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§1. Introduction.

Concerning the value distribution of the Gauss maps of complete minimal
surfaces in R™, there have been several results obtained by R.Osserman, S.S.
Chern, F. Xavier and others ([10], [2], [7], [13]). Recently, the author proved
that the Gauss map of a complete minimal surface in R™ is necessarily degenerate
if it omits more than m? hyperplanes in P™-(C) located in general position ([4]).
The purpose of this paper is to give several improvements of these results.

Let f be a holomorphic map of an open Riemann surface M into P*(C) and
H a hyperplane in P*(C) with f(M)Z H. For an arbitrarily fixed positive integer
o we define the non-integrated defect of H for f by

0, (H):=1—inf{=0 : 5 satisfying condition (x)}.

Here, condition (*) means that there exists a non-negative smooth function v on
M such that logv is subharmonic, logv<nlog| f|l and, in a neighborhood of each
point p< f~(H),

log v(§)— min (v (H)(p), po)log |E—L(p)]
is subharmonic, where [f|:=(|fi[*+ -+ +]|fn4:1/H"* for a reduced representa-

tion f=(f1:: fas1), £ is a holomorphic local coordinate around p and v/(H)(p)
denotes the intersection multiplicity of f(M) and H at f(p). We note that

(1.1) 84 (H)=1

if fF(M)NH=@, or more generally, if there is a bounded holomorphic function g
on M such that g has zeros of order v/(H)(p) at each point p=f-(H). More-
over, we can show that '
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if v/(H)(p)=p for every point pe f~(H).

We now consider a minimal surface M in R™, which we regard as a Rie-
mann surface with a conformal metric. For the Gauss map G of M, the con-
jugate f of G is a holomorphic map of M into P™-Y(C), and the image f(M) is
included in the complex quadric Qn-.(C) (cf., [8], p. 110). We shall prove the

following
THEOREM 1.2. If M is complete and f is non-degenerate, then for arbitrarily
given hyperplanes Hi, ---, H, in general position we have

q
2 0h(Hp)=m?.
i=1

This is an improvement of Main Theorem of by virtue of [1.1)

For the case m=3, there is a canonically defined biholomorphic map ¢ of
Q.(C) onto the Riemann sphere PC). Instead of the Gauss map into P*C) we
shall study the holomorphic map g=¢-f: M—PYC). We shall give the follow-
ing improvement of a result of F. Xavier ([13]).

THEOREM 1.3. Let M be a non-flat complete minimal surface in R*. Then,
for arbitrarily given distinct numbers ay, -, o, we have

A

,-7;‘1 55(cr;)=<6.

For the case m=4, there is a biholomorphic map ¢=¢; X ¢, of Q.(C) onto
PYCYyxPYC). Instead of the Gauss map into P3C), we shall study two mero-
morphic functions g;=¢;-f (=1, 2). We shall give the following improvement
of a result of R. Osserman ([10], p. 362).

THEOREM 1.4, Let M be a non-flat complete minimal surface in R*. Then,
at least one of the above-mentioned functions g, and g,, say g, has the property
that, for arbitrarily given distinct numbers ay, -+, oy,

_qu 581(cr;) <6 .
p2

To prove these results, we shall give a variant of defect relation, called
non-integrated defect relation, for holomorphic maps of an open Riemann surface
into the space P*1(C)X --- X P*(C) satisfying a certain growth condition.

We shall show some preliminary properties on value distributions of mero-
morphic functions on the unit disc in C in §2 and prove a basic inequality in
§ 3. After these preparations, we shall give the non-integrated defect relation,
which will be stated in §4 and proved in §5. In the last section, we shall
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prove the above-mentioned results related to the Gauss maps as its applications.

§2. An estimate for logarithmic derivatives.

For later use, we give an estimate for logarithmic derivatives of meromor-
phic functions on the unit disc 4:={|z|<1} in C. We first recall some ter-
minology on Nevanlinna theory.

Let ¢ be a nonzero meromorphic function on 4. The counting function, the
proximity function and the characteristic function of ¢ are defined respectively by

N, ‘P)::S: n(, <p)—t—n(0, ®) dt+n(0, ¢)log r

mr, @)= 217§Z log*| p(rev=18)| 6
and
T(r, ¢):=N(r, p)+m(r, @),

where 0<r<1, log*x=max(logx, 0) and n(t, ¢) denotes the number of poles of
¢ in {z: |z|<t}, each pole of order m being counted m times. The well-known
First Main Theorem is stated as

(2.1) T(r, 1/o)=T(r, 9)+0(1).

