J. Math. Soc. Japan
Vol. 36, No. 3, 1984

On the asymptotic behavior of incompressible
viscous fluid motions past bodies

By Rytichi MIZUMACHI

(Received Dec. 12, 1981)
(Revised Sept. 28, 1983)

§1. Introduction.

Let 2 be a domain exterior to a finite number of bodies in E,; with the
smooth boundary 0£2. The motion of the incompressible viscous fluid in 2 is
described by the following system of the Navier-Stokes equations for the velocity
u=(u,(x, t), us(x, t), us(x, 1)) of the fluid and the pressure p=p(x, t);

. aitu—vAqu(u-V)qugradp:O

div u=0
where v is a positive constant — “viscousity constant”, (u-V)u=u,0u/ox;, 0<T=
oo and Qr is the space time region £x(0, 7). Here and in what follows we
use the conventional rule of tensor that repeated suffix means the summation
with respect to the suffix.
We consider a flow u satisfying initial-boundary conditions ;

(1.2) u(x, O)=alx), xef,
(1.3) u(x, H=b(x, t) x€082, 0=5t<T,
(1.4) u(x, t) — e as |x|— oo, 0=i<T,

where a and b are given smooth and bounded functions such that diva=0 and
a(x)=b(x, 0) for x=0f2, and u.. is a prescribed constant vector. We are mainly
concerned with the decay rate of |u(x, {)—u.| as |x]|—oo; for the existence of

solutions, see [7], [11], [14], [15] and especially [9], [10], and [18]
In the case that b(x, t) is independent of #, R. Finn [4, 5, 6] showed that if

a stationary solution u, of [L.I}, [1.3), and has finite Dirichlet norm:
Vgl 2oy <oo, and satisfies

(1.5) us(x)=u+0( x|

where « is a constant, a>1/2, then
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(1.6) us(0) =+ O(| x| *(1+52)7")

where s,=|x| —u~-x/|u.|. Later, K.I. Babenko proved that with a=1
holds if u, has finite Dirichlet norm. Further, D. Clark and K.I. Babenko-
M. M. Vasil’ev independently proved that implies, for arbitrarily fixed
e >0,

(1.7 rot u,(x)=(R/4x)Vs, XFo| x| *exp(—Rs,)
+0(l x| ?exp(—(R—e¢)s,)

where R=]u..|/2v(the Reynolds number), f, is the vector of force exerted by the
flow on the bodies, and the notation X is the vector product. The equalities (1.6)
and explain the existence of a paraboloidal wake region behind the bodies.

In the case of non-stationary solutions, G. Knightly [12, 13] obtained a space-
time estimate of |u(x, {)—u.|. From his result, one can deduce |u(x, t)—u.]
M| x| V¥(1+s,)7%/2*, where M is a constant and 0<e=<1. Butitis impossible
to deduce |u(x, t)—u.|=M|x|*(A1+s,)"*. Moreover, his assumptions seem too
strong. It remains to investigate whether every classical non-stationary solution
of (1.1)-(1.4) satisfies |u(x, 1)—uo|=M| x| *(1+s,) L

Before stating our results, we define a notation. By the equality

flx, )=glx, )+0((x)) in Qr
we mean that there is a constant M such that
| f(x, )—g(x, HI=M|d(x)|, (x, )EQr.

We assume 0¢ Q without loss of generality.

Let us state our results.

THEOREM 1. Let T<co and u be a classical solution of (1.1)~(1.4) in Qr
with Yues L0, T ; L¥8)). Suppose

(1.8) a(x)=u.+0(|x|~*%

where 2>0. Then

(1.9) u(x, )=u-+0(|x|™*) in Qr
where p=min(2, 2). If the total flux through 08 is 0;

(1.10) Sgagu(x, Dendx=0 0<t<T

where n is the outer normal vector on 082, then we can take p=min(3, 2).

THEOREM 2. Let T=co. Let u be a classical solution of (1.1)-(1.4) in Qw
with Yue L=(0, co; L3()). Suppose there exists a stationary solution ug of (1.1)
and (1.4) with Yu,s L¥£), such that
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(1.11) a(x)=uy(x)+0(|x|?.

If u satisfies the following conditions: (i) there is v, 1=<r<3, such that

(1.12), U—u.<= L0, co; L7(£2))

and (ii)

(1.13) ml‘irtrim lu(x, t)—u.|=0,

then

(1.14) u(x, )=u+0(| x| (1+s)"Y N Qo

REMARK 1. The assumptions (i)and (ii) seem reasonable. Indeed, the solu-

tions constructed by Heywood and Masuda satisfy and (1.12) with
r=2+e¢, ¢>0.

REMARK 2. We shall give the decay rate of mean value of a weak solution
(see §3.3).

If b(x, t) is time-independent and u converges (as t— oo) to a stationary solu-
tion u, of [1.1), [1.3) and [1.4), it is possible to ask whether u—u; decays like
| x| *(1+sz)"%"% a>0, as t, |x|—co. Let us introduce a class S(a) : a>0.

DEFINITION 1. Let u, p be a classical solution of (1.1)-(1.4) in Q.. Suppose
b(x, t) is independent of ¢t. Then usS(«) if and only if there is a stationary
solution u,, p,; of (1.1), (1.3) and (1.4) such that

(115 sup |u(x, B)—u,(0)| + [V, =Tl zxco
=M(1+1)-«, t=0

(1.16) [§ {1, =puo)] 4+ Vautz, —Tu(o) |} dx
<Mt 120

where M is a constant independent of t.

REMARK 3. J. Heywood [9, 10] and K. Masuda [17, 18] showed that if a
and b satisfy some additional conditions, then there is a solution of (1.1)-(1.4)
contained in S(1/4).

