Equivariant embeddings and isotopies of a sphere in a representation

Dedicated to Professor Kentaro Murata on his 60th birthday

By Katsuhiro KOMIYA

(Received Nov. 11, 1980)

§ 1. Introduction and statement of results.

Let G be a finite group. Let M, N be smooth (i.e., infinitely differentiable) G-manifolds, and R the real line with trivial G-action. A level preserving smooth G-embedding

$$H: M \times R \longrightarrow N \times R$$

defines smooth G-embeddings H_t of M in N, for all $t \in R$, by the relation

$$H(x, t) = (H_t(x), t)$$
 for any $x \in M$.

Let $f, g: M \rightarrow N$ be smooth G-embeddings. If, for some a < b,

$$H_t = f$$
 for any $t \leq a$,

$$H_t = g$$
 for any $t \ge b$,

then H is called a smooth G-isotopy between f and g, and f, g are called to be G-isotopic. The isotopy class [f] is the set of all smooth G-embeddings which are G-isotopic to f. Denote by $\operatorname{Iso}^{G}(M, N)$ the set of all isotopy classes of smooth G-embeddings of M in N.

Let U be a finite dimensional representation of G. S(U) denotes the unit sphere in U with respect to some G-invariant inner product. Then S(U) is a smooth G-manifold. The purpose of this paper is to enumerate $\mathrm{Iso}^G(S(U),\ V)$ for finite dimensional representations U, V of G. In this paper we restrict ourselves to the case

(C)
$$0 < \dim U^{G} < \dim U$$
,

where U^G is the fixed point set in U by the G-action. All representations considered are real representations, and dim denotes the real dimension.

This research was partially supported by Grant-in-Aid for Scientific Research (No. 474028), Ministry of Education.

Let $\operatorname{Hom}^{\mathcal{G}}(U,\,V)$ be the set of all G-equivariant R-linear homomorphisms from U to V. This is a vector space over R. Let $\{W_j|j\in J(G)\}$ be a complete set of nontrivial, nonisomorphic, irreducible representations of G. Define

$$J(G; U) = \{ j \in J(G) | \dim \text{Hom}^G(W_j, U) \neq 0 \}$$
.

Then positive integers m_j for all $j \in J(G; U)$ are defined by splitting U into

$$U=U^{G}\bigoplus\bigoplus_{j\in J(G;U)}m_{j}W_{j}$$
,

where m_jW_j is the direct sum of m_j copies of W_j . Similarly positive integers n_j for all $j \in J(G; V)$ are defined by splitting V into

$$V = V^G \bigoplus \bigoplus_{j \in J(G;V)} n_j W_j$$
.

For the case (C), there is a smooth G-embedding of S(U) in V if and only if U is a subrepresentation of V. For such representations U, V we see that

$$J(G; U) \subset J(G; V)$$
,

$$m_j \leq n_j$$
 for any $j \in J(G; U)$.

Define

$$\nu(S(U^{\operatorname{G}})) \!=\! (\tau(S(U)) \,|\, S(U^{\operatorname{G}})) / \tau(S(U^{\operatorname{G}})) \;,$$

$$\nu(V^G) = (\tau(V) | V^G) / \tau(V^G)$$

the normal bundles of $S(U^G)$ in S(U) and of V^G in V, respectively. Then there are smooth G-vector bundle isomorphisms

$$\Psi^U: \nu(S(U^G)) \cong S(U^G) \times \bigoplus_{i \in J(G \cdot U)} m_i W_i$$

$$\Psi^{V}: \nu(V^{G}) \cong V^{G} \times \bigoplus_{i \in (G: V)} n_{i} W_{i}$$
.

Let $f: S(U) \to V$ be a smooth G-embedding, and $df: \tau(S(U)) \to \tau(V)$ the differential of f. Since $(df)^{-1}(\tau(V^G)) = \tau(S(U^G))$, df induces a smooth G-vector bundle embedding $\tilde{d}f: \nu(S(U^G)) \to \nu(V^G)$. A map

$$\Phi(f): S(U^G) \longrightarrow \operatorname{Mon}^G(\bigoplus_{j \in J(G;U)} m_j W_j, \bigoplus_{j \in J(G;V)} n_j W_j)$$

is defined by the relation

$$\Psi^{V} \circ \tilde{d} f \circ (\Psi^{U})^{-1}(x, w) = (f(x), \Phi(f)(x)(w))$$

for $x \in S(U^G)$ and $w \in \bigoplus_{j \in J(G;U)} m_j W_j$, where $\operatorname{Mon}^G(-, -)$ denotes the subspace of $\operatorname{Hom}^G(-, -)$ consisting of all G-equivariant R-linear monomorphisms. If f and g are G-isotopic smooth G-embeddings of S(U) in V, $\Phi(f)$ and $\Phi(g)$ are homotopic. Thus the transformation

$$\Phi: \operatorname{Iso}^{G}(S(U), V) \longrightarrow \lceil S(U^{G}), \operatorname{Mon}^{G}(\bigoplus_{i \in J(G \cup U)} m_{i}W_{i}, \bigoplus_{i \in J(G \cup V)} n_{i}W_{i}) \rceil$$

is defined, where [-, -] denotes the homotopy set.

For any $j \in J(G)$, define $d_j = \dim \operatorname{Hom}^G(W_j, W_j)$. Then $d_j = 2$ if W_j is the real restriction of a complex representation, $d_j = 4$ if W_j is the real restriction of a quaternionic representation, and $d_j = 1$ for other W_j . Let F_j be the real numbers R if $d_j = 1$, the complex numbers C if $d_j = 2$, and the quaternionic numbers Q if $d_j = 4$.

For positive integers $m \le n$, consider the vector space nF_j over F_j and an ordered mF_j -linearly independent vectors $\{v_1, \dots, v_m\}$ in nF_j . Such $\{v_1, \dots, v_m\}$ is called an m-frame in nF_j . Denote by $V(m, n; F_j)$ the space of all m-frames in nF_j . $V(m, n; F_j)$ is identified with $GL(n; F_j)/GL(n-m; F_j)$, and is called the open Stiefel manifold. The closed Stiefel manifold consists of all orthonormal m-frames in nF_j , and is identified with O(n)/O(n-m), U(n)/U(n-m) or Sp(n)/Sp(n-m). $V(m, n; F_j)$ is $(d_j(n-m+1)-2)$ -connected, since the closed Stiefel manifold is a deformation retract of the open Stiefel manifold.

Since W_j is the real restriction of a representation over F_j , the scalar multiplication gives an isomorphism

$$\operatorname{Hom}^{G}(W_{i}, W_{i}) \cong F_{i}$$
.

Thus we see that $\operatorname{Mon}^G(m_jW_j, n_jW_j)$ and $V(m_j, n_j; F_j)$ are identified. By Schur's lemma

$$\operatorname{Mon}^{G}(\bigoplus_{j\in J(G;U)}m_{j}W_{j},\ \bigoplus_{j\in J(G;V)}n_{j}W_{j})\approx \prod_{j\in J(G;U)}\operatorname{Mon}^{G}(m_{j}W_{j},\ n_{j}W_{j}).$$

Thus Φ gives a transformation

$$\widetilde{\Phi}: \mathrm{Iso}^{G}(S(U), V) \longrightarrow \prod_{i \in J(G;U)} \lceil S(U^{G}), V(m_{i}, n_{i}; F_{i}) \rceil$$
.

