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§1. Introduction and statement of results.

Let G be a finite group. Let M, N be smooth (i.e., infinitely differentiable)
G-manifolds, and R the real line with trivial G-action. A level preserving
smooth G-embedding

H: MXR —> NXR
defines smooth G-embeddings H, of M in N, for all t€R, by the relation
H(x, )=(H,(x), ) for any xeM.
Let f, g: M— N be smooth G-embeddings. If, for some a<b,
H=f for any t=a,
H,=g for any t=b,

then H is called a smooth G-isotopy between f and g, and f, g are called to be
G-isotopic. The isotopy class [ f] is the set of all smooth G-embeddings which
are G-isotopic to f. Denote by Iso®(M, N) the set of all isotopy classes of
smooth G-embeddings of M in N.

Let U be a finite dimensional representation of G. S(U) denotes the unit
sphere in U with respect to some G-invariant inner product. Then S(U) is a
smooth G-manifold. The purpose of this paper is to enumerate Iso®(S(U), V)
for finite dimensional representations U, V of G. In this paper we restrict our-
selves to the case

© 0<dim U¢<dim U,

where U¢ is the fixed point set in U by the G-action. All representations con-
sidered are real representations, and dim denotes the real dimension.
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Let Hom®(U, V) be the set of all G-equivariant R-linear homomorphisms
from U to V. This is a vector space over R. Let {W;|;=/J(G)} be a complete
set of nontrivial, nonisomorphic, irreducible representations of G. Define

J(G; U)={jJ(G)|dim Hom®(W;, U)+0} .
Then positive integers m; for all j J(G;U) are defined by splitting U into
UZUG@@jeJ(G;mijj ’

where m;W; is the direct sum of m; copies of W; Similarly positive integers n;
for all yeJ(G; V) are defined by splitting V into

V= VG@EBJEJ G; v anj .

For the case (C), there is a smooth G-embedding of S(U) in V if and only if U
is a subrepresentation of V. For such representations U, V we see that

J(G; U)CJ(G; V),

m;=n; for any ;<]J(G;U).
Define
V(SWUN=(SWNIST)/=(ST),
vV O=WMVE)/z(VE),

the normal bundles of S(U¢) in S(U) and of V¢ in V, respectively. Then there
are smooth G-vector bundle isomorphisms

PV p(SUDN)=SU)XBjerw,vymW;,
TV y(VH=VEXBjeca, mn,W;.

Let f: S(U)—V be a smooth G-embedding, and df: «(S(U))— (V) the differential
of 7. Since (df) (z(V))=2(S(U%)), df induces a smooth G-vector bundle embed-
ding df:v»(SU%)—uv(VE. A map

O(f): S(U®) — MOHG(@jEJ(G;U)ijj; Dier;mnW;)
is defined by the relation
UVedfo(FV)(x, w)=(f(x), D) x)(w))

for xeS(U®) and we®;cs.1vm;W;, where Mon®(-, -) denotes the subspace of
Hom®%(-, -) consisting of all G-equivariant R-linear monomorphisms. If f and g
are G-isotopic smooth G-embeddings of S(U) in V, @(f) and @(g) are homotopic.
Thus the transformation

@ : Iso(SWU), V) — [S(WU9), MOHG(@jeJ(G;U)ijj, @jeJca;V)anj)]
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is defined, where [-, -] denotes the homotopy set. :

For any j=J(G), define d;=dim Hom®(W,, W,). Then d;=2 if W, is the real
restriction of a complex representation, d;=4 if W; is the real restriction of a
quaternionic representation, and d;=1 for other W,. Let F; be the real numbers
R if d;=1, the complex numbers C if d;=2, and the quaternionic numbers Q
if d;=4.

For positive integers m=n, consider the vector space nF; over F; and an
ordered mF;-linearly independent vectors {v,, -+, v} in nF; Such {vy, -+, vn}
is called an m-frame in nF;. Denote by V(m,n; F;) the space of all m-frames
in nF;. V(m,n;F;) is identified with GL(n; F;)/GL(n—m; F;), and is called the
open Stiefel manifold. The closed Stiefel manifold consists of all orthonormal
m-frames in nF;, and is identified with O(n)/O(n—m), U(n)/U(n—m) or Sp(n)/
Sp(n—m). V(m,n;F;) is (dj(n—m-+1)—2)-connected, since the closed Stiefel
manifold is a deformation retract of the open Stiefel manifold.

