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Introduction.

There is a close relationship between Sylow intersections, fusion, and factori-
zations in finite groups. This is probably best illustrated by the following ex-
amples. Let $P$ be a prime and $G$ be a group of order divisible by $p$ . Define $\mathcal{H}_{0}$

to be the set of all nonidentity $P$ -subgroups $H$ of $G$ such that $N_{G}(H)/H$ is P-
isolated in the sense of Goldschmidt [10]. Let $\mathfrak{N}_{0}$ be the set of the normalizers
of the elements of $\mathcal{H}_{0}$ . Then the following holds.

(1) $\mathfrak{N}_{0}$ controls Sylow $p$-intersections in $G$ .
(2) $\mathfrak{N}_{0}$ controls $p$-fusion in $G$ .
(3) If $G$ is not $P$-isolated and $S\in Sy1_{p}(G)$ , then

$G=\langle N\in \mathfrak{N}_{0} ; S\cap N\in Sy1_{p}(N)\rangle N_{G}(S)$ .
In the above, (1) is essentially a lemma in [11, (2.3)], and the reader is

referred to Kondo [16, Lemma 2] for a generalization of (1) and the precise
meaning of ’control’ in (1) (the definition of the control in the most general form
will be given in the first section of the present paper). The proposition (2) is a
theorem of Goldschmidt [10, Theorem 3.4] improving Alperin’s fusion theorem
[1]. The proposition (3) is considered to be a sort of $p$ -factorization theorem,
and is an easy consequence of (1). It has already been pointed out that (2) can
easily be derived from (1) also [12, Proposition 2.4], [16, Theorem 1].

Still more interesting than (1), (2), and (3) are the following theorems of
Aschbacher [3] and P. McBride.

(4) If $G$ is a group of characteristic 2 type, $S\in Sy1_{2}(G)$ , and $G$ is not gen-
erated by the normalizers of nontrivial characteristic subgroups of $S$ , then either $G$

is 2-isolated or some maximal 2-local subgroup of $G$ has a block in $\mathfrak{X}$ .
(5) If $G$ is a group of characteristic 2 tyPe in which each simple section of

each 2-local subgroup is of known tyPe and if 2-fusion in $G$ is not controlled by
the normalizers of nontnvial characteristic subgroups of a Sylow 2-subgroup of $G$ ,

then some maximal 2-local subgroup of $G$ has a block in $\mathfrak{X}$ .
In the above, (5) was announced at the A.M.S. Summer Institute held at the
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University of California, Santa Cruz, in 1979. Now since (4) and (5) are analogous
to (3) and (2), respectively, and since (2) and (3) are easy consequences of (1), it
seems natural to ask whether there is a theorem on the control of Sylow 2-
intersections from which (4) and (5) are easily derived. In this paper, we show
that such a theorem exists. Our result may be phrased as follows.

(6) We can $as\alpha gn$ to each nonidentity 2-group $S$ a Pair of nonidentity charac-
teristic subgroups, $A_{S}$ and $B_{S}$ , with the following properties: $A_{S}\leq\Omega_{1}(Z(S))$ , and
whenever $G$ is a grouP of characteristic 2 type in which each simple section of
each 2-local subgroup is of known type, Sylow 2-intersections in $G$ are controlled
by $C_{G}(A_{S}),$ $N_{G}(B_{S})$ (as $S$ ranges over $Sy1_{2}(G)$ ), and maximal 2-local subgroups of
$G$ having a block in $\mathfrak{X}.(1)$

This result is obtained by combining the theorems 4.2 and 4.10 of this paper,
a variant of a theorem of Glauberman and Niles [9] proved in the thesis [7] of
N. R. Campbell, and a theorem of Aschbacher [4] on GF(2)-representations. Com-
bining (6) with the theorems 1.4 and 1.5 of this paper, we can make improve-
ments on (4) and (5) under the assumption that each simple section of each 2-
local subgroup of $G$ is of known type (this assumption is actually superfluous,
since it is reported that the program to classify the finite simple groups has been
finished).

It should be mentioned that Foote [8] has developed a theory of blocks in
groups of characteristic 2 type, and that R. Solomon and S. K. Wong have studied
the so-called ’standard blocks’ in groups of characteristic 2 type [17], [18]. If
some maximal 2-1ocal subgroup of a simple group $G$ of characteristic 2 type has
a block in $\mathfrak{X}$ , then we can identify $G$ by their work.

The organization of the paper is as follows. In the first section, we give a
definition of control of Sylow p-intersections and control of $p$-fusion by a normal
set of subgroups modelled after (1) and (2), and then we study the relationship
between control of Sylow $P$-intersections, control of p-fusion, and p-factorizations.
Furthermore, we prove three fundamental theorems 1.7, 1.11, and 1.12. In the
second and third sections, we give a brief summary of two basic tools to be
used in the proof of the main theorem of this paper: control of Sylow 2-inter-
sections in groups of Chev (2) type and groups of alternating type, and $GF(2)-$

representations of finite groups. In the fourth section, we prove the main theo-
rem of this paper, Theorem 4.11. In the concluding remarks, we precisely restate
the proposition (6) and its consequences using the terminology and notation to
be introduced in the first and fourth sections.

(1) When I wrote this manuscript, I was unable to explicitly define $A_{S}$ and $B_{S}$ .
Some progress has been made since then, and we are now able to explicitly define $A_{S}$ and
$B_{S}$ . For instance, we may define $As=\Omega_{1}(Z(S))$ . For details, the reader is referred to
my paper “Characteristic pairs for $2\cdot groups$

’ which will be published elsewhere.
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1. Sylow intersections, fusion, and factorizations.

Let $p$ be a prime, $G$ be a group of order divisible by $p$ , and $\mathcal{F}$ be a normal
set of subgroups of $G$ . For $S\in Sy1_{p}(G)$ , let $\mathcal{F}(S)=\{X\in \mathcal{F};S\cap X\in Sy1_{p}(X)\}$ .

1.1 DEFINITION. The normal set $\mathcal{F}$ of subgroups of $G$ is said to control
Sylow $p$-intersections in $G$ if for each pair $S,$ $T$ of distinct Sylow $p$-subgroups of
$G$ with $S\cap T\neq 1$ , there exist Sylow $p$-subgroups $S_{0},$ $S_{1},$ $\cdots$ , $S_{n}$ of $G$ , elements
$X_{1},$ $\cdots$ , $X_{n}$ of $\mathcal{F}$ , and an element $x_{i}\in X_{i}$ for each $i$ satisfying the following
conditions:

(1) $S_{0}=S$ and $S_{n}=T$ ;
(2) $X_{i}\in \mathcal{F}(S_{\ell- 1})\cap \mathcal{F}(S_{i})$ for each $i$ ;
(3) $S_{i}^{x_{i}}=S_{i- 1}$ for each $i$ ;
(4) $S\cap T\leq S_{i}\cap X_{t}$ for each $i$ .

When $\{S_{i}\},$ $\{X_{i}\}$ , and $\{x_{i}\}$ are as above, we say that $S$ is conjugate to $T$ via
$\{S_{i}\},$ $\{X_{i}\}$ , and $\{x_{i}\}$ , or via 9, even if $S=T$ or $S\cap T=1$ .

1.2 DEFINITION. The normal set $\mathcal{F}$ of subgroups of $G$ is said to conirol p-
fusion in $G$ if $\mathcal{F}$ satisfies the following condition: whenever $A$ is a subset $\neq 1$ of
$S\in Sy1_{p}(G)$ and $g$ is an element of $G$ with $A^{g}\leq S$ , there exist elements $Y_{1},$

$\cdots,$
$Y_{n}$

of $\mathcal{F}(S)$ , an element $y_{i}\in Y_{i}$ for each $i$ , and an element $y\in N_{G}(S)$ such that

(1) $A^{g}=A^{y_{1}\cdots y_{n}y}$ , and
(2) $A^{y_{1}\cdots y_{i}}\leq S\cap Y_{i}$ for each $i$ .

If we replace the condition (1) above by the stronger condition

(1’) $g=y_{1}\cdots y_{n}y$ ,

we obtain the definition of strong control of $p$-fuszon in $G$ .
1.3 LEMMA. Let $S,$ $T\in Sy1_{p}(G)$ and assume that $S$ is conjugate to $T$ via $\{S_{i}\}$ ,

$\{X_{i}\}$ , and $\{x_{i}\}$ . Then there exist elements $Y_{1},$ $Y_{2\}}\ldots$ , $Y_{n}$ of $\mathcal{F}(S)$ and an element
$y_{i}\in Y_{i}$ for each $i$ such that $y_{1}y_{2}\cdots y_{i}=x_{i}\cdots x_{2}x_{1}$ and $(S\cap T)^{y_{1}y_{2}\cdots y_{i}}\leq S\cap Y_{i}$ for
each $i$ .

PROOF. Define $y_{i}=x_{i}^{x_{i-1}\cdots x_{2}x_{1}}$ and $Y_{i}=X_{i}^{x_{i-1}\cdots x_{2}x_{1}}$ . It readily follows by in-
duction on $i$ that $y_{1}y_{2}\cdots y_{i}=x_{i}\cdots x_{2}x_{1}$ . As $x_{i}\in X_{i}\in \mathcal{F}(S_{i- 1})$ and $S_{l-1}^{x_{i-1}\cdots x_{2}x_{1}}=S$ ,
$y_{i}\in Y_{i}\in \mathcal{F}(S)$ . We may deduce as follows:

$(S\cap T)^{y_{1}y_{2}\cdots y_{i}}=(S\cap T)^{x_{i}\cdots x_{2}x_{1}}$

$\leq S_{i}^{x_{i}\cdots x_{2}x_{1}}\cap X_{i}^{x_{i-1}\cdots x_{2}x_{1}}$

$=S\cap Y_{i}$ .
The proof is complete.