We obtain

THEOREM 1. Let V be a finite dimensional representation of a finite group G, and let U be a subrepresentation of V with $0 < \dim U^G < \dim U$. Suppose the G-action on V is semifree. Then

- (1) $\tilde{\boldsymbol{\varphi}}$ is surjective, if $\dim U + \max \{\dim U 1, \dim V^G\} \leq \dim V$,
- (2) $\tilde{\Phi}$ is bijective, if $3 \dim U^G < 2 \dim V^G$, and $\dim U + \max \{\dim U 1, \dim V^G\} < \dim V$.

Now let G be the cyclic group of prime power order p^r . For each integer s with $0 \le s \le r$, G has just one subgroup H(s) of order p^s such that

$$\{1\} = H(0) \subset H(1) \subset \cdots \subset H(r) = G$$
.

For each s let $\{W_j | j \in J(H(s))\}$ be a complete set of nontrivial, nonisomorphic, irreducible representations of H(s). Let U, V be finite dimensional representa-

tions of G. By restricting the G-actions on U, V to H(s)-actions, we consider U, V as representations of H(s). As before, define

$$J(H(s); U) = \{j \in J(H(s)) | \dim \text{Hom}^{H(s)}(W_j, U) \neq 0\},$$

and define positive integers m_j for all $j \in J(H(s); U)$ by the relation

$$U=U^{H(s)}\bigoplus\bigoplus_{j\in J(H(s);U)}m_jW_j$$
.

Similarly positive integers n_j for all $j \in J(H(s); V)$ are defined by the relation

$$V = V^{H(s)} \bigoplus \bigoplus_{i \in J(H(s); V)} n_i W_i$$
.

Also define $d_j = \dim \operatorname{Hom}^{H(s)}(W_j, W_j)$ for any $j \in J(H(s))$.

We obtain

THEOREM 2. Let G be the cyclic group of prime power order p^r . Let V be a finite dimensional representation of G, and U a subrepresentation of V with $0 < \dim U^G < \dim U$. Then

- (1) $\tilde{\boldsymbol{\Phi}}$ is surjective, if $\dim U^{H(s)} + \max \{\dim U^{H(s)} 1, \dim V^{H(s+1)}\} \leq \dim V^{H(s)}$ for any s with $0 \leq s < r$, and $\dim U^{H(s)} \leq d_j(n_j m_j + 1)$ for any $j \in J(H(s); U)$ and any s with 0 < s < r,
- (2) $\widetilde{\Phi}$ is bijective, if $3 \dim U^{G} < 2 \dim V^{G},$ $\dim U^{H(s)} + \max \{\dim U^{H(s)} 1, \dim V^{H(s+1)}\} < \dim V^{H(s)} \text{ for any s with } 0 \le s < r, \text{ and } \dim U^{H(s)} < d_{j}(n_{j} m_{j} + 1) \text{ for any } j \in J(H(s); U) \text{ and any s with } 0 < s < r.$

In § 2 we provide some lemmas for the proofs of our theorems. We prove the surjectivity of $\tilde{\Phi}$ in § 3, and the injectivity of $\tilde{\Phi}$ in § 4.

NOTE. K. Abe [1] studied $\operatorname{Iso}^{G}(S(U), S(V))$, and obtained the triviality and the infiniteness of the set for very restricted U, V. Since the one-point compactification S^{V} of V is identified with $S(R \oplus V)$, there is a bijective transformation

$$\operatorname{Iso}^{G}(S(U), V) \approx \operatorname{Iso}^{G}(S(U), S(R \oplus V))$$

§ 2. Lemmas.

In this section we provide four lemmas. Lemma 3 and Lemma 4 are fundamental facts in differential topology.

LEMMA 3. Let M, N be smooth manifolds with boundary, and M compact. Let $f: M \to N$ be a continuous map such that (1) $f^{-1}(\partial N) = \partial M$, and (2) f is a smooth embedding on some neighborhood of ∂M in M. If

$$2 \dim M + 1 \leq \dim N$$
,

then there is a smooth embedding $g: M \rightarrow N$ such that (1) g=f on some neighborhood of ∂M in M, and (2) $g \simeq f$ relative to the neighborhood of ∂M in M.

LEMMA 4. Let M, N be smooth manifolds with boundary, and M compact. Let $f, g: M \rightarrow N$ be smooth embeddings, and $H: M \times R \rightarrow N \times R$ a level preserving continuous map such that

- (1) $H_t = f$ for $t \le -1$, $H_t = g$ for $t \ge 1$,
- (2) $H^{-1}(\partial N \times R) = \partial M \times R$,
- (3) H is a smooth embedding on some neighborhood of $\partial M \times R$ in $M \times R$.

 If

$$2 \dim M + 2 \leq \dim N$$
,

then, for any $\lambda > 1$, there is a smooth isotopy $K: M \times R \to N \times R$ such that

- (1) $K_t = f$ for $t \le -\lambda$, $K_t = g$ for $t \ge \lambda$,
- (2) K=H on some neighborhood of $\partial M \times R$ in $M \times R$.

LEMMA 5. Let G be a finite group. Let M be a compact smooth free G-manifold with boundary, and N a (dim M-1)-connected smooth G-manifold with boundary. If f is a smooth G-map from a G-invariant neighborhood of ∂M in M to N, then there is a smooth G-map $g: M \to N$ such that g=f on some neighborhood of ∂M in M.

PROOF. Consider the smooth fibre bundle $M \times_G N \to M/G$ with fibre N. The smooth cross sections $s: M/G \to M \times_G N$ and the smooth G-maps $h: M \to N$ are in bijective correspondence by the relation

$$s([x])=[x, h(x)]$$
 for any $x \in M$.

Let A be a G-invariant open neighborhood of ∂M in M where f is defined. Let $s^{(1)}: A/G \to A \times_G N$ be the smooth cross section corresponding to f. By the assumption that the fibre N is $(\dim M-1)$ -connected and by the differentiable approximation theorem [4; 6.7], we obtain a smooth cross section $s^{(2)}: M/G \to M \times_G N$ such that $s^{(2)} = s^{(1)}$ on a neighborhood of $\partial M/G$ in M/G. Let $g: M \to N$ be the smooth G-map corresponding to $s^{(2)}$. Then g=f on a neighborhood of ∂M in M. Q. E. D.

LEMMA 6. Let H be a subgroup of a finite group G. Let M, N be smooth G-manifolds with boundary, and M compact. Let $f: A \to N$ be a smooth G-embedding with $f(\partial M) \subset \partial N$, where A is a G-invariant open neighborhood of ∂M in M. Suppose that $\partial G : \nu(M^H) | A^H \to \nu(N^H)$ extends to a smooth G-vector bundle embedding

 $\zeta: \nu(M^H) \rightarrow \nu(N^H)$. Then there are a G-invariant tubular neighborhood T of M^H in M and a smooth G-embedding $g: T \rightarrow N$ such that

(1) g=f on $T \cap B$, where B is some neighborhood of ∂M in M, and

(2)
$$dg = \zeta : \nu(M^H) \longrightarrow \nu(N^H)$$
.

