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§1. Introduction.

Throughout this paper R is a commutative ring with 1, and (C, 4, ¢) is a
coalgebra over R, where 4 is the comultiplication of C and ¢ is the counit of
C. As usual we denote 4(c)=Xc1yQce for each cC. Furthermore we will
set C*=Hompg(C, R), and for each ¢*=C* and c=C, we denote by <c*, ¢) the
element of R to which ¢ is mapped by c¢* in stead of ¢*(¢). As is well known
C* is an R-algebra whose multiplication is defined by <{c*-d¥*, ¢)=>{c*, cw)
{d*, cwyy (namely, (c*-d*)(c)=2c*(c)d*(c) by the ordinary description of
homomorphisms) for any c¢*, d*<C* and c=C. On the other hand, C is a two-
sided C*-module by c*-c=2c<c*, cw> and ¢-c*={c¥*, cy>ce for any c*eC*
and ceC. Then it is easily seen that the C*C*-module structure of Homz(C, R)
induced from the C*-C*-module structure of C is the same as that induced from
the ring structure of Homg(C, R)=C* In what follows throughout, all & will
be ®z and Hom will mean Homgp.

In this paper we will show that in the case where C is R-finitely generated
projective and faithful, C* is an R-Azumaya algebra if and only if there exist
C*-C*-isomorphisms ¥ of CRC to CRQCRC and g of C*RI to C, where [=
{ceClZcan@cw=2c®cw}, such that ¥(c®d)=XcRdyQ@d o and p(c*Qa)
=c*.a (=a-c*) for ¢, deC, c*eC* and ac]

§2. Let A, B and S be (not necessarily commutative) rings with identities.
We denote as usual 4Mp (resp. M, ) in the case where M is a left A-module
as well as a right B-module (resp. a right A-module as well as a right B-
module) such that (am)b=a(mb) (resp. (ma)b={(mb)a) for all meM, a=A and
beB. For any 4P, and 4Mp, 4Np, we will set, respectively,

PA={zePlax=xa for all ac A4},
Hom(, Mg, 4+Ng)= {A-B-homomorphism of M to N}.
Then it is clear that Hom(,Mp, 4Nz)=[Hom(Mpg, Np)}4=[Hom(, M, ,N)}2. The
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similar symbols will be used for M, and N4 The following lemmas are
well known.

LEMMA 1. For My, 4Ng and Pg.p, there exists an S-S-isomorphism
¢: Hom((M® 4N), Ps) —> Hom(M 4, Hom(N3p, Pg)4)

such that [o(h)m)](n)=h(m®n) for h€Hom(MQ4N)s, Ps) and meM, neN.
¢ induces Hom(M®4N)p.s, Pp.s)=Hom(M 4.5, Hom(Ng, Pg)a.s).

LEMMA 2. Under the situation described by P4, sMy, sN, if P is A-finitely
generated projective, there exists an isomorphism

¢: PQHom(zM, gN) —> Hom(zHom(P4, M), sN)

such that $(pQf)g)=f(g(p)) for feHom(zM, sN), g=Hom(P,, M,) and pEP.
Furthermore, let {p¥, p:} be a dual basis for P4, namely, p=p:p¥(p) for each
pEP. Then the inverse of ¢ is given by ¢ )= pRa; with a(m)=am®-p¥),
where m™® eHom(A 4, My) such that m®(a)=ma for all a€A.

Next, let M be a module over a commutative ring R, and set M*=
Hom(M, R). There are R-homomorphisms

6: M — Hom(Hom(M, R), R),
o : Hom(M, M) —> Hom(M*, M%)

such that @(m)(m*)=m*(m) and [o(f)(m*)](m)=m*(f(m)), respectively, for any
meM, m*eM* and feHom(M, M). M is said to be torsionless, or reflexive,
if @ is a monomorphism, or an isomorphism, respectively. It is also clear that
o is a ring homomorphism.

LEMMA 3. Let M, M* and o be as above. Then

(1) If M is torsionless, we have Ker a=0.