COROLLARY 1. In addition to the assumptions of Theorem 2, assume uweS(a)
and

(1.17) a(x)=u,(x)+0(|x|*#)
where 3>0. Then
(1.18) lu(x, t)—u(x) | =M x| (1+s,)7 A+,
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for x€8, 0=t, where 7 is an arbitrary number satisfying the following conditions :
if B#1, r=min(B/2, 1/2) and r<a/3 and if B=1, y<1/2 and y<a/3. M is a
constant depending on u and 7.

The decay of vorticity can be obtained from and a proposition
of Babenko-Vasil'ev [2].

COROLLARY 2. In addition to the assumptions of Theorem 2, assume
(1.19) rota(x)=rotuy(x)+O0(| x| *exp(—psz)
where 0< 1, =1/2, 2<A. Then,
(1.20) rotu(x, 1)=0(] x| **exp (— p254)) m Qe

where p, is an arbitrary number 0<p,<p.

To prove the theorems, we shall apply the method of Babenko. §2 contains
some preliminaries. The proof of the theorems is done in §3. The corollaries
are proved in §4. In these sections we shall use the same ¢ for various con-
stants independent of variables x, ¢, given data, or parameters. We shall use
the same M for various constants depending on some data. We shall use c¢,,
Ca, Cp, 4, €tc. for various constants depending only on the parameters p, a, p and «,
etc. Some notations, e.g. & «, will be used to represent various objects when
no confusion occurs.

ACKNOWLEDGEMENT. The author devotes his sincere gratitude to Professor
K. Masuda who has introduced him to the present problem, suggested the method
of Babenko, and has given him unceasing encouragement and help.

§2. Preliminaries.

The main contents of this section are estimates for the fundamental solution
tensor of the linearized system of equations for [1.I), reduction of equations
(1.1)-(1.4) into integral equations, and proof of a fundamental lemma of Babenko
17

We first normalize variables. Through a suitable change of variables, we
can assume v=1, u.=(1, 0, 0) without loss of generality. We set v=u—u..
Then the equations (1.1)-(1.4) are transformed into

(

0 0
@1 E—v~Av+(v-V)v+ x v-+grad p=0
. (x: t)EQT
divv=0.
2.2) vz, O)=a(x)— U, xeR
2.3) vix, 1)=b(x, t)—U«, x€0f2, 0<5i<T

2.4 vix, H)—0 as |x|—ooo, 0=i<T.
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2.1. Fundamental solution tensor.
The fundamental solution tensor E=(FE,; Q;) of the linearized system of
equations for [2.1);
0 0
WU—AU—F a—xlv%*gradp—f
div v=0
is given by

1 0*

Eus(x, =04l (x, O+ e

1), 0= 015174y

(2.5) 5

Qulx, == 00 (Ix |

where d;; is the Kronecker’s delta, d(-) is the delta function, and [I" is given by
I'(x, H={rt)*?exp(— | x —tu.|2/4t).

E is the fundamental solution tensor in the sense

P 3 , P B
(E A+ a—x;)E“(x, D5, Qilx, 1)=0.,0(x)d(2)
(2.6) 5
—ax—jEij(x’ t)ZO

This follows from the obvious equality

0 0 -

We shall give some estimates of E for later use. We first state the estimates
essentially due to V. A. Solonnikov [20].

LEMMA 1. (Solonnikov) The inequalities

@ 11, rer=2, na+190ay
If k(x, t; —4/2), 0<2<3,

§c;T log(1+1)k(x, t; —3/2), A=3,
k(x, t; —3/2), 3<4

2.8) {1, r=, o1y 17y | sekin, 15 —a+0/2)
2.9) |Eoylx, )] Sck(x, 5 —3/2)
(2.10) IVE ;i(x, )| Sck(x, t; —2)

hold for x+0, t=0, where V' stands for an arbitrary I-th order x-derivative and
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k(x,t; A for real A is given by

(2.11) k(x, t; A=+ |x—tu.|»*.

We evaluate k(x, t; 4) and its certain integrals. To this end, we set p,
=(x;+x3)"* and
| x|~ P2(1+4s,) P2 for |x|>1
(2.12) D, (x)=
lx]¢ for |x|=1
where p, ¢>0.

LEMMA 2. Let a>0, p>1 and ¢>0. The following inequalities (2.13)-(2.17)
hold for x+0, t=0;

(2.13) k(x, t; —q)=c(x3/(1+D)+p2)
(2.14) k(x, t; —q)=c'Dyq, 20(%)

(2.15) S:k(x, rr =3/ dr<ct(1+1P2) x|
2.16) S:ku, t: —2de<ct(l4+12 x|

2.17) S:k(x, r: —p)1ti—7)*dz
§Ca,p¢2p—l,2p—2(x)
{Ja(it—x1l)(1+t+p§)“‘“‘““’““2 if 1x|>1, x>p./2
X
T A+t x|)™r@ o otherwise,

1, a+1
fa(t):{
1+log (1+41), a=1.

where

PRrROOF. Simple calculation can show [2.13] and [2.14). [2.15)] and [2.16)
follow from [2.13). To show (2.17) in the case |x|=<1 or 2x,<p,, we note

k(x, 7; —p)=c?(@+o+[x[7F,  |x|=1 or 2x=p., 0=r.

