normal derivative of the
P-Green’s function for a rotation free density P, i.e. a density satisfying P(z)
=P(|z|) on 2. Since we cannot locate the exact reference to the representation
which may be well known and also it plays an essential role in §3, we will
include it’s proof for the sake of completeness. In §3 applying results in §2 to
the study of the Picard principle for densities Q on £ with P(z)<Q(z)<P(z)-+
C/|z|? on 2 for a rotation free density P on 2, we will show that the Picard
principle is valid for Q at ¢4 if the Picard principle is valid for P at §%2.

The author is very grateful to Professor M. Nakai for his helpful sugges-
tions.

§1. The boundary Harnack principle.

1. In nos. 1-3 we consider a density P on £ for which the Picard principle
is valid at 62 and denote by Gfe(z, {) the P-Green’s function on 2, with pole
at {. The function GF£(z, {)/e() in z uniformly converges on every compact

subset of 2, as {—d%2 and hence, the inner normal derivative 6?1 GE(z, {)/e©)

uniformly converges to a positive continuous function k(z, a)=Fkp(z, a) on 02,
as {—00 (cf. 1t [5]). If we set
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ve-l min k(z, a)

EZS(C, a): T/mzea.@a

for every constant C>1, then there exists 0=0(C, a) in (0, a) such that

0
3 GFau(z, 0)

@) —k(z, a)|<e

3
for any z in 02, and { in £;.
2. We estimate the Harnack constant C(K, ; £,, L) for an appropriate Jordan
curve K, in £2,. In order to determine K, we consider two cases separately:
lim supg.s0e(()=0 and >0. First we consider the case lim supc.spe({)=0, i.e.
lim;.;0e({)=0. For every A in (0, 1) consider the relatively noncompact con-
nected component A; of {{&2;e@)<A}. Since A, |0 as 21—0, there exists
p=p(C, a) in (0, 1) with A,CQ2;. Then from (3) it follows that for any 2 in
©, £, &1, &z in 0A;, and z in 082,

0
on,

0
on,
0
on,

GBa(z, 1) GE@ 8 ey k(z, a)+e

e€y) Ei—zGﬁa(z, ¢ k(z, a)—e

G}Qa(z, CZ)

< k@ O+WCDWVCHDk(z, 0) _ s

= k(z, )=V C—1)(/CH1)k(z, a)

Now we set K,=0A,. Applying this inequality to the integral formula of a
solution of Dirichlet problem of Lu=0 on £, with the normal derivative of
P-Green’s function on 90£2,, we have

4 C(Kq; 24, D=C

for any a in (0, 1].

3. Assume next that limsup;.;ge({)=a>0. There exists a closed set E
thin at 602 in 2 such that e(Q)—a as {—02 with {&E (cf. Brelot [L]).*> Then
we may take a decreasing sequence {4,} in (0, 1) with ENU5.,02;,=0 and
limy.d,=0. Since e(Q)—a as {—d2 with { in \U5_,02;,, there exists a positive
integer m=m(C, a) such that 1,,<d and
v/ C—1
ver1?

le(Q)—al<

for any  in \U3-»082;,. Then from this inequality and (3) it follows that for

*) This can be deduced, e.g., by using the following results successively in this
order: VI, 2 in p. 55, IIf, 1 in p, 18, and I, 3in p. 3.
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any i, {; in Un_n082,, and z in 092,

0 0
iﬂj GPQG(Z’ Cl) _ anz Gi’Qa(Z; CI)

0
on,

_ e(&e) ey
et P Lepe i

—~a+(WC—=1DWC+D)a_
Ve a—(vC—1DWC+Dla

C.

Now setting K,=0£,, we have
®) C(Ko; 24, L)=C.

4. We compile (4) and (5) in the following form: If the Picard principle is
valid for P, then for every A in (0, 1] there exists a Jordan curve K, in £
separating 6% from 082 such that for every constant C>1 and ¢ in (0, 1] we
may take v=u(C, a) in (0, 1] with K;CQ, and C(K;; 2,, L)<C for any A in
(0, v]. Then we have the following

THEOREM. For every density on £ following three principles at 652 are all
equivalent to each other: The boundary Harnack principle for Lp, the boundary
Harnack principle for Lp, and the Picard principle for P.

§2. Normal derivative of the P-Green’s function.

