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Introduction.

This note treats a complete simply connected Riemannian manifold without
focal points. We know that the class of all such manifolds is wider than that
of all complete simply connected Riemannian manifolds with nonpositive sec-
tional curvature (cf. [10], [6] and [7]). The former is defined by the property:
No maximal geodesic has focal points along any perpendicular geodesic, or
equivaIently, there is a unique perpendicular geodesic from a point to a geodesic,
see Proposition 2 in [3]. It has been observed that several results on manifolds
with nonpositive sectional curvature hold for manifolds without focal points.
In this note we shall, furthermore, investigate the problems of this nature.

In \S 1 we summarize notion and known facts which would be used later.
The main object of \S 2 is to study about the behavior of a hyperbolic isometry
and its fixed points. In manifolds with nonpositive curvature the law of cosine
is powerful especially for the limit process of divergent sequences. We shall
give here a crucial lemma which plays the same role as the special use of the
law of cosine. The main result in \S 2 is

THEOREM 1. Let $M$ be a complete xmPly connected Riemannian manifold
without focal points and $\Gamma$ a freely acting, Properly discontinuous group of iso-
metries of M. Let $D$ be a Dirichlet region for $\Gamma$ If $z\in M(\infty)$ is a Point
containing the axis of a hyperbOljc element in $\Gamma$, then $\Gamma(z)\cap\overline{D}=\emptyset$ .

\S 3 studies the limit sets of freely acting, properly discontinuous groups $\Gamma$

of isometries of $M$, as above, with volume $(M/\Gamma)<\infty$ . \S 4 is devoted to extend
E. Cartan’s fixed point theorem proved in the case of nonpositive curvature,
which leads to the conjugacy of maximal compact subgroups of a (semisimple)
Lie group, to the case without focal points.

It is not yet known if the displacement function of an isometry of $M$, as
above, is convex. If we assume the property, together with our results one
could see actions of isometries of $M$ more clearly.
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1. Preliminaries.

Here we recall basic notion and known results for manifolds without focal
points.

Let $M$ be a complete simply connected Riemannian manifold without focal
points. Two geodesic rays $\alpha$ and $\beta$ are said to be asymptotic if $ d(\alpha(t), \beta(t))\leqq$

some constant for all $r\geqq 0$ . For each geodesic ray $\alpha$ we denote by $\alpha(\infty)$ the
class of geodesic rays asymptotic to $\alpha$ . $M(\infty)$ denotes the totality of all asymp-
tote classes of geodesic rays (cf. [2]). Then the union $M\cup M(\infty)$ , which is
denoted by $\overline{M}$, has the natural topology of the closed unit disc of dimension
dim $M$ (see [6] and [7]). We call the topology the cone topology. If $\varphi$ is an
isometry of $M$ and $z$ a point in $M(\infty)$ we set $\varphi(z)=(\varphi\circ\alpha)(\infty)$ , where $\alpha$ is any
geodesic ray representing $z$ . Since asymptotes are preserved under isometries,

we obtain a well-defined mapping $\varphi:\overline{M}\rightarrow\overline{M}$ which is bijective and carries $M(\infty)$

into itself.
If $\Gamma$ is a freely acting, properly discontinuous group of isometries of $M$,

$\overline{\Gamma(p})\cap M(\infty)$ is called the limit set of $\Gamma$ and denoted by $L(\Gamma)$ , where $\overline{\Gamma(p}$) is the
closure of the orbit of any point $p\in M$. It is to be noted that the limit set
does not depend on the choice of the base point $p$ .

All geodesics are supposed to have unit speed unless stated otherwise. For
two points $P$ and $q$ in $M,$ $d(Pq)$ denotes the distance between $P$ and $q$ .

The following facts about manifolds without focal points are useful.
FACT 1 (Proposition 4 in [14]). A complete Riemannian manifold has no

focal points if and only if $d/di\langle Y, Y\rangle>0$ for $t>0$ , where $Y$ is any non-trivial
Jacobi field along a geodesic with $Y(O)=0$ .

FACT 2. Let $M$ be a complete simply connected Riemannian manifold with-
out focal points. Then any geodesic ball in $M$ is strongly convex.

This fact follows from Fact 1 and Lemma in p. 160 [9].

FACT 3 (Theorem 2 and 2’ in [6]). Let $M$ be as in Fact 2. If $\alpha$ and $\beta$

are distinct geodesic rays starting at a point of $M$, then the length of the per-
pendicular from $\alpha(t)$ to $\beta$ is strictly monotone increasing in $t$ and approaches
$\infty$ as $ t\rightarrow\infty$ , and so is $d(\alpha(t), \beta(t))$ .