PROOF. Give a G-invariant smooth Riemannian metric \langle , \rangle_1 on the tangent bundle $\tau(M)$ of M, and let $\nu^1(M^H)$ be the orthogonal complement of $\tau(M^H)$ in $\tau(M)|M^H$ with respect to the metric \langle , \rangle_1 . Let

$$p_M: \tau(M) | M^H \longrightarrow (\tau(M) | M^H) / \tau(M^H) = \nu(M^H)$$

be the projection. Then

$$p'_{M} = p_{M} | \nu^{1}(M^{H}) : \nu^{1}(M^{H}) \longrightarrow \nu(M^{H})$$

is a smooth G-vector bundle isomorphism. We can give $\tau(N)$ a G-invariant smooth Riemannian metric \langle , \rangle_2 such that

$$df(\nu^1(M^H)|\widetilde{A}^H)\subset \nu^2(N^H)$$
,

where \tilde{A} is a neighborhood, contained in A, of ∂M in M, and where $\nu^2(N^H)$ is the orthogonal complement of $\tau(N^H)$ in $\tau(N)|N^H$ with respect to the metric \langle , \rangle_2 . Let

$$p_N' = p_N | \nu^2(N^H) : \nu^2(N^H) \longrightarrow \nu(N^H)$$

be the smooth G-vector bundle isomorphism which is the restriction of the projection

$$p_N: \tau(N)|N^H \longrightarrow (\tau(N)|N^H)/\tau(N^H) = \nu(N^H)$$
.

For small ε , $\delta > 0$, define

$$\nu_{\varepsilon}^{1}(M^{H}) = \{v \in \nu^{1}(M^{H}) | \langle v, v \rangle_{1} \leq \varepsilon^{2} \}$$

$$\nu_{\delta}^2(N^H) = \{ v \in \nu^2(N^H) \mid \langle v, v \rangle_2 \leq \delta^2 \}$$
.

There are the exponential maps

$$\exp: \nu_{\varepsilon}^{1}(M^{H}) \longrightarrow M$$
,

$$\exp: \nu_{\delta}^2(N^H) \longrightarrow N$$
.

These exponential maps are smooth G-embeddings onto tubular neighborhoods of M^H , N^H in M, N, respectively. The sequence of smooth G-embeddings

$$\exp M \xrightarrow{\mathcal{V}_{\mathfrak{s}}^{1}(M^{H})} \xrightarrow{\mathcal{V}_{M}} \nu(M^{H}) \xrightarrow{\zeta} \nu(N^{H}) \xrightarrow{\psi_{N}} \nu_{\delta}^{2}(N^{H}) \xrightarrow{\exp} N$$

gives a desired smooth G-embedding $g: T \rightarrow N$.

Q. E. D.

§ 3. Surjectivity of $\tilde{\Phi}$.

[I] Proof of the surjectivity of $\tilde{\Phi}$ for Theorem 1. Let U, V be such representations of G as in Theorem 1. Let

$$[g] \in [S(U^G), \operatorname{Mon}^G(\bigoplus_{j \in J(G; V)} m_j W_j, \bigoplus_{j \in J(G; V)} n_j W_j)]$$

be an arbitrary class, whose representative g can be taken to be a smooth map. To prove the surjectivity of $\tilde{\Phi}$ it suffices to show that there exists a smooth G-embedding $f: S(U) \to V$ with $\Phi(f) = g$.

Since U^{σ} is a subspace of V^{σ} , there is a smooth embedding $\iota: S(U^{\sigma}) \to V^{\sigma}$. Define

$$h: S(U^G) \times \bigoplus_{j \in J(G; V)} m_j W_j \longrightarrow V^G \times \bigoplus_{j \in J(G; V)} n_j W_j$$

by, for $x \in S(U^G)$ and $w \in \bigoplus_{j \in J(G;U)} m_j W_j$,

$$h(x, w) = (\iota(x), g(x)(w))$$
.

Then h is a smooth embedding. By Lemma 6 the smooth G-vector bundle embedding

$$(\Psi^V)^{-1} \circ h \circ \Psi^U : \nu(S(U^G)) \longrightarrow \nu(V^G)$$

induces a smooth G-embedding

$$f^{(1)}: T_{\epsilon}(S(U^G)) \longrightarrow V$$

with $\tilde{d}f^{(1)}=(\Psi^V)^{-1} \circ h \circ \Psi^U$, where $T_{\varepsilon}(S(U^G))$ is a G-invariant closed tubular neighborhood of $S(U^G)$ in S(U) with radius $\varepsilon>0$. Let $T_{\delta}(V^G)$ be a G-invariant closed tubular neighborhood of V^G in V with radius $\delta>0$. Take δ such as

Int
$$T_{\epsilon}(S(U^G)) \supset (f^{(1)})^{-1}(T_{\delta}(V^G))$$
.

The boundary of $T_{\delta}(V^G)$ and the image of $f^{(1)}$ intersect transversally, as we see in the proof of Lemma 6. Therefore

$$M = S(U) - \text{Int}(f^{(1)})^{-1}(T_{\delta}(V^G))$$

is a smooth free G-manifold with boundary. Also

$$N = V - \operatorname{Int} T_{\delta}(V^{G})$$

is a smooth free G-manifold with boundary. N has the same homotopy type as the $(\dim V - \dim V^G - 1)$ -dimensional sphere. By the assumption

$$\dim U + \dim V^{c} \leq \dim V$$
,

we see that N is $(\dim M-1)$ -connected. By Lemma 5 we obtain a G-map $f^{(2)}: M \to N$ which coincides with $f^{(1)}$ on some neighborhood of ∂M in M. Mak-

ing use of collars of ∂M and ∂N , we may take $f^{(2)}$ such as $(f^{(2)})^{-1}(\partial N) = \partial M$. Passing to the orbit spaces, we obtain the map

$$f^{(2)}/G: M/G \longrightarrow N/G$$

which coincides with the smooth embedding $f^{(1)}/G$ on a neighborhood of $\partial M/G$ in M/G. The assumption $2 \dim U - 1 \leq \dim V$ implies

$$2 \dim M/G + 1 \leq \dim N/G$$
.

Thus, by Lemma 3, we obtain a smooth embedding

$$f^{(3)}: M/G \longrightarrow N/G$$

such that

- (1) $f^{(3)} = f^{(1)}/G$ on a neighborhood of $\partial M/G$ in M/G, and
- (2) $f^{(3)} \simeq f^{(2)}/G$ relative to the neighborhood.

By the covering homotopy property for $M \to M/G$ and $N \to N/G$, $f^{(3)}$ induces a smooth G-embedding $f^{(4)}: M \to N$ which coincides with $f^{(1)}$ on a neighborhood of ∂M in M. Pasting $f^{(1)}$ and $f^{(4)}$, we obtain a smooth G-embedding $f: S(U) \to V$ with

$$\tilde{d}f = \tilde{d}f^{(1)} = (\Psi^V)^{-1} \circ h \circ \Psi^U$$
.

This implies $\Phi(f)=g$, and completes the proof of surjectivity of $\tilde{\Phi}$ for Theorem 1.

[II] Proof of the surjectivity of $\tilde{\mathbf{\Phi}}$ for Theorem 2. Let $G,\,U,\,V$ be as in Theorem 2. Let

$$[g] \in [S(U^G), Mon^G(\bigoplus_{i \in J(G;U)} m_i W_i, \bigoplus_{i \in J(G;V)} n_i W_i)]$$

be an arbitrary class, whose representative g can be taken to be a smooth map. It suffices to show that there exists a smooth G-embedding $f: S(U) \to V$ with $\Phi(f) = g$.

