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§0. Introduction.

Let E(n) be the complex motion group acting on the n-dimensional complex
euclidean space X=C" A complex crystallographic group is, by definition, a
discrete subgroup of E(n) with compact quotient. In a previous paper [6], we
studied general properties of the quotient varieties and determined all the two
dimensional crystallographic reflection groups.

In this paper, we treat two dimensional complex crystallographic group I’
such that the quotient variety M=X/I" is biholomorphic to the two dimensional
projective space P2 We list up all such groups (Theorem 1I). Generators and
fundamental relations are obtained (Theorem 2). Let ¢ denote the natural map-
ping: X—M. The coordinate representation of ¢, the branching locus D and
the ramification indices of ¢ on D are determined (Theorem 3). We explicitly
give the representation h: m,(M—D)—I" and the kernel of h (Theorem 4).

§1. Notations and definitions.

The unitary group of size 2 is denoted by U(2). For A<U(@2) and a<C?
(Ala)= FE(2) denotes the transformation: x—Ax+a. For a two dimensional com-
plex crystallographic group 7,

L:={a;1la)el}

G:={A;Ala)el}
are called the lattice and the point group of I, respectively. If I" has the rep-
resentation {(A|a); A=G, as L}, then we call I" the semidirect product GX L
of the lattice and the point group.

DEFINITION. Imprimitive reflection group G(m, p, 2)CU(2) is the group
generated by

(]_ 1)’ (0—1 6) and <0P 1), 6 =exp 2”;1/?__

DEFINITION. An element g€ E(2) is called a reflection if g is of finite order,
g+identity and keeps a line H(g)C X pointwise fixed.

and

*) This author was partially supported by Grant-in-Aid for Scientific Research (No.
480130030787), Ministry of Education.
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§2. Generators and relations of /.

Let I' be a two dimensional complex crystallographic group. If the quotient
variety M=X/I is biholomorphic to P? then I is generated by finitely many
reflections ([6, Corollary 3.2.27). Every crystallographic reflection group and the

quotient varieties are known ([4], [6, Theorem 5.1]). Combining them, we
have the following theorem.

THEOREM 1. Every two dimensional complex crystallographic group with

M=P? is conjugate, in the affine transformation group, to one of the following
six groups,

(2, 1)o:=G(2, 1, 2)X L¥z),
(B, Do:=G(3, 1, 2)x L*(),
4, Do:=G4, 1, 2)X L*Q),
6, 1)e:=G(6, 1, 2)X L*Q),

“, 2)1:=G{, 2, 2)»<{L2(z')+z 1"2” ( i )}

3, 300: =G, 3, 2)x {L(T>(”})+ L<r>(§2)} :

where L(t)=Z+1Z, LZ(T)ZL(T)( (1) )+L(T)( (1) )’ Imz>0, i=+—1, {=exp ggi
The groups in are generated by reflections. We shall give their
fundamental relations.

THEOREM 2. The groups in Theorem 1 have the following generators and
the defining relations:

r generators relations
—1 010 —1 01
2,1 Alw( 0 1l0>’ Az_( 0 1 O)’ Ai=(A1A,A)*=B*=1, v=1,2,3.
, Lo ) :<—1 0'1‘) B:(O 1 O) [BA,B, A,J=1, 1=v=u<3,
’ 0 110/’ 1 010/’
_ (5 011 (€ 0C
(3, 1) Al_(o 1 0)’ AZ*(O 1 O)’ At=Aj=(A4,)’=B*=1,
o B:(O 1 0) [BA,B, A,]=1, l<y=up<2.
1 010/°
7 01 —1 0j¢
A’:(O 1 0>’ A2=( 0 1 0)’ Aj=Af=(A,A,)'=B*=1,
4, 1)
B:(O 1 0) [BA,B, A,1=1, 1=v=p=2.
1 0lo/°
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=G (1)\%) 4=(To 1l amat=aay=pa,

Bz((; élg) [BA,B, A,]=1, 1=v=p=2.

RF(—I 0 o), R, 10),
0 110 0107 Ri=(R,R.R.R.R)*=1, v=1,2, - ,5.

G
@2 R=) ). R=(; _J|D), RRR=RRR=RRR,

(6, 1o

Rs-—(_ "‘0‘ 1+: (1)) R.R.=R,R,, R,R;=R.R,.