Integration of the both sides multiplied by (14+¢—z7)-% gives (2.17) in this case.
We show (2.17) in the excluded case [x|>1 and 2x;>p,. We set yp=p2

+x,—1/4. Note »>3/4. We put E(r):(r—xd—l/Z)/«/g and set &=£&(0), &=
&(t). Changing variables from = to &, we get

2.18) S:k(x, r: —p)(14+t—r)ade

:n-p-a/2+1/2g2(1+§2)“1’(1/\/5+51*5)_%1‘5'
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Evaluation of the right hand side of is carried out separately in cases
£<—1, |&|=1and &>1. Inthe case & <—1, put {=£&/&,. Evaluating (1+4&%)!
by |&|~% and changing variables from & to {, we have

2.19 [* a+er-rarvyre—gede

<& e e/ 6 14D

[§] oprime 0=a<l,
ZCapq [P log(Vlé]+D),  a=1,
|&, | -2pya-vi2, a>1.

A brief observation for |&;|=1 shows

¢ -
(2.20) S_;(l+52)‘1’(1/\/77+51—E)‘“d§
1, 0=a«l,
<ca 1 log 7y, a=1,
7?(61'—1)/2, a>1'

In the remaining case & >1, separate the interval of integration into two parts:
(—o0, £/2] and (£,/2, ). We obtain

ezy (7 arerra/vyre—oae
< sup (1/v/7+6—8]" (1+87de

§<£y1/2

+, sup (1467 /vE—)ds

£1/2<6<€1
i, 0<a<l1,
éca,p(l/\/;7_+él)_a+ctr,pETZp IOg('\/_y}_EI—{_l)y a:l’
77((1—1)/2, 1<a.
On the other hand we get
(2.22) n(l+E)=t+({t—x)+pi=c(l+i+p2)

since x;>¢>0. The estimate (2.17) follows from (2.18)-(2.22) and the following
inequality :

77_p+1/2§0@2p—1,2p-2(x>y x#0.

LEMMA 3. Let p>3/2, 1=¢<3/2, 1<r<5/4. Then
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¢ 1/r )
(2.23) (IS, 20 75 —2naxae} e

S
S
S
S

|
S k(x, T, Zq)dx} dr < bt

Ey

(2.24)
1/p

S k(x T; —Zp)dx} dféch—Ha/p

Pz

(2.26)

o0

2.27)

{

)
(2.25) S‘” S

g Sglx1|>R ' T ‘ZP)dX}”pdz-gch-m/ap

1Al

{S pr<1k(x’ T; ——2q)dx}1/qdr§cq

hold for t=0, where R>1.

PrROOF. Putting z=x—ru., the integrations with respect to x in [2.23) and
can be reduced to integrations with respect to |z|. Then, changing varia-
bles from |z| to |z|/+/7, straightfoward calculation gives [2.23) and [2.24). [2.25)
and can be shown analogously. Let us show [2.26). Integrating k(x,7;
—2p) with respect to p,, we get

(2.28) Sg&xmk(x, o —2p)dx
=- 2pz 1 {S S (z4+(x,—7)%)" ”’“dx}
= sz%l T_2p+3/ZS:OR—T)/\/T (l+$2)—2p+ld§

where £=(x,—7)/+/z. For t<R/2 we have
© 1 -
2\ ~2 s . Apts
S(R_TW;HS) PrdEs g (R 2)/N/T )
and for > R/2,
= 2\-2p+1
[ areedese,.

Thus we get

(2.29) S:{mwwm, o) —2p)dx} de

R/2 o0
=\ vaet (] e
éch‘3+3/P+ch—1+3/2p.

Thus has been proved.
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We give some estimates for I'(x, ¢), which will be used in the proof of

LEMMA 4. Let [ be a non-negative integer and 0<pu<1/2. Then
(2.30) S:wlr(x, )| dt

Zcpplx[TEYRAA4 x| 7Y exp (—ps,)

holds for x=+0.
Proor. Let [=/,+I,+{s, where /,, [, and [; are non-negative integers. The
derivative (0/0x,)'1(0/0x,)*2(0/0x,)"(x, t) of I'(x, t) is a linear combination of

t—l—3/2+j1+jz+js(x1_2})11—211x212“2i2
X x§32isexp{—(|x,—t|*+p2)/4t},

where 0=7,</;/2, i=1, 2, 3. We can show
— 2
(2.31) S t Plxl—thexp( ” BEZSuiibe 3 )dt

Scpl x| TPA(LA [ x| PR (s, T [)E
X €exXp (—‘31/2)

for x+#0, where 0=¢<p. To show this, put {=(|x,—t|*+pl)/4t—s./2 and
change the variable of integration of the left hand side of [2.3I), obtaining

(2.32) S?t‘?lxl——thexp (— ~'—”—iri’i) dt=I*+I"
where
1= {1 2| +-20 2V TR} 2| s+ 2= VT ]

2041x]
X(i2+\/c2+m I) exp (—C—s,/2)dC .

Calculation yields

I*<cp ol x| 72425, 4++/ 1% )% eXp (—s./2)
I"=c, 4| x| ~2H1(s LA/ T UL | x| -Pre/e+srz)
X exp(—sz/2)

for x+#0. Then the inequality immediately follows from these inequalities.
By [2.31) we can prove this lemma. Indeed, setting p=I—(j;+j,+7s)+3/2,
q=0,—2j,, we obtain since |x;|<+v2[x|s., i=2, 3.
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LEMMA 5. Let A>2 and 0<p'<1/2. Then,

(2.33) XSSEgl“(x—y, HA+ 1y *exp(—p's,)dy

=ca, w(l+]x])32exp(—p'ss)
holds for x<E; 0=t.