The object of this section is to prove the following

PROPOSITION 2.2. Let ¢ be a nonzero meromorphic function on 4, | be a
positive integer and p, p’, vy be real numbers with 0<pl<p’<1l and 0<r,<1.
Then, there exists a positive constant K such that, for r,<r<R<],

2.3) ! N %(%)(rev—m Pag=k( LY

27 Jo R—r

For the proof, we give two lemmas.

LEMMA 2.4. Let ¢ be a nonzero meromorphic function on 4 and ! be a posi-
tive integer. We denote all zeros and poles of ¢ by a, (#=1, 2, --+) and b, (v=
1, 2, ) respectively, being repeated m times if they are of order m. Then, if
|z]=r<p<1 and ¢(z)#0, oo, we have

L (D)=L gl el [
dzi-1 o zZ)= z Jo (peuflgﬁ_z)wl

-1 3 2 )

la#|<p{ (ay—Z)L N (pz—d#Z)L

] bt
] =1\ — L
S i PR we
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This is easily obtained by differentiating the well-known Poisson-Jensen’s
formula. See [5], p. 22.
LEMMA 2.5. Let r>0 and 0<p<1. For arbitraryv a=C we have

(o T

o |revit—al|? T 1—p

PrROOF. There is no loss of generality in assuming that « is real and posi-
tive. Then, if |0|=xn/2, we have

Ire“fl”—algrlsint?[g%r\ﬁl

and, if 7/2<]0|=n, we have |rev-1—a|=r. Therefore,

2
So Ire“-ll’:—alp d{)ézg: 2<20) d6+2S a9

21"1)71-17

SRl S

7(2—p)
=,

PROOF OF PROPOSITION 2.2. In the following, K; (=1, 2, ---) denote some
guitable constants. Since both sides of are continuous functions of », we
may assume that ¢ has no zeros and no poles on {|z|=r}. Using the Holder’s

inequality, we have
dl—l ng - p
L Nrev-19)| d@
(%)

1 (2=
—?n_gi dz'*
(I el )

To evaluate the right hand side of this inequality, we set p=(R-+7r)/2 and apply
For |z|=r, we have

d? l'p 27 | log | p(pev=19)] |
Tdzt-v >( )‘ SO IPQ\/ 16—z |1+l d¢

SRURSITRD YR S Nal® J

ap<olla,—z|t " | p*—d,z|!
_ 1 |b,|*
+=D! |b§";p{[b—z|l +[[0 —b,z]|! }

and then
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d (gl)(reﬁio) ”’pé(“pszﬂ |log | p(pev=9)| ¢>p/p'

dzt='\ ¢ T Jo |pevid—ypev-io|it
(-1 o pl/p! \ r pl/p’
+ rpl/P' la#l<P{ aﬂ_reN/;19 + (p2/d‘u)__re‘\/jlo) }
(-1 ‘ ¥ plip’ ‘_ ¥ plip
+ ypUp 1b,|2<p{ b,—rev-if T (0%/by)—rev=1? }

Integrating each term with respect to # and using we obtain
1 Szn
2r Jo

(e[ Loy Y

0 | peVi— pevio| it

4

a (—%)(re“‘_lf’) "40

dzl—l

+Ky(n(p, @)+n(p, 1/¢)*

éKa(S:ndegu llog |p(pe=9)l| ¢)

o |pev 18— yev-if|itl
+K2(n(py SD)p,—i_n(p; 1/@)27') .