FACT 4 (Corollary 1 to Theorem 4 in [6]). Let $M$ be as in Fact 2. If $\alpha$

and $\beta$ are geodesic rays asymptotic to each other. Then $d(\alpha(t), \beta(t))$ is non-
increasing in $t$ .

FACT 5 (\S 3 in [6]). Let $M$ be as in Fact 2. For every point $p\in M$ we
can arrange the Euclidean metric of $T_{p}M$ so that the exponential mapping is
distance increasing.
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2. Hyperbolic isometries.

Let $M$ be a complete simply connected Riemannian manifold without focal
points. For an isometry $\varphi$ of $M$ we denote by $d_{\varphi}$ the corresponding displace-
ment function defined by $d_{\varphi}(p)=d(p, \varphi(p))$ . $\varphi$ is said to be elliptic, hyperbolic
or parabolic if $d_{\varphi}$ attains zero minimum, a positive minimum or no minimum,
respectively. Brouwer’s fixed point theorem tells us that hyperbolic or parabolic
isometries have fixed points in $M(\infty)$ . It is well-known that a non-elliptic iso-
metry $\varphi$ is hyperbolic if and only if $\varphi$ translates a geodesic.

The following lemma would be one of the key tools in manifolds without
focal points. The result corresponds to the special use of the law of cosine in
manifolds with nonpositive curvature.

LEMMA 2.1. Let $M$ be a complete simPly connected Riemannian manifold
without focal Points. Let $p\in M$ and $\tau$ a geodesic ray starting at $p$ . SuppOse that
$\{q_{n}\}$ is a sequence of Points of $M$ with Properties:

(1) $\lim_{n\rightarrow\infty}d(Pq_{n})=\infty$ , and

(2) For a constant $c>0,$ $d(q_{n}, \tau)\leqq c$ for all $n$ .
Then

$\lim q_{n}=\tau(\infty)\in M(\infty)$ .
PROOF. Let $\sigma_{n}$ denotes the geodesic segment connecting $P$ to $q_{n}$ with $\sigma_{n}(0)$

$=p$ . Let $t_{n}$ be the positive number determined by $\sigma_{n}(t_{n})=q_{n}$ . By passing
through a subsequence if necessary, we may assume that $ t_{1}<t_{2}<\ldots$ and $\lim_{n\rightarrow\infty}t_{n}$

$=\infty$ by the property(1). It follows from the Fact 3 that

$d(\sigma_{n}(t), \tau)\leqq d(\sigma_{n}(t_{n}), \tau)=d(q_{n}, \tau)$ for $t$ , $0\leqq t\leqq t_{n}$ .

Therefore we can replace the property (2) as follows:
(2) For a constant $c>0$ ,

$d(\sigma_{n}(t), \tau)\leqq c$ for all $n$ and $t$ , $0\leqq t\leqq t_{n}$ .
We know that any subsequence $\{\sigma_{m}^{\prime}(0)\}$ of $\{\sigma_{n}^{\prime}(0)\}$ has a subsequence $\{\sigma_{k}^{\prime}(0)\}$

which converges, say, to $v$ . Assuming $v\neq\tau^{\prime}(O)$ , we shall induce a contradiction.
First of all we extend each geodesic segment $\sigma_{n}$ to the geodesic ray beyond

$q_{n}$ . Let $\sigma$ be the geodesic ray such that $\sigma(0)=p$ and $\sigma^{\prime}(0)=v$ . By our assump-
tion, $\sigma$ and $\tau$ are distinct, so using Fact 3 we can choose a positive number $T$

such that
$d(\sigma(t), \tau)\geqq 3c$ for $t\geqq T$ .

We fix $T$ chosen above. Let $B$ be the geodesic ball centered at $\sigma(T)$ with
radius $c$ ($c>0$ as in the property (2)). For $a\in B$ we denote by $a^{\prime}$ the foot of
the perpendicular from $a$ to $\tau$ . Then
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$d(a, a^{\prime})\geqq d(\sigma(T), a^{\prime})-d(a, \sigma(T))$

$\geqq d(\sigma(T), \tau)-c$

$\geqq 3c-c$

$=2c$ .
Since $\sigma_{k}\rightarrow\sigma$ (parameterwise) as $ n\rightarrow\infty$ , there is an integer $N_{0}$ such that

$\sigma_{h}(T)\in B$ for $k\geqq N_{0}$ . Choose an integer $N_{1}$ so that $t_{k}>T$ if $k\geqq N_{1}$ . Let $N=$

max $\{N_{0}, N_{1}\}$ . Then for $k\geqq N,$ $\sigma_{k}(T)\in B$ and the length of the perpendicular
from $\sigma_{k}(T)$ to $\tau$ is $\geqq 2c$ . This fact contradicts the property (2) since $t_{k}>T$ .