Since W, is the real restriction of a representation over Fj, the scalar mul-
tiplication gives an isomorphism

Hom®W;, W,)=F;.
Thus we see that Mon®(m;W;, n,W,) and V(mj, n;; F;) are identified. By Schur’s
lemma
Mon®(@jesc;vomW 5, Diera;vnnW )=Ilies ;v Mon®(m;W;, nW;) .
Thus @ gives a transformation
@ : 1s0°(SU), V) —> Mjerw: s [SWE), V(my, ny; Fi)l.

We obtain
THEOREM 1. Let V be a finite dimensional representation of a finite group
G, and let U be a subrepresentation of V with 0<dim U¢<dim U. Suppose the
G-action on V is semifree. Then
(1) @ is surjective, if
dim U+max{dim U—1, dim V¢ <dim V,
(2) @ is bijective, if
3dimU¢<2dim VY%, and
dim U+max {dim U—1, dim V¢ <dim V .

Now let G be the cyclic group of prime power order p’. For each integer
s with 0=s=r, G has just one subgroup H(s) of order p® such that

{1} =HO)cHM)C --- CH(r)=G.

For each s let {W;|j=J(H(s))} be a complete set of nontrivial, nonisomorphic,
irreducible representations of H(s). Let U, V be finite dimensional representa-
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tions of G. By restricting the G-actions on U, V to H(s)-actions, we consider
U, V as representations of H(s). As before, define

J(H(s); U)={j J(H(s))|dim Hom" ® W, U)*#0},
and define positive integers m; for all j= J(H(s); U) by the relation
U=U""BDjermw;mmW;.
Similarly positive integers n; for all j= J(H(s); V) are defined by the relation

_VH
V=V m@@jeﬂam; V)anj .

Also define d;=dim Hom#® (W, W;) for any je J(H(s)).
We obtain
THEOREM 2. Let G be the cyclic group of prime power order p'. Let V be

a finite dimensional representation of G, and U a subrepresentation of V with
0<dim U¢<dim U. Then

(1) @ is surjective, if
dim U#® +max {dim U#®—1, dim V#Fe+D} <dim VE® for any s with
0=s<r, and
dim U¥® <d (n;—m;+1) for any jJ(H(s);U) and any s with 0<s<r,
(2) @ is bijective, if
3dim U%<2dim V¢,
dim U¥® 4 max {dim U¥®—1, dim VE¢+D} < dim VES®  for any s with
0<s<r, and
dim UH® < d (n;—m;+1) for any j=J(H(s); U) and any s with 0<s<r.

In §2 we provide some lemmas for the proofs of our theorems. We prove
the surjectivity of @ in §3, and the injectivity of @ in §4.

NoTE. K. Abe studied Iso%(S(U), S(V)), and obtained the triviality and
the infiniteness of the set for very restricted U, V. Since the one-point com-
pactification S” of V is identified with S(R@V), there is a bijective transforma-
tion

Iso(S(U), V)=Iso®(SU), S(RBV)),

if’dim U°<dim V¢, Thus Iso®(S(U), S(RPV)) is enumerated from our theorems.
Theorem A and Theorem B (2) in are corollaries of our [Theorem Il

§2. Lemmas.

In this section we provide four lemmas. [Lemma 3 and [Lemma 4] are funda-
mental facts in differential topology.

LEMMA 3. Let M, N be smooth manifolds with boundary, and M compact.
Let f: M—N be a continuous map such that (1) f*(ON)=0M, and (2) f is a
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smooth embedding on some neighborhood of oM in M. If
2dim M+1=dim N,

then there is a smooth embedding g: M— N such that (1) g=f on some neigh-
borhood of oM in M, and (2) g=~f relative to the neighborhood of oM in M.

LEMMA 4. Let M, N be smooth manifolds with boundary, and M compact.
Let f, g: M— N be smooth embeddings, and H: MX R—NXR a level preserving
continuous map such that

(1) H=f for t=—1,
H=g for tz=1,
(2) H*ONXR)=0MXR,
(3) H is a smooth embedding on some neighborhood of dMXR in MXR.
If
2dim M+2<dim N,

then, for any A>1, there is a smooth isotopy K: MXR—NXR such that

(1) Kt:f f07’ té'—z:
Ki=g for t=2,
(2) K=H on some neighborhood of oMXR in MXR.