On the other hand, we have

p

Su do 1 Szn dé

— - —= —
o |pevT—rev-10|HT= (p—p)i-t Jo | p—rev-10]®

. 2
- (p-—-?’)l“l(pz—l’g)

and, by (1)
1 ce= ,,
5. log | p(pev )| dg=mlp, 9)+m(p, 1/g)

§2T<P, ¢)+K4 .
Therefore, we can conclude

1 S“(ws“ |log | p(pev-19)]|

27 Jo o |pev-19—rev-10| l+1d¢
2n - 1 or dﬁ
= V=-1¢
SO [log|§0(,02 1 )”d¢ o0 SO lpw/:w_ re“fwl‘“
= 1 il v7i8)||d
= T e 0B oo ldg
K;

= (F;;Sl T(R, (P) ’

667
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because p=(R+r)/2<R, p—r=(R—r)/2 and T(r, ¢) is a non-decreasing function
of ». Concerning the terms n(p, ¢)* and n(p, 1/¢)?', we can conclude easily
from the definition of counting function

R
n(p, p*H)= R—_?(N(R, e*)+Ke)

R
§§"}§::;;(7N(fe,90)4“1{5)

2
= .j?j:j;f(j“(]?’ 99)4‘}{§)

(cf., [6], p. 37). We have thus

’

2| -1 .
|, [z (B e ao
TR, ¢ , (TR, &)\
=K gy TR )

(LY

§3. A basic inequality.

Let f be a holomorphic map of the unit disc 4 into P*(C). Choosing homo-
geneous coordinates (w;: - : wy4y) on P*(C) arbitrarily, we take a reduced repre-
sentation f=(f,:-: fns1), Where f; (1=i=n-+1) are holomorphic functions
which have no common zeros on 4. After H. Cartan [1], we set u(z)

:= max log|fi(z)| and define the characteristic function of f by
1fisn+1

T(r, f)= —Z%Sznu(re“fw)dﬁ-u@) 0<r<1).

With each nonzero meromorphic function ¢=g/h on 4 we can associate the
holomorphic map &:=(g: h): 4—-P¥C). Note that

(3.1) T(r, =N, ¢)-+m(r, ¢)+0(1).

A bounded term in the characteristic function is not essential. We may identify
T(r, ¢) with the characteristic function for ¢ defined in §2.
For a holomorphic map f=(f,: - : fg+1): 4—P*(C), consider a meromorphic

n+1 +1 n+1
function ¢= 2, aifi/nZ‘ bi;f:, where Elb,;fﬁéo. Then, we see easily
i=1 i=1 i=

3.2) T(r, )=T(r, /)+0().
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Take hyperplanes
H;: ajwit - +ajnawan=0 (1=7=¢)
in general position such that f(4)& H,;. We define holomorphic functions
Fi=aufi+ - +an1f a1 (1=5=9)

and denote by W(fi, -+, fas1) the Wronskian of f,, ---, f,+;. The purpose of
this section is to prove the following

PROPOSITION 3.3. [In the above situation, take positive numbers t, p’, r, with
0<n(n+1)t/2<p’<1l and 0<r,<1. Then there is a constant K such that, for
ro<r<R<I,

SZ,".
0

Wito oo Land |y pptansgrevmmag =k (T80 DY

F.F, - F,
where || fIl=(f1l+ - + oIV
For the proof, we first recall two lemmas which were shown in the previous
paper [4].
LEMMA 3.4. There is a constant K, such that
Wt s Favd |y gen-i< W(Fy, -, Fipyy)
F\F, - F, 171 :K1(15i1<~'-<in+1§q F; ---Fi;l - )

LEMMA 3.5. Let F,, -, Fpy1 be nonzero holomorphic functions on 4 and set
©;:=F;/Fnyy 1=7=n). Then, there is a polynomial P(---, uj, ---) with real posi-
tive coefficients not depending on each Fy, -+, Fypiy such that

(g)(l—n , ) .

More precisely, with each indeterminate uj associating weight [, we can choose
P so as to be isobaric of weight n(n-+1)/2.

We need another lemma.

LEMMA 3.6. Let ¢y, -+, ¢ be nonzero meromorphic functions on 4, Uy, -1,
be positive integers and 0<r, <1, O0<t(ly+ -+ +1.)<p’<1. Then, there exists a
positive constant K, such that for ro<r<R<1

Sz:: (&)(ll-l)(rev“w) (ﬂ)(lk—l)(redﬁo) tdﬁ
0 ©1 Dk

W(Fy, -, Frai)

F1F2 = Fn+1 [§P(’

B TR, gyro e T(R, g,

<
~ (R—r)

where s;:=1;/(l;+ - +1p) U7 P).
PROOF. By the generalized Holder’s inequality, we obtain
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S27r
0