5. In this section we consider a rotation free density P on £, i.e. a density
satisfying P(z)=P(|z]) on Q. For every nonnegative integer n P,(2)=P(z)+
n®/|z|? is also a rotation free density on £2. Since for every a in (0, 1] the
Pp-unit e,(z, @)=ep,(z, a) on £2,, i.e. the unique bounded solution of Lp,u=0
on £, with continuous boundary values 1 on 0£,, is also rotation free, every
e.(z, a) may be viewed as a function in » in (0, ¢]. In other words, e,(r, @) is
considered as the unique bounded solution of

L=l f)= T ) PUrIgr)=0

on (0, a) with continuous boundary values 1 at »=a, where we follow the con-
vention Py=P and e.(r, a)=-e(r, a)=ep(r, a). We recall some of fundamental
properties of e,(r, a) (cf. Nakai [7T]): For every r in (0, al, p in [7, a], and
nonnegative integer n

_en(r, a) |
6) (7, p)~—~—en(p, o
) en(r, a)=en(r, a),

where the equality is valid if and only if r=gqa;
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en1(r, @) _ enia(r, a) |
® eq(r, a) = ensi(r, @)’

Cnsi(7, @) PP_ enss(r, @) |
®) [ en(r, a) ] = enti(r, @)’

the Picard principle is valid for P at 6 if and only if

(10) im 2 g,
0 eo(Fr)

where we simply denote by e,(r) the P,-unit e,(r, 1) on £.
6. For a continuous function w on 2, the Fourier coefficients

cor; w)= —;;—Sjﬂw(re“’)dﬁ ,

1 (o= )
an(r; w)=-;go w(ret®)cos nfda ,

bu(r; w)= %Sznw(rew)sin n6do

of w are continuous function in 7 in (0, a]. If w is further a bounded solution
of Lu=0 on £, then the Fourier coefficients of w satisfy that

d? 1 d ow 1 ow
g Ol W)t el w=er; o T o )
1 d%w
:co(r; Aw——+ aﬁz)zP(r)co(r; w),
d? 1 d 1 o*w
7,2 Gl wH— - -aa(r; w)—an(r, Aw—— agz)

=PW)as(r; W)= abu(r; 2 )=Pu(rantr; w),

and similarly

2

d 1 d
—(—i—r?b"(r’ 'LU)—I";‘: —d_r—bn(r; w)""Pn(r)bn<r: w)

on (0, a). Therefore they are bounded solutions of /,¢)=0 or /,¢)=0 and hence,
we have

colr; wy=cola; weor, a),
11 a,(r; wy=an(a; wey(r, a),

balr ; wY=bn(a; wea(r, a)
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on (0, a]. For every 7 in (0, 2z] we consider a sequence {®. .} of C? functions
on 082, such that 050, .20, ...<1 (n=1,2, ) and lim,..®D. .(ae??)=1
(0<f<7), 0 (t=6=2r). Since d4 is of parabolic character, the unique bounded
solution w,,, of Lu=0 on 2, with continuous boundary values @, , on 02, is
represented in the following form:

a2) wen@= g | = o GRa(re', D)l —a, n(ac*adB

0

for any £ in Q,, where Gfa(z, {) is the P-Green’s function on 2, with pole at
Z. On the other hand, applying to w.» we have also

(13) We n(s€1)=co(a ; wen)eos, a)
+ 21 {an(a; e )C0S Mo +bn(a; we, ,)sin ma}en(s, a)

for any s in (0, @) and ¢ in [0, 2z). Observe the facts that |ci(a; w:.)l,
lan(a; we )|, |bula; we )| are less than 2 and by (7), (8) we have

el(sr a)
4 eo(s, a) <L
_ eis, a)  em(s, a) eis, a)\™
5 en(s, @)=edls, @) els, @)  em-i(s, @) =els, a){ eq(s, a)} )

Then on making n—oo in (13) we obtain

lim w,, o(se*?)=lim co(a ; w., n)es, a)
TL—00

n—00

-+ i;l lim{an(a; w; »)cos mo+bn(a; w,, »)sin mo}ten(s, a)

_ s, @) (*
=\ a0
e en(s, @)

m=1

feos maS:cos mfdf-+sin moS:sin modo}.
Therefore from (14) and [(I5) it follows that

1d6

a .. ion_ Co(s, @) O (*
—a—hm Wy, p(58*)=—, S

T n-oo 27f af 0

+ 5 enls @) i«{cos moS:cos mOdf-+sin maS:sin modo}

m=1 T 31

en(s, @)

cos m(o—7).
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On the other hand from it also follows that

0 .. _ a 0 Q4 ir
Eggwf,n(C)—’“ﬂ ar GP (7’3 ’C)I'r=a-

Thus identifying { with se’” we have the following
LEMMA. Let P be a rotation free density on 2. Then for every a in (0, 1],
sin (0, a), and o, v in [0, 27)

—aiGﬁa(re”, se”)lha:a‘l{eo(s, a)+2 i en(s, a)cos m(a——r)} .
e m=1

Estimating the right hand side of the above equality by using (14) and
we obtain the following inequalities:

8 T io -1 81(3, a) el(S, a) -1
16)  ——-GAa(re™, s¢)] o Za e, {1+ e Hi— o a)}
and

0 e io o es(s, a) es(s, @) |-
A7 =5 Ghalre®, se)|,,Za eus, 0){1-3 e Hi- e a)} :

§3. An application of Lemma in §2.