We can now conclude that $\lim_{n\rightarrow\infty}\sigma_{n}^{\prime}(0)=\tau^{\prime}(0)$ . Therefore $\lim_{n\rightarrow\infty}q_{n}=\tau(\infty)$ . Q.E.D.

LEMMA 2.2. Let $M$ be a complete $\alpha mply$ connected Riemannian manifold
without focal points. If $\varphi$ is a hyperbolic isometry of $M$ which translates a geo-
desic $\alpha$ , then for a suitable onentation of $\alpha,$ $\varphi^{n}(p)\rightarrow\alpha(\infty)$ and $\varphi^{-n}(p)\rightarrow\alpha(-\infty)$

for any point $p\in M$ as $ n\rightarrow\infty$ .
PROOF. Let $\varphi$ translate $\alpha$ by $a\neq 0$ . Reversing the orientation of $\alpha$ if

necessary, we may assume that $a>0$ . For every integer $n$ we have
$d(\varphi^{n}(p), \alpha(na))=d(p, \alpha(0))$ . The sequence $\{\varphi^{n}(p)\}$ satisPes the properties in
Lemma 2.1, since

$d(\alpha(O), \varphi^{n}(p))\geqq d(\alpha(0), \alpha(na))-d(\varphi^{n}(p), \alpha(na))$

$=d(\alpha(O), \alpha(na))-d(p, \alpha(0))$ .
The result follows. Q. E. D.

As an immediate application of Lemma 2.2 we have the following.
PROPOSITION 2.3. Let $M$ be a complete $\alpha mply$ connected Riemannian manifold

without focal points. SuPpose $\varphi$ is a hyperbolic isometry of M. Then
(1) All axes of $\varphi$ have the same end points.
(2) If an isometry $\psi$ commutes with a positive power of $\varphi$ , then $\psi$ fixes the

two end points of the axes of $\varphi$ .
Again let $M$ be a complete simply connected Riemannian manifold without

focal points. If $\gamma$ is a geodesic ray in $M$ we have a function $F_{t}$ defined by
$F_{t}(p)=d(p, \gamma(t))-t$ . The limit $F_{\gamma}=\lim_{t\rightarrow\infty}F_{t}$ is called a Busemann function at $\gamma(\infty)$

$\in M(\infty)$ . A Busemann function at $z\in M(\infty)$ is determined uniquely up to a con-
stant and can be viewed as a distance function with respect to $z$. Busemann
functions are at least of class $C^{2}$ (Theorem 2 in [5]). Horospheres with center
$z$ are defined to be the level sets of a Busemann function at $z$. It should be
noted that if $\gamma$ is a geodesic ray, then $F_{\gamma}(\gamma(O))=0$ and $F_{\gamma}(\gamma(t))<0$ for $t>0$ . If $\Sigma$

is a horosphere with center $z\in M(\infty)$ which passes through $p\in M$ and $\gamma$ a geo-
desic ray representing $z$, then the set $\{q\in M;F_{\gamma}(q)<F_{\gamma}(p)\}$ , which is called the
horodisc bounded by $\Sigma$ , is convex (Theorem 2 in [5]).
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For any two distinct points $p$ and $q$ of $M$ the bisector $M(p, q)=\{m\in M$ ;
$d(p, m)=d(m, q)\}$ is the locus of the centers of all spheres through $P$ and $q$ .
A similar statement holds for horospheres. Precisely, denote $\overline{M(p,q)}$ the closure
of $M(p, q)$ in the cone topology. Then

LEMMA 2.4. Let $M$ be a complete simply connected Riemannian manifold
without focal points. Let $p$ and $q$ be distinct points in M. Then a point $m$ of
$\overline{M}$ is the center of a sphere or horosphere through $P$ and $q$ if and only if $ m\in$

$\overline{M(p,q)}$ .
PROOF. Define a function $f:M\rightarrow R$ by $f(m)=d(p, m)-d(m, q)$ . Then for

$m_{1},$ $m_{2}\in M$ we have
$|f(m_{1})-f(m_{2})|\leqq 2d(m_{1}, m_{2})$ .