(2) If M 1is reflexive, then o is an isomorphism.

PrROOF. (1). Let feKer ¢. Then for any meM and m*e M*, we have

0=La(/)m*)J(m)=m*(f(m))=0(f (m))(m*).

Hence 6(f(m))=0. But Ker §=0 by assumption. Hence f(m)=0 for all meM.
(2). Suppose that & is an isomorphism. Then we have an isomorphism

7: Hom(M**, M**) — Hom(M, M) (=Hom(M, 6-*)sHom(8, M**)).
On the other hand we have a ring homomorphism
o*: Hom(M*, M*) — Hom(M**, M**)

defined by the same way as g, namely, [a*(h)(m**)](m*)=m**(h(m*)) for any
heHom(M*, M*), m*e M* and m**=M**. Then by direct computations, we
see that o-(r°o*)=identity, and (r-o*)-o=identity. For example, pick any
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heHom(M*, M*) and meM, and set n=[ze0*(h)](m). Set §*=Hom(@, M**).
Then, n=07[(f*-0*(h))(m)], and for any m*<M*, we have m*(n)=0(n)(m*)
=0m)h(m*)=h(m*)(m). Then,

L(gezeoa*(h)m*)J(m)=m*(ve a*(h)(m))=m*(n)=h(m*)(m) .

This means that gereo*(h)=h. Thus we have o-(ceo*)=identity. The other
equality is also evident.

Finally, we will introduce a theorem by K. Hirata [4]. For .M and 4N,
set S=Hom(4M, ,M) and T=Hom(,N, ,N). Then we obtain the situations ,Ms
and 4Ny and an A-T-homomorphism

t: N —> HomHom(N, M)g, M)

such that ((n)(f)=nf (=f(n)) for neN and feHom(,N, 4M). Then,

LEMMA 4. N®@(MDOMD --- BM) if and only if ¢ is an isomorphism and
Hom(N, 4M) is S-finitely generated projective.

PrROOF. See Theorem 1.2 [4].

§3. Now regard CRC as C*-C*-module by c*(cXd)d*=c-d*Qc*-d for
¢, deC and c*, d*eC*. Then CRC becomes a left C*QC**-module, where C*°
is the opposite ring of C* Set A=C*QC*, N=CRC, M=C and S=
Hom(,C, ,C)=Hom(c:Cgs, ¢:Cc+), and apply First of all we have

( 1 ) 2 C®C — Hom(Hom(ctC®Cct, C“CC‘)S) Cs)

such that «(cQd)@)=a(c®d) for each a=Hom(¢.CRCe, ¢+«Co.) and ¢, dC.
Next note that there is a C*-C*-map

(2) 7: C* — Hom(..C, ¢C)

such that 7(c¢®)=c*®, where ¢*® means the right multiplication of C by c*
(eC*). Then by we have

(3) Hom(Ce-, C&:) —> Hom(Ce., Hom(c:C, 0.C)¢-)  (rx=Hom(le, 7))
7
:Hom(CR_C., Hom(c-C, CnC)g_o:)EHOI‘ﬂ(gaC@Cct, C'CC‘) .

Now suppose that Cp and C,. are finitely generated projective. Then by
and (3), we have

( 4: ) C®C e HOm(HOm(CtC®Ccs, C“CC’)Sy CS)
CHom(Hom(C‘C®CC., CuCct), C) -——;Hom(Hom(CC., C§n>, C)

T

=CRHom(C*, C)=C®cHom(Hom(C, R), C)
=2 CR(CYHom(R, C)=CRCRC.
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We will calculate the composition of the above maps concretely. To begin
with it is easy to see that the composition of the maps in (3) is given by

( 5 ) ©. Hom(Cc., C*t) _> Hom(CtC®C0c, C"CC')

such that ¢(g)(c®d)=d-g(c) for each geHom(C¢., C§.) and ¢, deC. Next sup-
pose that Cc. and Cp are finitely generated projective, and let {f;, ¢;} and
{d¥, d;} be dual bases for C,. and Cp, respectively. Then by [Lemma 2, we
have isomorphisms