LEMMA 5. Let G be a finite group. Let M be a compact smooth free G-
manifold with boundary, and N a (dim M—1)-connected smooth G-manifold with
boundary. If fis a smooth G-map from a G-invariant neighborhood of oM in M
to N, then there is a smooth G-map g: M— N such that g=f on some neighborhood
of OM in M.

ProoF. Consider the smooth fibre bundle MX;N— M/G with fibre N. The
smooth cross sections s: M/G—>MX N and the smooth G-maps h: M—N are
in bijective correspondence by the relation

sCxD=[x, h(x)] for any x=M.

Let A be a G-invariant open neighborhood of oM in M where f is defined.
Let s®: A/G— AXgzN be the smooth cross section corresponding to f. By the
assumption that the fibre N is (dim M—I)-connected and by the differentiable
approximation theorem [4; 6.7], we obtain a smooth cross section s®: M/G—
M N such that s®=s® on a neighborhood of dM/G in M/G. Let g: M—>N
be the smooth G-map corresponding to s®. Then g=/f on a neighborhood of
oM in M. Q.E.D.
LEMMA 6. Let H be a subgroup of a finite group G. Let M, N be smooth
G-manifolds with boundary, and M compact. Let f: A— N be a smooth G-embed-
ding with f(OM)CON, where A is a G-invariant open neighborhood of oM in M.
Suppose that df: v(M®)|A® —yu(NH) extends to a smooth G-vector bundle embedding
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C:v(M®)—y(N?). Then there are a G-invariant tubular neighborhood T of MY
in M and a smooth G-embedding g:T — N such that

1) g=f on TN\B, where B is some neighborhood of oM in M, and
2) dg=C:v(M¥) — u(N¥).

PrOOF. Give a G-invariant smooth Riemannian metric ¢{,>, on the tangent

bundle (M) of M, and let v*(M¥) be the orthogonal complement of z(M¥) in
o(M)|M¥ with respect to the metric {,»;. Let

pu: t(M)|MP — (z(M) | MP)[e(M™)=v(M7)
be the projection. Then
pu=pu [V (MH): Y(MH) —> v(M¥)

is a smooth G-vector bundle isomorphism. We can give z(N) a G-invariant
smooth Riemannian metric {, >, such that

dfNMH)| AT)Cy (NT),

where A is a neighborhood, contained in A, of 0M in M, and where v¥(N¥) is

the orthogonal complement of 7(N¥) in z(IN)| N¥ with respect to the metric {, ..
Let

py=pwx |V (NF) : ANT) —> »(NF)

be the smooth G-vector bundle isomorphism which is the restriction of the pro-
jection

py: c(N)|INF — (e(N)| NT)/e(NF)=u(N")..
For small ¢, 6 >0, define
vilMP) = foev (M*)[<v, v):1=¢%,
V3(NF) = v ey (NF) [<v, v),= 6% .
There are the exponential maps
exp: vi(M¥#)— M,
exp: viN¥) — N.

These exponential maps are smooth G-embeddings onto tubular neighborhoods
of M¥, N¥ in M, N, respectively. The sequence of smooth G-embeddings

exp u ¢ PN exp
M «— vI(M¥) — p(MH) — p(NH) «<— VY N¥) —> N

gives a desired smooth G-embedding g:7 — N. Q.E.D.
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§3. Surjectivity of &.

[I] Proof of the surjectivity of @ for [Theorem 1. Let U, V be such re-
presentations of G as in [Theorem 1. Let

Lgle [SWW9), MODG(@;‘EJ(G; oMW i, Diere:vinW;)]

be an arbitrary class, whose representative g can be taken to be a smooth map.
To prove the surjectivity of @ it suffices to show that there exists a smooth
G-embedding f: S(U)—V with @(f)=g.

Since U¢ is a subspace of V¢ there is a smooth embedding ¢: S(U%) — V¢,
Define

h: SU)XDjes;mmW; —> VEX BjesvniW;
by, for xeSWU%) and we®jcsvm;W,
h(x, w)y=(c(x), glx)w)).

Then h is a smooth embedding. By the smooth G-vector bundle
embedding

(T") o ho WU : u(S(UY%) —> v(VE)
induces a smooth G-embedding
JOT(SWU) —V

with dfO=(¥")1eh¥U, where T.(SWU®) is a G-invariant closed tubular neigh-
borhood of S(U¢) in S(U) with radius ¢>0. Let TsV¢) be a G-invariant closed
tubular neighborhood of V¢ in V with radius 6 >0. Take 6 such as

Int T(SWUEND(fD)(T(VE).