Therefore $f$ is uniformly continuous, and extends to $M(\infty)$ continuously. It is
clear that $f^{-1}(0)\cap M=M(p, q)$ . The continuity of $f$ to $M(\infty)$ implies $\overline{M(p,q)}\subset$

$f^{-1}(0)$ . Note that if $F$ is a Busemann function at $z\in M(\infty)$ , then $f(z)=F(P)-F(q)$ .
On the other hand, let $\Sigma$ be the horosphere with center $z\in M(\infty)$ which

passes through $p$ and $q$ . We have to prove that $z\in\overline{M(p,q)}$. Let $\gamma_{pz}$ and $r_{qz}$

be the geodesic rays from $P$ to $z$ and $q$ to $z$, respectively. Set $p_{t}=\gamma_{pz}(t)$ and
$q_{t}=\gamma_{qz}(t)$ for $t>0$ . The function $t-d(q, p_{t})-d(p, p_{t})(=-f(p_{t}))$ decreases strictly

to zero. Hence $f(p_{t})<0$ for all $t>0$ . Similarly $f(q_{t})>0$ for all $t>0$ . Therefore
the geodesic segments $\sigma_{t}$ from $p_{t}$ to $q_{t}$ intersect $M(p, q)$ . Choose points of
intersection $r_{t}=\sigma_{t}\cap M(p, q)$ . Then $d(r_{t}, p_{t})<d(p_{t}, q_{t})\leqq d(p, q)$ . Here the last
inequality follows from Fact 4. Thus the sequence $\{r_{n}\},$ $n\in N$, converges to $z$

by Lemma 2.1. Q. E. D.
$M(p, q)$ is a $C^{\infty}$ submanifold of $M$ of codimension one since it is the zero

level surface of the function $m-d(p, m)-d(q, m)$ , which is $C^{\infty}$ on $M-\{p, q\}$ .
Note that the gradient of the function $m-*d(p, m)-d(q, m)$ is nonzero at any
point $m$ in $M(P, q)$ since the gradients of $m\rightarrow d(p, m)$ and $m-d(q, m)$ point
radially outward from $p$ and $q$ respectively if $m\neq p$ and $m\neq q$ . It is known
that $M(p, q)$ is diffeomorphic to $R^{n-1}$ , where $n=\dim M$ (see [15] Proposition
2.6); the set $\{m\in M;d(p, m)\leqq d(q, m)\}$ is starshaped relative to $P$ since the
function $m-d(p, m)-d(q, m)$ is nondecreasing on geodesics starting at $p$ .

Let $\Gamma$ be a freely acting, properly discontinuous group of isometries of $M$.
For any point $p\in M$ the canonical fundamental region, called a Dirichlet region,
for $\Gamma$ with center $P$ is the set

$D_{p}=$ {$m\in M;d(p,$ $m)\leqq d(\varphi(p),$ $m)$ for all $\varphi\in\Gamma$}.

$D_{p}$ has properties: (1) $\Gamma D_{p}=M,$ (2) The interior of $D_{p}$ does not intersect any
of its $\Gamma$-images, (3) For each side $s$ of $D_{p}$ there is another side $\overline{s}$ and an ele-
ment $\varphi\in\Gamma$ such that $\varphi(\overline{s})=s$ , and $\varphi D_{p}$ is a Dirichlet region for $\Gamma$ adjacent to
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$D_{p}$ along $\overline{s}$ , and (4) $\varphi D_{p}=D_{\varphi^{(}p)}$ for $\varphi\in\Gamma$

$\overline{D}_{p}$ denotes the closure of $D_{p}$ in the cone topology.
LEMMA 2.5. Let $M$ be a complete simPly connected Riemannian manifold

without focal Points and $\Gamma$ a freely acting, properly discontinuous group of iso-
metries of M. Let $D$ be a Dirichlet region for $\Gamma$ with center $p$ . Let $z\in M(\infty)$ .
Let $\Sigma$ be the horosphere with center $z$ which passes through $p$ , and $B$ the horo-
disc bounded by $\Sigma$ . Then $z\in\overline{D}$ if and only if $\Gamma(p)\subset M-B$ .

PROOF. Suppose that $\varphi(p)\in B$ for some $\varphi\in\Gamma$ Then $M(p, \varphi(p))fz$ by
Lemma 2.4. The extended geodesic segment $\alpha$ from $p$ to $\varphi(p)$ beyond $\varphi(p)$

strikes $\Sigma$ at a point, say $q$ (possibly $z$). If $q=z$, it is clear that $\overline{M(p,\varphi(p))}$

separates $z$ from $\overline{D}$ . Hence we assume that $q\neq z$ . We recall that $\overline{M(p,\varphi(p))}$

divides $\overline{M}$ into two components. We have that $ M(p, q)\cap M(p, \varphi(p))=\emptyset$ since
for each $m\in M$ the function $\alpha\ni r\leftrightarrow d^{2}(r, m)$ is strictly convex (cf. [3] Lemma 1).

Moreover $z\in\overline{M(p,q}$) by Lemma 2.4. From these informations it follows that
$\overline{M(p,\varphi(p))}$ separates $z$ from $\overline{D}$. Thus $z\not\in\overline{D}$ .