(6) v: Hom(Hom(C¢., C3.), C) —> CQc-Hom(C*, C)

such that v(a)=2>c;Qa; for each a<Hom(Hom(Ce., Cé.), C) with a;(c*)=
a(c*Pof;) for each ¢*=C*, and

(7) 7: Hom(C*, C)=Hom(Hom(C, R), C) — CQHom(R, C)=CKQC

such that 7(h)=>d;Qh(d¥) for each heHom(C* C). On the other hand, since
S is an R-algebra, we have an inclusion map

(8) 7 : Hom(Hom(c.CRCprs, +Ce+)s, CS)C:Hom(Hom(C.C@CC.', Ce»), C).
Finally set ¥ =(1,®7)-v-Hom(p, C)~i=¢, which is exactly (4);
(9) ¥: CRC — Hom(Hom(c.CRCpes, ¢:Cocs), C) —>
Hom(Hom(Ce., C&), C) —> CRc.Hom(C*, C) —> CRCRC .

LEMMA 5. Let Cg. and Cg be finitely generated projective, and ¥ as above.
Then T(cQRd)=>cQd ,Qd oy for any ¢, d=C.
PrROOF. Set [Hom(gp, 1¢)ei¢](cQd)=a. For each geHom(Cc., C&),

a(g)=[Hom(gp, 1c)(«(c®d)](g)=e(c@d)¢p(g)=p(g)cQd)=d- g(c).
On the other hand by (6), v(a)=2c;QG;, where
GicH=a(c*Pefy=d-(c*Pf)c)=d-(c* f(c))
=3Kc* f6), daddw=2Kc*, daw<{fic), da>dw
for each c*eC*. Then,
T (c®d)=(1cQr)(e)=2c,Q1(G )=2¢;Qd:QC (d¥)
=3¢,QdQ<dE, dw><fie), dwdd
=2¢;Qd{d¥, dwy>Q<fc), dwddes
=2¢,Qd 1 ®<f¢), dwddw=2¢;,Qdw<{f¢), d>Dd
=3¢,Q116) dy®d @y =2¢; [{)Qd 0 ®d o =2cRd 1 Qd > -
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The author gives his hearty thanks to the referee for various kind of advices.
In particular, he showed the author the other method of calculation of the map
¥, which looked more beautiful and co-algebra theoretical. But the author
dared to stick to his original method. The referee also showed him the next
equality, which was yielded in the process of the calculation of ¥. Here we
will show it by the other proof.

LEMMA 6. Suppose that C is R-projective. Then for any c, d=C, we have
an equality 2cQd 1yQd y=2¢yQ@®RdQcuy in CRCRQC. In particular, if Cg
and C¢. are finitely generated projective, we have

V(cR®d)=2cQd 1y@d iy =2¢ 0y @dRc y» -

Proor. Let {cf, c¢,} be a dual basis for C, and let ¢, d be any elements of
C. For each v we have in C&.C

ek, canen®d=c c¥QRd=cQRc¥ - d=2cQd 1y<c¥, dy> .
Then in CRCRC, we have D {c¥, ¢y QRdRc,=2cRd ,<{c¥, d>Qc,. Then,
Ze@dQcn=Le@®@IdQZUc!, cae,=2@dn@XAc, dade,
=c®d HRd ) -

REMARK. Here we will introduce the referee’s method of the calculation of
¥ very briefly. In the case where C is torsionless, there exists an isomorphism

p: Hom(C®eC, R) —> Hom(:CQC o+, ¢+Cev)

such that p(f)(c®d)=Zcw f(c®d)=2Zf(c@dw)d e for any fE(C&e.C)*. The
inverse map of p is given by p~a)=e-a for any acHom(¢.C&RCes, ¢«Ccv). Then
under the same conditions as the composition of the following maps

C@)C _‘) Hom(sHom(c:C@Cct, C"CC“)) SC) I HOm(sHOm(C@CtC, R), SC)
T’ Hom(Hom(C®c.C, R), C):(C®th)®c

is exactly T (cQd)=3c®d 1y Qd = ¢2,RdRc, for any ¢, deC.