(%)”1”)(7’8‘/:“9) (g:)(lk_n(rev—i") \ tdﬁ
1

ﬁ(gzz (%)uj_l)(?’e“/‘w) t/deﬁ)sj.
= j

Since [(t/s;)=t(l;+ -+ +1r)<p’<1 by the assumption, we can apply
2.2 to show
en
(8

for each j=1, 2, ---, k. This gives because s;+ -+ +s,=1.
PROOF OF PROPOSITION 3.3. Since t<1, implies that
)

II/\

J

W(fh Ty fn+1) ¢
Flequ

W(Fily ) Fin+1)
E - F,

11 Tn+1

I F1Henr < K

1593 <ip 415¢

For our purpose, it suffices to show that
SZ” (rev=19)d @ <K5( T, ) )
0

R—r
for arbitrary iy, -+, a3 Wwith 1=4,< - <ip = q For brevity, we set ¢;:=
Fi;/Fy,,, and ¢, :=(p}/@)""P. By virtue of Lemma 3.5, we can estimate
W(F;, -, Fi,,.)
By Fup sy
some functions of type

(3.7) P=1Di 1, Pis 1y Piptshs

where 1=7,, 75, -+, J:=n and [;+L+ - +{,=n(n+1)/2. We now apply Lemma
3.6 to the functions ¢;,, ---, ¢;,. For the function ¢ given by we have

W(Fil’ Tt Fin+1)
F . F.

31 tn+1

from above by a positive constant multiple of the sum of

¢ K 8 rs
dos—"—- R—n)7 T(R, )P %1~ T(R, @p)?'*k .

e

On the other hand, the right hand side of this inequality can be replaced by

K&%)p: because of and s;+ -+ +s,=1. This completes the proof of

IProposition 3.3,

§4. Non-integrated defect relation.

Let M be an open Riemann surface and f a non-constant holomorphic map
of M into P™(C). For arbitrarily chosen homogeneous coordinates (w;: - : Wn+1)
we take a reduced representation f=(f,::-+: f.:1). Consider a hyperplane
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H:a,wi+ - +ans1Wns1=0

with f(M)Z H. Using the holomorphic function

4.1) F=a,fi+ - +ani1fns1»
we define the intersection multiplicity of f(M) and H at f(p) by
0 if F(p)+#0
vI(H)(p)= ,
m if F has a zero of order m at p.

DEFINITION 4.2. For an arbitrarily fixed positive integer p, we denote by
af(H) the largest lower bound of nonnegative number 7 satisfying the condition
that there is a subharmonic function » such that e¢* is of class C,

4.3)  u=nlog|fll, and

(4.4) for each point p< f~(H), if we choose a holomorphic local coordinate
¢ around p, then

w(@)— min (W (H)(p), po)log|C—L(p)]

is subharmonic, where |f[|=(|f;|>+ = +|frs1| )%
We now define the non-integrated defect of H by

34 (H):=1—al (H).

As is easily seen, d7,(H) depends on f, H, p, only. For the reason why we
call 9/,(H) non-integrated defect, see the proof of Proposition 4.7 below.

PROPOSITION 4.5. If there is a bounded nonzero holomorphic function g on
M such that g has zeros of order at least min(v/(H)(p), po) for each point pe
fH), in particular, if f(M)NH=Q@, then 6} (H)=1.

Proor. Take a constant K with |g|=<K and set 7:=0, u:=log|g/K].
Theysatisfy conditions (4.3) and (4.4), whence we have [Proposition 4.5

PROPOSITION 4.6. If there is a positive integer p>p, such that v/(H)(p)=p
for each point pe f~(H), then o4 (H)=1—p/p.

Proor. Consider the function F' defined by and set pi=p/py, u:=
(¢to/ ) log |F/K|, where K is a constant with |F|=KJ|f||. They satisfy condi-
 tions (4.3) and (4.4). For, in a neighborhood of each point p<=f-*(H) u can be
written as

I
@=L log g g(9))

with a subharmonic function u, and

pov? (H)(p)

p = pto= min (W (H)(p), o)
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by the assumption. This implies [Proposition 4.6l
For a holomorphic map f of the set 4(R,)={|z| <R,} (Ry=-+o0) into P*(C)
with lirfrel T(r, f)=cc0 and a hyperplane H in P*(C) with f(4(R,))Z H, the defect
Land 1)

of H is usually defined to be liminf(1—N(», H)/T(r, f)). We consider here the

r-Ry

modified defect

i _ Npr, H)
5,’50(H).—117r£1£1f(1 e )

where N, (r, H) is defined by

" Npg(t)— My (0)

, ; dt+mn, (0)logr

N, (r, H)::S

with the number n#D(t)zlzﬂmin(vf(H)(z), o)-
z|
PROPOSITION 4.7. For every positive integer p,, we have
0=0f (H)=o%(H)=1.