Conversely, we suppose that $\Gamma(p)\subset M-B$ . Let $\beta$ be the geodesic ray with
unit speed such that $\beta(0)=p$ and $\beta(\infty)=z$ . For any point $q\in M-B$ , the func-
tion $t\vdash\rightarrow d(q, \beta(t))-d(p, \beta(t))$ is decreasing strictly to zero. Therefore $\beta$ does
not intersect $M(p, \varphi(p))$ for any $\varphi\in\Gamma,$ $\varphi\neq 1$ . Also by Lemma 2.4 $\overline{M(p,\varphi(p))}\yen z$

for any $\varphi\in\Gamma$ Therefore, for every $\varphi\in\Gamma$ the closure of the set $\{m\in M;d(p, m)$

$\leqq d(m, \varphi(p))\}$ contains $\beta\cup\{z\}$ since the set is starshaped. Thus $z\in\overline{D}$ . Q.E.D.

We are ready to prove the following theorem.
THEOREM 1. Let $M$ be a complete simply connected Riemannian manifold

without focal points and $\Gamma$ a freely acting, properly discontinuous group of iso-
metries of M. Let $D$ be a Dirichlet region for $\Gamma$ with center $p$ . If $z\in M(\infty)$ is
a point containing the axis of a hyperbOljc element $\varphi$ in $\Gamma$, then $\Gamma(z)\cap\overline{D}=\emptyset$ .

PROOF. Let $\alpha$ be the axis of $\varphi$ such that $\alpha(\infty)=z$ . Let $\varphi$ translates $\alpha$ by
$a\neq 0$ . Suppose $a>0$ . By Lemma 2.2 $\varphi^{n}(p)\rightarrow z$ as $ n\rightarrow\infty$ . For simplicity, we
parametrize $\alpha$ as follows: Let $\Sigma$ denote the horosphere through $p$ with center
$z$. Define the intersection of $\alpha$ with $\Sigma$ to be the point $\alpha(0)$ . Let $B_{t}$ denote
the geodesic ball centered at $\alpha(t)$ with radius $t$ . If $B$ denotes the horodisc
bounded by $\Sigma$ , then $B_{t}\subset B$ for all $t>0$ . Choose a positive integer $N$ so that
$na>d(p, \alpha(0))$ for $n\geqq N$. Then $\varphi^{n}(p)\in B_{na}$ for $n\geqq N$. If $a<0,$ $\varphi^{-n}(p)\in B_{-na}$

for $n\geqq N$. Therefore it follows from Lemma 2.5 that $z\not\in\overline{D}$. For $\psi\in\Gamma,$ $\psi(z)$ is
a fixed point of a hyperbolic isometry $\psi\varphi\psi^{-1}$ , and hence $\psi(z)\not\in\overline{D}$ as before.

Q. E. D.
REMARK. Contrary to Theorem 1, for a fixed point $z\in M(\infty)$ of a parabolic

isometry $\varphi$ of $\Gamma$ we can prove that $z\in\overline{D}$ under a certain condition. Seemingly
the condition itself requires to restrict curvatures. So I consider this problem
would belong to a different field. The result would be published elsewhere.



zsometry groups 659

3. Limit set of a discrete group $\Gamma$ with volume $(M/\Gamma)$ finite.

In this section we shall prove the following theorem:
THEOREM 2. Let $M$ be a complete simPly connecied Riemannian manifold

without focal points and $\Gamma$ a freely acting properly discontinuous group of iso-
metries of M. If volume $(M/\Gamma)$ is finite, the limit set $L(\Gamma)$ is the whole boundary
$M(\infty)$ .

The proof is essentially the same as that of Satz in \S 4 in [12], where he
proved the statement for a manifold with nonpositive curvature. We shall give
the complete proof.

Let $M$ and $\Gamma$ be as in the theorem. $D$ denotes a Dirichlet region for $\Gamma$ in
$M$. Consider the unit sphere bundle $SM$ of $M$ and let $\pi;SM\rightarrow M$ be the natural
projection. $\tilde{D}=\pi^{-1}D$ is a Dirichlet region for $\Gamma$ in $SM$ and has finite measure.
For a Borel set $A$ of $M$ we denote by $\mu(A)$ its measure. If $G_{t}$ is the geodesic
flow of $SM$, then the volume element of $SM$ is invariant under $G_{t}$ (Liouville)

and $G_{t}$ commutes with isometries. Therefore $c_{t}D$ is a Dirichlet region for $\Gamma$

in $SM$ and $\mu(G_{t}\tilde{D})=\mu(\tilde{D})$ for all $t$ .
LEMMA 3.1. For all open sets $ U\neq\emptyset$ of $SM$ there is an infinite sequence $\{t_{i}\}$

with $ t_{i}\rightarrow\infty$ such that $ G_{t_{i}}U\cap\Gamma U\neq\emptyset$ for all $t_{i}$ .
In fact, $\mu(G_{t}\Gamma U\cap D)=\mu(\Gamma U\cap G_{t}^{-1}D)=\mu(\Gamma U\cap D)$ . Therefore $\mu(G_{t}\Gamma U\cap D)\geqq 0$