Now set I={ceC|XcnrQRcwom=2cxRcw} and C={ceC|c*-c=c-c* for all
c¢*<C*}. Then we have

LEmMMA 7. ISCC®. If C is R-projective, we have I=C°"

PROOF. If Zcwy®cw=3cw®cu, then c*-c=Fcwy{c¥*, c>=2cw{c*, cay
=c-c*. Thus we have ISC®. Let {c¥ c,} be a dual basis for Cr, and suppose
ceC®. Then Xcwlck, cod=Dcwlck, cay> for each y. Hence XcrQcwm=
2Lk, Qe = 2Lk, capdem = 2,RLc, caewm = 2L, o Qcw =

Yew®cqy. Thus c€l, and we see C°SI. Therefore we have I=C%.
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Next suppose that C is R-faithful. Then we see that C* is a faithful
R-algebra. Because, if re=0 for some rER, rc=rcw<e, Cay=2Cw<re, Cay)
=0. This means that »C=0.

Now suppose that C is R-finitely generated projective and R-faithful. In
this case we see that C=C** and (CRC)*=C*RC* canonically, and C* is
R-finitely generated projective and R-faithful. Hence C* is R-Azumaya if and
only if C*QC*@(C*PC*P --- PC*) as C*-C*-module by Corollary 1.1 or Corol-
lary 1.2 [6]. But this is the case if and only if CRC®CHCD ---PC) as
C*-C*-module (or as C-C-comodule, since C=C** and (CRC)*=C*QQC* as C*-C*-
module. Therefore we have

LEMMA 8. If C is R-finitely generated projective and R-faithful, then the
following conditions are equivalent:

(i) C* is an R-Azumaya algebra.

(ii) CRCBCHCH --- PO) as C*-C*-module.

(i) The map ¢ of CRC to Hom(sHom(o.CRCqe, +Coc»), sC) is an isomor-
phism and Hom(pCRCou, oCpe) 1s S-finitely generated projective, where S=
Hom(ceCee, ¢+Ces).

THEOREM 1. Suppose that C is R-finitely generated projective and R-faithful.

Then C* is an Azumaya R-algebra, if and only if the following two maps are
isomorphisms;

V: CQRC —> CRQCRC V(eRd)=2cRd1,Qd 2y (=2 ¢ @dRc )
p: C*QI —C we*RQa)=c*-a (=a-c*)

where ¢, d=C, a<l and c*eC*.

PROOF. Suppose that C* is an Azumaya R-algebra. Then applying Corol-
lary 3.6 to a C*-C*-module C, we see that C*QI=C*QC=C. Thus p is
an isomorphism. On the other hand, since C* is an R-progenerator, R is an
R-direct summand of C* (see Corollary 4.2 [1]). Hence I=RQQI@C*QI=C.
Thus [ is also R-finitely generated projective. But [C¥: R.]=[Cu: Rn] for
each maximal ideal m of R. Hence I is rank 1 R-projective, and conse-
quently, R=Hom(/, I). Then we have Hom(..C, ;«C)=Hom(c.C*QI, ¢-C*QRI)=
C*@Hom(I, I)=C*QR=C* and S=Hom(:Ccs, c+Cov)=C**=R. Therefore, maps
7, ¢ and 7 in (2), (5) and (8), respectively, are isomorphisms, while map ¢ in (1)
is an isomorphism by Hence ¥ is an isomorphism by
Conversely suppose ¥ and p are isomorphisms. Then for the same reasons as
the proof of ‘only if’ part, I is rank 1 R-projective, and S=C*°" (=the center
of C*). But for any c*€C*, s&S and as] (=C°"), we have c*-(s*-a)=a-(c*-s*)
=ga-(s*-c¥)=(a-s*)-c*=(s*-a)-c*. This means that SICI, and we see that
SQI=SI=I. Then since I is an R-progenerator, we see that S is also rank
1 R-projective. But C* is an R-progenerator. Therefore, R is an R-direct
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summand of S by Corollary 4.2 [1]. Hence R=S, and ¢ is an isomorphism. On
the other hand, 7 is also an isomorphism, since g is an isomorphism. Thus we
see that (1o&7)eveHom(p, 1¢)e7 is an isomorphism. Then since ¥ is an iso-
morphism, ¢ is an isomorphism. On the other hand, Hom(;.CRCsr, +Cor)=
Hom(C¢., C%.) and they are C*-finitely generated projective, since C¢. is finitely
generated projective. Then, they are S-finitely generated projective, since S=R
and C* is R-finitely generated projective. Therefore, C* is an Azumaya R-algebra
by
Now for a coalgebra C, let o, » and 7 be such that