1.4 THEOREM. The normal set $\mathcal{F}$ of subgroups of $G$ controls Sylow p-jnter-
sections in $G$ if and only if $\mathcal{F}$ strongly controls $p$-fusion in $G$ .
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PROOF. Assume that $\mathcal{F}$ controls Sylow $P$-intersections in $G$ . Suppose $S\in$

$Sy1_{p}(G),$ $1\neq A\leq S,$ $g\in G$ , and $A^{g}\leq S$ . Let $T=S^{g}-1$ Then $A\leq S\cap T$ and so
$S\cap T\neq 1$ . If $S=T$ , then $g\in N_{G}(S)$ . Assume $S\neq T$ . Then $S$ is conjugate to $T$

via, say, $\{S_{i}\},$ $\{X_{i}\}$ , and $\{x_{i}\}$ . Choose $Y_{i}$ and $y_{i}$ as in 1.3. Then $A^{y_{1}y_{2}\cdots y_{i}}\leq$

$(S\cap T)^{y_{1}y_{2}\cdots y_{i}}\leq S\cap Y_{i}$ and $S=T^{x_{n}\cdots x_{2}x_{1}}=S^{gy_{1}y_{2}\cdots y_{n}}-1$ and so $g\in y_{1}y_{2}\cdots y_{n}N_{G}(S)$ .
This shows that $\mathcal{F}$ strongly controls $p$-fusion in $G$ .

Assume that $\mathcal{F}$ strongly controls $P$-fusion in $G$ . Suppose $S,$ $T\in Sy1_{p}(G)$ ,
$S\neq T$ , and $S\cap T\neq 1$ . Let $A=S\cap T$ and choose $g\in G$ so that $T^{g}=S$ . Then
$A^{g}\leq S$ and so there exist elements $Y_{1},$ $\cdots$ , $Y_{n}$ of $\mathcal{F}(S)$ , an element $y_{i}\in Y_{i}$ for
each $i$, and an element $y\in N_{G}(S)$ such that $g=y_{1}\cdots y_{n}y$ and $A^{y_{1}\cdots y_{i}}\leq S\cap Y_{i}$ for
each $i$ . Let $z_{i}=(y_{1}\cdots y_{i})^{-1},$ $S_{i}=S^{z_{i}},$ $X_{i}=Y_{t^{i}}^{z}$ , and $x_{i}=y_{t^{i}}^{z}$ . Then $S$ is conjugate
$t_{O}T$ via $\{S_{t}\},$ $\{X_{i}\}$ , and $\{x_{i}\}$ . Therefore, $\mathcal{F}$ controls Sylow $P$-intersections in $G$ .

1.5 THEOREM. If the normal set $\mathcal{F}$ of subgroups of $G$ controls Sylow p-
intersections in $G$ and if $G$ is not $p$-isolated, then $G=\langle \mathcal{F}(S)\rangle N_{G}(S)$ for each $S\in$

$Sy1_{p}(G)$ .
PROOF. Let $g\in G-N_{G}(S)$ and set $T=S^{g}-1$ As $G$ is not p-isolated, $S$ is

joined to $T$ by a chain of Sylow $p$-subgroups of $G$ containing $S\cap T$ such that
the adjacent Sylow $p$-subgroups are distinct and intersect nontrivially. There-
fore, $S$ is conjugate to $T$ via, say, $\{S_{i}\},$ $\{X_{i}\}$ , and $\{x_{i}\}$ . As in the proof of 1.4,
we have $g\in y_{1}y_{2}\cdots y_{n}N_{G}(S)$ , where $y_{i}\in Y_{l}\in \mathcal{F}(S)$ for each $i$ . Therefore, $g\in$

$\langle \mathcal{F}(S)\rangle N_{G}(S)$ .
1.6 DEFINITION. Let $\mathcal{H}_{0}=\mathcal{H}_{0,p,G}$ be the set of all nonidentity p-subgroups

$H$ of $G$ such that $N_{G}(H)/H$ is $P$-isolated. For each $H\in \mathcal{H}_{0}$ , let $N\int(H)$ be the
subgroup of $N_{G}(H)$ containing $H$ such that N\S (H)/H is the unique minimal sub-
normal subgroup of $N_{G}(H)/H$ of order divisible by $p$ . That $N\int(H)$ exists follows
from the following fact (see [16, \S 1]): if $X$ is a $P$-isolated group of order di-
visible by $p$ , then any normal subgroup of $X$ of order divisible by $P$ is also p-
isolated, and the intersection of any two normal subgroups of $X$ of order divisi-
ble by $P$ is also of order divisible by $p$ .

1.7 THEOREM. If for each $H\in \mathcal{H}_{0,p,G}$ , N$(H) is contained in some member
of the normal set $\mathcal{F}$ of subgroups of $G$ , then $\mathcal{F}$ controls Sylow $p$-intersections in $G$ .

PROOF. Suppose the theorem is false, and choose $S,$ $T\in Sy1_{p}(G)$ so that

(1) $S\neq T$ and $H=S\cap T\neq 1$ ,
(2) $S$ is not conjugate to $T$ via 9, and
(3) $|H|$ is maximal subject to (1) and (2).

Choose $Q,$ $R\in Sy1_{p}(G)$ so that $N_{S}(H)\leq N_{Q}(H)\in Sy1_{p}(N_{G}(H))$ and $N_{T}(H)\leq N_{R}(H)\in$

$Sy1_{p}(N_{G}(H))$ . Then $H<S\cap Q$ and $H<R\cap T$ . If $Q=R$ , then $S\neq Q\neq T$ and $S$ is
conjugate to $T$ via $\mathcal{F}$ by (3), a contradiction. Therefore, $Q\neq R$ , and $Q$ is not
conjugate to $R$ via $\mathcal{F}$ by (2). So $Q\cap R=H$ by (3), and replacing $S,$ $T$ by $Q,$ $R$ ,

we may assume that $N_{S}(H)$ and $N_{T}(H)$ are Sylow $p$-subgroups of $N_{G}(H)$ . It



Sylow 2-intersections 575

then follows from (3) that $N_{G}(H)/H$ is $p$-isolated, and so $N=N_{G}^{*}(H)$ is contained
in some member $X$ of $\mathcal{F}$ . We may choose $U,$ $V\in Sy1_{p}(G)$ so that $S\cap N\leq U\cap X\in$

$Sy1_{p}(X),$ $T\cap N\leq V\cap X\in Sy1_{p}(X)$ , and $V^{x}=U$ for some $x\in X$. As $H<S\cap U$ and
$H<V\cap T,$ $S$ is conjugate to $T$ via $\mathcal{F}$ by (3). This is a contradiction proving 1.7.

1.8 LEMMA. Let $S\in Sy1_{p}(G)$ and let $G_{i}(i=1,2)$ be subgroups of $G$ contain-
ing $S$ with $G=G_{1}G_{2}$ . Then for each $g\in G$ there exists $U\in Sy1_{p}(G)$ such that
$s_{\cap S^{g}\leq U\leq G_{1}\cap G_{2}^{g}}$ .

PROOF. Let $g=g_{2}g_{1}$ with $g_{i}\in G_{i}(i=1,2)$ . Then $S^{g_{1}}\leq G_{1}\cap G_{2}^{g_{1}}=G_{1}\cap G_{2}^{g}$

and $S\cap S^{g}\leq G_{1}\cap G_{2}^{g}$ . Therefore, the assertion follows from Sylow’s theorem.
1.9 LEMMA. SuppOse $\mathcal{E},$

$\mathcal{F}$ , and $\mathcal{D}$ are normal sets of subgroups of $G$ and the
index of each member of $\mathcal{E}\cup \mathcal{F}$ in $G$ is not d2vistble by $p$ . Assume that for each
$S\in Sy1_{p}(G)$ and each $E\in \mathcal{E}(S)$ there exist $F_{1},$ $F_{2}\in \mathcal{F}(S)$ such that $E=(F_{1}\cap E)(F_{2}\cap E)$ .
Then if $\mathcal{E}\cup \mathcal{D}$ controls Sylow $p$-intersections in $G$ , so does $\mathcal{F}\cup \mathcal{D}$ .

PROOF. Suppose $S,$ $T\in Sy1_{p}(G)$ and $E\in \mathcal{E}(S)\cap \mathcal{E}(T)$ . Choose $F_{1},$ $F_{2}\in \mathcal{F}(S)$ so
that $E=(F_{1}\cap E)(F_{2}\cap E)$ . As $S,$ $T\in Sy1_{p}(E)$ , there is an element $g\in E$ such that
$T=S^{g}$ . As $S\leq(F_{1}\cap E)\cap(F_{2}\cap E)$ , there exists $U\in Sy1_{p}(G)$ such that $S\cap T\leq U\leq$

$(F_{1}\cap E)\cap(F_{2}\cap E)^{g}$ by 1.8. As $\langle S, U\rangle\leq F_{1}$ and $\langle U, T\rangle\leq F_{2}^{g},$ $S$ is conjugate to $T$

via $\mathcal{F}$ . This proves 1.9.
1.10 DEFINITION. Let $f$ be a mapping which associates with each $p$-subgroup

$P$ of $G$ a set $f(P)$ of subgroups of $P$ such that

(1) $N_{G}(P)\leq N_{G}(F)$ for each $F\in f(P)$ , and
(2) $f(P)^{g}=f(P^{g})$ for each $g\in G$ .

For each subgroup $M$ of $G$ of order divisible by $p$ , define

$\mathcal{F}_{M}=\{N_{M}(F);F\in f(P), P\in Sy1_{p}(M)\}$ .

Then $\mathcal{F}_{M}$ becomes a normal set of subgroups of $M$, and if $P\in Sy1_{p}(M)$ , then $\mathcal{F}_{M}(P)$

$=\{N_{M}(F);F\in f(P)\}$ . Let $\mathcal{F}=\mathcal{F}_{G}$ . We say that $M$ is $\mathcal{F}$ -regular if $\mathcal{F}_{M}$ controls
Sylow $p$-intersections in $M$. If $M$ is not $\mathcal{F}$-regular, we say that $M$ is $\mathcal{F}$ -singular.
Let $\mathcal{F}’=\mathcal{F}_{G}’$ be the set of all $\mathcal{F}$ -singular maximal $p$ -local subgroups of $G$ . Notice
that $\mathcal{F}’$ is also a normal set of subgroups of $G$ .