PrOOF. We put £=x/+t, n=y/+t, r=|75|, and cosf@=cos(&, ). In the
left hand side of (2.33), we evaluate exp(—|x—y—tu.|?/4t) by exp(—p’
X | x—y—tu.|*/2t) and change the variables of integration from y to polar coordi-
inates 7, 6, ¢. Since the integrand does not depend on ¢, we have

(2.34) SSSEsnx-y, DA+ |yt exp(— s, )dy
S@m)*texp(—p't/2+p' x,)

ng(l+x/fr)“r2 exp{—%’(lflz—{—ﬁ—!—z«/ﬁ)}dr

XZxS:exp(,u’lflrcos f)sin@ df

=cpexp(—p's)(1+15)
where

1=[" a v rep |~ £ vi- 181 dr,

O - N .
12—15151/|5|(1+\/tr) rexp*{ 2 (r++/t [5])}(17’.
We give a list of estimates of I; /=1, 2. For t=2|x]|,

I,< S:“s‘rzexp«{—%’(qu«/f/Z)z} dr

é%(%)sexr)(—#’t/&

gcﬂ’]x|_s

and
1 (> 7 —
< = £
= Igmelrexp{ (/2% dr
1 ’

écwm“D(*%ixl)-

For 0=t<2|x|,

1181
JéS ridrc|x|-%%.
0

For |x|/2=t<2|x|,
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1 (e SN2
hé’@&o(l—%\/tr) rdr

Scalx|7MR

For 0=t<{x]|/2,

L= lé‘[ {Sf”%g:arexp{— ”—2—’(7/2+ 1&1/4} dr

+ST;T/‘67'(1+\/?7)" exp{—%’(r—!—x/t_— |§|)2} dr}

= g7 {ew exp(— 4 161%) +3c, 161 0+ v 161/6)72)

1 174 _
écﬂ'—meXP(—E|x|>+62,,ﬂ(1+|xl> t.

Since the left hand side of (2.33) is clearly bounded for x=E;, t=0, the above
estimates together with (2.34) assert (2.33).

2.2. Reduction to integral equations.
Let v, p be a classical solution of (2.1)-(2.4) in Q. Let us compute

S:SSSD[{(—;[— +A4,+ %j)Eu(x”y, t—1)

0
—I—EQi(x—y, t_"T)}Uj(y’ 7)
d 9 0
G f s s
X Eij(x—, t—r)]dydf

where D is an arbitrary bounded subdomain of £. Using and the Green
formula in the hydrodynamics, we obtain

(2.35) vix, )= éw[u](x, )

for x€D and 0=<t<T. Here, the ;-th component L [v]; of L{P[v] is given by

(2.36) L Tolx, = Itx—y, tois, 0dy,
@.37) L v, ”:74}:?“@{“5& aii x—y—z, 1)

x|z dz} ey, 0)-ndy,
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2.39) LETolx, == Z-(1x=y )00, ndy,

4z Jlop 0y,

(2.39) L§Plulix,t)

o LS T R

—Eijvjnl_EijUjvknk]dydT y

(2.40) L [v]i(x, )= S:SSSDrai—kE“vjvkdydf

where E;;=FE;j(x—y, t—7), v=v(y, t), p=p(y, 7), and n is the outer normal
vector on 0D. We also define L®P[f] by (2.36)-(2.40) for any vector valued
function f and for any domain D. Especially if D=£, we use the notation
L™®[v] for LP[v].

The formula is shown in [12]. To establish this formula for a weak
solution and for D=4, we need

DEFINITION 2. A vector valued function u associated with a scalar function
p is a weak solution in Qr of (1.1)-(1.4) if and only if u, p satisfy (1.1) a.e. in
Qr, Vus L¥Qr), u(x, t)—a(x) as t—0 in the sense of distribution, and u(x, ¢)
=b(x, t) a.e. in £2X(0, T).

We say v is a weak solution of (2.1)-(2.4) if and only if v+u. is a weak
solution of (1.1)-(1.4). By the properties of our weak solutions studied by
Golovkin and Ladyzenskaya [8] and Solonnikov [20~,

(2.41) S:Sggm_mmeg{l—%‘ﬂ+IVp|+1Au|}5“dydz§M, xe®,
where p can be chosen so that
(2.42) (], (120, )1+ 1u(y, 211y

éMogggT IVu(-, 2

and M is a constant depending on a, b and [Vul 2.

PROPOSITION 1. Let v be a weak solution of (2.1)-(2.4) in Qr. Then,
(2.43) v(x, )= é}lL(“[v](x, H,  a e (x,)c0p.

PROOF. By and the theorem of trace, the right-hand side of
has meaning, and holds a.e. in Dx (0, T). Let D=Dr=802N{x ; |x| <R}
in and integrate the both sides with respect to R in R,<R<R,+1. Then
let R, go to infinity. We obtain
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5

(2.44) vi(x, )= 2 L®[vli(x, t)

k=1
—tim ['{ Ey(x—y, t—7)p(y, ) 22 dydr,
Ro~oo J0JJJRgs 1yisRy+1 |yl
a.e (x,1)EQr
by and by the fact ve L0, T ; L%(£)), which is assured by the assump-

tion Voe L*(Qr) and by the imbedding theorem of Sobolev. To prove the prop-
osition, it remains to show the last term of vanishes. We set

PS(x, )= lim S‘m Ei(x—y, i—7) p(y, ©)-22dydr .
0 RypslylsRy+1

Ro—-DO | y I

We can choose p such that
(2.45) Sgagp(y, Hdy=0, 0=t<T.

Then by [2.41) we obtain

STSSS,I_I,KI,Z,EQIP(% Dldy dt=M(1+|x|)

0

for x{2, where M is a constant depending on a, b and |Vv|l20. Then, by
Lemma 1, we have |P3(x, t)|<M, P3(x, t)—P%(z, 1)=0, and | P(x, H)—P5(x, 7)]
<M|t—z| for x, z€£2, 0=t, z<T. Since P3(x, t)—0 as |x|—co0 a.e. in 0=t
<T, we obtain P7(x, t)=0 in Q7. This completes the proof.