A= B = (A, A A =1, v=1,2, 3.

Alz(g ég) 4= ol_1): BaB=ABA, v=1,2 3.

. (0 C10) | BABABAL=ABABA, =23
(414340 B(A; AsAy) = B(A,A; A)B |

@3, 3o

1 0‘—-1’ ’

REMARK 1. A;4,4:(2, 1),, A:A,=(3, 1), AiA:=(4, 1), A;A.€(6, 1),
R,R,R;R,R,=(4, 2), and A,A,A;=(3, 3), are reflections.

REMARK 2. To keep symmetry the above relations include unnecessary
ones, €. g. the relations A2=(A,;4,A4,)*=1 (v=1, 2, 3) for (3, 3),.

PrRooF. We shall prove the theorem for the groups (2, 1), and (3, 3),. The
remaining groups can be treated similarly.

i) Let I'=G(2, 1, 2)x L*z). Since the group G(2, 1, 2) is generated by two

reflections (—(1) (1)> and ((1) (1)>, we have {A4,, B>:{7EF; 7‘=<g|g), geG2, ], 2)}.
Note that

T R AT )

1 00
0 1)
Thus I' is generated by A,, v=1, 2, 3 and B.

Next we shall determine the defining relations by the method of coset
enumeration. Put

BAzAle(

BAaAlB:(l 0 0) :

0 1iz

r=<ay, @y, as, blai=0b*=(a,a,a,)*=1, [ba,b, a,]=1, 1=Sv=p=<3)
and

r¥*=<a,a,, baya,b; 1=v=p=3).

Step 1. 7r* is a free abelian group with the basis a,a;, asai, ba.a;b, basab
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and r*<y.

PrROOF. Easy.

Step 2. 7/r*=G(2, 1, 2).

PROOF. 7/r*=<a,, blai=b*=1, [bab, a,1=1>=G(2, 1, 2).

The correspondence a,—A,, b—B gives the homomorphism y—/I. Thus we
have y=TI.

.. - 1 g2 . .
ii) Let I'=G(3, 3, 2)K{L(T)(—1)+L(T)<C )} Analogous proof is available
for the assertion that I is generated by A, (v=1, 2, 3) and B. Put
r:<aly a27 (13, blau: 2:(010203)221, bavb:avbam y:]-) 2; 3’
(basb)a u(bab)=a,(bab)a,, n=2, 3,

(a1asa3)b(a;a,a5)=b(a,a,a3)b)
and
r*=<a.a;, a;a,, basadb, basaby .

Step 1. 7r* is a free abelian group with basis a,a,, asai, basa.b, basa;b, and
r*<r.

ProoF. For the commutativity of y*, we shall show that [a,a,, basa,b]=1.
(The remainings are easier.)

[asay, basa.bl=asa,basa.ba,asbaiasb
=ayabasba;basba,ash
=a,a;ba,bbasba,basbasb
=a,abasa.bababash
=a,a,basa,a.ba,asbasb
=0,01030:0,ba5a0,0,a,a,0a:D
=asbasbasb
=asasba;ab=1.

For proving the normality of y*, we shall show that the conjugates of ba.a.b
and basa.b belong to y*. (Easily seen for a,a; and asa,.)

Conjugates of ba,a,b: Since a;ba,a,ba;=asba,aba,=asba,aba,, it suffices
to show asba.a,ba;s7*.

a3baza]_ba3: asba;;a;;agalbag
:baabagagalbag

:bagasagalbagagalag
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:bagalbalager* .

Conjugates of basa,b: Since a,basa,ba;=asbasaba,=asbasaba,, it suffices
to show a.basa,ba;,=7*.

albaga lbal - bba 1ba3a 1b(11
- bagbalbag

:basalbalager* .
Step 2. r/r*=G@3, 3, 2).
PROOF. 7/r*=<a,, blat=b*=1, a,ba;=ba,b)=G(@, 3, 2).
These lead to the conclusion that the homomorphism y—I" given by a,—A,,
b—B is bijective. Q.E.D.

§3. Coordinate representation and the branch locus D of ¢.

Let x, y and X:Y: Z be the coordinate of X and M=P? respectively.
We shall give the coordinate representation of the natural map ¢: X—M and
determine the branch locus D of ¢ on M.