The boundary of T3V°) and the image of f’ intersect transversally, as we see
in the proof of Therefore

M=SU)—Int (f®) " (TsV%)
is a smooth free G-manifold with boundary. Also
N=V—IntT3VE)

is a smooth free G-manifold with boundary. N has the same homotopy type as
the (dim V—dim V¢—1)-dimensional sphere. By the assumption

dim U-+dim Vo<dim V|

we see that N is (dim M—1)-connected. By we obtain a G-map
f®: M— N which coincides with f on some neighborhood of dM in M. Mak-
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ing use of collars of oM and 0N, we may take f® such as (f®)Y(0N)=0M.
Passing to the orbit spaces, we obtain the map

f®/G:M/G — N/G

which coincides with the smooth embedding f/G on a neighborhood of 0M/G
in M/G. The assumption 2dim U—1=<dim V implies

2dim M/G+1=dim N/G .
Thus, by we obtain a smooth embedding
f®:M/G— N/G
such that

(1) f®=fD/G on a neighborhood of dM/G in M/G, and
(2) f®~f®/G relative to the neighborhood.

By the covering homotopy property for M—M/G and N—N/G, [ induces a
smooth G-embedding f : M— N which coincides with f on a neighborhood of
oM in M. Pasting f and f, we obtain a smooth G-embedding f: S(U)—V
with

df=dfO=U")1eh YU
This implies @(f)=g, and completes the proof of surjectivity of @ for [Theorem 1.

[II7 Proof of the surjectivity of @ for [Theorem 2 Let G, U, V be as in
Let

[g]lelSWY), Mon®(Djesinm;W, DijervnW;)]

be an arbitrary class, whose representative g can be taken to be a smooth map.
It suffices to show that there exists a smooth G-embedding f: S(U)—V with
o(f)=g.

Let ¢: S(U% —V? be a smooth embedding, and define a smooth G-embedding

h: SUKXPBjere;mmiW; —> VEXBierwvmnW;
by, for x&S(U?%) and wePBcsw;mm;W,,

h(x, w)y=(c(x), gx)w)).

As in the proof of surjectivity for [Theorem 1, we obtain a smooth G-embedding
FiT(SWS)—V with df=(T7")teh-WV, where T(SU®) is a G-invariant closed
tubular neighborhood of S(U®) in SU).

Consider the following assertion JA(s) for any s with 0=s=r:

A(s). There exist a G-invariant compact smooth submanifold M; of S(U) and
a smooth G-embedding [ : M;—V such that
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(1) dim M;=dim S(U),
(2) Int M;DSWUE®), and
(3) f®=F on some neighborhood of S(U%) in SU).

In the assertion A(0), M, must be S(U), and f is the required embedding.
We can prove all J(s) by induction descending on s. First A(») is insured by
the smooth G-embedding f :T(SWU%)—-V. Assuming A(s+1) for 0<s<r, we
will prove JA(s).

Take a G-invariant closed tubular neighborhood T(VE®+D) of VEG+D jn V
such as

Int M, D(fC0) (T (VEEDY)
If the radius of T(V#¢*Y) is appropriately small, then
L=SU)—Int(fe*)(T(VHEe))
is a smooth G-manifold with boundary. Also
N=V—Int T(V#c+D)

is a smooth G-manifold with boundary. f¢*¥ is defined on a G-invariant open
neighborhood of 0L in L. Let A be such a neighborhood.
We split U and V as representations of H(s) into

U=U®E®QU,, V=VESOHV,,
where
Ui=DBjermer,vmmWi,
Vlz@jeJ(H<s);V>anj .

We may consider U, and V, as G-invariant subspaces of U and V, respectively.
Let p(LE®), y(N¥®) be the normal bundles of L#¢, N¥® in L, N, respectively.
Then there are smooth G-vector bundle isomorphisms

a: W LA®)= [FOXU,,

B y(NEFE)= NH® XV,
Since AF®O=ANLE®,

Jf(“l) . D(LH“)NAH(” —_— 1)([\]H(s))

is defined. MonZ®(U,, V,) admits the smooth G-action such that H(s) acts
trivially on it. Define a smooth G-map

p . AHG __5 MonH(s)(Ub V)

by, for x€ A¥® and uelU,,
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Bedfs+Pea (x, u)=(fC*(x), kD(x)(w)).