1.11 THEOREM. Let the notation be as in 1.10 and assume that for each non-
identity p-subgroup $P$ of $G,$ $f(P)$ consists of nonidentity subgroups of P. Then
$\mathcal{F}\cup \mathcal{F}’$ controls Sylow p-intersections in $G$ .

PROOF. Let $\mathcal{D}=\mathcal{F}\cup \mathcal{F}’$ and assume that $\mathcal{D}$ does not control Sylow $p$-inter-
sections in $G$ . Choose $S,$ $T\in Sy1_{p}(G)$ so that

(1) $S\neq T$ and $H=SqT\neq 1$ ,
(2) $S$ is not conjugate to $T$ via $\mathcal{D}$, and
(3) $|H|$ is maximal subject to (1) and (2).

For each pair $S,$ $T$ as above, we may choose a maximal $p$-local subgroup $M$ of $G$
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so that

(4) $H<S\cap M$ and $H<T\cap M$.
(Any maximal $p$-local subgroup containing $N_{G}(H)$ satisfies this condition.) Let $\mathcal{T}$

be the set of triples $(S, T, M)$ satisfying (1) $-(4)$ , and choose $(S, T, M)\in \mathcal{T}$ so
that $|S\cap M||T\cap M|$ is maximal. Choose $U,$ $V\in Sy1_{p}(G)$ so that $S\cap M\leq U\cap M\in$

$Sy1_{p}(M),$ $T\cap M\leq V\cap M\in Sy1_{p}(M)$ , and $U=V^{m}$ for some $m\in M$. Then $U\cap V=H$

and $U$ is not conjugate to $V$ via $\mathcal{D}$ by (2) and (3). So $S\cap M$ and $T\cap M$ are
Sylow $P$-subgroups of $M$ by the maximality of $|S\cap M||T\cap M|$ . Replacing $S,$ $T$

by $U,$ $V$ , we may assume that $S=T^{m}$ for some $m\in M$. If $M$ is $\mathcal{F}$ -singular, then
$M\in \mathcal{F}’\leq \mathcal{D}$ and $S$ is conjugate to $T$ via $\mathcal{D}$ , contrary to (2). So $M$ is $\mathcal{F}$ -regular,
and there exist Sylow $p$-subgroups $U_{0},$ $U_{1},$ $\cdots$ , $U_{n}$ of $M$ containing $H$ with $U_{0}=$

$S\cap M,$ $U_{n}=T\cap M$, and $U_{i-1}\neq U_{i}$ for each $i$, and there exist elements $X_{1},$ $\cdots$ , $X_{n}$

of $\mathcal{F}_{M}$ with $\langle U_{i-1}, U_{i}\rangle\leq X_{i}$ for each $i$ . Let $U_{i}\leq S_{i}\in Sy1_{p}(G)$ for each $i$ with
$S_{0}=S$ and $S_{n}=T$ . Then, for some $i,$ $S_{i-1}$ is not conjugate to $S_{i}$ via $\mathcal{D}$ by (2),

and so $S_{i-1}\cap S_{i}=H$ by (3). Replacing $S,$ $T$ by $S_{i-1},$ $S_{i}$ , we may assume that
$\langle S\cap M, T\cap M\rangle$ is contained in some member $X$ of $\mathcal{F}_{M}$ . As $X=N_{M}(F)$ for some
$F\in f(S\cap M)\cap f(T\cap M)$ , $S\neq S\cap M$ and $T\neq T\cap M$ by (2). But then $S\cap M<$

$N_{S}(S\cap M)\leq N_{G}(F)$ and $T\cap M<N_{T}(T\cap M)\leq N_{G}(F)$ , so if $N$ is a maximal $p$-local
subgroup of $G$ containing $N_{G}(F),$ $(S, T, N)\in \mathcal{T}$ and $|S\cap M||T\cap M|<|S\cap N|$ .
$|T\cap N|$ . This is a contradiction completing the proof.

1.12 THEOREM. Let $S\in Sy1_{p}(G)$ and let $G_{i}(i=1,2)$ be subgroups of $G$ contain-
ing $S$ with $G=G_{1}G_{2}$ . If $G_{i}(i=1,2)$ is $\mathcal{F}$ -regular, where $\mathcal{F}$ is as in 1.10, then
so is $G$ .

PROOF. Applying 1.9 to the sets $\{G\},$ $\mathcal{D}=\{G_{1}^{G}\}\cup\{G_{2}^{G}\}$ , and $\emptyset$ , we have
that $\mathcal{D}$ controls Sylow $P$-intersections in $G$ . As each member of $\mathcal{D}$ is $\mathcal{F}$ -regular,
so is $G$ .

1.13 COROLLARY. Let $S\in Sy1_{p}(G)$ and assume $G=N_{G}(F_{1})N_{G}(F_{2})$ for some pair
$F_{1},$ $F_{2}$ of elements of $f(S)$ , where $f$ is as in 1.10. Then $G$ is $\mathcal{F}$ -regular.

2. Control of Sylow 2-intersections in groups of Chev (2) type and groups
of alternating type.

In this section, we consider the following situation.
2.1 HYPOTHESIS. $G$ is a finite group, $N$ is a normal subgroup of $G,$ $G/N$ is

a 2-group, and $N$ is a central pr0duct of quasisrmple groups $L=L_{1},$ $L_{2},$ $\cdots$ , $L_{k}$ ,
which are all conjugate in $G$ .

Let Chev(2) denote the collection of all quasisimple groups $L$ with $O_{2}(L)=1$

such that $L/Z(L)$ is isomorphic to a simple group of Lie type and of characteristic
2. Here we consider $A_{6}\cong Sp_{4}(2)’,$ $SU_{3}(3)\cong G_{2}(2)’$ , and $2F_{4}(2)’$ to be of Lie type

and of characteristic 2. Thus the 3-fold covering group $\hat{A}_{6}$ of $A_{6}$ is a member of
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Chev(2). For $L\in Chev(2)$ , a Borel subgroup of $L$ is a Sylow 2-normalizer of $L$ ,

and a parab0lic subgroup of $L$ is a subgroup containing a Borel subgroup. Borel
subgroups and $L$ itself are called the trivial parabolic subgroups.

We list the main results of [13].

2.2. Under Hypothests 2.1 with $L\in Chev(2)$ , if $H\in \mathcal{H}_{0,2,G}$ , then there exzsts
a pr0per subgroup $M$ of $G$ containing $N\delta(H)$ such that $|G:M|$ is odd and
$O^{2}(C_{M}(O_{2}(M)))=Z(N)$ , except when one of the following holds:

(1) $L\cong SL_{2}(2^{m}),$ $(P)SU_{3}(2^{m})$ , or $Sz(2^{2m-1}),$ $m\geqq 2$ ;
(2) $L\cong(P)SL_{3}(2^{m}),$ $Sp_{4}(2^{m})’$ , or $\hat{A}_{6}$ , and if $S\in Sy1_{2}(G)$ , then $N_{S}(L)$ contains

an element which interchanges the two nontrivial parab0lic subgroups of $L$ con-
taining $S\cap L$ .

2.3. Under Hyp0theszs 2.1 with $L\cong A_{n},$ $n\geqq 7$ , if $H\in \mathcal{H}_{0,2.G}$ , then the follow-
ing holds:

(1) if $n\neq 2^{m}+1$ for any integer $m$ , then there exists a pr0per subgroup $M$

of $G$ containing $N\int(H)$ such that $|G:M|$ is odd;
(2) if $n$ is even, then there exists a pr0per subgroup $M$ of $G$ containing

$N\not\in(H)$ such that $|G:M|$ is odd and $C_{M}(O_{2}(M))\leq 0_{2}(M)$ ;
(3) if $n\equiv 3(mod 4)$ , then there exests a pr0per subgroup $M$ of $G$ containing

$N\not\in(H)$ such that $|G:M|$ is odd and $O^{2}(C_{M}(O_{2}(M)))=1$ or $\langle x_{1}, x_{2}, \cdots , x_{k}\rangle$ , where
$x_{i}$ is a 3-cycle in $L_{i}\cong A_{n}$ for each $i$ .

2.4. If $G=\Sigma_{n},$ $n$ odd, and $H\in \mathcal{H}_{0.2,G}$ , then either there exists a subgroup $M$

of $G$ containing $N_{G}(H)$ such that $M\cong\Sigma_{n-1}\cross\Sigma_{1}$ or $N_{G}(H)\cong\Sigma_{3}\cross S$ , where $S$ is a
Sylow 2-subgroup of $\Sigma_{n-3}$ . Here the symbols $\cong$ denote the isomorphism of per-
mutation groups.

3. GF(2)-representations of finite groups.

Throughout this section, let $G$ be a finite group and $V$ be a faithful $GF(2)G-$

module. Define $\mathcal{O}=\mathcal{O}(G, V)$ to be the set of all nonidentity elementary abelian
2-subgroups $A$ of $G$ satisfying $|A|\geqq|V:C_{V}(A)|$ , and define $\mathcal{P}=\mathcal{P}(G, V)$ to be
the set of all nonidentity elementary abelian 2-subgroups $A$ of $G$ satisfying
$|A||C_{V}(A)|\geqq|B||C_{V}(B)|$ for each subgroup $B$ of $A$ . Let $\mathcal{P}^{*}=\mathcal{P}^{*}(G, V)$ be the
set of all minimal elements of $\mathcal{P}$ under the partial order $\leq_{(V)}$ defined by: $A\leq(V)B$

if and only if $A\leq B$ and $|A||C_{V}(A)|=|B||C_{V}(B)|$ . Let $\mathcal{P}_{0}^{*}=\mathcal{P}_{0}^{*}(G, V)$ (resp.
$\mathcal{P}_{0}=\mathcal{P}_{0}(G, V))$ be the set of all elements of $\mathcal{P}^{*}$ (resp. $\mathcal{P}$) contained in $O_{2’,2}(G)$ ,

and let $\mathcal{P}_{1}^{*}=\mathcal{P}_{1}^{*}(G, V)=\mathcal{P}^{*}-\mathcal{P}_{0}^{*}$ . Let $G_{i}^{\star}=\langle \mathcal{P}_{i}^{*}\rangle$ for $i\in\{0,1\}$ and $G_{0}=\langle \mathcal{P}_{0}\rangle$ .
When $X$ is a group and $W$ is a $GF(2)X$-module, let $W(X)=[W, X]/C_{[W.X]}(X)$ .