2.3. On L®,
Here we prove

PROPOSITION 2. L® is a bounded operator from L°0, T; L7(£2)) to L*(0,
T; L7(2), where s, s’,r and r’ are arbitrary numbers satisfying either 1<s,
s, r, r'<oo, 2/s'"+3/r'=22/s+3/r)—1 and 0=2/r—1/r'<1/3, or s=s'=oco0 and
0=2/r—1/r'<1/3.

To prove this proposition we use the following theorem of Mihlin-Lizorkin.

THEOREM [16, theorem 8]. Let @ : R*—C. Suppose @, the derivative
0"D/d&, --- 06, and all lower derivatives are continuous for &;#0, j=1, ---, n.
Let F[f] be the Fourier transform of f. Then the following transformation

f— el o@arae@e s

s a bounded operator LP(R™)— LYUR") if

a1+o ., an+a‘?lal@
51 ) Sn 8“5

where ¢=1/p—1/q, a is a multi-index, a; take the values 0 or 1 and M 1is a

=M, gx0
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constant.

PrROOF OF PROPOSITION 2. The Fourier transform F(VE(-, 1)) of VE(-, 1)
is given by

(5o Bl 0)@

=2r) 3%~ _‘lsk(éu_ifljz )exp(—tl&l"’—x/—_l 1£1).

The «a-th derivative for any multi-index « is estimated by
|E*0g F(VE(-, )|
= €1 {pat1E1)+qa1E 1)} exp (—t|€]7)
where p,() and ¢.() are polynomials in { of order |«|. Hence,
1£:628 117|208 F(VE(-, 1)
=g, ol TVETEO(LAR)
for 1>0, where ¢>0. By virtue of the theorem of Mihlin-Lizorkin, we obtain

(2.46) [LDTFIC, Dl

<\ |58 1 9EG =3, t=a) 117, 212

2
< cpp k0| ey £, )30 0,

dt

L?' @

where 1<p=<p’'<co and 1/6=1/p—1/p’. Hence by virtue of the same theorem,
we get

ILOLS L%, 5 L7
2
=cppa IETH f2220, 7; 127 0

where 1<¢=¢’<oo, 1/¢'=1/q—(1/2—3/20), 6 >3. Setting 2p=r, 2g=s, p'=r’
and ¢’=s’, we have proposition 2 in the case 1<s, s/, r, r'<co, 2/s’+3/r'=
2(2/s+3/r)—1, and 0=2/r—1/r’<1/3. The conclusion of also fol-
lows from in the other case.

2.4. A fundamental lemma.
Here we prove a fundamental lemma due to Babenko [1].

LEMMA 6. (K.I. Babenko) Let R, be a fixed positive number and ¢ (R) be
a non-negative function defined for R=R,. Suppose

(2.47) lif}'{lASupgb(R)<(2“”c2)'1“ﬁ“1’
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(2.48) PR)=c R+ {P(R/2}P,  R>2R,,

where ¢, ¢5, a, B are constants, a>0, B>1. Then for any e>0 there exists a
number R. such that

(2.49) Y(R)=(ci+e)R™™, R=R..

PROOF. We set ¢;=(2%%1¢,)"V®~» and R,=max{(2c,/cs)*'*, 14+sup{R : ¢(R)
=c5t}. By [2.47), R, is finite. For R=R,, there is a non-negative integer m
and a number R, R,<R,<2R, such that R=2"R,. Using [2.48), we can show
2™ R;)=2"™2¢, for all m by induction on m. Hence

G(R)=cy2R)*R™%,  RZR..
We set R.=max {2R,, (¢7'c.c§(4R))*F)f-®}. Then, we obtain by
P(R)=c R~ +co {cs2R,)*(R/2)~"} P
=(c;+e)R™

for R=R.. Thus we have proved the lemma.

§3. Proofs of theorems.

We shall show follows from by setting ¢(R)=
sup |v(x, t)|. To prove we shall use the theorem of Finn as

xIzR,0st<T
well as Lemma 6. In this section, every equality and inequality shall hold for
| x| =2diam (£29), 0=t<T.

3.1. Proof of [Theorem 1.
We first show under the assumptions of

@G.D |[L®Mo)(x, DI =M|x|*, 1=k=4,

where 4 is given in the statement of [Theorem 1. Indeed, one sees by [2.36),
(1.8), [2.7) and [2.13),

(3.2) | LO[w](x, )] S, M| x|-™ine. D

where M is a constant depending on @ and T. To evaluate L®[v], we set
1 a9
4r axi

value theorem that

Ki(x, )= mE x—y, O]y|-*dy, i=1,2 3. It follows from the mean-
3
Ki(x—y, )=K;(x, ) —y -V . Ki(x—80;y, t)

where 0<¢;<1. Hence the identity and the estimates and
yield
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| L®Lo](x, )] =c(l+8) ] x|

Sgagv(y’ 0)-ndy‘

e+l x 2|1yl e, 0)1dy.