As in §1 we see

Mon?®(U,, V) =Iles oo Vimy, ny; Fy).
The assumption

dim U¥® =d;(n;—m;+1)

implies that MonZ(U,, V) is (dim LZ* —1)-connected. We may consider L¥®
and Mon®#®(U,, V,) as G/H(s)-manifolds, and 2 as a G/H(s)-map. Then the
G/H(s)-action on L¥® is free. Thus, by we obtain a smooth G/H(s)-

map
E®: LE® —s Mon®®(U,, V,)

which coincides with 2 on a neighborhood of dL#® in L¥®, We reconsider
£® as a smooth G-map.

Since NHF®O=VH® _Int T(VECDYH®  and T(VECD)H® g 3 tubular neigh-
borhood of VE®+D jn VE® then N¥® has the same homotopy type as the
(dim VE® —dim V#¢+Y—]).dimensional sphere. Thus the assumption

dim U#¥®4-dim VHED <dim VH®

implies that N¥® ig (dim L#® —1)-connected. So, by we obtain a
G-map

) AS2 LH(S) — > NH(S)

which coincides with f¢+ on a neighborhood of dL#¢, Making use of collars
of 0LE® and ON¥® we may take £® such as (E®) 1{(ONEE)=gL#®, Passing
to the orbit spaces, we obtain the map

E®/G: LH® |G —> NE®/G

which coincides with the smooth embedding f“*/G on a neighborhood of
oLH® /G, The assumption

2dim U¥®—1=dim VH#®
implies
2dim LE® /G+1<dim NE® /G .

Thus we can apply to £®/G, and obtain a smooth embedding

O LE® /G — NE® /G
such that

(1) F®=f¢*1/G on a neighborhood of dL¥® /G, and
(2) k% =k®/G relative to the neighborhood of dL#*/G.

By the covering homotopy property for LE® — LH® /G and N¥® - NE®/G,
k™ induces a smooth G-embedding
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b ‘LH(S) — NH®

which coincides with f¢*» on a neighborhood of 9L,
Define

E®: LEOX], —> NE®O XV,
by, for x€ L¥® and uelU,,
RO (x, wy=(k™(x), R®(x)(w)).
This is a smooth G-embedding. Consider the smooth G-vector bundle embedding
Blek®@eq: y(LH®) —> y(NH®)

This coincides with df¢*> on y(L¥ cs>)|f~1“" ) where A is some G-invariant open
neighborhood of 8L in L which is contained in A. By there is a G-
invariant tubular neighborhood T(LZ®) of L#® in L and a smooth G-embedding

W T(LE®) — N

which coincides with f¢* on T(L#“)N\B, where B is a neighborhood of 0L
in L.

Take M, as a G-invariant closed tubular neighborhood of S(U#*) in S(U)
which is contained in

(f(s+1))—1(T(VH(S+1))>UT(LH(S)) .
Define f*: M, —V by
f(s) :f(8+1) on Msm(f(s+1)>—1(T(VH(s+l))) ,
f(SD:k(D on ]V[sf\T(LH(‘”) .

‘This is a smooth G-embedding, and coincides with f on some neighborhood of
S(U% in S(U). Thus we see that the assertion A(s-+1) implies the assertion
JA(S).

§4. Injectivity of &.

[I1 Proof of the injectivity of & for [Theorem 1. Let U, V be such rep-
resentations of G as in [Theorem 1. For

Lf], [glelso?(SW), V),

assume that
(f), (D(g): SUe — MOHG(@;‘EJ(G;U)ijj, @jeJ(G;V)anj)

are homotopic. We will construct a smooth G-isotopy between f and g.
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There is a level preserving smooth map

H®: SU%X R —> Mon®@jer;vom;W j, BjcramnW)X R

such that
H»=0(f) for t=-—1,

HY=0(g) for t=1.
It is known that any two smooth embeddings of n-sphere in R™ are smoothly

isotopic if m>3(n+1)/2. (See Haefliger [2],[3].) Thus our assumption 3 dim U¢
<2dim V¢ implies that there is a smooth isotopy

H®: SWUYXR —> VPXR
such that
H®»=f|SU% for =-—1,

H®»=g|SWU%  for t=1.
Define

H® : (SU)XDjer:mmW)X R —> (VEXDjernn W)X R
by, for x=SWU%), we® csw;rvm;W; and tER,
H®(x, w, )=(H>(x), HP(x)(w), ).
Then H® is a smooth G-isotopy such that
H®=UVdf«(¥U)-*  for t=—1,
HO=UVdg-(¥U)*  for t=1.