One of the objects of the theory of GF(2)-representations is to determine the
structure of $\langle \mathcal{P}\rangle$ and its action on $V$ . Here we list those theorems on $GF(2)-$

representations which are needed in this paper. Although most of them are
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essentially proved by Aschbacher [2, 3, 4, 5], we will give their complete proofs
in [14].

3.1. Supp0se $\mathcal{P}_{0}^{*}\neq\emptyset$ and $O_{2}(G_{0}^{*})=1$ . Let $\mathcal{O}_{1},$ $O_{2},$ $\cdots$ , $\mathcal{O}_{n}$ be the $G_{0}^{*}$-orbits on
$\mathcal{P}_{0}^{*}$, and set $N_{i}=\langle \mathcal{O}_{i}\rangle$ and $V_{i}=[V, N_{i}]$ for each $i$ . Then the following holds:

(1) $N_{i}\cong SL_{2}(2)$ for each $i$ and $G_{0}^{*}=N_{1}\cross N_{2}\cross\cdots\cross N_{n}$ ;
(2) $(V_{i})_{N_{i}}$ is induced by the natural $GF(2)SL_{2}(2)$ -module of dimension 2 for

each $i$ and [V, $G_{0}^{*}$] $=V_{1}\oplus V_{2}\oplus\cdots\oplus V_{n}$ ;
(3) $V=[V, G_{0}^{*}]\oplus C_{V}(G_{0}^{*})$ .
3.2. If $O_{2}(G_{0}^{*})=1$ , then $G_{0}=G_{0}^{*}$ .
3.3. If $\mathcal{P}_{1}^{*}\neq\emptyset$ and $O_{2}(G_{1}^{*})=1$ , then $E(G_{1}^{*})\neq 1$ and $C_{G_{1}^{*}}(E(G_{1}^{*}))=O(G_{1}^{*})=Z(G_{1}^{*})$ .

Here $E(G_{1}^{*})$ is the maximal semisrmple normal subgroup of $G_{1}^{*}$ .
Let $Q$ be the collection of all quadruples (X, $W,$ $A,$ $K$), where $X$ is a finite

group, $W$ is a faithful $GF(2)X$-module, $A\in O(X, W)$ , and $K$ is a quasisimple
normal subgroup of $X$ such that $O_{2}(K)=1,$ $C_{X}(K)=Z(K)$ , and $X=KA$ .

3.4. If $L$ is a quasisimple comp0nent of $G$ with $O_{2}(L)=1$ and $\langle \mathcal{P}\rangle\not\leq C_{G}(L)$ ,
then there exists (X, $W,$ $A,$ $K$) $\in Q$ such that $K$ is a homomorphic image of $L$ .

By definition, the natural $GF(2)SL_{2}(2^{m})$ -module is the set of all two dimen-
sional row vectors with coefficients in $GF(2^{m})$ considered a $GF(2)SL_{2}(2^{m})$-module,
and the natural $GF(2)\Sigma_{n}$-module or $GF(2)A_{n}$-module is the unique nontrivial com-
position factor of the natural permutation module for $\sum_{n}$ or $A_{n}$ over GF(2).

3.5. If $G\cong SL_{2}(2^{m})$ and $A\in \mathcal{O}$, then $V/C_{V}(G)$ is induced by the natural
$GF(2)SL_{2}(2^{m})$-module and $|A|=|V:C_{V}(A)|=2^{m}$ .

3.6. Suppose $S\in Sy1_{2}(G),$ $L$ is a quastsimple component of $G,$ $[L, \langle \mathcal{P}^{*}(S, V)\rangle]$

$\neq 1,$ $[C_{V}(S), L]\neq 0$, and $L\cong(P)SL_{3}(2^{m}),$ $Sp_{4}(2^{m})’$ , or $\hat{A}_{6}$ . Then $N_{S}(L)$ normalizes
the two nontrivial parab0lic subgroups of $L$ containing $S\cap L$ .

3.7. Supp0se $\mathcal{P}\neq\emptyset,$ $S\in Sy1_{2}(G),$ $L$ is a subnormal subgroup of $G$ , and $L\cong$

$SL_{2}(2^{m}),$ $A_{zm-1},$ $m\geqq 2$ , or $L\cong\hat{A}_{7}$ , the 3-fold covenng group of $A_{7}$ . When $L\cong A_{3}$ ,
assume [V, $L$] $|=4$ . Then the following holds:

(1) if $[L, \langle \mathcal{P}\rangle]\neq 1$ , then $L\neq\hat{A}_{7}$ and $C_{S}(C_{[V.L]}(\langle \mathcal{P}(S, V)\rangle))\leq N_{S}(L)$ ;
(2) if $[L, \langle \mathcal{P}^{*}\rangle]\neq 1$ , then $V(L)$ is induced by the natural $GF(2)SL_{2}(2^{m})$ -module

or by the natural $GF(2)A_{2m-1}$-module, or else $L\cong A_{7}$ and [V, $L$] $|=16$ ;
(3) if $L\cong SL_{2}(2^{m}),$ $C_{G}(L)=1$ , and $V(L)$ is induced by the natural $GF(2)SL_{2}(2^{m})-$

module, then $C_{S}(C_{[V.L]}(\langle \mathcal{P}(S, V)\rangle))=S\cap L$ ;
(4) if $L\cong A_{2m-1}$ , $m\geqq 3,$ $C_{G}(L)=1$ , and $V(L)$ is induced by the natural

$GF(2)A_{2m-1}$-module, then $G\cong\Sigma_{2m-1}$ and $C_{S}(C_{[V.L]}(\langle \mathcal{P}(S, V)\rangle))$ is generated by all
transp0sttions in $S$ .
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4. Control of Sylow 2-intersections by a characteristic pair.

4.1 DEFINITION. For a 2-group $S$ , let $\mathcal{A}(S)$ be the set of all elementary
abelian subgroups of $S$ of maximal order. Set $J(S)=\langle \mathcal{A}(S)\rangle$ , the Thompson sub-
group of $S$, and $K(S)=C_{S}(\Omega_{1}(Z(J(S))))$ . ( $K(S)$ is sometimes denoted by $\sim J(S)$ and
is called the Baumann subgroup of $S$ after Baumann [6]). For any finite group
$G$ with $S\in Sy1_{2}(G)$ , let $J(G)=\langle J(S)^{G}\rangle$ and $K(G)=\langle K(S)^{G}\rangle$ . Let $\mathcal{G}(S)$ be the collec-
tion of all finite groups $G$ satisfying the following set of conditions:

(1) $S\in Sy1_{2}(G)$ ;
(2) $C_{G}(O_{2}(G))\leq O_{2}(G)$ ;
(3) $\overline{G}=G/C_{G}(\Omega_{1}(Z(O_{2}(G))))$ is isomorphic to $SL_{2}(2^{m})$ for some $m$ ;
(4) when $V=\Omega_{1}(Z(O_{2}(G)))$ is regarded as a $GF(2)\overline{G}$-module, $V(\overline{G})$ is induced

by the natural $GF(2)SL_{2}(2^{m})$-module;
(5) $O_{2}(G)\in Sy1_{2}(C_{G}(V))$ ;
(6) $[O_{2}(G), O^{2}(G)]\not\leq V$ ;
(7) $S$ is contained in a unique maximal subgroup of $G$ ;
(8) $G=K(G)$ .
A characteristic pair for the 2-group $S$ is a pair $S_{1},$ $S_{2}$ of characteristic sub-

groups of $S$ such that whenever $G\in \mathcal{G}(S)$ , either $S_{1}\triangleleft G$ or $S_{2}\triangleleft G$ . The charac-
teristic pair is said to be nontrivial if $S_{1}\neq 1\neq S_{2}$ . A work of N. R. Campbell
shows that for each nonidentity 2-group $S$ there exists a nontrivial characteristic
pair $S_{1},$ $S_{2}$ satisfying $S_{1}\leq\Omega_{1}(Z(S))[7]$ . We say that such a pair is of Glauberman-
Niles type after [9]. (2)

Now fix a characteristic pair $T_{1},$ $T_{2}$ for each 2-group $T$ satisfying $T=K(T)$ ,

and for an arbitrary 2-group $S$ define $C_{i}(S)=(K(S))_{i}$ for $i\in\{1,2\}.(3)$ For each
group $G$ of even order, let

$c_{G}=\{N_{G}(C_{1}(S)), N_{G}(C_{2}(S)), N_{G}(\Omega_{1}(Z(S)));S\in Sy1_{2}(G)\}$ .

Then $C_{G}$ is a normal set of subgroups of $G$ , and we may use the terminology
of the first section (especially 1.10) for $C_{G}$ .

4.2 THEOREM. Supp0se the $C_{i}(S)$ are defined as above by the fixed characteristic
pairs $T_{1},$ $T_{2}$ of Glauberman-Niles type for all 2-groups $T$ satisfying $T=K(T)$ .
For each group $G$ of even order, let $\mathcal{D}_{G}=\{C_{G}(C_{1}(S)\cap\Omega_{1}(Z(S))),$ $N_{G}(C_{2}(S));S\in$

$Sy1_{2}(G)\}$ . Then $\mathcal{D}_{G}\cup C_{G}’$ controls Sylow 2-intersections in $G$ .

(2) In the paper mentioned in Footnote (1) , I have defined a nonidentity characteristic
subgroup $Q(S)$ for each nonidentity $2\cdot groupS$ and shown that $\Omega_{1}(Z(S))$ and $Q(S)$ form
a characteristic pair of Glauberman-Niles type for $S$ .