We notice that by the divergence theorem

ngv(y, t)-ndy:SSag(v(y, H+u.)-ndy

zggagu(y, tndy.
Thus we have
3.3 [L®[o](x, )| =MA+)2 | x|#,
where M is a constant depending on @ and £. Similarly we get
(3.4) | L®Lvl(x, O =M|x]|~*#,

by [2.38), where M is a constant depending on b and £. Let us estimate L“[v].
To do so, we can assume [2.42) Then the identity (2.39) and the estimates

2.9}, [2.10), [2.15) and assure
3.5 |LCTv](x, )] =Mt(1+8)*|x|~°

where M is a constant depending on a, b, £ and stlpTHVv(-, Hlzze». The in-
0=t

equalities to prove [3.1).
Let us evaluate L®[v]. Let us fix x and set DP(R)={yeQ : |x—y| >R},

D®P(RY=02—DPV(R) for R>0. It is clear that
ké LS m[v]=L®[v].
=1

Applying Hélder’s inequality and using the estimates [2.10) and [2.13), we get

(3.6) | L% @ v](x, )]

=cpt(1+0*R™#+%/7 sup flo(-, 7) 1222 o)
srs

where p=1, 1/p+1/p’=1. The estimate [2.24) with ¢=1 yields
3.7 [ Lo @mlv]x, ) <cvt  sup  |ov(y, 7).

lz—yisR,0s7rst
vED
To choose a suitable value of p in [3.6), we need to prove

PROPOSITION 3. Under the assumptions of Theorem 1, ve L=, T : L7(2)),

where v satisfies either r=6 or r>3/p.
ProoF. The case r=6 follows from the Sobolev imbedding theorem and the
case r=oco from the assumption. Thus for »=6 holds. For <86,
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we note
lo(x, D1 =M| x|+ L®Lv](x, O],

which follows from [Proposition 1| and [3.1). [Proposition 2 with s=s’=c0, r=86,
r'=3 assures L®[v]eLl>0, T; L"(2)), r’=3. Hence velL=0, T; L"(2)) for
r>3/p and r=3. But then we have L®[vleL=(0, T; L™*(Q)) for »>3/p and
r=3, owing to Repeating the similar arguments proves Proposi-
tion 3.

We choose p=max(l, p) in [3.6] so that 2p’>3/u. Then [Proposition 3,
combined with the estimates and [3.7), gives

(3.8) | L®[o](x, 1) < Mt(1+8)2R-maxh 0
+ev't sup lv(y, 7)|2.

1 Z-yI<R,0ST<t

We choose R=|x|/2 in [3.8). Then
3.9) lv(x, ) =M+ x|~
+e't sup lv(y, 7)]%.

lz-yisizl/2,0sTst

Hence ifwe set ¢(R)= sup <Tlv(x, t)|, then

lzizR, 05t

(3.10) PR)=EMA+TPR “+cvT {G(R/2)}*.

Thus immediately follows from if holds. Let us
verify [2.47). We have by [2.10), [2.23), [2.40] and Hélder’s inequality

(3.11) | LG @], 1)

SO fer o, 73 Lo (0@ (R)))
where 1<r<5/4 and 1/r-+1/r"=1. We choose R=|x|/2 in [3.11), obtaining by
Proposition 3
IOl L2 0, 73 L2 (D@ (121/29)) — 0 as |x|—oo,

since »’>5. Hence we have [2.47) by [3.1), [3.6) and [3.11). This completes the
proof of [Theorem 1.

3.2. Proof of
Here we shall make use of a trivial modification of a theorem of Finn [5,
Theorem 5.1, Corollary 5.1]:

THEOREM. (R. Finn) Let f and g be functions in Q. satisfying
(3.12) sup| f(x, )—g(x, 1)
0st

=c{\| @..e—nsup i f, 01y, xe
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(3.13) sup | g(x, Hisclx|"A+s)™, xeL
(3.14) Sog?lf(x’ HiZclx|™?, xe

where @, , is given by (2.12) and a>1/2. Then, there holds
(3.15) flx, )=g(x, 1)
+O0(x|**log 1+ | x[)(1+s2)7%"?) n Q.

4
We set f=v, g= kz_}l L*®[p]. Then is an immediate consequence of

this theorem if the conditions to hold.

First we show [(3.12). Since f—g=L*®[v], (3.12) follows from [2.40), (2.10)
and (2.17) with a=0, p=2.

Next we verify [3.13). The terms L®[v] and L®[v] are estimated by
2.37), [2.38), [2.8) and [2.14), leading us to

(3.16) > [LPLo](x, D] SM]x[ (145,

where M is a constant depending on a and b. We evaluate L“[v] by (2.39),
[2.9), [2.10), (2.42) and (2.17) with a=0, p=3/2 or 2, concluding

(3.17) | L®Mv](x, )] =M|x| (1 +s2)7"

where M is a constant depending on a, b and sup ||Vov(:, t)|.2c0». We evaluate
0=t

L®Tv] by decomposing it into L®[v—wv,] and L¥[v,]. First we evaluate
L®Tp—v,]. Sinte v—v;=u—u;, we have

lo(x, 0)—v(x) | =M|x|*

by the assumption [1.11), where M is a constant depending on a. Hence we

get by [2.36), [2.7) and [2.14)
(3.18) [LPYTo—vd(x, )| =M x| *(1+s)".
We evaluate L®[wv,] by applying to v, i.e. by

5

LMo )=v,— 2 L®[v].

k=2

By [(1.6), [3.16) and [3.17) for v=v,, we obtain

o)+ 1 LPL0]0x, OISM[x] 1450,

where M depends on v,. By the theorem of Finn [5, theorem 5.1] and by
we get

| L®[v](x, =M x| A+s2)7",



Incompressible viscous fluid motions 515

where M depends on v,. Thus we have
(3.19) [LPTod(x, ) SEM| x| *A+s2)1.