Let v(S(WU% X R) and v(VéX R) be the normal bundles of S(U%)X R in SU)XR,
and of VX R in VX R, respectively. Let

C:v(SWU%XR) —> v(VEXR)

be the smooth G-vector bundle embedding composed of the bundle embeddings
in the diagram:
PUxid
v(SWUSX R)y=u(SU®) X R

SUHXPBjervrmWi)X R
¥ xid l H®
(VEXBjeremnWHXR.

y(VexX R)Y=y(VE)X R

Give z(S(U)) and (V) G-invariant smooth Riemannian metrics <, ); and ¢, >,,
respectively. Let v(S(U®)) and v*(V?) be the orthogonal complements of z(S(U?))
in 7(SU))|S(WU®), and of (V¥ in =(V)|V¢, respectively. For small ¢, § >0, the
exponential maps

exp: vi(SW) = {ver(SU) [<v, v =6 —> SU),

exp: (V9 = e (V) |[<, 10,204 — V
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are defined. Let
T(SW?)=exp (ST,
Ts(VE)=exp(v3(V9).
Applying the same method as in the proof of to
C: v SU%XR) —> u(VEXR),
we obtain a smooth G-isotopy, for appropriate ¢, J >0,

H®: T(SWUHYXR —> Ts(VHXRCVXR

such that

H®=f|T.(SWU®) for t=-1,

H®»=g|T.(SU%) for t=1.
For nonzero veu(S(UY)), let

0,=exp({Av|2€ R, 2=0} N I(SWU))).

Choose so small >0 that, for any nonzero vy (S(U?%)), any 7 with 0<r<34,
and any tER,

(1) H®(@)NS(VE)=0, or
(2) H{®(0,) and S(V?) intersect transversally,

where
S, (V) =exp({ve* (V) |[<v, v).=7%).
Also choose 7 with 0<ry=0 such that
(1) Int T o(SUNDfHUTH(VNUg(T(VE), and
2) Int Too(SWUHX RDHD) TV XR).
For such e, 7, let
7: SU)XR —> S(U)XR
be a level preserving G-diffeomorphism such that
(1) p(T(SUNXR)=T(SWU)XR, and
2) (TS XR)y=(H®) " (T(V)XR).
Such 7 is obtained by regulating lengths of normal vectors in T.(S(U®)).
Let
M=SU)—Int T.;x(SU?)),

N=V—Int T(V®).

These are compact smooth free G-manifolds with boundary. Consider the G-
invariant subspace of MXx[—2, 2],
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A=(T(SWU)—Int T/ o(SUSNX[—2, 2]UMX[—2, —1JUMX[1, 2].
Define a G-map 2 : A—-N by
E®P=fep, on MX{t}, —2=t=-1,
k®P=gey, on MX{t}, 1=t=2,
EP=g.H®op  on (T.(SWU%)—Int T (SU))X[—2, 2],
where n: VXR—V is the projection. The assumption
dim U+dim V¢<dim V

implies that N is (dim MX[—2, 2]—1)-connected. Thus, by there is
a G-map

E®: MX[—2,2] — N
such that

(1) E®=Fk® on some neighborhood of d(MX[—2, 23), and
2) (E®) Y oN)=0OM)xX[—2, 2].

Define a level preserving G-map

H®: MXR-— NXR
by, for xM and t<R,

P)=fonp(x) if t=-2,
H®(x)=k®(x,t) if —2=t=52,
HP®(x)=geon(x) if 1=2.
This is well-defined. The level preserving map
H®/G: M/GXR —> N/GXR

coincides with H®e.»/G on some neighborhood of dM/GX R in M/GXR, and
we see

(H®/G)*(ON/GX R)=0M/GXR .
The assumption 2dim U—1<dim V implies
2dim M/G+2=dim N/G .
Thus we can apply to H®/G, and obtain a smooth isotopy
H®:M/GXR —> N/GXR.