THEOREM 3. For each group in Theorem 1 the coordinate representation of
@, the branch locus D and the ramification indices along the irreducible components
of D are given by the following table.

r o(x, y)=(X:Y:2) Do M

4 lines and
a conic tangent
@1 P(x)+P(y): P(x)P(y): 1 to each line.
T @()=2(-17) me>0
3 lines and
, , , , a conic tangent 3 3
3, 1) P (x)+2(y): 2(0)2(y): 1 to each line.
’ 0

2'()=2'(-10)
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ibid. A4
PHx)+PH(y): PA)PHy): 1
4, 1),
P(-)=2(- ) 2
/ 2\
ibid. 6 3
PH)FPHy): PHx)P'H(y): 1
(6, 1)0
P()=2'(-10) 9
/ 2 \
6 lines which
h 3 doubl
WSOV Loy, (2 ER0) ) gt 4
P(x)P(y)—et ) P(x)P(y)—et ) triple points.
(4, 2)1 .
P()=2(- 1),
e, =P(1/2]7).
P(x)—P(y1) 1 P(x1)—P(y1):
P(x1)L(y)—L(x1) L (1) The dual curve of the non sin-
(3, 3), P()=2(-|7) Imz>0, gular cubic with moduli z. The

ramification index=2.
—1 &\ _/x
"‘( 1>+3’1(§ )'“( )
y
Here the numeral beside the curve denotes the ramification index. By a suitable
coordinate (U: V: W) on M, the divisor D for I'=(2, 1), is represented by
D={V=0U{W=0U{U=V+W}U{eU=V+eW}U{U=4VW}

wre e=(o(3)-o(D)/ (& 117)-2(5)) 1=zt

REMARK 1. Let D=\ D; be the decomposition into irreducible components,
J

d; the degree of the divisor D; and e; the ramification index of ¢ along D;.
For each above groups, the following equality holds:

;d,-(l——}j—):&
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It is interesting to compare this equality with the Sakai’s inequality ([2]).
REMARK 2. The divisor D is nothing but the image of the union of the set
{H(g)lgeT, g is a reflection}.
PrROOF OF THEOREM 3. Put

Ii={11]b): be L¥o)},

R soere)

and

E=C/L(z).
Then we have

Iali<(2, 1),

and the following sequence of natural mappings:

X——=>X/I X/I >X/(2, 1)
R N il 1N

C? EXE Px P! p?

V) (1) 1) (U]

(x, y) —> (x, y)mod L¥(z)— (2(x), 2(3)— (P(x)+L(y): E(x)2(y): D).

These prove the theorem for the group (2, 1),. Similar proofs are available for
the groups (3, 1),, (4, 1), and (6, 1),. We omit them.

The group (2, 1), is a normal subgroup of (4, 2); with moduli z=:. With
respect to the homogeneous coordinate (U:V:W):

U\ [0 1 en/X
vi=(1 o 0)}’ ,e=e(5]d),
w) \o 1 —etf\z

on X/(2, 1), the quotient group (4, 2),/(2, 1), is represented by

[ﬂﬂl}.

This with the preceding proof implies the assertion for the group (4, 2),.
To prove the theorem for the group (3, 3),, we use the coordinate (x,, y,)
on X which are related to (x, y) by

(D))

By this coordinate, (3, 3), is represented by
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-1 —1\ 0 1 .
<( 0 1)’ (1 o>>b< L)
and the union of the set {H(g)|g=(3, 3),, g is a reflection} coincides with the

set of all lines in X defined by x,=y,, 2x;+y,=0 and x,+2y,=0 mod L(z). On
the other hand, we embed the torus E=C/L(z) into Y = P? by

p:x—> (P(x): P(x):1).
We shall denote the image by CSY. For two points x4, y,€E, we correspond
the line /,,,, joining 7(x,) and 7(y;). This correspondence induces the mapping
¢: EXE —>Y=P?
(x1, Y1) — lz'lyl

where ¥ is the dual of Y. By virtue of Abel’s theorem, ¢ is locally biholomor-
phic except for the divisors defined by x;=7y,, 2x;+v,=0 and x,+2y,=0 mod
L(z). Finally one sees that ¢ gives the natural mapping

X/ I'=EXE — X/(3, 3),=P*.