(3) Of course, we identify isomorphic 2-groups. More precisely, if $\alpha$ is an isomor-
phism of a 2-group $S$ onto a 2-group $R$ , then we define $C_{i}(R)=C_{i}(S)^{a}$ . Hence, if $G$ is a
group of even order, the mapping $f$ which associates with each 2-subgroup $P$ of $G$ the set
$\{C_{1}(P), C_{2}(P), \Omega_{1}(Z(P))\}$ satisfies the conditions (1) and (2) in 1.10.



580 K. GOMI

PROOF. Let $S\in Sy1_{2}(G)$ , $T=C_{S}(C_{1}(S))$ , and $N=N_{G}(C_{1}(S))$ . Then $T\in$

$Sy1_{2}(C_{G}(C_{1}(S)))$ and $K(T)=K(S)$ as $C_{1}(S)\leq Z(K(S))$ . Therefore,

$N=C_{G}(C_{1}(S))N_{G}(T)=C_{N}(C_{1}(S)\cap\Omega_{1}(Z(S)))N_{N}(C_{2}(S))$ .
Similarly, if $M=N_{G}(\Omega_{1}(Z(S)))$ , then

$M=C_{M}(C_{1}(S)\cap\Omega_{1}(Z(S)))N_{M}(C_{2}(S))$ .
So $\mathcal{D}_{G}\cup C_{G}’$ controls Sylow 2-intersections in $G$ by 1.9 and 1.11.

4.3 HYPOTHESIS. $G$ is a group of even order satisfying $C_{G}(O_{2}(G))\leq 0_{2}(G)$ .
If $K$ is a quasisrmple section of $G$ with (X, $W,$ $A,$ $K$) $\in Q$ for some $X,$ $W$ , and $A$ ,

then $K\in Chev(2)-\{(P)SU_{3}(2^{m}), Sz(2^{2m-1});m\geqq 2\}$ or $K\cong A_{n},$ $n\geqq 7$ .
By a theorem of Aschbacher [4], the group $G$ of even order with $C_{G}(O_{2}(G))$

$\leq 0_{2}(G)$ satisfies Hypothesis 4.3 if each simple section of $G$ is of known type.

4.4 LEMMA. Under Hyp0thests 4.3, if $H$ is a section of $G,$ $U$ is a faithful
$GF(2)H$-module, and $L$ is a quastsimple comp0nent of $H$ such that $O_{2}(L)=1$ and
$[L, \langle \mathcal{P}(H, U)\rangle]\neq 1$ , then $L\in Chev(2)-\{(P)SU_{3}(2^{m}), Sz(2^{2m-1});m\geqq 2\}$ or $L\cong A_{n}$ ,
$n\geqq 7$ .

PROOF. There exists an element (X, $W,$ $A,$ $K$ ) $\in Q$ such that $K$ is a homo-
morphic image of $L$ by 3.4. The assertion, therefore, follows from 4.3 as $L\neq\hat{A}_{7}$

by 3.7.
4.5 THEOREM. Under Hypothests 4.3, if $G$ is C-singular, then for each $S\equiv$

$Sy1_{2}(G)$ there exests a subgroup $X$ of $G$ satisfying the following con&tions:
(1) $X=[X, J(S)]$ ;
(2) $X=O^{2}(X)$ ;
(3) $[O_{2}(G), X]\leq V=\Omega_{1}(Z(O_{2}(G)))$ ;
(4) $\overline{X}=X/C_{X}(V(X))$ is isomorphic to $A_{3}$ or $SL_{2}(2^{m}),$ $m\geqq 2$ ;
(5) when regarded as a $GF(2)\overline{X}$-module, $V(X)$ is induced by the natural

$GF(2)A_{3}$-module or by the natural $GF(2)SL_{2}(2^{m})$-module.
PROOF. We call a group $X$ as above a C-singular subgroup of $G$ with re-

spect to $S$ . Until 4.5 is proved, let $G$ be a minimal counterexample to 4.5.
Furthermore, let $S\in Sy1_{2}(G)$ , $Q=O_{2}(G),$ $V=\Omega_{1}(Z(Q)),$ $C=C_{G}(V)$ , and $\overline{G}=G/C$.
We show in a series of reductions, $(a)\sim(1)$ , that $G\in \mathcal{G}(S)$ and $S=K(S)$ . It would
then follow that $C_{1}(S)$ or $C_{2}(S)$ is normal in $G$ , which is a contradiction as $G$ is
C-singular.

(a) If $H$ is a pr0per subgroup of $G$ containing $J(S)Q$ , then $H$ is C-regular.
PROOF. Suppose $H$ is $C$-singular, and let $J(S)Q\leq T\in Sy1_{2}(H)$ . Then $H$ has

a $C$-singular subgroup $X$ with respect to $T$ by the minimality of $G$ . Let $W=$

$\Omega_{1}(Z(O_{2}(H)))$ . Then [V, $X$] $\leq[Q, X]\leq[O_{2}(H), X]\leq W\leq V$ and so, as $X=O^{2}(X)$ ,
[V, $X$] $=[Q, X]=[W, X]$ . As $J(T)=J(S),$ $X$ is a $C$-singular subgroup of $G$ with
respect to $S$ .
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(b) If $H$ and $K$ are subgroups of $G$ containing $S$ such that $G=HK$, then
$H=G$ or $K=G$ .

PROOF. Suppose $H\neq G\neq K$. As $H$ and $K$ are C-regular by (a), so is $G$ by
1.12, a contradiction.

(c) The following holds;

(1) if $M$ is a normal subgroup of $G$ with $MS\neq G$ , then $M$ is 2-closed;
(2) $Q\in Sy1_{2}(C)$ ;
(3) $O_{2}(\overline{G})=1_{j}$

(4) any maximal subgroup of $G$ containing $S$ also contains $C$.
PROOF. Let $T=S\cap M$. Then $G=MSN_{G}(T)$ . As $MS\neq G,$ $N_{G}(T)=G$ by (b)

and so $M$ is 2-closed. As $CS\leq N_{G}(\Omega_{1}(Z(S)))$ and $G$ is $C$-singular, $CS\neq G$ . So $C$

is 2-closed by (1), and $Q\in Sy1_{2}(C)$ . Let $N/C=O_{2}(G/C)$ . Then $NS=CS\neq G$ , so
$N$ is 2-closed by (1), and $Q\in Sy1_{2}(N)$ , proving (3). Suppose $H$ is a maximal sub-
group of $G$ containing $S$ and $C\not\leq H$. Then $G=CSH$ and $CS\neq G\neq H$, contrary

to (b).
(d) $J(S)\not\leq C$ .
PROOF. Suppose $J(S)\leq C$ . Then $J(S)\leq C_{S}(V)=Q$ by $(c.2),$ $J(S)=J(Q)$ , and

$V\leq\Omega_{1}(Z(J(Q)))=\Omega_{1}(Z(J(S)))$ . By the definition of $K(S),$ $K(S)\leq C_{S}(V)=Q$ . But
then $K(S)=K(Q)\triangleleft G$ and $C_{t}(S)\triangleleft G$ for $i\in\{1,2\}$ . This is a contradiction as $G$

is C-singular.
(e) $\mathcal{P}(G, V)\neq\emptyset$ , and $\overline{G}$ has a normal subgroup $\overline{N}=N/C$ such that $G/N$ is a

2-group and such that $\overline{N}$ is a central pr0duct of conjugate subgroups $\overline{L}=\overline{L}_{1},\overline{L}_{2}$ ,
... , $\overline{L}_{k}$ of $G$ with $\overline{L}\cong SL_{2}(2)$ or $\overline{L}\in Chev(2)-\{(P)SU_{3}(2^{m}), Sz(2^{2m-1});m\geqq 2\}$ or
$\overline{L}\cong A_{n},$ $n\geqq 7$ .

PROOF. If $A\in \mathcal{A}(S)$ and $A\not\leq C$, then $\overline{A}\in \mathcal{P}(\overline{G}, V),$ (4) so $\mathcal{P}(\overline{G}, V)\neq\emptyset$ by (d).

Choose $i\in\{0,1\}$ so that $\mathcal{P}_{i}^{*}(\overline{G}, V)\neq\emptyset$ . If $i=0$, let $N/C=\langle \mathcal{P}_{0}^{*}(\overline{G}, V)\rangle$ , while if
$i=1$ , let $N/C=E(\langle \mathcal{P}_{1}^{*}(G, V)\rangle)$ . Then $N\triangleleft G$ , and $\overline{N}$ is a central product, $\overline{N}=$

$\overline{L}_{1}*\overline{L}_{2}*\cdots*\overline{L}_{k}$ , where $\overline{L}_{i}\cong SL_{2}(2)$ for all $i$ or $\overline{L}_{i}$ is quasisimple for all $i$ by 3.1,
3.3, and (c.3). Notice that $\{\overline{L}_{1},\overline{L}_{2}, \cdots , \overline{L}_{k}\}$ is a normal set of subgroups of $\overline{G}$

by the Krull-Remak-Schmidt theorem. If $\overline{M}=M/C$ is a normal subgroup of $\overline{G}$ of
even order, then $G=MS$ by (c.1). So $G=NS$ , and $\overline{L}_{1},\overline{L}_{2},$ $\cdots$ , $\overline{L}_{k}$ are all con-
jugate in G. $lf\overline{L}_{1}$ is quasisimple, then $\overline{L}_{1}$ has the structure as described in (e)

by 4.3 and 4.4.
(f) One of the following holds:
(1) $\overline{L}\cong SL_{2}(2^{m}),$ $m\geqq 1$ ;