By the covering homotopy property and the unique lifting property for M—M/G
and N—-N/G, H® induces a smooth G-isotopy
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H": MXR—> NXR
such that

H"=fop, /M  for t<-3,
H{P=genp,/|M for t=3,
H™=H®.y on a neighborhood of 0MXR in MXR.
Define H® : SWU)XR—V X R by
H®=H®oy on T. (SU%))XR,
H®=H® on MXR.
Then H®=H®.p"! is a smooth G-isotopy such that
H®»=f for t=-3,
H®»=g for t=3.

Thus this is a smooth G-isotopy between f and g, and completes the proof of
injectivity of @ for [Theorem 1.

[II] Proof of the injectivity of @ for Let G, U,V be as in
For

[/], [glelso®(SW), V),
assume that

O(f), (D(g): S — MOHG(@jeJ(G;U)ijj, DjeramnW;)

are homotopic. Consider the following assertion J(s) for any s with 0<s=<r:

A(s). There exist a G-invariant compact smooth submanifold M; of S(U) and
a smooth G-isotopy

K®: M;XxR—>VXR

such that

(1) dim M;=dim S(U),

(2) Int M,DS(UH®),

3) K®=f|M, for t=—(@—s+1), and

4) K®=g|M, for t=r—s+1.

In the assertion A(0), M, must be S(U), and K is a smooth G-isotopy be-
tween f and g. Thus J(0) implies the injectivity of @. We can prove all JA(s)
by induction descending on s. Taking M, as a G-invariant closed tubular neigh-
borhood of S(U®) in SU), A(») is proved as in the proof of injectivity of @ for
Theorem 1. Assuming A(s+1) for 0<s<r, we will prove A(s).

Let T(S(U#¢+)) be a G-invariant closed tubular neighborhood of S(UZ¢+D)
in S{U) which is contained in Int M,,;. Let T(VE®*D) be a G-invariant closed
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tubular neighborhood of VZ¢+1 in V such as
Int T(S(UH(S-*—I))):)J(—I(T(VH(s+1)))ug—l(T(VH(S+l))) R
Int T(S(UF D)X RO(KCHD) YT (VEGSHD) X R) |

If the radius of T(S(U#¢+v)) is appropriately small, as in the proof for [Theoreml
1, we obtain a level preserving G-diffeomorphism

7: SWU)XR — S(U)XR
such that

1) p(Ms X R)=M;1, X R,

2) P(TSUHEHD)X R)y=(K+)y (T(VHFCD)XR),
@) 7=79-¢r-» for t=—(r—s), and

@ ni=nrs for t=r—s.

Let .
L=S(W)—Int T(SUH+Y) |

N=V—Int T(VHE+D)
Define G-invariant subspaces A, B of S(U)X R by

A=LX [—~<r—s+—é->, r—s+%] ,

B=(Int Ms;—Int T(SUZE D)X (—@r—s+1), r—s+1)
UL X(—@r—s+1), —r—s)JLXFr—s, r—s+1).
Define a smooth G-map E: B—~NXR by
E®=K¢*ep  on (Int My,,—Int T(S(UHED) X (—F—s+1), r—s+1),
E®=(fxid)ey on LX(—(r—s+1), —(r—s),
E®=(gxid)eyy on LX(r—s, r—s+1).

This is well-defined.
We split U and V as representations of H(s) into

U=U"®QU,, V=VEogV,,
where
Ui=®jermermmiWi,
Vi=@jerccr:mnWi.

We may consider U, and V, as G-invariant subspaces of U and V, respectively.
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Let v(L¥® X R) and y(N¥® X R) be the normal bundles of LZ®XR in LXR,
and of N¥® X R in NXR, respectively.

dE® : y(LE® X R)|BE® —» y(NE® X R)

is defined. There are smooth G-vector bundle isomorphisms
a: v(LEOX Ry=(LE®O X R)XU,,
B:v(NE®O X R)y=(NI®O X R)XV;.

Mon®®(U,, V,) admits the smooth G-action such that H(s) acts trivially. Define
a smooth G-map

h®: BE® — s Mon#®(U,, V,)
by, for x€B#® and ueU,,

Bed E®ea™(x, u)=(E®(x), AV (x)(w)).
Since

MODH(S)(Ul, Vl)ijGJ(H(s);U)V(mj; nj, Fj) ’
the assumption
dim U#® <d (n;—m;+1)
implies that MonZ®(U,, V) is (dim A¥®—1)-connected. Thus, by
we obtain a smooth G-map

h®: AHS MOHH(S)(Un V1)

which coincides with A% on a neighborhood of 0A¥¢, Consider the smooth
G-embeddings
(fXid)ey, (gXid)ep: LXR —> NXR,

and the smooth G-vector bundle embeddings
d((fxid)ep), d((gXid)en): Y LF®OX R) —> y(NF® X R),
Smooth G-maps
h®, h® LEO X R —s Mon®#®(U,, V)

are defined by the relations, for x€ LE® X R and uelU,,

Bed(f Xid)en)ea(x, w)=((fXid)ep(x), h®(x)(w)),
Bed((gXid)ep)ea~(x, w)=((gXid)en(x), h(x)(w)).