ProOF. Let F be the function defined by [4.I). Then, there is a constant
K with |F|<K]f|l. If we choose »:=1 and u:=log|F/K]|, they satisfy the
conditions (4.3) and (4.4). This shows that 8/ (H)=0. To show 0/ (H)=d%,(H),
take a number =0 and a subharmonic function u satisfying the conditions (4.3)
and (4.4) arbitrarily. We integrate both sides of (4.3) and get

1 2T o 7] 2w o
= =7 V=6
o So u(rev-19)df < o SO log| f(rev-19))d8 (0<r<R).

On the other hand, we see easily

S| logll frev BT, f4-0W)
and, moreover

N, (r, H )é—zl?gjﬂu(re«fw)dﬂou)

by the use of the condition (4.4) (cf., [6], p. 120). Therefore,

1im$'~113*zy‘—Z '*H*'Ilimsup 1T(, /)10 <

rry TG, f) R TG f)
Taking the largest lower bound of y’s, we can replace the right hand side of
this inequality by a{,o(H ). This gives the desired conclusion. Another relation
0%, (H)=1 is obvious and so we have [Proposition 4.7, ,
We now consider an open Riemann surface M with a conformal metric ds?
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and a holomorphic map f=(fi, fs, ===, f4) of M into P"*"*C):=P"{C)X -
XP" ).

DEFINITION 4.8. We shall call f to be non-degenerate if each component f;
of f is non-degenerate, namely, f;(M) is not contained in any hyperplane in
Pri(C).

Take a reduced representation f;=(f:*: fin;+1) for each component f; of
S and set [[fill=(1fal®+ - | fingea|DVE

DEFINITION 4.9. For positive numbers p;, -+, p, we shall say that f satisfies
condition (C,,..,,) if there exists a subharmonic function # on M such that e*is
of class C~ and

Ae = faller - | elleE,

where 4 is a positive real-valued function on M with ds*=4%|dz|® for a global
holomorphic function z with dz+0 on M.

As is easily seen, this condition does not depend on particular choices of
representations of f,, ---, f, and ds®

We can prove the following non-integrated defect relation.

THEOREM 4.10. Let M be an open Riemann surface with a complete conformal
metric ds® which has infinite area and f : M—P"""x(C) be a non-degenerate holo-
morphic map satisfying condition (C,,.,,). For each i (1=i<k) take hyperplanes
Hy, -+, Hy, in P™(C) located in general position. Then, if

4,
El 5{128(1—]1'0]‘) >nit1

for every i (1=i<k), we have

k Pini(ni+1) -
B S Ho - +OhHug—ni—1 =

The proof will be given in the next section.
REMARK 4.11. The only property of (M, ds?) which we need for the proof

of [Theorem 4.10| is that Sue“da:oo for any smooth subharmonic function u

(2—o0) on M. As was shown by S.T. Yau ([14]), this follows from the assump-
tion that (M, ds?) is complete and has infinite area.

§5. Proof of non-integrated defect relation.

To prove we first recall some results in value distribution
theory.

THEOREM 5.1. Let f be a non-degenerate holomorphic map of A(R)={z:
|2| <R¢} (Ry=<+00)into PMC) and H,y, -+, H, hyperplanes in general position. (i)
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If Ry=co, or (ii) if Ry<oo and limgupT(r, 1)/ —log (Ry—r)=c0, then
=Ry

3 o) <n+1 .

For the proof, see H. Cartan [ 1].

REMARK 5.2. By virtue of [Proposition 4.7, the terms 0%(H;) in the above
conclusion can be replaced by the non-integrated defects d4(H,).