is independent of $t$ . Since $D$ has finite measure, for $t_{0}>0$ all $G_{2nt_{0}}(\Gamma U),$ $n\in N$,

are not disjoint. Hence $ G_{t}(\Gamma U)\cap\Gamma U\neq\emptyset$ for $t=2(m-n)t_{0}>t_{0}$ , and $ G_{t_{1}}U\cap\Gamma U\neq\emptyset$

for some $t_{1}\geqq 2t_{0}$ . Repeating the argument we have the assertion. Q. E. D.
LEMMA 3.2. The set

$L=$ {$v\in SM;\exists\{t_{i}\}$ with $t_{t}\rightarrow\infty,$ $\exists\{\varphi_{i}\}\subset\Gamma$ such that $\lim G_{t_{i}}\varphi_{i*}(v)=v$}

is dense in $SM$.
PROOF. Let $v\in SM$ and $U$ an open neighborhood of $v$ . Let $V_{1}$ be an open

subset of $U$ with bounded diameter. By Lemma 3.1, $ V_{1}\cap G_{t_{1^{-1}}}\varphi_{1}^{-1}V_{1}\neq\emptyset$ for
some $t_{1}>1$ and for some $\varphi_{1}\in\Gamma$ We define sequences $\{V_{k}\}$ of open sets and
$\{\varphi_{k}\}\subset\Gamma$ so that

$\overline{V_{k+1}}\subset V_{k}\cap G_{c_{k^{-1}}}\varphi_{k^{-1}}(V_{k})$ and diameter $(V_{k+1})\leqq\frac{1}{2}diameter(V_{k})$ .

Then diameter $(V_{k})\rightarrow 0$ as $ k\rightarrow\infty$ . Let $v_{0}$ be the limit of $\{V_{k}\}$ . Then $v_{0}\in U$ .
Since $v_{0}\in V_{k+1},$ $G_{t_{k}}\varphi_{k*}(v_{0})\in V_{k}$ and the sequence $\{G_{t_{k}}\varphi_{k*}(v_{0})\}$ converges to $v_{0}$ .
Therefore $v_{0}\in U\cap L$ . Q. E. D.

PROOF OF THE THEOREM. Let $z\in M(\infty),$ $p\in M$ and $\tau$ the geodesic ray con-
necting $p$ to $z$ . Owing to Lemma 3.2 we have a sequence $\{v_{n}\}\subset L$ with $ v_{n}\rightarrow$

$\tau^{\prime}(0)$ as $ n\rightarrow\infty$ . Then there are sequences $t\varphi_{n}$ } $\subset\Gamma$ and $\{t_{n}\}$ with $ t_{n}\rightarrow\infty$ such
that $\lim G_{t_{n}}\varphi_{n*}(v_{n})=\tau^{\prime}(0)$ . It follows that
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$\lim d(\pi G_{t_{n}}\varphi_{n*}(v_{n}), \pi v_{n})=0$ .
Putting $p_{n}=\pi v_{n}$ and $q_{n}=\pi G_{t_{n}}(v_{n})$ , we have that

$\lim d(q_{n}, \varphi_{n}^{-1}p_{n})=0$ .
Thus, to prove that $\lim\varphi_{n}^{-1}(p)=z$ (and hence $z\in L(\Gamma)$ ), it suffices to show that
$\lim q_{n}=z$.

Since $\lim d(P, p_{n})=0$ , $\lim d(P_{n}, q_{n})=\lim t_{n}=\infty$ and

$d(p, q_{n})\geqq d(p_{n}, q_{n})-d(p, p_{n})$ ,

it follows that $\lim d(p, q_{n})=\infty$ .
If $\tau_{n}$ denotes the geodesic ray with the initial condition $v_{n}$ , and $a_{n}$ the geo-

desic segment connecting $P$ to $q_{n}$ with $\sigma_{n}(0)=p$ , then

$d(\tau(1), \sigma_{n}(1))\leqq d(\tau(1), \tau_{n}(1))+d(\tau_{n}(1), \sigma_{n}(1))$ .
If $d(P, q_{n})-d(p_{n}, q_{n})=l\geqq 0$ , then

$d(a_{n}(1), \tau_{n}(1))\leqq d(\sigma_{n}(1), \sigma_{n}(1+l))+d(\sigma_{n}(1+l), \tau_{n}(1))$

$\leqq l+d(p_{n}, \sigma_{n}(l))$ .
Since $l\leqq d(P, p_{n})$ , it follows that $a_{n}(1)\rightarrow\tau(1)$ as $ n\rightarrow\infty$ . For the case $l<0$ , take
$\tau_{n}(1-l)$ and $\tau_{n}(-l)$ instead of $a_{n}(1+l)$ and $\sigma_{n}(l)$ respectively. The similar
argument yields the same conclusion. Fact 5 gives rise to the inequality

$d(\tau^{\prime}(O), a_{n}^{\prime}(O))\leqq d(\tau(1), \sigma_{n}(1))$ ,

where $d$ denotes the distance function with respect to the new metric of $T_{p}M$.
Therefore a\’{n}(0) converges to $\tau^{\prime}(0)$ as $ n\rightarrow\infty$ . Thus $\lim q_{n}=z$ . Q. E. D.