Then define

h®: LEO Y R —s MonZ®(U,, V,)
by

A®=h® on LH(s)><(_-oo, —(7—84—%)};
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1 1
5 2 H (s H(s
h®=h® on A¥®=L ‘)X[ (r s—|—3>,r 3-1—3],

h®=hr* on L”‘s’x[r——s+%,oo>.

This is a well-defined smooth G-map.

Consider the G-map - E®: BE® > NE® where n: NXR—N is the pro-
jection. The assumption

dim U#® 4-dim VH D < dim VE®

implies that N#® is (dim A¥® —1)-connected. Thus, by we obtain
a G-map '

h(s): AH(S) - > NH(S)
such that

(1) h®=x-E™ on some neighborhood of 0A%®, and

@) (h®) - GNE®)=@LE®)x [—(r—s+%), r*s—i—%—] .

Define a level preserving G-map
E®; [HOXR —> NEOXR

by, for x€ L#® and tER,

EW=fp(x) i ts—(r—st3),

b

1 1
( — . _ _ = .
E®(x)=h®(x, t) if (r s+ 3>§t§_r s+—3

E&(x)=genx) if tZT—s+—i)—,
The level preserving map
E®/G: L*®/GXR —> N*®/GXR

coincides with (K“*V.%)/G on some neighborhood of 0L¥*®/GXR in LE®/G
X R, and we see

(E®/G)YON"®/GXR)y=0L*®/GXR.
The assumption 2dim U¥®—1<dim V#® implies
2dim L#®/G+2=dim N¥® /G .
Thus we can apply to E®/G, and obtain a smooth isotopy
E®: L[EO/GXR —> NE®/GXR .
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By the covering homotopy property and the unique lifting property for L#® —
LE® /G and NE® S NE® /G, E® induces a smooth G-isotopy

E®: LEOXR —> NE®OXR

such that
(4 H ]'
(1) E®=fon|L*®  for t=—(r—s+5),
(2) EP=geq,|L¥®  for tgr—s%—%, and

(3) E®=K%*D.y on some neighborhood of 0LF®X R in L¥®XR.
Define
E® (LEOXRYXU, —> (NI XR)XV,
by, for x€ L¥®,teR, and uel,,
E®(x, t, u)=(E®(x, t), h®(x, t)(u)).
Consider the smooth G-vector bundle embedding

(=B E®eq: y(LEOXR) —> y(NF®XR),
and see that

(1) C=d((fxid)}p) on WL7OXR)| L7 x(—c0, ——(r——s-}—%)],

(2) {=d((gxid)en) on v(LH‘”XR)lLH“)X[r—s—I——é—, OO), and

(3) C=d(Ke+ep) on w(LF®XR)|(nbd of ILF® in LFO)XR.
Applying to ¢ the same method as in the proof of we obtain a G-
invariant tubular neighborhood T(LZ) of L¥¢® in L, and obtain a smooth G-

isotopy
E®: T(LE®)YX R —> NXR
such that

(1) EP=fen|TLH®) for t=—(r—s+1),
(2) E®=gen,|T(LE®) for t=r—s+1, and
(3) E®=K¢*op on T(LF®)NC, where C is some neighborhood of 9L
in L.
We can take M, as a G-invariant closed tubular neighborhood of S(UZ®)
in S(U) such that

M, X RC(KSD)y Y T(VECDY ) RYUn(T(LE®)X R).
Define K®: M;XR —> VXR by

K® =K+ on (M;X RYNKCD)y ™ (T(VHED)XR),

K®=E®ep=1 on (MXR)N\p(T(LE®)XR).
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This is a well-defined smooth G-isotopy such that
K®=fIM, for t=—(@r—s+1),
K®»=g|M, for tzr—s+1.

Thus the assertion J(s) is proved.
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