PROPOSITION 5.3. Let f: Ad(R,)—P™(C) be a non-degenerate holomorphic map

with a reduced representation f=(f,: -+ fa+1) and consider the functions Fy, -, F,

defined by (4.1) for hyperplanes H,, ---, H, in general position. Then, for every

point p the order of poles of the meromorphic function W(?}?---, {?"“) at p is
Fy -+ F,

not larger than él min (' (H,)(p), n).
p

For the proof, see H. Cartan [1].
PROPOSITION 5.4. Let T(r) (0=r<1) be a continuous increasing function with
T(r)=z1l. Then, we can find a set E,= O (7, 1] (ri1<r,=ri=1) such that
y=1

S ﬁgz and
Eg 1—7’

1—r

eT(r)

T(r+— o )S200)
for every r& E,.

For the proof, see Hayman [5], pp. 38-39.

PROPOSITION 5.5. Suppose that a positive real-valued function T(r) on [0, 1)
satisfies the condition that

1
T(= ’(l_r)p

dr.
Ey 1—r
Then there exists a positive constant’ K such that

for a set Eq=\J [r,, ri] (ri-.<r,=r)) with S <co and a positive number p.
v=1

K
= a=pe

for every r<[0, 1).
PrOOF. We may replace T(r) by T*(r):sppT(r’). So, it may be assumed

that T'(r) is an increasing function. By the assumption, we see

4
v dr 1—r,
Sr, 1—r _glog 1—‘-7’;'WKO<OO ’

pX

v
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If r,<r=r], then

Tr=

. 1 (1=r, )p
1—r)? ~ (1—r)?\1—7,

K K
ePHRo ep 0
<

< <
(A=) T Q=

It suffices to take K=eP%o,

We now start to prove Take an open Riemann surface M
with a conformal metric ds?, a holomorphic map f=(f,, -+, fi) : M— P ™(()
and hyperplanes H;; (1=</<k, 1=<;=<gq,) satisfying the assumption of
4.10. Consider the universal covering surface o : M—M with metric d§?=1w*ds?
and the map f=(fi, -, /%) : M—P""k(C), where f;=w-f;. Obviously, (M, d3?)
and f satisfy the assumption of and 844 H,)<0%i(H,;). According
to these facts, we may assume that M is simply connected. Then, M is biholo-
morphic either to C or to the unit disc 4. If M=C, we have

quaﬁ(Hij)éni—l‘l
P

for every ¢ and, moreover, if M=4 and

T(r, fi) _

lim sup i
log1~

r-1

for some 7,, then we have
q f
El5n%g(Hioj)§ni0+1 ,

because of Remark 5.2.
Let us study the case M=4 and

T(r, [4) < oo

log 2

(5.6) lim sup

-1

for every :=1,2, ---, k. The proof is given by reduction to absurdity. We
assume that

93
_21 04i(Hij)>n;+1
£

for every 7 and

Zk) oini(n;+1)

& ST HD+ A5 Hegg—ne—1

By the definition of non-integrated defect, we can choose nonnegative numbers



676 H. FujyiMoTo

7:; and subharmonic functions u;; such that ¢*ij is of class C> and

LJ pini(n;+1)
. 121 (I=nu)+ -+ +A—=nig)—n:—1 <1,
(5.8) e i | f]|7i7,

and in a neighborhood of each point p<f~Y(H)

ui(Q)— min (w/i(Hy,)(p), ni)log|E—L(p)]
is subharmonic, where || /;[|=(|f|*+ - +| fin;411®"? for reduced representations
fi=(far:-+: fing+) and  is a holomorphic local coordinate around p. Set

W(fil) Tty fini—H) 4
Fi "‘Fiqi +J§1uijy

(5.9) v; :=log
where each F;; denotes the function defined as for a holomorphic map f;
and a hyperplane H;;. As is easily seen by [Proposition 5.3, each v; is subhar-
monic on 4. On the other hand, by the assumption that f satisfies condition
(Cp,0p), there exists a subharmonic function w on 4 such that e* is of class
C> and

(5.10) AeV | fallPr e | fallo,
where ds?=A%|dz|% Set
t; = zpl
g 1=(gat o gy
X'i ::W(fily Ty fini+1)