Let $M$ and $\Gamma$ be as in the theorem. For $p\in M$ and $\varphi\in\Gamma$, let $\gamma:[0,1]\rightarrow M$

be the unique geodesic with $\gamma(0)=p$ and $\gamma(1)=\varphi(p)$ , parametrized proportionally
to arc-length. Then we have a fundamental vector field $v$ defined by $v_{\varphi}(p)=$

$\gamma^{\prime}(0)$ . $v_{\varphi}$ is nowhere zero if $\varphi\neq 1$ .
COROLLARY 3.3. Let $M$ be a complete simply connected Riemannian manifold

without focal Points and $\Gamma$ a freely acting, Properly discontinuous group of
isometries of $M$ with volume $(M/\Gamma)<\infty$ . Then at any point of $M$ the set

$\{v_{\varphi}(P)/\Vert v_{\varphi}(P)\Vert\in T_{p}M;1\neq\varphi\in\Gamma\}$

is dense in $\{v\in T_{p}M;\Vert v\Vert=1\}\subset SM$.
This is an immediate consequence of Theorem 2.
REMARK. As an application of Lemma 2.1 we can prove the following

statement which is the special case of the above corollary and answers a ques-
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tion raised by K. Uesu: Let $N$ be a compact Riemannian manifold without
focal points and let $p$ be a point of $N$. Then in $S_{p}N=\{v\in T_{p}N;\Vert v\Vert=1\}$ we
can find a dense subset $W$ so that every geodesic issuing from $P$ in the direc-
tion $w\in W$ is closed. See also Lemma 1 in \S 1 [13].

4. Fixed point theorem.

Let $N$ be a compact topological space and $C(N)$ the algebra of R-valued
continuous functions on $N$. With supremum norm it is a Banach space. An
element of the dual space $C^{*}(N)$ is called a Radon measure or simply measure.
For $f\in C(N)$ and $\mu\in C^{*}(N),$ $\mu(f)\in R$ is called the integral of $f$ with respect to

$\mu$ and is denoted by $\int_{N}f(x)d\mu(x)$ . A nonzero measure $\mu$ is said to be positive

if $\mu(f)\geqq 0$ for any nonnegative $f\in C(N)$ . These notion extend to vector valued
maps from $N$ as well. That is: Let $R^{n}$ be an n-dimensional Euclidean space.
Consider a continuous map $X:N\rightarrow R^{n}$ . If $\{e_{1}, \cdots , e_{n}\}$ is an orthonormal basis

of $R^{n}$ , then $X(x)=\sum_{i=1}^{n}\alpha^{i}(x)e_{i}$ , where the $\alpha^{i}$ are continuous functions from $N$ to

$R$ . If $\mu$ is a measure on $N$, we define the integral of $X$ with respect to $\mu$ by

$\int_{N}X(x)d\mu(x)=\sum_{i=1}^{n}(\int_{N}\alpha^{i}(x)d\mu(x))e_{i}$ .

Now, we assume that $M$ is a complete simply connected Riemannian mani-
fold without focal points and $f$ is a continuous map from $N$ to $M$. We can
choose a strongly convex geodesic ball $B$ in $M$ so that $f(N)\subseteqq B$ by Fact 2.
Let us consider a continuous vector field $x-\exp_{p}^{-1}f(x)$ on $N$ for each $p\in B$ .