Let $\iota: S(U^G) \to V^G$ be a smooth embedding, and define a smooth G-embedding

$$h: S(U^G) \times \bigoplus_{j \in J(G; V)} m_j W_j \longrightarrow V^G \times \bigoplus_{j \in J(G; V)} n_j W_j$$

by, for $x \in S(U^G)$ and $w \in \bigoplus_{j \in J(G;U)} m_j W_j$,

$$h(x, w) = (\iota(x), g(x)(w)).$$

As in the proof of surjectivity for Theorem 1, we obtain a smooth G-embedding $\tilde{f}: T(S(U^G)) \to V$ with $\tilde{d}\tilde{f} = (\Psi^V)^{-1} \circ h \circ \Psi^U$, where $T(S(U^G))$ is a G-invariant closed tubular neighborhood of $S(U^G)$ in S(U).

Consider the following assertion $\mathcal{A}(s)$ for any s with $0 \le s \le r$:

 $\mathcal{A}(s)$. There exist a G-invariant compact smooth submanifold M_s of S(U) and a smooth G-embedding $f^{(s)}: M_s \to V$ such that

- (1) $\dim M_s = \dim S(U)$,
- (2) Int $M_s \supset S(U^{H(s)})$, and
- (3) $f^{(s)} = \tilde{f}$ on some neighborhood of $S(U^G)$ in S(U).

In the assertion $\mathcal{A}(0)$, M_0 must be S(U), and $f^{(0)}$ is the required embedding. We can prove all $\mathcal{A}(s)$ by induction descending on s. First $\mathcal{A}(r)$ is insured by the smooth G-embedding $\tilde{f}: T(S(U^G)) \to V$. Assuming $\mathcal{A}(s+1)$ for $0 \le s < r$, we will prove $\mathcal{A}(s)$.

Take a G-invariant closed tubular neighborhood $T(V^{H(s+1)})$ of $V^{H(s+1)}$ in V such as

Int
$$M_{s+1} \supset (f^{(s+1)})^{-1} (T(V^{H(s+1)}))$$
.

If the radius of $T(V^{H(s+1)})$ is appropriately small, then

$$L = S(U) - \text{Int}(f^{(s+1)})^{-1}(T(V^{H(s+1)}))$$

is a smooth G-manifold with boundary. Also

$$N=V-Int T(V^{H(s+1)})$$

is a smooth G-manifold with boundary. $f^{(s+1)}$ is defined on a G-invariant open neighborhood of ∂L in L. Let A be such a neighborhood.

We split U and V as representations of H(s) into

$$U=U^{H(s)} \oplus U_1$$
, $V=V^{H(s)} \oplus V_1$,

where

$$U_1 = \bigoplus_{i \in J(H(s);U)} m_i W_i$$
,

$$V_1 = \bigoplus_{j \in J(H(s); V)} n_j W_j$$
.

We may consider U_1 and V_1 as G-invariant subspaces of U and V, respectively. Let $\nu(L^{H(s)})$, $\nu(N^{H(s)})$ be the normal bundles of $L^{H(s)}$, $N^{H(s)}$ in L, N, respectively. Then there are smooth G-vector bundle isomorphisms

$$\alpha: \nu(L^{H(s)}) \cong L^{H(s)} \times U_1$$

$$\beta: \nu(N^{H(s)}) \cong N^{H(s)} \times V_1$$
.

Since $A^{H(s)} = A \cap L^{H(s)}$.

$$df^{(s+1)}: \nu(L^{H(s)})|A^{H(s)} \longrightarrow \nu(N^{H(s)})$$

is defined. $Mon^{H(s)}(U_1, V_1)$ admits the smooth G-action such that H(s) acts trivially on it. Define a smooth G-map

$$k^{(1)}: A^{H(s)} \longrightarrow \operatorname{Mon}^{H(s)}(U_1, V_1)$$

by, for $x \in A^{H(s)}$ and $u \in U_1$,

$$\beta \circ \tilde{d}f^{(s+1)} \circ \alpha^{-1}(x, u) = (f^{(s+1)}(x), k^{(1)}(x)(u)).$$

As in §1 we see

$$Mon^{H(s)}(U_1, V_1) \approx \prod_{i \in J(H(s);U)} V(m_i, n_i; F_i)$$
.

The assumption

$$\dim U^{H(s)} \leq d_i(n_i - m_i + 1)$$

implies that $\operatorname{Mon}^{H(s)}(U_1, V_1)$ is $(\dim L^{H(s)}-1)$ -connected. We may consider $L^{H(s)}$ and $\operatorname{Mon}^{H(s)}(U_1, V_1)$ as G/H(s)-manifolds, and $k^{(1)}$ as a G/H(s)-map. Then the G/H(s)-action on $L^{H(s)}$ is free. Thus, by Lemma 5, we obtain a smooth G/H(s)-map

$$k^{(2)}: L^{H(s)} \longrightarrow \operatorname{Mon}^{H(s)}(U_1, V_1)$$

which coincides with $k^{(1)}$ on a neighborhood of $\partial L^{H(s)}$ in $L^{H(s)}$. We reconsider $k^{(2)}$ as a smooth G-map.

Since $N^{H(s)} = V^{H(s)} - \text{Int } T(V^{H(s+1)})^{H(s)}$, and $T(V^{H(s+1)})^{H(s)}$ is a tubular neighborhood of $V^{H(s+1)}$ in $V^{H(s)}$, then $N^{H(s)}$ has the same homotopy type as the $(\dim V^{H(s)} - \dim V^{H(s+1)} - 1)$ -dimensional sphere. Thus the assumption

$$\dim U^{H(s)} + \dim V^{H(s+1)} \leqq \dim V^{H(s)}$$

implies that $N^{H(s)}$ is $(\dim L^{H(s)}-1)$ -connected. So, by Lemma 5, we obtain a G-map

$$k^{(3)}:L^{H(8)}\longrightarrow N^{H(8)}$$

which coincides with $f^{(s+1)}$ on a neighborhood of $\partial L^{H(s)}$. Making use of collars of $\partial L^{H(s)}$ and $\partial N^{H(s)}$, we may take $k^{(3)}$ such as $(k^{(3)})^{-1}(\partial N^{H(s)}) = \partial L^{H(s)}$. Passing to the orbit spaces, we obtain the map

$$k^{(3)}/G: L^{H(s)}/G \longrightarrow N^{H(s)}/G$$

which coincides with the smooth embedding $f^{(s+1)}/G$ on a neighborhood of $\partial L^{H(s)}/G$. The assumption

$$2 \dim U^{H(s)} - 1 \leq \dim V^{H(s)}$$

implies

$$2 \dim L^{H(s)}/G + 1 \leq \dim N^{H(s)}/G$$
.

Thus we can apply Lemma 3 to $k^{(3)}/G$, and obtain a smooth embedding

$$k^{(4)}: L^{H(8)}/G \longrightarrow N^{H(8)}/G$$

such that

- (1) $k^{(4)} = f^{(s+1)}/G$ on a neighborhood of $\partial L^{H(s)}/G$, and
- (2) $k^{(4)} \simeq k^{(3)}/G$ relative to the neighborhood of $\partial L^{H(s)}/G$.