FiFis - Fy,
and define a subharmonic function

U =2w-+twt o Ftve.
Then, by [5.10), (5.9) and [5.8) we have

CUAP S TITTHIRTR | £ [[201 - || f [20%

k

< T |2 |etecusnt=suigy | £, oo
i=1
k

< T 12| 4] [ tecriatsniap 2o
i=1

k
< I [ 4] falsosmmien

Therefore, if we set
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o o timinet) 0 pmdngetD)
L 2 N Qi—ni—l—(0i1+ +mqi)
P vv"gi

P T s

and t;:=t;/p;, we obtain by the generalized Holder’s inequality

[ arevido (LT Il fasaren)rer0)dd

= i.ﬁl(gix(lxi | Sf ) rev10)d )

By to:=s;+ - +s,<1l. Take p’ with t,<p’<1. Then, tin;n,+1)/2=
tp,<p’<1l. We now apply [Proposition 3.3 to show

TR, f4) _)"'

PPN P SR N -6 <
[maasira (re0d0 <K~ p ]

for all r, R; with r,<r<R;<1, where r,>0 and K, is a constant not depending

on each », R;. We choose here R;:=r+(1—#)/eT(r, f;). By virtue of Proposi-

tion 5.4, we can find a set Eg=J [, r{] (r}-1<r=ri<1) such that SE 1/1—7)dr
v= 0

<co and T(R;, f)Z2T(r, f4) for every vr&E,. Therefore, we get

t=1
1 v I \»
=K (I—r)? \log l—r>

for all r&E,, where we used [5.6). Take a number p” with p’<p”<1. After
a suitable change of a constant K, we can conclude

Szn(e"l"’)(re“’*“’)dﬁé—» = (ré&Eo).

(-7

Moreover, we can omit here the restricted condition »¢ E, by the help of Prop-
osition 5.5. Thus, we have

SSA(Q"Zz)(reV:‘”)rdrdﬁ§K4SI rdr

o (T=rpr <%

On the other hand, by the result of S.T. Yau ([14]), we have necessarily

]t
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(cf., Remark 4.11). This is a contradiction. So, the proof of is
completed.

§6. The Gauss map of a complete minimal surface in R™,

The purpose of this section is to prove Theorems stated in §1. Let x=
(x4, ©*, Xm): M—R™ be an oriented complete minimal surface in R™ (m=3). For
our purpose, we can replace M by the universal covering surface. So, there is
no harm in assuming that M is simply connected. By associating a holomorphic
local coordinate z=u-t++/—1y with each positive isothermal local coordinates
(u, v), M is considered as a Riemann surface with a conformal metric ds® Since
there is no compact minimal surface in R™, M is biholomorphically isomorphic
to C or the unit disc. We note here that M has infinite area because M is of
non-positive curvature,

By definition, the Gauss map G of M is given by G==:0X/0Z, where z is
a global holomorphic coordinate on M and =z is the canonical projection of
C™—{0} onto P™"%C). Set n:=m—1. The conjugate f=G of G is represented
as f=(fy1::fas1), wWhere f,=0x;/0z (1=/=n-+1). This representation is
reduced because x is an immersion. As is well known, it holds that

(6.1) fit+ -+ fia=0.

This means that f(M)EQn-o(C)={wi+ -+ +wi,=0 (CTP™XYC). Set |
=] f1]2+ - +|fnel®¥2%  Then, the metric ds? on M induced from the standard
metric on R™ is given by

(6.2) ds*=2||f|*|dz|".

This shows that the map f: M—P"(C) (n=m—1) satisfies condition (C,). We
can apply to the map f and conclude

nin-+1)

>1
Z =
2 0h(H)—n—1
j=1
for arbitrarily given hyperplanes H,, ---, H, in general position if f is non-

degenerate. This gives

We consider next the particular case m=3. As is well-known, Q,(C) is
biholomorphically isomorphic to the Riemann sphere PYC)=C\J{co} by the map
¢ defined as

Ws
wl—'\/_le

o(w)=

for each w=(w;: w,: w;)eQ.(C). Instead of the map f we study the map g=
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¢-f: M—P¥C). Assume that M is non-flat. Then g is not a constant. Take
a nonzero holomorphic function s such that g,:=f3/h and g,:=(f,—+/—1f2)/h
are both holomorphic and have no common zero. Then, g has a reduced repre-
sentation g=(g;: g:). We see easily by

fl’*‘\/jl-fz:—*{_;&, fr—‘\/:]:fz:hgg.