We are required to choose a positive measure $\mu$ on $N$. Our current purpose

is to show that the tangent vector field $V$ defined by $V_{p}=\int_{N}\exp_{p}^{-1}f(x)d\mu(x)$ has

only one zero in B. $V$ is differentiable.
PROPOSITION 4.1. The vector field $V$ on $B$ has only one zero in $B$ , and hence

in $M$.
To prove the proposition we shall follow the technique used in [8]. For

$A\in T_{p}M$ with $\Vert A\Vert=1$ , let $\gamma(u)=\exp_{p}uA$ . We consider the family of geodesic
$c(t, u)=\exp_{\gamma(u)}((1-t)\exp_{\gamma(u)}^{-1}f(x)),$ $x\in N$. Denoting by $Y_{u}(t)$ the Jacobi field

along the geodesic $t$ g\rightarrow c(t, u) defined by $Y_{u}(t)=\frac{\partial}{\partial u}c(t, u)$ , then $Y_{u}(1)=\gamma^{\prime}(u)$ and

$\frac{\nabla}{dt}Y_{u}|_{t=1}=-\frac{\nabla}{du}(\exp_{\gamma(u)}^{-1}f(x))$ . Since $\frac{\nabla}{du}(\exp_{\gamma(u)^{-1}}f(x))$ is continuous in $x$ and

$\gamma(u)$ simultaneously on $N\times B,$ $\int_{N}\frac{\nabla}{du}(\exp_{\gamma(u)^{-1}}f(x))d\mu(x)$ exists and $\frac{\nabla}{du}V_{\gamma(u)}=$
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$\int_{N}\frac{\nabla}{du}(\exp_{\gamma(u)^{-1}}f(x))d\mu(x)$ . It follows from Fact 1 that

$\langle Y_{u}(1),$ $\frac{d}{dt}Y_{u}|_{t=1}\rangle=\langle\gamma^{\prime}(u),$ $-\frac{\nabla}{du}(\exp_{\gamma(u)}^{-1}f(x))\rangle>0$ .

Therefore, integrating over $N$, we have $\langle\gamma^{\prime}(u),$ $-\frac{\nabla}{du}V_{\gamma(u)}\rangle>0$ , because $\mu$ is

positive. Namely, we have the following lemma:
LEMMA 4.2. Along any geodesic $\gamma$ issuing from a zero of $V$ the $\gamma^{\prime}(u)$-com-

ponent of – $V$ is strzctly increasing.
From this lemma we have some consequences. First we claim that $V$ has

at most one (isolated) zero. In fact, suppose that there are two zeros $P$ and $q$

in $B$ . Join $p$ and $q$ by a geodesic segment $\gamma$ with $\gamma(0)=p$ . Then by the lemma,
the $\gamma^{\prime}$-component of -V is strictly increasing, which implies that $q$ cannot be
a zero of $V$ . Also from the lemma it follows that the index of -V at an
(isolated) zero is +1.

On the other hand, since $B$ is a convex geodesic ball and the continuous
$ve$ctor field $V$ is an average over vectors pointing inward on the boundary of
$B$ , the index of -V must be $+1$ by Hopf’s theorem, which guarantees the ex-
istence of zeros of $V$ . Thus our proposition is proved. Q. E. D.

We call the zero of $V$ the center of mass of $f(N)$ with respect to $\mu$ .
As an application of Proposition 4.1 we can prove
THEOREM 3. Every compact group $G$ of isometries of a complete simPly con-

nected Riemannian manifold $M$ without focal points has a fixed point.
PROOF. We choose any point $p_{0}\in M$ and define a map $f:G\rightarrow M$ by $f(a)=$

$a(p_{0})$ for $a\in G$ . Let $\mu$ be a Haar measure on G. Proposition4.1, with $N=G$ ,
guarantees the existence of the center of mass of $f(G)$ with respect to $\mu$ . We
claim that this center of mass is a fixed point of $G$ . We prove the invariance
of the center of mass of $f(G)$ under $G$ by using the left invariance of the Haar
measure $\mu$ . Let $\varphi\in G$ . Suppose that $P$ is the center of mass of $f(G)$ with
respect to $\mu$ . Recalling that $\varphi_{*}\cdot\exp_{p}^{-1}=\exp_{\varphi^{(}p)}^{-1}\cdot\varphi$ , we have

$\int_{G}\exp_{\varphi^{(}p)}^{-1}f(x)d\mu(x)=\int_{G}\exp_{\varphi^{(}p)}^{-1}x(p_{0})d\mu(x)$

$=\int_{G}\varphi_{*}\exp_{p}^{-1}(\varphi^{-1}x)(p_{0})d\mu(x)$

$=\varphi*\int_{G}\exp_{p}^{-1}(\varphi^{-1}x)(p_{0})d\mu(\varphi^{-1}x)$

$=\varphi*\int_{G}\exp_{p}^{-1}f(x)d\mu(x)$

$=0$ . Q. E. D.
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We also have the following immediate corollary of the theorem.
COROLLARY 4.3. Let $M$ be a connected, simply connected homogeneous $Rie-$

mannian manifold without focal points. Let $G$ be a closed subgroup of the group
of isometries of M. Assume that $G$ is transitive so that $M=G/H$, where $H$ is
the isotropy subgroup of $G$ at a point of M. Then $H$ is a maximal compact sub-
group of $G$ (and every maximal compact subgroup of $G$ is conjugate to $H$).
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