By the covering homotopy property for $L^{H(s)} \to L^{H(s)}/G$ and $N^{H(s)} \to N^{H(s)}/G$, $k^{(4)}$ induces a smooth G-embedding

$$k^{(5)}:L^{H(8)}\longrightarrow N^{H(8)}$$

which coincides with $f^{(s+1)}$ on a neighborhood of $\partial L^{H(s)}$. Define

$$k^{(6)}: L^{H(8)} \times U_1 \longrightarrow N^{H(8)} \times V_1$$

by, for $x \in L^{H(s)}$ and $u \in U_1$,

$$k^{(6)}(x, u) = (k^{(5)}(x), k^{(2)}(x)(u)).$$

This is a smooth G-embedding. Consider the smooth G-vector bundle embedding

$$\beta^{-1} \circ k^{(6)} \circ \alpha : \nu(L^{H(s)}) \longrightarrow \nu(N^{H(s)})$$
.

This coincides with $\tilde{d}f^{(s+1)}$ on $\nu(L^{H(s)})|\tilde{A}^{H(s)}$, where \tilde{A} is some G-invariant open neighborhood of ∂L in L which is contained in A. By Lemma 6 there is a G-invariant tubular neighborhood $T(L^{H(s)})$ of $L^{H(s)}$ in L and a smooth G-embedding

$$k^{(7)}: T(L^{H(8)}) \longrightarrow N$$

which coincides with $f^{(s+1)}$ on $T(L^{H(s)}) \cap B$, where B is a neighborhood of ∂L in L.

Take M_s as a G-invariant closed tubular neighborhood of $S(U^{H(s)})$ in S(U) which is contained in

$$(f^{(s+1)})^{-1}(T(V^{H(s+1)})) \cup T(L^{H(s)})$$
.

Define $f^{(s)}: M_s \to V$ by

$$f^{(s)} = f^{(s+1)}$$
 on $M_s \cap (f^{(s+1)})^{-1}(T(V^{H(s+1)}))$, $f^{(s)} = k^{(7)}$ on $M_s \cap T(L^{H(s)})$.

This is a smooth G-embedding, and coincides with \tilde{f} on some neighborhood of $S(U^G)$ in S(U). Thus we see that the assertion $\mathcal{A}(s+1)$ implies the assertion $\mathcal{A}(s)$.

§ 4. Injectivity of $\tilde{\Phi}$.

[I] Proof of the injectivity of $\tilde{\Phi}$ for Theorem 1. Let U, V be such representations of G as in Theorem 1. For

$$\lceil f \rceil$$
, $\lceil g \rceil \in \operatorname{Iso}^{G}(S(U), V)$,

assume that

$$\Phi(f), \Phi(g): S(U^G) \longrightarrow \operatorname{Mon}^G(\bigoplus_{j \in J(G; U)} m_j W_j, \bigoplus_{j \in J(G; V)} n_j W_j)$$

are homotopic. We will construct a smooth G-isotopy between f and g.

There is a level preserving smooth map

$$H^{(1)}: S(U^G) \times R \longrightarrow \operatorname{Mon}^G(\bigoplus_{j \in J(G;U)} m_j W_j, \bigoplus_{j \in J(G;V)} n_j W_j) \times R$$

such that

$$H_t^{(1)} = \mathbf{\Phi}(f)$$
 for $t \leq -1$,
 $H_t^{(1)} = \mathbf{\Phi}(g)$ for $t \geq 1$.

It is known that any two smooth embeddings of n-sphere in R^m are smoothly isotopic if m>3(n+1)/2. (See Haefliger [2], [3].) Thus our assumption $3 \dim U^G < 2 \dim V^G$ implies that there is a smooth isotopy

$$H^{(2)}: S(U^G) \times R \longrightarrow V^G \times R$$

such that

$$H_t^{(2)} = f | S(U^G)$$
 for $t \le -1$,
 $H_t^{(2)} = g | S(U^G)$ for $t \ge 1$.

Define

$$H^{(3)}: (S(U^G) \times \bigoplus_{i \in J(G; U)} m_i W_i) \times R \longrightarrow (V^G \times \bigoplus_{i \in J(G; V)} n_i W_i) \times R$$

by, for $x \in S(U^G)$, $w \in \bigoplus_{j \in J(G;U)} m_j W_j$ and $t \in R$,

$$H^{(3)}(x, w, t) = (H_t^{(2)}(x), H_t^{(1)}(x)(w), t)$$
.

Then $H^{(3)}$ is a smooth G-isotopy such that

$$H_t^{(3)} = \Psi^V \circ \tilde{d} f \circ (\Psi^U)^{-1} \quad \text{for} \quad t \leq -1,$$
 $H_t^{(3)} = \Psi^V \circ \tilde{d} g \circ (\Psi^U)^{-1} \quad \text{for} \quad t \geq 1.$

Let $\nu(S(U^g) \times R)$ and $\nu(V^g \times R)$ be the normal bundles of $S(U^g) \times R$ in $S(U) \times R$, and of $V^g \times R$ in $V \times R$, respectively. Let

$$\zeta: \nu(S(U^G) \times R) \longrightarrow \nu(V^G \times R)$$

be the smooth G-vector bundle embedding composed of the bundle embeddings in the diagram:

$$\nu(S(U^G) \times R) \cong \nu(S(U^G)) \times R \xrightarrow{\Psi^U \times \mathrm{id}} (S(U^G) \times \bigoplus_{j \in J(G;U)} m_j W_j) \times R$$

$$\nu(V^G \times R) \cong \nu(V^G) \times R \xrightarrow{} (V^G \times \bigoplus_{j \in J(G;V)} n_j W_j) \times R.$$

Give $\tau(S(U))$ and $\tau(V)$ G-invariant smooth Riemannian metrics \langle , \rangle_1 and \langle , \rangle_2 , respectively. Let $\nu^1(S(U^G))$ and $\nu^2(V^G)$ be the orthogonal complements of $\tau(S(U^G))$ in $\tau(S(U))|S(U^G)$, and of $\tau(V^G)$ in $\tau(V)|V^G$, respectively. For small ε , $\delta > 0$, the exponential maps

$$\exp: \nu_{\varepsilon}^{1}(S(U^{G})) = \{v \in \nu^{1}(S(U^{G})) | \langle v, v \rangle_{1} \leq \varepsilon^{2}\} \longrightarrow S(U),$$

$$\exp: \nu_{\varepsilon}^{2}(V^{G}) = \{v \in \nu^{2}(V^{G}) | \langle v, v \rangle_{2} \leq \delta^{2}\} \longrightarrow V$$

are defined. Let

$$T_{\epsilon}(S(U^G)) = \exp(\nu_{\epsilon}^1(S(U^G)))$$
,

$$T_{\delta}(V^G) = \exp(\nu_{\delta}^2(V^G))$$
.

Applying the same method as in the proof of Lemma 6 to

$$\zeta:
u(S(U^{\it G}) imes R) \longrightarrow
u(V^{\it G} imes R)$$
 ,

we obtain a smooth G-isotopy, for appropriate ε , $\delta > 0$,

$$H^{(4)}: T_{\delta}(S(U^G)) \times R \longrightarrow T_{\delta}(V^G) \times R \subset V \times R$$

such that

$$H_t^{(4)} = f | T_{\varepsilon}(S(U^G))$$
 for $t \leq -1$,

$$H_t^{(4)} = g \mid T_{\varepsilon}(S(U^G))$$
 for $t \ge 1$.