7. In this section we consider rotation free densities P and R on £ with
P<R on 2. For rotation free densities P,(z2)=P(z)+n?/|z|? and R.(z)=
R(z)+n?/|z|? (n=0, 1, ---) on £ we denote by e,(z, a) and f.(z, a) the P,-unit
and R,-unit on 2, (0<a=1), respectively. As a fundamental relation between
the functions e,(r, a) and f,.(r, a) in » in (0, a], it is known that

ent1(r, @) _ fan(r, @) _
a8 ot @) = far @ 0L

(cf. Imai [4]). In this no. we give some relations between e,(r, a) and f,(r, a)
in the case R(z)=P(z)+9%k%/|z]® on 2 for a positive integer k. From (9) it
follows that

farlr, @) _ fa(r,a)  fulr, @)

for, @) faroa(r, @) folr, a)

gdh—l gth=2, 4y (7, a1k —1/2
Sl 2y

and

esx(r, a) >{ eir, a) }33k“1+...+1_{ e((r, a) }(27’“—1)/2

eo(r, @) eo(r, @) ~ ley(r, a)

Observe that R=P,,, R,,=P;, and hence, fo(r, a)=e::(¥, a), fix(r, a)=es:(r, a).
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Then above two inequalities are rewritten in the following forms:

filr, @) _ [ esi(r, a) \211F-0
19 <
19 folr, @) ”{ esx(r, a) }
and

k
2 91(7’, a) S fﬂ(r) a) 2/C27" -1
o w0 Sletr )
respectively. On the other hand by (8) we have
1) ese(r, @) _ esi(r, @) esrni(r, @) é{ eir, a) }”_
esx(r, a)  esra(r, a)  esi(r, @) e«r, a)

Therefore we compile [19), and in the following inequality:

fa(r, a) folr, @) \ar . el(r, a) folr, a) \a&*
(@2) fo o S al v e fra=te o

for any a in (0, 1] and » in (0, a], where a,=8k(81%*—1)"'(27%*—1)"%

8: Consider a general density Q on £ with P(2)<Q(z)<P(2)+C/|z|* on Q
for some nonnegative constant C. We take a positive integer k& with 9%22=C
and denote by R the rotation free density P,; on £. In view of (16), (17), and

(18) the inner normal derivative of the Q-Green’s function GQa(z, {) on 2, with
Q
pole at { satisfies that

0 0
@) 5 G DS 5GP D

<a-el|C], a){l+M}{l— M}-l

2] T el @
. £UCL @ g, AL, @)y
=aeich oft+ 2o Hi- 2o )
and
@) -2 Gz, O -0 Gha(z, O
on, ¢ Y=y, TERE S

-1 _ f(E1, @) _f1(|C|: a)\-!
zafllel, o{1-32 0 Hi=Ferar )

for any z in 02,. By (6), [19), and [2I) we have

fir, a) <{ e r, a) }4k/(81k—1)_{ e.(r) eola) }4k/(81k—1)

folr, @) T Leo(r, a) ~leg(r) esa)

where e,(¥)=e,(r, 1) and f,(r)=fr(r, 1) (n=0, 1, ---). - Assume that the Picard

b
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principle is valid for P at 6£2. Then from [10) it follows that there exists
s=s(C, a) in (0, a) with fi(s, a)/fo(s, a)=1/4. Applying (23) and (24) to {, and
¢, in 082, respectively we obtain

0 fa(s, @)

on, &) eo(s, a) G ) fo(s, @) g eols, @)
0 £ = fols, a) 1_gfils @) " fols, @)
anz ’ f0(59 a)

Therefore in view of we have the following estimate:
COQs; Qa, Q=5-4°%".

Thus we deduce the following

THEOREM. Let P be a rotation free denszty on £ for which the Picard
principle is valid at 52. Then the Picard principle is valid for every density Q
on 2 at 09 with P(2)<Q()<P(2)+C/|z|* on 2 for a nonnegative constant C.
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