(4) Let $V$ be a normal elementary abelian 2-subgroup of a group $G,\overline{G}=G/C_{G}(V)$ ,
and $A$ an elementary abelian $2\cdot subgroup$ of maximal order. Then $|\overline{A}||C_{V}(\overline{A})|\geqq|\overline{B}||C_{\overline{V}^{-}}(\overline{B})|$

for each subgroup $\overline{B}$ of $\overline{A}$. Although this fact appears well known, I supply a proof. Let
$C_{A}(V)\leq B\leq A$ . Then $|A|\geqq|BC_{V}(B)|$ and $C_{V}(A)=A\cap V$ by the maximality of $|A|$ . so
$|A$ : $B|\geqq|C_{V}(B)$ : $C_{V}(A)$ . This completes the proof.
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(2) $\overline{L}\cong(P)SL_{3}(2^{m}),$ $Sp_{4}(2^{m})’,$ $m\geqq 1$ , or $\hat{A}_{6}$ , and $N_{\overline{S}}(\overline{L})$ contains an element
which interchanges the two nontrivial parab0lic subgroups of $\overline{L}$ containing
$\overline{s}_{\cap\overline{L};}$

(3) $\overline{L}\cong A_{2m+1},$ $m\geqq 2$.
PROOF. If $\overline{G}$ is 2-isolated, then $\overline{G}=\overline{L}\cong SL_{2}(2^{m})$ . Therefore, assume that $\overline{G}$

is not 2-isolated. We may also assume $\overline{L}\neq SL_{2}(2)$ . If none of (1), (2), and (3)

holds, then the set $\overline{\mathcal{M}}$ of all maximal subgroups of $\overline{G}$ of odd index controls Sylow
2-intersections in $\overline{G}$ by 2.2, 2.3, and 1.7. Let $\mathcal{M}$ be the set of the inverse images
of all elements of $\overline{\mathcal{M}}$ . Since $\overline{G}$ is not 2-isolated and $\overline{\mathcal{M}}$ controls Sylow 2-inter-
sections in $\overline{G}$ , it follows that $\mathcal{M}$ controls Sylow 2-intersections in $G$ . As each
member of $\mathcal{M}$ is $C$-regular by (a), $G$ is $C$-regular, a contradiction.

(g) One of the following holds:
(1) $\overline{L}\cong SL_{2}(2^{m}),$ $m\geqq 1$ , and $V(\overline{L})$ is induced by the natural $GF(2)SL_{2}(2^{m})-$

module;
(2) $\overline{L}\cong A_{2m+1},$ $m\geqq 2$ , and $V(\overline{L})$ is induced by the natural $GF(2)A_{2m+1}$ -module.
PROOF. As $G$ is $c$-singular, $C_{V}(\overline{S})=\Omega_{1}(Z(S))\neq C_{V}(\overline{G})$ . So $[C_{V}(\overline{S}),\overline{L}]\neq 0$ and

Case (2) of (f) does not occur by 3.6. The definition of $\overline{L}$ in the proof of (e),

3.1, and 3.7.2 show that (1) or (2) holds.
(h) The following holds:
(1) $S$ is contained in a unique maximal subgroup of $G_{j}$

(2) $\langle C_{G}(S)\rangle\neq G$ .
PROOF. (1) follows from (c.4) and the structure of $\overline{G}$ described in (e) and

(g), as a Sylow 2-subgroup of $SL_{2}(2^{m})$ (resp. $A_{2m+1}$ ) is contained in a unique
maximal subgroup of $SL_{2}(2^{m})$ (resp. $A_{2m+1}$ ). As $G$ is $C$-singular, each member
of $C_{G}(S)$ is a proper subgroup of $G$ containing $S$ . So (2) follows from (1).

(i) $G=K(G)$ .
PROOF. Let $M=K(G),$ $T=S\cap M,$ $R=O_{2}(M),$ $W=\Omega_{1}(Z(R))$ , and $D=C_{M}(W)$ .

As $K(T)=K(S)$ and $N_{M}(\Omega_{1}(Z(T)))\leq N_{M}(T)C_{M}(\Omega_{1}(Z(S))),$ $\langle C_{M}(T)\rangle\leq\langle C_{G}(S)\rangle$ . As
$J(T)=J(S)\not\leq C$ by (d), $M$ is not 2-closed, and so $G=MS$ by (c.1). So $M\neq\langle C_{M}(T)\rangle$

by (h.2), and it follows from 1.5 that $M$ is $c$-singular. Therefore, if $G\neq M$,
then $M$ has a C-singular subgroup $X$ with respect to $T$ by the minimality of $G$ .
Now, $[Q, M]\leq Q\cap M=R$ and [V, $M$] $\leq V\cap R=V\cap W$ . So

$O^{2}(C_{M}(V\cap W))\leq C\cap M$ ,

and [V, $X$] $\leq[Q, X]\leq W$ . If $[W, X]\leq V$ , then [V, $X$] $=[Q, X]=[W, X]$ , and
$X$ is a C-singular subgroup of $G$ with respect to $S$ . So $[W, X]\not\leq V$ and, as $X$

acts irreducibly on $W(X),$ $[V\cap W, X]=1$ . We conclude that

$X\leq C\cap M$ .
As $O^{2}(D)\leq C\cap M$ and as $O_{2}(M/C\cap M)=1$ by (c.3), $D\leq C\cap M$. Also, $O_{2}(M/D)\leq$

$C\cap M/D$ by (c.3). As $R\in Sy1_{2}(C\cap M)$ by (c.2), we conclude that
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$C\cap M/D\leq 0(M/D)$

and that
$O_{2}(M/D)=1$ .

As $J(T)=J(S)\not\leq D$ by (d), $\mathcal{P}(M/D, W)\neq\emptyset$ . Choose $i\in\{0,1\}$ so that $\mathcal{P}_{i}^{*}(M/D, W)$

$\neq\emptyset$ . If $i=0$ , let $K/D=\langle \mathcal{P}_{0}^{*}(M/D, W)\rangle$ , and if $i=1$ , let $K/D=E(\langle \mathcal{P}_{1}^{*}(M/D, W)\rangle)$ .
As in the proof of (e), we have that $G=KS$ and so

$XD/D\leq C\cap M/D\leq 0(K/D)$ .
If $i=1$ , then $XD/D\leq Z(K/D)$ , which is a contradiction as $X$ acts irreducibly on
$W(X)$ . So $i=0$ and $K/D=J_{1}/D\cross\cdots\cross I_{n}/D$ , where $J_{1}/D\cong SL_{2}(2)$ and $J_{1},$ $\cdots$ , $J_{n}$

are all conjugate in $G$ (as in the proof of $(e)$ ). In particular, $M/D=O_{3.2}(M/D)$

and so $\mathcal{P}(M/D, W)=\mathcal{P}_{0}(M/D, W)$ . Therefore, $J(M)D/D\leq\langle \mathcal{P}(M/D, W)\rangle=K/D$

by 3.2. As $J(M)D/D$ contains an element of $\mathcal{P}_{0}^{*}(M/D, W),$ $J_{i}/D\leq J(M)D/D$ for
some $i$ by 3.1. We conclude that $K/D=J(M)D/D$ . Similarly, we have $N/C=$

$J(G)C/C$ and so, as $J(M)=J(G),$ $N/C\cong(K/D)/(C\cap M/D)$ . As both $N/C$ and $K/D$

are direct products of $SL_{2}(2)s$ and as $C\cap M/D\leq O(K/D)$ , we must have $C\cap M$

$=D$ . But then $[W, X]=1$ , a contradiction.
(j) $\overline{G}\cong SL_{2}(2^{m})$ , $m\geqq 1$ , and $V(\overline{G})$ is induced by the natural $GF(2)SL_{2}(2^{m})-$

module.
PROOF. As $\overline{J(S)}\leq\langle \mathcal{P}(\overline{S}, V)\rangle,$ $C_{V}(\langle \mathcal{P}(\overline{S}, V)\rangle)\leq C_{V}(\overline{J(S)})\leq\Omega_{1}(Z(J(S)))$ . So $\overline{K(S)}\leq$

$C_{\overline{S}}(C_{V}(\langle \mathcal{P}(\overline{S}, V)\rangle))$ , and it follows from 3.7.1 that $K(S)\leq N_{G}(L).(5)$ Therefore,
$L\triangleleft G$ by (i). If Case (1) of (g) occurs, then $K(S)\leq L$ by 3.7.3; so $G=L$ and we
are done. Therefore, assume that (2) of (g) holds. Then $\overline{G}\cong\sum_{2m+1}$ and $\overline{K(S)}$

is contained in the subgroup $\overline{T}$ of $\overline{S}$ generated by the transpositions in $\overline{S}$ by
3.7.4. Let $\mathcal{M}$ be the set of all subgroups $X$ of $G$ containing $C$ such that either
$\overline{X}\cong\Sigma_{2}m\cross\Sigma_{1}$ or $\overline{X}\cong\Sigma_{3}\cross P$, where $P\in Sy1_{2}(\Sigma_{2m-2})$ . Then the set {X; $X\in \mathcal{M}$}
controls Sylow 2-intersections in $\overline{G}$ by 2.4 and so $G=\langle \mathcal{M}(S)\rangle$ by 1.5. If $X\in$

$\mathcal{M}(S)$ , then $\overline{T}\leq\overline{S}\cap\overline{X}$ by the structure of $\overline{X}$. So $K(S)\leq S\cap X$, and $X$ is C-regular
by (a). In particular, $X=\langle C_{X}(S\cap X)\rangle$ by 1.5. As $K(S)=K(S\cap X)$ and
$N_{X}(\Omega_{1}(Z(S\cap X)))\leq N_{X}(S\cap X)C_{X}(\Omega_{1}(Z(S)))$ , we conclude that $X\leq\langle C_{G}(S)\rangle$ . But
then $G=\langle C_{G}(S)\rangle$ , contrary to (h.2).

(k) $[Q, O^{2}(G)]\not\leq V$ .
PROOF. Assume $[Q, O^{2}(G)]\leq V$ . Let $X$ be a $J(S)$-invariant subgroup of $G$

minimal subject to the condition $O^{2}(\overline{G})=\overline{X}$. Then $X$ is a C-singular subgroup of
$G$ with respect to $S$ by (j).