For nonzero $v \in \nu^1(S(U^G))$, let

$$\theta_v = \exp(\{\lambda v \mid \lambda \in R, \lambda \geq 0\} \cap \nu_{\varepsilon}^1(S(U^G)))$$
.

Choose so small $\varepsilon > 0$ that, for any nonzero $v \in \nu^1(S(U^G))$, any γ with $0 \le \gamma \le \delta$, and any $t \in R$,

- (1) $H_t^{(4)}(\theta_v) \cap S_r(V^G) = \emptyset$, or
- (2) $H_t^{(4)}(\theta_v)$ and $S_7(V^G)$ intersect transversally,

where

$$S_r(V^G) = \exp(\{v \in \nu^2(V^G) | \langle v, v \rangle_2 = \gamma^2\}).$$

Also choose γ with $0 < \gamma \le \delta$ such that

- (1) Int $T_{\varepsilon/2}(S(U^G)) \supset f^{-1}(T_{\gamma}(V^G)) \cup g^{-1}(T_{\gamma}(V^G))$, and
- (2) Int $T_{\varepsilon/2}(S(U^G)) \times R \supset (H^{(4)})^{-1}(T_{\tau}(V^G) \times R)$.

For such ε , γ , let

$$\eta: S(U) \times R \longrightarrow S(U) \times R$$

be a level preserving G-diffeomorphism such that

- (1) $\eta(T_{\varepsilon}(S(U^G)) \times R) = T_{\varepsilon}(S(U^G)) \times R$, and
- (2) $\eta(T_{\varepsilon/2}(S(U^G)) \times R) = (H^{(4)})^{-1}(T_{\tau}(V^G) \times R)$.

Such η is obtained by regulating lengths of normal vectors in $T_{\epsilon}(S(U^{G}))$. Let

$$M=S(U)-\operatorname{Int} T_{\epsilon/2}(S(U^G))$$
,

$$N=V-\text{Int }T_r(V^G)$$
.

These are compact smooth free G-manifolds with boundary. Consider the G-invariant subspace of $M \times [-2, 2]$,

$$A = (T_{\varepsilon}(S(U^G)) - \text{Int } T_{\varepsilon/2}(S(U^G))) \times [-2, 2] \cup M \times [-2, -1] \cup M \times [1, 2].$$

Define a G-map $k^{(1)}: A \rightarrow N$ by

$$k^{(1)} = f \circ \eta_t$$
 on $M \times \{t\}$, $-2 \leq t \leq -1$,

$$k^{(1)} = g \circ \eta_t$$
 on $M \times \{t\}$, $1 \le t \le 2$,

$$k^{(1)} = \pi \circ H^{(4)} \circ \eta$$
 on $(T_{\varepsilon}(S(U^G)) - \text{Int } T_{\varepsilon/2}(S(U^G))) \times [-2, 2]$,

where $\pi: V \times R \rightarrow V$ is the projection. The assumption

$$\dim U + \dim V^{G} < \dim V$$

implies that N is $(\dim M \times [-2, 2]-1)$ -connected. Thus, by Lemma 5, there is a G-map

$$k^{(2)}: M \times [-2, 2] \longrightarrow N$$

such that

- (1) $k^{(2)} = k^{(1)}$ on some neighborhood of $\partial (M \times [-2, 2])$, and
- (2), $(k^{(2)})^{-1}(\partial N) = (\partial M) \times [-2, 2]$.

Define a level preserving G-map

$$H^{(5)}: M \times R \longrightarrow N \times R$$

by, for $x \in M$ and $t \in R$,

$$H_t^{(5)}(x) = f \circ \eta_t(x)$$
 if $t \leq -2$,

$$H_t^{(5)}(x) = k^{(2)}(x, t)$$
 if $-2 \le t \le 2$,

$$H_t^{(5)}(x) = g \circ \eta_t(x)$$
 if $t \ge 2$.

This is well-defined. The level preserving map

$$H^{(5)}/G: M/G \times R \longrightarrow N/G \times R$$

coincides with $H^{(4)} \circ \eta/G$ on some neighborhood of $\partial M/G \times R$ in $M/G \times R$, and we see

$$(H^{(5)}/G)^{-1}(\partial N/G\times R)=\partial M/G\times R$$
.

The assumption $2 \dim U - 1 < \dim V$ implies

$$2 \dim M/G + 2 \leq \dim N/G$$
.

Thus we can apply Lemma 4 to $H^{(5)}/G$, and obtain a smooth isotopy

$$H^{(6)}: M/G \times R \longrightarrow N/G \times R$$
.

By the covering homotopy property and the unique lifting property for $M \rightarrow M/G$ and $N \rightarrow N/G$, $H^{(6)}$ induces a smooth G-isotopy

$$H^{(7)}: M \times R \longrightarrow N \times R$$

such that

$$H_t^{(7)} = f \circ \eta_t | M$$
 for $t \leq -3$, $H_t^{(7)} = g \circ \eta_t | M$ for $t \geq 3$,

 $H^{(7)} = H^{(4)} \circ \eta$ on a neighborhood of $\partial M \times R$ in $M \times R$.

Define $H^{(8)}: S(U) \times R \rightarrow V \times R$ by

$$H^{(8)}\!=\!H^{(4)}\!\circ\!\eta\quad\text{on}\quad T_{\varepsilon/2}(S(U^G))\!\times\!R\;,$$

$$H^{(8)}\!=\!H^{(7)}\qquad\text{on}\quad M\!\times\!R\;.$$

Then $H^{(9)} = H^{(8)} \circ \eta^{-1}$ is a smooth G-isotopy such that

$$H_t^{(9)} = f$$
 for $t \le -3$, $H_t^{(9)} = g$ for $t \ge 3$.

Thus this is a smooth G-isotopy between f and g, and completes the proof of injectivity of $\tilde{\Phi}$ for Theorem 1.

[II] Proof of the injectivity of $\tilde{\Phi}$ for Theorem 2. Let $G,\,U,\,V$ be as in Theorem 2. For

$$[f], [g] \in Iso^G(S(U), V),$$

assume that

$$\Phi(f), \Phi(g): S(U^G) \longrightarrow \operatorname{Mon}^G(\bigoplus_{j \in J(G;U)} m_j W_j, \bigoplus_{j \in J(G;V)} n_j W_j)$$

are homotopic. Consider the following assertion $\mathcal{A}(s)$ for any s with $0 \le s \le r$:

 $\mathcal{A}(s)$. There exist a G-invariant compact smooth submanifold M_s of S(U) and a smooth G-isotopy

$$K^{(s)}: M_s \times R \longrightarrow V \times R$$

such that

- (1) $\dim M_{\mathfrak{s}} = \dim S(U)$,
- (2) Int $M_s \supset S(U^{H(s)})$,
- (3) $K_t^{(s)} = f | M_s$ for $t \le -(r-s+1)$, and
- (4) $K_t^{(s)} = g | M_s$ for $t \ge r s + 1$.