The branch locus D is, by definition, coincides with the dual curve of C in Y,
and the equation of /;,,, gives the desired coordinate representation of ¢.
Q.E.D.

§4. Fundamental groups of the space of regular orbits.

Let I" be the group in [Theorem 1, D the branch locus given in
3, and #;(M—D) the fundamental group of M—D. In this section we shall
define the homomorphism & : n,(M—D)—I" and determine the kernel of h.

We shall first represent the group =,(M—D) by giving a set of generators
and relations:

r Generators of 7, (M—D) Relations
[ba,b, a,]=1, v=1,2,3,
(2; 1)0 al: aZ) a3} b .
. [ba,b™% a,]=1, 1=y=p=<3.
(3, 1)
[ba,b, a,]=1, v=1,2,
4, 1), @184, b
[bab™t, a,]=1.
(6, 1),
Yi¥o¥3=VoV gt 1=—¥3g¥V1¥2,
4, 2); Y1, Yo, T, Tay T's VsV s =V a5V s=V5Vs¥y,
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81;8:81;=8281;82, 1, J=0, 1,2,
where go=_g1s 811 o1 8%,
3, 3o 811, Zo1, G10, &2 Zi=gugungw, 1=0,1,2,
Z20= 810800870 »
gu=g1i o1& -

For the group (3, 1),, (4, 2); and (3, 3),, we quoted Kaneko [1], Terada [5]
and Zariski [8], respectively. For the group (2, 1), let D=C\UD,;\UD;\UD\UD,
be the decomposition into irreducible components (C is the conic, D; is the line).
Let [ be a generic line in M and put {g, ¢’} :=CN, {p;} :=D;N\Il (=1, 2, 3, 4).
The generators a; (=1, 2, 3) and b are defined to be the loops in [—{p;, =, Du
g, g’} starting from a point in / and turning around only the points p; and g,
respectively. The relations are obtained by the method used in [1].

By virtue of the results and we establish

THEOREM 4. (i) The following correspondence

a, —— A ())—_—1, 2, 3)
(2’ 1)0 :

b — B
3, 1o

a, — A (v=1, 2)
(4': 1)0 :

b — B
(6, 1o

(4, 2)1 oy P Rv (”:1; 2: Tty 5/\

g11*—’A1

— A

(3,3 : &%
glo"_"A3

g, — B

defines the surjective homomorphism h: m;(M—D)—I" for each groups.

(ii) The kernel of the homomorphism h: xi(M—D)—1I isthe smallest normal
subgroup containing the following elements:

2, 1)o: a} (v=1, 2, 3), (a1a.a,)%, b*
3, 1o a}, g}, (a102)°, B

4, 1)y: ai, a3, (a,1a.), b®
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(6’ 1)0: a?) a%) (alaz)e, bZ
4, 2);: 72 (v=12,,5), (ry 15"

3, 3): gh, 881, 81, 8% (811801810)° .

PrOOF. We shall prove the theorem for the group (3, 3),, which is only the
non obvious case. Let R(a, b) denote the relation

aba=bab.
Recall that

1y (M—D)={g11, Zo1, G10, 82 | R(gi;, g2), 7, 7=0, 1, 2)
I'=<ay, a,, a5, b | a%=b*=(a;a,a,)*=1, j=1, 2,3,
R(aj;, b), j=1, 2, 3, R(aa.a,, b),
R(a,a;ay, b), =2, 3).
The correspondence A defined in the theorem gives
R(gu, g2) —> K(ay, b)
R(go1, g2) —> R(as, b)
R(g10, g2) —> R(as, b)

(%)
R(gs, g:) —> R(a,a.ay, b)
R(gis, g2) —> R(a1a:0a,, b)
R(gs0, g2) —> R(aiazas, b)
and

R(goz, gz) —_—> R(azasal; b)
R(goo, g2) —> R(asaias, b)
R(gs:s, g2) —> R(a,a5a,a:a,, b).

The three relations R(a,asa,, b), R(asa;a,, b) and R(a,asa.a.a,, b) are derived
from the defining relations of /. These are proved by substituting the matrices
Aj and B in a; and b, respectively. Thus A induces a homomorphism.

By the correspondence (%) and the fact proved above imply the second as-
sertion.
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