(1) $S=K(S)$ .
PROOF. Let $Z=\Omega_{1}(Z(J(S)))$ and $W=VZ$ . Choose $g\in G$ and $A\in \mathcal{A}(S)$ so that

$G=\langle S, S^{g}\rangle$ and $A\not\leq C$ (this is possible by (d), (h), and $(j)$ ). Then $|A:Q\cap A|=$

(5) $L$ is the complete inverse image of $\overline{L}$ .
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$|V:V\cap A|=2^{m}$ by 3.5; so $B=V(Q\cap A)\in \mathcal{A}(S)$ and $S=QA$ . Therefore, $V\cap A$

$\leq Z\leq Q\cap A$ . Now since $B^{g}\in \mathcal{A}(S)$ and $B^{g}\leq Q$ , it follows that $W\leq B^{g}$ and so
$[W, A^{g}]\leq[B^{g}, A^{g}]\leq V^{g}=V$ . As $G=\langle S, A^{g}\rangle$ , we have $W\triangleleft G$ and so $W=VZ^{g}$ .
As $V=(V\cap A)(V\cap A^{g})$ by 3.5, $W=(V\cap A)Z^{g}$ and we conclude that $Z=(V\cap A)$ .
$(Z\cap Z^{g})\leq\Omega_{1}(Z(S))(Z\cap Z^{g})$ . Now since $G=\langle K(S), K(S^{g}), Q\rangle$ , it follows that
$Z\cap Z^{g}\triangleleft G$ and so $Z\cap Z^{g}\leq Z(G)$ by (i). Therefore, $Z=\Omega_{1}(Z(S))$ and $S=K(S)$ .

We have shown that $G\in \mathcal{G}(S)$ and $S=K(S)$ . The proof of 4.5 is, therefore,
complete.

4.6 COROLLARY. Under Hyp0thesis 4.3, if $S\in Sy1_{2}(G)$ , then the following
holds:

(1) $N_{G}(J(S))$ is C-regular;
(2) if $G$ is C-singular, then so is $J(G)S$ .
PROOF. As $N_{G}(J(S))$ can not have a $C$-singular subgroup, $N_{G}(J(S))$ is C-

regular by 4.5. As $G=J(G)SN_{G}(J(S)),$ (2) follows from (1) and 1.12.
4.7 DEFINITION. A 2-comp0nent of a finite group $G$ is a subnormal subgroup

$B$ of $G$ such that $B=O^{2}(B)$ and $B/O_{2}(B)$ is quasisimple or of odd prime order
(Gorenstein and Walter [15] used the term ’2-component’ in a different sense).

A 2-component $B$ of $G$ is of Aschbacher type if
(1) there exists a unique noncentral chief factor $U$ of $B$ within $O_{2}(B)$ ,
(2) $\overline{B}=B/O_{2}(B)\cong SL_{2}(2^{m})$ or $A_{2m- 1},7n\geqq 2$ , and
(3) when considered a $GF(2)\overline{B}$-module, $U$ is induced by the natural $GF(2)$ .

$SL_{2}(2^{m})$-module or by the natural $GF(2)A_{2m- 1}$-module.
4.8 LEMMA. If $B$ is a 2-component of a finite group $G$ , then $[O_{2}(G), B]=$

$[O_{2}(B), B]$ .
PROOF. As $B\triangleleft\triangleleft O_{2}(G)B,$ $B=O^{2}(O_{2}(G)B)$ and so $O_{2}(G)\leq N_{G}(B)$ . Therefore,

$[O_{2}(G), B]\leq O_{2}(B)\leq 0_{2}(G)$ . As $B=O^{2}(B),$ $[O_{2}(G), B]=[O_{2}(B), B]$ .
4.9 LEMMA. Let $G$ be a simple group such that $G\in Chev(2)$ or $G\cong A_{n},$ $n\geqq 5$ .

Then there is no nontrivial 2’-automorphism of $G$ centralizing a Sylow 2-subgroup
of $G$ .

PROOF. When $G\cong A_{n},$ $n\geqq 6$ , the assertion follows from the fact that a Sylow
2-subgroup of $A_{n}(n\geqq 6)$ is self-normalizing in $A_{n}$ (a proof of this will be given
in [13]). Therefore, assume $G\in Chev(2)$ . Let $S\in Sy1_{2}(G)$ and choose representa-
tives $M_{1},$ $\cdots$ , $M_{l}$ of all conjugacy classes of maximal 2-1ocal subgroups of $G$ so
that $O_{2}(M_{\ell})\leq S$ for each $i$ . If a nontrivial 2’-automorphism $\alpha$ of $G$ centralizes
$S$ , then as $C_{M_{i}}(O_{2}(M_{i}))\leq O_{2}(M_{i})$ , $\alpha$ centralizes $M_{i}$ . So $H=\langle M_{1}, \cdots , M_{l}\rangle$ is a
proper subgroup of $G$ , and as is well known, $H$ is strongly embedded in $G$ .
Therefore, $G\cong SL_{2}(2^{m}),$ $PSU_{3}(2^{m})$ , or $Sz(2^{2m-1}),$ $m\geqq 2$ . We can now verify 4.9
using the well known structure of the automorphism groups of these simple groups.
(We remark that the above argument applies to all simple groups of characteristic
2 type.)
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4.10 THEOREM. Under Hypothesis 4.3, if $G$ is C-singular, then $G$ has a 2-
component $B$ of Aschbacher type such that $[O_{2}(G), B]\leq\Omega_{1}(Z(O_{2}(G)))$ .

PROOF. Let $G$ be a minimal counterexample. Furthermore, let $S\in Sy1_{2}(G)$ ,
$Q=O_{2}(G),$ $V=\Omega_{1}(Z(Q)),$ $C=C_{G}(V)$ , and $\overline{G}=G/C$ . We shall derive a contradiction
in a series of reductions.

(a) $O_{2}(\overline{G})=1$ and $Q\in Sy1_{2}(C)$ .
PROOF. Let $N/C$ be a normal 2-subgroup of $G/C$. Assume $Q\not\in Sy1_{2}(N)$ , and

let $T=S\cap N$ and $H=N_{G}(T)$ . Then $G=HCS$ and $H\neq G$ . As $CS$ is $C$-regular, $H$

is $c$-singular by 1.12, and so $H$ has a 2-component $B$ of Aschbacher type such
that $[O_{2}(H), B]\leq\Omega_{1}(Z(O_{2}(H)))$ by the minimality of $G$ . As $T\leq 0_{2}(H),$ $[Q, B]\leq$

$[T, B]\leq V$ . So $[C, B]\leq C_{C}(Q/V)\leq Q$ and, as $B=O^{2}(BQ),$ $N=CT\leq N_{G}(B)$ . As
$G=NH,$ $B$ is subnormal in $G$ and so $B$ is a 2-component of $G$ of Aschbacher
type with $[Q, B]\leq V$ . Therefore, we must have $Q\in Sy1_{2}(N)$ , proving (a).

(b) $G$ has a 2-comp0nent $B$ such that $[Q, B]\leq V$ and such that $B/O_{2}(B)\in$

$Chev(2)-\{SL_{2}(2^{m}), (P)SU_{3}(2^{m}), Sz(2^{2m-1});m\geqq 2\}$ or $B/O_{2}(B)\cong A_{2m},$ $m\geqq 3$ , or else
$B/O_{2}(B)\cong A_{7}$ and [V, $B$] $|=16$ .

PROOF. Let $L_{0}=C_{G}(Q/V)$ and $H_{0}=L_{0}SC$. Choose a C-singular subgroup $X$

of $G$ with respect to $S$ , whose existence was proved in 4.5. For $n=1,2,$ $\cdots$ ,
define inductively $L_{n}=\langle X^{H_{n-1}}\rangle$ and $H_{n}=L_{n}SC$. Then $H_{n}$ is a subgroup, $L_{n+1}$

$\triangleleft H_{n}$ , and $L_{n+1}\leq L_{n}$ . Therefore, $L_{n}\triangleleft\triangleleft G$ . Choose $n$ so that $L_{n}=L_{n+1}$ . Let
$H=H_{n},$ $L=L_{n},$ $P/C=O_{2}(H/C)$ , and $W=C_{V}(P)$ . As $O_{2}(LC/C)=1$ by (a), $[P, LC]$

$\leq P\cap LC=C$ and so $C_{LC}(W)=C$ by the $A\cross B$-lemma. Therefore, $C_{H}(W)=P$ as
$H/LC$ is a 2-group. Now $[W, X]\neq 1$ and $X$ acts irreducibly on $V(X)$ . So
$[Q, X]\leq[V, X]\leq W$ . Since $L=\langle X^{H}\rangle$ , we conclude that $[Q, L]\leq W$ .

As [X, $J(S)$] $=X\not\leq P,$ $J(S)\not\leq P$. Therefore, $W$ is a faithful $GF(2)(H/P)$-module
and $\mathcal{P}(H/P, W)\neq\emptyset$ . Choose $i\in\{0,1\}$ so that $\mathcal{P}_{i}^{*}(H/P, W)\neq\emptyset$ . If $i=0$ , define
$J/P=\langle \mathcal{P}_{0}^{*}(H/P, W)\rangle$ while if $i=1$ , define $J/P=E(\langle \mathcal{P}_{1}^{*}(H/P, W)\rangle)$ . Then $J/P$ is a
central product of subgroups $K_{1}/P,$ $\cdots$ , $K_{n}/P$, and either $K_{i}/P\cong SL_{2}(2)$ for each
$i$ or $K_{i}/P$ is quasisimple for each $i$ by 3.1 and 3.3. Let $B=O^{2}(K_{1}\cap L)$ . Then,
as $C_{C}(Q/V)\leq Q,$ $B$ is a 2-component of $G$ such that $[Q, B]\leq W$ , and either
$B/O_{2}(B)\cong A_{3}$ or $B/O_{2}(B)\cong K_{1}/P$ is quasisimple. If $B/O_{2}(B)$ is quasisimple, then
$B/O_{2}(B)\in Chev(2)-\{(P)SU_{3}(2^{m}), Sz(2^{2m-1});m\geqq 2\}$ or $B/O_{2}(B)\cong A_{n},$ $n\geqq 7$, by 4.3
and 4.4.