In the assertion $\mathcal{A}(0)$, M_0 must be S(U), and $K^{(0)}$ is a smooth G-isotopy between f and g. Thus $\mathcal{A}(0)$ implies the injectivity of $\tilde{\boldsymbol{\Phi}}$. We can prove all $\mathcal{A}(s)$ by induction descending on s. Taking M_r as a G-invariant closed tubular neighborhood of $S(U^G)$ in S(U), $\mathcal{A}(r)$ is proved as in the proof of injectivity of $\tilde{\boldsymbol{\Phi}}$ for Theorem 1. Assuming $\mathcal{A}(s+1)$ for $0 \leq s < r$, we will prove $\mathcal{A}(s)$.

Let $T(S(U^{H(s+1)}))$ be a G-invariant closed tubular neighborhood of $S(U^{H(s+1)})$ in S(U) which is contained in Int M_{s+1} . Let $T(V^{H(s+1)})$ be a G-invariant closed

tubular neighborhood of $V^{H(s+1)}$ in V such as

Int
$$T(S(U^{H(s+1)})) \supset f^{-1}(T(V^{H(s+1)})) \cup g^{-1}(T(V^{H(s+1)}))$$
,
Int $T(S(U^{H(s+1)})) \times R \supset (K^{(s+1)})^{-1}(T(V^{H(s+1)}) \times R)$.

If the radius of $T(S(U^{H(s+1)}))$ is appropriately small, as in the proof for Theorem 1, we obtain a level preserving G-diffeomorphism

$$\eta: S(U) \times R \longrightarrow S(U) \times R$$

such that

- (1) $\eta(M_{s+1}\times R)=M_{s+1}\times R$,
- (2) $\eta(T(S(U^{H(s+1)})) \times R) = (K^{(s+1)})^{-1}(T(V^{H(s+1)}) \times R)$,
- (3) $\eta_t = \eta_{-(r-s)}$ for $t \leq -(r-s)$, and
- (4) $\eta_t = \eta_{r-s}$ for $t \ge r s$.

Let

$$L = S(U) - \operatorname{Int} T(S(U^{H(s+1)})),$$

$$N = V - \operatorname{Int} T(V^{H(s+1)}).$$

Define G-invariant subspaces A, B of $S(U) \times R$ by

$$A = L \times \left[-\left(r - s + \frac{1}{3}\right), r - s + \frac{1}{3} \right],$$

$$B = (\text{Int } M_{s+1} - \text{Int } T(S(U^{H(s+1)}))) \times (-(r - s + 1), r - s + 1)$$

$$\cup L \times (-(r - s + 1), -(r - s)) \cup L \times (r - s, r - s + 1).$$

Define a smooth G-map $E^{(1)}: B \rightarrow N \times R$ by

$$\begin{split} E^{(1)} = & K^{(s+1)} \circ \eta & \text{on } (\text{Int } M_{s+1} - \text{Int } T(S(U^{H(s+1)})) \times (-(r-s+1), \ r-s+1) \,, \\ E^{(1)} = & (f \times \text{id}) \circ \eta & \text{on } L \times (-(r-s+1), \ -(r-s)) \,, \\ E^{(1)} = & (g \times \text{id}) \circ \eta & \text{on } L \times (r-s, \ r-s+1) \,. \end{split}$$

This is well-defined.

We split U and V as representations of H(s) into

$$U=U^{H(s)} \oplus U_1$$
, $V=V^{H(s)} \oplus V_1$,

where

$$U_1 = \bigoplus_{j \in J(H(s); V)} m_j W_j,$$

$$V_1 = \bigoplus_{j \in J(H(s); V)} n_j W_j.$$

We may consider U_1 and V_1 as G-invariant subspaces of U and V, respectively.

Let $\nu(L^{H(s)} \times R)$ and $\nu(N^{H(s)} \times R)$ be the normal bundles of $L^{H(s)} \times R$ in $L \times R$, and of $N^{H(s)} \times R$ in $N \times R$, respectively.

$$\tilde{d}E^{(1)}: \nu(L^{H(s)} \times R) | B^{H(s)} \longrightarrow \nu(N^{H(s)} \times R)$$

is defined. There are smooth G-vector bundle isomorphisms

$$\alpha: \nu(L^{H(s)} \times R) \cong (L^{H(s)} \times R) \times U_1,$$
$$\beta: \nu(N^{H(s)} \times R) \cong (N^{H(s)} \times R) \times V_1.$$

 $\mathrm{Mon}^{H(s)}(U_1,\,V_1)$ admits the smooth G-action such that H(s) acts trivially. Define a smooth G-map

$$h^{(1)}: B^{H(s)} \longrightarrow \operatorname{Mon}^{H(s)}(U_1, V_1)$$

by, for $x \in B^{H(s)}$ and $u \in U_1$,

$$\beta \circ \tilde{d} E^{(1)} \circ \alpha^{-1}(x, u) = (E^{(1)}(x), h^{(1)}(x)(u)).$$

Since

$$Mon^{H(s)}(U_1, V_1) \approx \prod_{j \in J(H(s);U)} V(m_j, n_j; F_j)$$
,

the assumption

$$\dim U^{H(s)} < d_j(n_j - m_j + 1)$$

implies that $Mon^{H(s)}(U_1, V_1)$ is $(\dim A^{H(s)}-1)$ -connected. Thus, by Lemma 5, we obtain a smooth G-map

$$h^{(2)}: A^{H(s)} \longrightarrow \operatorname{Mon}^{H(s)}(U_1, V_1)$$

which coincides with $h^{(1)}$ on a neighborhood of $\partial A^{H(s)}$. Consider the smooth G-embeddings

$$(f \times id) \circ \eta$$
, $(g \times id) \circ \eta$: $L \times R \longrightarrow N \times R$,

and the smooth G-vector bundle embeddings

$$\tilde{d}((f \times id) \circ \eta), \; \tilde{d}((g \times id) \circ \eta) : \nu(L^{H(s)} \times R) \longrightarrow \nu(N^{H(s)} \times R).$$

Smooth G-maps

$$h^{(8)}, h^{(4)}: L^{H(8)} \times R \longrightarrow \operatorname{Mon}^{H(8)}(U_1, V_1)$$

are defined by the relations, for $x \in L^{H(s)} \times R$ and $u \in U_1$,

$$\beta \circ \tilde{d}((f \times \mathrm{id}) \circ \eta) \circ \alpha^{-1}(x, u) = ((f \times \mathrm{id}) \circ \eta(x), h^{(3)}(x)(u)),$$

$$\beta \circ \tilde{d}((g \times \mathrm{id}) \circ \eta) \circ \alpha^{-1}(x, u) = ((g \times \mathrm{id}) \circ \eta(x), h^{(4)}(x)(u)).$$

Then define

$$h^{(5)}: L^{H(8)} \times R \longrightarrow \operatorname{Mon}^{H(8)}(U_1, V_1)$$

bv

$$h^{(5)} = h^{(3)}$$
 on $L^{H(s)} \times \left(-\infty, -\left(r - s + \frac{1}{3}\right)\right]$,

$$h^{(5)} = h^{(2)}$$
 on $A^{H(s)} = L^{H(s)} \times \left[-\left(r - s + \frac{1}{3}\right), r - s + \frac{1}{3}\right],$
 $h^{(5)} = h^{(4)}$ on $L^{H(s)} \times \left[r - s + \frac{1}{3}, \infty\right).$

This is a well-defined smooth G-map.