Therefore,
21 fI1P=f1t~/ =1 P+ f1—/—=1F=12+2] f5|*

_ |k

N | g:|?

lgl*,

where ||gll=(]g:]*+1g:1®)"% Since |f[|#0 everywhere, we can easily conclude
that g,/h is holomorphic on M. So, u=log|g./h| is subharmonic. In view of
this shows that the map g: M—PYC) satisfies condition (C,). Applying
to the map g, we obtain

Lastly, we consider the case m=4. The quadric Q,(C) in P3C) is biholo-
morphically isomorphic to P*(C)X PYC) by the map ¢=¢,X ¢, defined as

_ wetv—lw, _ —wytV 1w,
Pi(w)= wi—v—1w,’ Pow)= wi—~—1w,
for each w=(w,: - : w,)eQ,(C), where for the point w=(w;:---: wy with w,;=

~/—1w: ¢(w) are properly defined so as to be continuous on the totality of Q.(C)
(cf., [7], p. 20). For the conjugate f of the Gauss map of a given minimal
surface M, we consider the meromorphic functions g,=¢,-f and g.=¢,.-f. In-
stead of we shall give the following more precise result.

THEOREM 6.3. Let x=(x;, x5, X3, X4) : M—R* be a non-flat complete minimal
surface and gy, g.: M—PY(C) be the above-mentioned meromorphic functions.

(iy Assume that g,Zconst and g.,%const. Then, for arbitrary numbers
ay, -, g, and By, -, Bg, with asFa; if i#] and B+ P if k+l, we have at
least one of the following conclusions:

(@) 3 ofa)=2,
Jj=1

2
(b) >ot(Ba=2,

© 1 I 1

q q2
S ota)—2 31688y —2
j=1 k=1

1\
v =

(ii) Assume that g,%const and g,=const. Then, for arbitrary distinct num-
bers ai, -+, ag, we have
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g
;15f1(aj)§4.
PROOF. As usual, we may assume that M is simply connected. Take a
global coordinate z on M and set f;:=0dx;/0z (=1, 2, 3, 4. We choose holo-

morphic functions gi;, g1s, ge1, &2 Such that

g:-£3+\/£1‘f4f: S12 ga= *’f +4/— 1f4 812
' fl——'\/—lf2 gn’ a fi— V= 1f2 821

and [gil*:=gul®+ 1211?#0, [gali®:=[gaul*+|g2|*+0 everywhere. Then,
since

(fl, fa fa, fo= fl \; 1f2 (1+g1g2, V= l(l—glgz) B1— 82 — —+/— l(gl-l—gz))

(cf., [7], p. 20), we have

2IFP=2C1 1P L ol Fal® 1 ful®
_1h?
L

=gl gnprlenl* gl gal*+ 1 2al,

g1z Ko 2
g1 82

1 812822
11821

812 | Ben

g1 a1

g i 1 8182 |
818z

)

where h:=f,—+/—1f.. Set u:=log(|gug:l/lA]), which is subharmonic on
M because | f||#0 everywhere. The above equation can be rewritten

(6.4) Ae*=lg:illg.l,

where ds*=2%|dz|%. Consider first the case g,7%const and g,%const. Then the
map g (g1, g2): M—PYC)XPYC) satisfies condition (C;;) by [6.4) Applying
to the map g, we have the conclusion (i) of [Theorem 6.3 For
the case g,*const and g,=const, we can take g,; and g,, as nonzero constant
functions. It follows from that the holomorphic map g,: M—P¥C) satisfies
condition (C;). By we have the conclusion (ii) of

PROOF OF THEOREM 1.4. By the assumption that M is non-flat, either g,
or g, is not constant. If one of g; and g, is constant, the conclusion of Theo-
rem 1.4 is true by the conclusion (i) of [Theorem 6.3, Assume that g,const
and gﬁéconst and, for one of g, and g,, say g, there exist distinct numbers
B1, -+, Bg, such that

S 388>6.

We have necessarily conclusion (a) or (c) of for arbitrary distinct
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numbers ai, .-+, @, and the above $,, =+, B,,. In each case, we can conclude

Mo

0§ a;)=6.

Jj=1

This completes the proof of
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