Assume $B/O_{2}(B)\cong SL_{2}(2^{m})$ or $A_{2m- 1},$ $m\geqq 2$ . Then $W(B/O_{2}(B))=W(K_{1}/P)$ is
induced by the natural $GF(2)SL_{2}(2^{m})$-module or by the natural $GF(2)A_{2m-1}$-module,
or else $B/O_{2}(B)\cong A_{7}$ and $[W, B]=[W, K_{1}/P]$ has order 16 by 3.1 and 3.7. As
$[W, B]=[V, B]=[Q, B]=[O_{2}(B), B]$ by 4.8, either $B$ is of Aschbacher type or
$B/O_{2}(B)\cong A_{7}$ and [V, $B$] $|=16$ .

(c) Let $B$ be a 2-component of $G$ as described in (b). Then $G=\langle B^{G}\rangle S$ .
PROOF. Let $N=\langle B^{G}\rangle,$ $T=S\cap NQ$ , and $H=N_{G}(T)$ . Assume $G\neq NS$ . If $NS$
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is C-singular, then $NS$ has a 2-component $B$ of Aschbacher type with $[O_{2}(NS), B]$

$\leq\Omega_{1}(Z(O_{2}(NS)))$ . As $B\leq N,$ $B$ is a 2-component of $G$ , and $[Q, B]\leq V$ . There-
fore, $NS$ is C-regular and, as $G=HNS,$ $H$ is C-singular by 1.12. As $H\neq G,$ $H$

has a 2-component $D$ of Aschbacher type such that $[T, D]\leq V$ . In particular,
$[T, D]\leq Q$ and so $[N, D]\leq Q$ by 4.9. As $G=NH,$ $DQ\triangleleft\triangleleft G$ . Therefore, $D$ is
a 2-component of $G$ of Aschbacher type and $[Q, D]\leq V$ .

(d) $C=Q$ .
PROOF. Let $N=\langle B^{G}\rangle$ where $B$ is as in (b). Then $C\leq NQ$ by (a) and (c).

As $C\cap N\leq C_{c}(Q/V)\leq Q,$ $C=Q(C\cap N)=Q$ .
(e) $G$ is C-regular.
PROOF. Let $B$ be as in (b) and set $N=\langle B^{G}\rangle$ . Assume $B/O_{2}(B)\in Chev(2)-$

$\{SL_{2}(2^{m}), (P)SU_{3}(2^{m}), Sz(2^{2m-1});m\geqq 2\}$ or $B/O_{2}(B)\cong A_{2m},$ $m\geqq 3$ . $\overline{G}$ satisfies Hy-
pothesis 2.1 by (c). Therefore, Sylow 2-intersections in $\overline{G}$ are controlled by the
set ffl of all proper subgroups $\overline{M}$ such that $|\overline{G}$ : $\overline{M}|$ is odd and $O^{2}(C_{\overline{M}}(O_{2}(\overline{M})))\leq$

$Z(\overline{N})$ by 1.7, 2.2, 2.3, and 3.6. Let $\mathcal{M}$ be the set of the inverse images of the
elements of $\overline{\mathcal{M}}$ . Then $\mathcal{M}$ controls Sylow 2-intersections in $G$ as $\overline{G}$ is not 2-
isolated. (The above argument was used in the proof of 4.5, the steps (f) and
$(g).)$ Suppose $M\in \mathcal{M}$ and $M$ is C-singular. Then $M$ has a 2-component $D$ of
Aschbacher type such that $[O_{2}(M), D]\leq\Omega_{1}(Z(O_{2}(M)))$ . As $[O_{2}(\overline{M}),\overline{D}]=1$ by (d),
$\overline{D}\leq Z(\overline{N})$ . This is a contradiction as $\overline{D}$ acts irreducibly on $V(D)$ by 4.8. So
each member of $\mathcal{M}$ is C-regular, and it follows that $G$ is C-regular.

Assume $B/O_{2}(B)\cong A_{7}$ . In this case, $\overline{N}=\overline{B}_{1}\cross\cdots\cross\overline{B}_{k}$ with $\overline{B}_{l}\cong A_{7}$ for each
$i$, and Sylow 2-intersections in $\overline{G}$ are controlled by the set $\overline{\mathcal{M}}$ of all proper sub-
groups $\overline{M}$ such that $|\overline{G}$ : $\overline{M}|$ is odd and $O^{2}(C_{\overline{M}}(O_{2}(\overline{M})))=1$ or $\langle\overline{x}_{1}, \cdots , \overline{x}_{k}\rangle$ , where
$\overline{x}_{i}$ is a 3-cycle in $\overline{B}_{i}$ by 2.3. Sylow 2-intersections in $G$ are again controlled by
the set $\mathcal{M}$ of the inverse images of elements of $\overline{\mathcal{M}}$ . Suppose $M\in \mathcal{M}$ and $M$ is
C-singular. Then $M$ has a 2-component $D$ of Aschbacher type such that
$\overline{D}\leq\langle\overline{x}_{1}, \cdots , \overline{x}_{k}\rangle$ , where $\overline{x}_{i}$ is a 3-cycle in $\overline{B}_{i}$ . Since $\overline{B}_{i}$ acts irreducibly on
[V, $\overline{B}_{i}$], it follows that [V, $\overline{N}$] $=[V,\overline{B}_{1}]\oplus\cdots\oplus[V,\overline{B}_{k}]$ . Also, $\overline{x}_{i}$ acts fixed-point-
freely on [V, $\overline{B}_{t}$]. Therefore, [V, $\overline{D}$] $|\geqq|[V,\overline{B}_{1}]|=16$ . This is a contradiction
as [V, $\overline{D}$] $|=4$ . Therefore, each member of $\mathcal{M}$ is C-regular, and so is $G$ .

We have derived a contradiction, proving 4.10.
4.11 THEOREM. Under Hypothests4.3, if $G$ is C-singular, then $G$ has a 2-

compOnent $B$ of Aschbacher type such that $[O_{2}(G), B]\leq\Omega_{1}(Z(O_{2}(G)))$ and $B=$

$[B, K(S)]=[B, J(S)]$ for any $S\in Sy1_{2}(G)$ .
PROOF. Let $S\in Sy1_{2}(G),$ $Q=O_{2}(G),$ $V=\Omega_{1}(Z(Q))$ , and $C=C_{G}(V)$ . It follows

from 4.6 and 4.10 that $G$ has a 2-component $B$ of Aschbacher type such that
$[Q, B]\leq V$ and $B\leq J(G)$ . As [V, $B$] $=[Q, B]=[O_{2}(B), B]$ by 4.8, 3.7.1 shows
$J(S)\leq N_{G}(BC)$ . As $B=O^{2}(C_{BC}(Q/V)),$ $J(S)\leq N_{G}(B)$ . Therefore, $B\triangleleft J(G)$ .

Suppose $[B, J(S)]<B$ . Then $[B, J(S)]\leq 0_{2}(B)$ . As $B$ acts irreducibly on



Sylow 2-intersections 587

$V(B),$ $[V(B), J(S)]=1$ . But then, as $J(G)=\langle J(S)^{J(G)}\rangle,$ $[V(B), J(G)]=1$ , a contra-
diction. Therefore, $[B, J(S)]=B$ . It then follows from 3.7.1 that $K(S)\leq N_{G}(B)$ .
Therefore, $[B, K(S)]=B$ .

Concluding remarks.

Suppose the $C_{i}(S)$ in Definition 4.1 are defined by using fixed characteristic
pairs $T_{1},$ $T_{2}$ of Glauberman-Niles type for all 2-groups $T$ satisfying $T=K(T)$ .
Then Theorem 4.2 shows that Sylow 2-intersections in a group $G$ of even order
are controlled by the set consisting of

$C_{G}(C_{1}(S)_{\cap}\Omega_{1}(Z(S)))$ , $(S\in Sy1_{2}(G))$ ,

$N_{G}(C_{2}(S))$ , $(S\in Sy1_{2}(G))$ , and

the C-singular maximal 2-1ocal subgroups.

Suppose further that $G$ is of characteristic 2 type and that each simple section
of each 2-1ocal subgroup of $G$ is of known type. Then each maximal 2-1ocal
subgroup $M$ of $G$ satisfies Hypothesis 4.3 (with $G$ replaced by $M$ ). Hence if $M$

is C-singular, Theorem 4.11 shows that $M$ has a 2-component $B$ of Aschbacher
type such that $[O_{2}(M), B]\leq\Omega_{1}(Z(O_{2}(M)))$ and $B=[B, K(R)]=[B, J(R)]$ for each
$R\in Sy1_{2}(M)$ . Let us call such a 2-component $B$ an Aschbacher block of $M$. By
the theorems 1.4 and 1.5, control of Sylow 2-intersections implies control of 2-
fusion and 2-factorizations. Thus, we obtain the following result.

THEOREM. Let $S$ be a nonidentity 2-group, $T=K(S)$ , and $(T_{1}, T_{2})$ a charac-
tenstic pair of Glauberman-Niles $tyPe$ for T. Let $G$ be a group of charactenstic
2 $tyPe$ such that $S\in Sy1_{2}(G)$ and suPpose each simple section of each 2-local sub-
group of $G$ is of known type. Then Sylow 2-intersections and 2-fusion in $G$ are
controlled by the set consisting of

the conjugates of $C_{G}(T_{1}\cap\Omega_{1}(Z(S)))$ ,

the conjugates of $N_{G}(T_{2})$ , and

the maximal 2-local subgroups of $G$ having an Aschbacher block.

If furthermore $G$ is not 2-isolated, then $G$ is generated by $C_{G}(T_{1}\cap\Omega_{1}(Z(S))),$ $N_{G}(T_{2})$ ,
and the maximal 2-local subgroups $M$ of $G$ with an Aschbacher block such that
$S\cap M\in Sy1_{2}(M)$ .

The theorems of Aschbacher and McBride mentioned in the introduction are
immediate corollaries of the above theorem.
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