o : Hom(C, C) —> Hom(C*, C*) (Ka(f)(c*), e>={c*, f(c))
7; C*®C* —> Hom(C, O) (7(c*Rd*) () =d*+ ¢+ c¥)
7: C*QC¥ —> Hom(C*, C*)  ((c*®d**)a*)=c*- a*- d*)

for any feHom(C, C), ¢*, d* and a*eC* and c<C. It is easy to see that
p=0c°7. Now by we have

PROPOSITION 1. Let C be an R-faithful coalgebra. Then,

(1) If C is R-torsionless, and if C* is R-Azumaya, then # is an isomorphism,
and consequently, Hom(C, C)=Hom(C*, C¥).

(2) If Cis R-finitely generated projective, then we have that C* is R-Azu-
maya if and only if % is an isomorphism.

Proor. This is obvious by and by the well known fact that an
R-algebra C* is R-Azumaya if and only if C* is an R-progenerator and 7 is an
isomorphism (see Theorem 3.4 [1]).

§4. Let A be an R-algebra which is R-finitely generated projective. Denote
its multiplication map by « (i.e., 7(a®b)=ab, for a, b A), and let {a¥, a;} be
a dual basis for Az Since A is R-finitely generated projective, we have the
following natural isomorphisms

o A¥QA* —> (ARA)* and 0: A—s A

such that p(a*®@b*)(a@b)=a*(a)b*(b), and 6(a)(a*)=a*(a) for any a*, b*cA*
and a, b A. As usual we set 8(a)=a** for each a=A. Thus a**(a*)=a*(a)
for a€ A and a*= A*. Next set

(10) 0: (AQA* —> A*QA*  (o(e)=Zaf®al)

with a¥e A* such that af(a)=a*(aQa;) for each a=A and a*<(AQA)*. Then
by direct computation we can easily see that peo=1cgs+ and o°p=14gs. Thus
c=p~'. Then by the same way as Proposition 1.1.2 [6], we can make A* a
coalgebra whose comultiplication is 4=Hom(x, 1g)-0. shows that

d(a¥)=0o(a*m)=2bF¥Ra¥ (a€A*), with
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b¥(a)=a*-n(a®a;)=a*(aa;)=(a;-a*)(a) (a€A).

This means that b¥=a;-a* and 4(a*)=a;-a*Ra¥. Now set C=A*. Then C
is a coalgebra, and C* is an algebra with A=C* (=A**). But it is easily seen
that § is an algebra isomorphism, and the C*-C*-module structure of C as
coalgebra coinsides with the A-A-module structure of C=Hom(A4, R) regarding
A=C* by 0. Therefore we have by

PROPOSITION 2. Let A be an R-algebra such that A is a faithful finitely
generated projective R-module, and let {a¥, a;} be a dual basis of A over R.
Then, A is an Azumaya R-algebra, if and only if there exist following two
isomorphisms

D: AAQA* —> AXQA*QA* (D(a*QbH=Xa*Qa; b*Qal)
p: AQH —> A* (ula@h*)=a- h*)

for any a€ A, a*, b*€ A* and h*c H, where H={h*< A*|h*(ab)=h*(ba) for any
a, be A}.
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