Combining [3.16), [(3.17), [3.18) and [(3.19), we get [3.13).
It remains to show [3.14). Let us set ¢(R)= sup |v(x,t)[. Then the

jzizR, 05t
condition follows from if the assumptions [2.47) and [2.48) of
the lemma are valid. The inequality follows from and the

assumption of Let us prove for some a>1/2. Since
lg(x, )| =M|x|"!, we need to estimate L®[v] (=f—g). To this end, we fix
x in £ and R=1 and define

D(3>:{yEQ . px—y>R}
D(U:{yEQ : |x1—"y1|>R, px—yéR}
D(5):{yE‘Q : |x1——y1]§R, 1<pz—y§R}

D<6):{yeQ : lxl—ylléR, Pz—yél} :
It is clear that

L®v]= 3 L'3wlv].
=3
Using Holder’s inequality and the estimates [2.25)] and [2.26] we get

(3.20) 31 LBewlol(, 1)
Zcp R2P1isup |u(-, )] 72740
0stst
where 1/p,+1/p1=1, 2p;=r. Note that we can use since p,>3 by the

assumption (1.12) of [Theorem 2. We assume 2<r<3 without loss of generality.
Then by Holder’s inequality and by [2.25)] with R=1, we get

3.21) [ L% [v](x, 1)
Scpy Sup, lo(:, 7)lIZ2P2 0,

=cpy 8P [lo(+, D, ‘yEDggggfg lv(y, o)1+
where 0<e<1—r/3, 1/p.+1/p;=1 and p;=r(1—e)t. We note we can use
(2.25) since p,>3/2. By [2.27] we get

(3.22) | LG w[v](x, D] =Zc (seup lv(x, B)]2.

yeD(®) osrst

Let R=|x|/2+/2. Then the estimates to [3.22) gives
| L®[v](x, )]
=M|x|-trn4M sup lv(y, o)

lT-ylsiz1/2,0s7st
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where M is a constant depending on v, », and . Hence it follows from [3.13)

with g= ké_le[u] that

lo(x, )| =M|x|71reem

+M sup [v(y, o).

[x-yISi1z1/2 0STSE

Taking the supremum of the both sides of this inequality over the domain

{xeQ : |x| >R} X(0, o), we obtain (2.48) for a=1—3/2p,>1/2. This completes
the proof of

3.3. A remark on the decay of weak solutions.
Here we prove

PROPOSITION 4. Let v be a weak solution of (2.1)-(2.4) in Qr. Suppose ve
L3O, T; L™(2)) with v>3 and 3/r+2/s=1. Then under the assumption (1.8),
there holds

@2 USSR LERL T R
<M|x|-#

where M is a constant depending on v, T, and p, and p is the constant given in
the statement of Theorem 1.

REMARK 4. If 3/r+2/s<1, then v is a classical solution (Serrin [19] and
follows from [Theorem 1.
PROOF. We define

- 13 SiT I8
Fuste, 0={[{I{§ 17 2y} e
where f is a function on Q. yields

Bro(t, D= 3 LML, (5, 8, (x, D<Qr.

It is clear that

S IO (x, N=MIx|#,  (x, D<Qr,

where M is a constant depending on v, T and p. To evaluate L®[v], |, let
Xo, |Xo| >3, be arbitrarily fixed in £. Let us express a ball centred at x and
of a radius R by B(x, R). Let {B(y“, 1)}, be a finite covering of B(x,,]|x,!|/2).
We assume y” < B(x,, |x0|/2) and the multiplicity of the covering is not more

than 8, without loss of generality. Let {1;} X, be a partition of unity subordinate
to this covering. We define
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1565, 0= |[] A0V VEG—y, 1=l 105, )1*dyds,

J=1,2, ---, N. Then, by and the estimates and [2.13), the

following inequality holds :
I s(xo, H<cmin {1, 11412y — x| 4
X Aoy, (37, 1)}2.
On the other hand, if |x—=x,|<1 and |y—x|<|x,|/2—1, then yE B(x,, |x,!/2)
and hence there holds by Hoélder’s inequality and by

i N
[ 115,(1= S 2) 19BG—y, t=01 10ty, o) 1*dvde
0 Q j=1
=M1+l x| /2—1)7*
=Mt(1+1)%| x| 7#,
where M is a constant depending on v and p. Hence we have
_— N -
L®Tvlr, s(xo, D=M| x| 7#+ 2 11, 5(x0, 1)
j=1
éMlxol““+Mma§ v, (7, D}*
1sjs
where M is a constant depending on v, ¢ and 7. Finally we get

57', s(x0, t)

§M|x0|_”+M{‘ Sup ET,S(,V? T)}Zy

y-xglSITyl/2,0STSE

which implies, as a consequence of Lemma 6, [Proposition 4, if one sets ¢(R:

= sup U, 4(xo, ).
|ZglzR, 0stsT

§4. Proofs of corollaries.

4.1. Proof of [Corollary 1.

We set v,=u,—u.. and w=v—v,. Let us define
ot o1 f Bt i
@D Lerf, e, 0={ {[{, 5 Eutr—y,1-0

XSy, Dge(y, D+ fu(y, ©)g;(v, D} dydr,

i1=1, 2, 3, where f and g are vector valued functions defined in Q.. Then Prop-
osition 1 yields

4.2 w= é)lL””[w]—i—L“’[w, v.].

We evaluate each term of the right hand side of (4.2). Let o* be min(g, 1) if



518 R. MizuMACHI

o+1 and represent any number less than 1 if ¢=1. The assumption [I.17), on
account of the estimates [2.7) and [2.14), implies

4.3) | LOMwl(x, ) SMA+)P70, o(x), (%, NEQw

where M is a constant depending on @ and 8*. Since w|30=0, L®[w], £=2,3,
also vanish. Owing to the assumption implies

4.9 | L@Mw](x, O] =caMA+1)"4"050(x),  (x, HEQ,

where M is a constant depending on v. Let us evaluate L®[w, v;]. By the
assumption and [Theorem 2, we get

4.5) lw(x, = sup |w(x, t)|*sup |w(x, t)|'/*

éM(l—!—t)_a/z@l,O(x); (x) t)EQw,
where M is a constant depending on v. The inequalities and imply
[w(x, oy (x) | S MA+1)"720s o(x),  (x, )EQw,

where M is a constant depending on v and v,, We note that Finn's theorem

5.1 5] assures
SSSQ¢3,2(x—y>@s,o(Y)dyécq)z,o(x)y xef.