Consider the G-map $\pi \circ E^{(1)}: B^{H(s)} \to N^{H(s)}$, where $\pi: N \times R \to N$ is the projection. The assumption

$$\dim U^{H(s)} + \dim V^{H(s+1)} < \dim V^{H(s)}$$

implies that $N^{H(s)}$ is $(\dim A^{H(s)}-1)$ -connected. Thus, by Lemma 5, we obtain a G-map

$$h^{(6)}: A^{H(8)} \longrightarrow N^{H(8)}$$

such that

(1) $h^{(6)} = \pi \cdot E^{(1)}$ on some neighborhood of $\partial A^{H(s)}$, and

(2)
$$(h^{(6)})^{-1}(\partial N^{H(s)}) = (\partial L^{H(s)}) \times \left[-\left(r - s + \frac{1}{3}\right), r - s + \frac{1}{3} \right].$$

Define a level preserving G-map

$$E^{(2)}: L^{H(s)} \times R \longrightarrow N^{H(s)} \times R$$

by, for $x \in L^{H(s)}$ and $t \in R$,

$$\begin{split} E_t^{(2)}(x) &= f \circ \eta_t(x) & \text{if } t \leq -\left(r - s + \frac{1}{3}\right), \\ E_t^{(2)}(x) &= h^{(6)}(x, t) & \text{if } -\left(r - s + \frac{1}{3}\right) \leq t \leq r - s + \frac{1}{3}, \\ E_t^{(2)}(x) &= g \circ \eta_t(x) & \text{if } t \geq r - s + \frac{1}{3}. \end{split}$$

The level preserving map

$$E^{(2)}/G: L^{H(s)}/G \times R \longrightarrow N^{H(s)}/G \times R$$

coincides with $(K^{(s+1)} \circ \eta)/G$ on some neighborhood of $\partial L^{H(s)}/G \times R$ in $L^{H(s)}/G \times R$, and we see

$$(E^{(2)}/G)^{-1}(\partial N^{H(s)}/G\times R)=\partial L^{H(s)}/G\times R$$
.

The assumption $2 \dim U^{H(s)} - 1 < \dim V^{H(s)}$ implies

$$2 \dim L^{H(s)}/G + 2 \leq \dim N^{H(s)}/G$$
.

Thus we can apply Lemma 4 to $E^{(2)}/G$, and obtain a smooth isotopy

$$E^{(8)}: L^{H(8)}/G \times R \longrightarrow N^{H(8)}/G \times R$$
.

By the covering homotopy property and the unique lifting property for $L^{H(s)} \rightarrow$ $L^{H(s)}/G$ and $N^{H(s)} \rightarrow N^{H(s)}/G$, $E^{(s)}$ induces a smooth G-isotopy

$$E^{(4)}: L^{H(s)} \times R \longrightarrow N^{H(s)} \times R$$

such that

$$\begin{array}{lll} \text{(1)} & E_t^{\text{(4)}} \! = \! f \! \circ \! \eta_t | \, L^{H(s)} & \text{ for } t \! \leq \! - \! \left(r \! - \! s \! + \! \frac{1}{2} \right), \\ \text{(2)} & E_t^{\text{(4)}} \! = \! g \! \circ \! \eta_t | \, L^{H(s)} & \text{ for } t \! \geq \! r \! - \! s \! + \! \frac{1}{2}, \text{ and } \\ \end{array}$$

(2)
$$E_t^{(4)} = g \circ \eta_t | L^{H(s)}$$
 for $t \ge r - s + \frac{1}{2}$, and

(3) $E^{(4)} = K^{(s+1)} \circ \eta$ on some neighborhood of $\partial L^{H(s)} \times R$ in $L^{H(s)} \times R$.

Define

$$E^{(5)}: (L^{H(s)} \times R) \times U_1 \longrightarrow (N^{H(s)} \times R) \times V_1$$

by, for $x \in L^{H(s)}$, $t \in R$, and $u \in U_1$,

$$E^{(5)}(x, t, u) = (E^{(4)}(x, t), h^{(5)}(x, t)(u))$$
.

Consider the smooth G-vector bundle embedding

$$\zeta = \beta^{-1} \circ E^{(5)} \circ \alpha : \nu(L^{H(s)} \times R) \longrightarrow \nu(N^{H(s)} \times R)$$

and see that

(1)
$$\zeta = \tilde{d}((f \times id) \circ \eta)$$
 on $\nu(L^{H(s)} \times R) | L^{H(s)} \times \left(-\infty, -\left(r - s + \frac{1}{2}\right)\right]$,

(2)
$$\zeta = \tilde{d}((g \times id) \circ \eta)$$
 on $\nu(L^{H(s)} \times R) | L^{H(s)} \times \left[r - s + \frac{1}{2}, \infty\right)$, and

(3)
$$\zeta = \tilde{d}(K^{(s+1)} \circ \eta)$$
 on $\nu(L^{H(s)} \times R) | (\text{nbd of } \partial L^{H(s)} \text{ in } L^{H(s)}) \times R$.

Applying to ζ the same method as in the proof of Lemma 6, we obtain a Ginvariant tubular neighborhood $T(L^{H(s)})$ of $L^{H(s)}$ in L, and obtain a smooth Gisotopy

$$E^{(6)}: T(L^{H(8)}) \times R \longrightarrow N \times R$$

such that

- (1) $E_t^{(6)} = f \circ \eta_t | T(L^{H(s)})$ for $t \leq -(r-s+1)$,
- (2) $E_t^{(6)} = g \circ \eta_t | T(L^{H(s)})$ for $t \ge r s + 1$, and
- (3) $E^{(6)} = K^{(s+1)} \circ \eta$ on $T(L^{H(s)}) \cap C$, where C is some neighborhood of ∂L

We can take M_s as a G-invariant closed tubular neighborhood of $S(U^{H(s)})$ in S(U) such that

$$M_s \times R \subset (K^{(s+1)})^{-1}(T(V^{H(s+1)}) \times R) \cup \eta(T(L^{H(s)}) \times R)$$
.

Define $K^{(s)}: M_s \times R \longrightarrow V \times R$ by

$$K^{(s)} = K^{(s+1)}$$
 on $(M_s \times R) \cap (K^{(s+1)})^{-1} (T(V^{H(s+1)}) \times R)$, $K^{(s)} = E^{(6)} \cdot \eta^{-1}$ on $(M_s \times R) \cap \eta (T(L^{H(s)}) \times R)$.

This is a well-defined smooth G-isotopy such that

$$K_t^{(s)} = f | M_s$$
 for $t \leq -(r-s+1)$,

$$K_t^{(s)} = g \mid M_s$$
 for $t \ge r - s + 1$.

Thus the assertion $\mathcal{A}(s)$ is proved.

References

- [1] K. Abe, On the equivariant isotopy classes of some equivariant imbeddings of spheres, Publ. RIMS, Kyoto Univ., 14 (1978), 655-672.
- [2] A. Haefliger, Differentiable imbeddings, Bull. Amer. Math. Soc., 67 (1961), 109-112.
- [3] A. Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv., 36 (1961), 47-82.
- [4] N. Steenrod, The topology of fibre bundles, Princeton Univ. Press, Princeton, 1951.

Katsuhiro KOMIYA
Department of Mathematics
Faculty of Science
Yamaguchi University
Yoshida, Yamaguchi 753
Japan