Hence the following inequality follows from and [2.10);
[ L®[w, v](x, )]

gSSSQS;MaJrf)-m@s,o(y)k(x— y, t—7: —2)dedy

<eaMVTF Y [0, 0(0)04 s(x— )y

SeaMAVIHEY'D, o(x),  (x, )EQw.
Similarly we get
| LOTw](x, )| ScMVIFE D, o(x),  (x, )EQu,
where M is a constant depending on v. Thus we have
(4.6) lw(x, )| EMA+1)710, 4(x), (x, HeEQw,

where 7,=min(8*/2, («/2)*/2) and M is a constant depending on a, b, v, v, 2

and 7,. By and we get
lw(x, )| SM1+-1)-22112Q, (%), (x, DEQ..

Substituting the estimate by this and repeating the argument, we get in-
stead of [4.6)
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[w(x, )| SMQA41)"72D, o(x), (%, )EQw,

where 7,=min(8*/2, (a/2+7,/2)*/2) and M is a constant depending on a, b, v,
vs, £2 and 7,. A finite number of iterations complete the proof.

4.2, Proof of [Corollary 2
is a consequence of a result of Babenko-Vasil’ev [2], which states

PROPOSITION 5. (Babenko-Vasil'ev) Let ¢(x) be a nonnegative function in
Q satisfying

4.7) )M x| (1+s)71, xef
.9 =MI[| () 1917(145,)7C utx =y

+M|x| " exp(—pusz), xR
where 0< u<1/2, M is a constant and G, is given by
(4.9) Gu(x)=1x|7*"*(1+]|x[V*)exp(—psa).
Then ¢(x) satisfies
(4.10) PO=M,|x|*Pexp{—(u—e)ss}, x€L

where 0<e<p and M. is a constant depending on ¢ and M.
We derive a representation formula for rotu and prove the inequalities (4.7)
and for ¢(x)=|rotu(x)|. We start from the obvious formula

5
o= kzlrot L*®[v]
where w=rotu. The terms rot L®[v], k=2, 3 clearly vanish. Note

rot,(E*f)(x, », t, t)=rot, I (x—y, t—1)f(y, 7)
for a vector valued function f, where the :-th component of E*f is given
by
(E*f)ilx, v, t, )=E(x—y, t—0)f (3, 7).

Hence the linear part of rot L®[v] with respect to (v, p) can be rewritten as
rotL ®[v], where

(4.11) L®[vli(x, t)
:SZSLQF{<~5”I)+ g—;; + %) "f—‘l’ml} dydr
—Szggag{vi(n‘V)F+ni(U'V)F}dydz-,

where I'=1"(x—y, t—1), v=v(y, 7), p=p(y, 7). The sum of the nonlinear part
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of rotL®[v] and rotL®[v] equals the left hand side of the following equality

-—rotSZSSSQF(v-V)U dyde= kiﬂl,””[v]

where

1t
(4.12) LOTo](x, )= ESoﬁagrn><grad( lv|Bdydr
(4.13) L®[v]y(x, )= Szmg{((u-V)F)w—((w-wF)v} dydr.

Thus the representation formula is obtained :
(4.14) w=rotL ¥ (w)+rotL®[v]+ kﬁ L®[v].
=7

Let us prove (4.7) and for ¢(x):301;1t) lw(x, t)]. The inequality (4.7) is a

consequence of and of a theorem of Finn [5, theorem 5.3]. We
show by [4.14). [Theorem 2 and Lemma 4 implies

(4.15) [L®[v](x, 1]

gMSSgggé(y) |y A+5)'Gulx—y)dy, (%, HEQw,

where 0<u<1/2 and M is a constant depending on v and g By Lemma 4 we
also get

(4.16) Irot L®Lo](x, I =M|x|"?exp(—uss),  (x, DEQx,

where 0<p<1/2 and M is a constant depending on v and p. To evaluate
L™[v], we note

Sgagn x grad (|v] Z)dyzggggrot (grad(|v|»)dy
=0.

Let us expand I'(x—y, t—7) into the series of powers in y and apply Lemma 4,
concluding

(4.17) | LPMo)(x, DI =M|x|exp(—pss),  (x, DEQw,

where 0<u<1/2 and M is a constant depending on v and g The evaluation
for rotL®[v] remains. To do this, let us decompose rotL V[v];

rotL ®Plv]=rotL V[ v, ]+ LY [rot(e—v,)]
~Sgagf(x—y, tin X (a—vy)dy.

By the assumption (1.19) and by we have
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(4.13) | L®[rot(@a—vy)](x, )| =M| x| exp(—puss),  (x, )EQx,

where M is a constant depending on a—v,. We also obtain

(4.19) mmnx— y, hnx(a—vs)dy
§M§gtpf(x, H=M|x|**exp(—s/2),

for large | x|, where M is a constant depending on a@—v,. An application of
the formula to v=wv, gives us

rot L P[v,]=rotv,—rot L ®[v,]— kﬁ] L®[v,].
=7

Then, the inequality and the inequalities (4.15) to for v=v, yield
(4.20) irot LP[v)(x, )| =M x| ?exp(—us.),  (x, NEQw,

where 0<p<1/2 and M is a constant depending on v, and g. Thus the inequal-
ities (4.18) to give

(4.21) [rot L®[v](x, )| =M|x|%exp(—Ss), (x, )EQ.,

which, combined with the estimates (4.15) to [4.17), gives with 0<p=<p,,
p+1/2. This completes the proof.
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