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Singular hyperbolic systems, V.

Asymptotic expansions for Fuchsian hyperbolic
partial differential equations

By Hidetoshi TAHARA
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In this paper, we study the asymptotic behavior of solutions of Fuchsian
hyperbolic partial differential equations (in Tahara [9-III]), and determine complete
asymptotic expansions of solutions in $C^{\infty}((O, T)\cross R^{n})$ as $tarrow+O$ . Our result
corresponds to the well-known result in the theory of ordinary differential
equations with regular singularities.

Let $(t, x)\in[0, T)\cross R^{n}(T>0)$ and let

$P(t, x, \partial_{t}, \partial_{x})=t^{m}\partial_{t}^{m}+P_{1}(t, x, \partial_{x})t^{m-1}\partial_{t}^{m}"+\cdots+P_{m}(t, x, \partial_{x})$

be a linear partial differential operator of order $m(\geqq 1)$ with $C^{\infty}$ coefficients on
$[0, T)\cross R^{n}$ . Assume that $P$ satisfies the following conditions:

(i) order $P_{j}(t, x, \partial_{x})\leqq j$ $(1\leqq j\leqq m)$ ,
(ii) order $P_{j}(0, x, \partial_{x})\leqq 0$ $(1\leqq j\leqq m)$ .

Then, $P$ is said to be a Fuchsian type operator with respect to $t$ . Further, if $P$

satisfies some hyperbolicity conditions, $P$ is said to be a Fuchsian hyperbolic
operator with respect to $i$ . By (ii), $P_{j}(0, x, \partial_{x})(1\leqq j\leqq m)$ are functions in $x$ . We
set $P_{j}(0, x, \partial_{x})=a_{j}(x)(1\leqq]\leqq m)$ . Then, the indicial polynomial $C(\lambda, x)$ associated
with $P$ is defined by

$C(\lambda, x)=\lambda(\lambda-1)\cdots(\lambda-m+1)+a_{1}(x)\lambda(\lambda-1)\cdots(\lambda-m+2)+\cdots+a_{m}(x)$

and the characteristic exponents $\rho_{1}(x),$ $\cdots$ , $\rho_{m}(x)$ of $P$ are defined by the roots
of the indicial equation $C(\lambda, x)=0$ in $\lambda$ .

In [9-III], we have solved the Cauchy problem in $C^{\infty}([0, T)\cross R^{n})$ for Fuchsian
hyperbolic operators $P$ under various assumptions of hyperbolicity. But, here, we
want to consider the equation

(S) $P(t, x, \partial_{t}, \partial_{x})u(t, x)=0$

in $C^{\infty}((O, T)\cross R^{n})$ (not in $C^{\infty}([0,$ $T)\cross R^{n}$ )) under the same assumptions as in
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[9-III]. Note that the difference between the study in $C^{\infty}([0, T)\cross R^{n})$ and the
study in $C^{\infty}((O, T)\cross R^{n})$ lies in whether we admit solutions with some singular-
ities at $t=0$ into our consideration or not. Especially, we are much interested in
the following questions. What kind of szngularities aPpears at $t=0$ for solutions
of (S) in $C^{\infty}((O, T)\cross R^{n})$ ? By what quantities are the singularities characterized
at $t=0$ ? These are our first motivation of the study in this paper.

The main result of this paper is summarized as follows. Let $P(t, x, \partial_{t}, \partial_{x})$

be a Fuchsian hyperbolic operator with $C^{\infty}$ coefficients and with suitable hyper-
bolicity (that is, with $(S- 1)\sim(S- 5)$ in \S 1), and let $\rho_{1}(x),$ $\cdots$ , $\rho_{m}(x)$ be the charac-
teristic exponents of $P$. Then, we have obtained the following result in this
paper, which answers the above questions.

MAIN THEOREM. Assume that $\rho_{i}(x)-\rho_{j}(x)\not\in Z$ holds for any $x\in R^{n}$ and
$1\leqq i\neq j\leqq m$ . Then, we have the following results.

(1) Any solution $u(t, x)\in C^{\infty}((O, T)\cross R^{n})$ of (S) can be exPanded asymptotically
into the form

$u(t, x) \sim\sum_{i=1}^{m}(\varphi_{i}(x)t^{\rho_{i}(x)}+\sum_{k=1}^{\infty}\sum_{h=0}^{mk}\varphi_{k,h}^{(t)}(x)t^{\rho_{i}(x)+k}(\log t)^{mk-h})$ $(*)$

on $R^{n}$ (as $tarrow+O$) for some $\varphi_{i}(x),$ $\varphi_{k.h}^{(i)}(x)\in C^{\infty}(R^{n})$ . Further, such coefficients
$\varphi_{i}(x),$ $\varphi 1_{h}^{i)}(x)$ are uniquely determined by $u(t, x)$ .

(2) Conversely, for any $\varphi_{1}(x),$ $\cdots$ , $\varphi_{m}(x)\in C^{\infty}(R^{n})$ we can find a solution
$u(t, x)\in C^{\infty}((O, T)\cross R^{n})$ of (S) and coefficients $\varphi S_{h}^{t)}(x)\in C^{\infty}(R^{n})(1\leqq i\leqq m,$ $1\leqq k<\infty$

and $0\leqq h\leqq mk$ ) such that the asymptotic relation $(*)$ in (1) holds. Further, such a
solution $u(t, x)$ and coefficients $\varphi_{k.h}^{(t)}(x)$ are uniquely determined by $\varphi_{1}(x),$ $\cdots$ , $\varphi_{m}(x)$ .

Here, the meaning of the asymptotic relation $(*)$ in (1) is as follows. Denote
by $R_{N}(t, x)$ the N-th remainder term, that is,

$R_{N}(t, x)=u(t, x)- \sum_{i=1}^{m}(\varphi_{i}(x)t^{\rho_{i}(x)}+\sum_{k=1}^{N}\sum_{h=0}^{mk}\varphi_{k.h}^{(i)}(x)t^{\rho_{i}(x)+k}(\log t)^{mk-h})$ .

Then, the asymptotic relation $(*)$ above is defined by the following: for any $s>0$

and any compact subset $K$ of $R^{n}$ , there is an $N_{0}\in N$ such that for any $N\geqq N_{0}$

$\sup_{x\in}|\partial_{t}^{l}\partial_{x}^{\alpha}R_{N}(t, x)|=o(t^{s-l})$

(as $tarrow+O$) holds for any 1 and $\alpha$ .
In the case of ordinary differential equations, the above result is well-known.

For example, see Wasow [12]. In the case of analytic category, analogous
characterizations are obtained in Froim [3], Tahara $[7, 8]$ , Chi Min-You [2] for
general Fuchsian tyPe partial differential equations. Note that the asymptotic
expansion of the above form can be easily obtained from the development of the
fundamental solutions constructed in Tahara [7] into formal series. See also Repin
[5], Tersenov [11], Weinstein [13].
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The basic idea of our discussion is as follows. By (ii), $P(t, x, \partial_{t}, \partial_{x})$ is
decomposed into the form

$P(t, x, \partial_{t}, \partial_{x})=c(r\partial_{t}, x)-tR(t, x, t\partial_{t}, \partial_{x})$

for some linear differential operator $R(t, x, \partial_{t}, \partial_{x})$ of order $m$ with $C^{\infty}$ coefficients.
Therefore, we can construct formal asymptotic solutions of (S) by solving the
ordinary differential equations $C(t\partial_{t}, x)u_{p}=tR(t, x, t\partial_{t}, \partial_{x})u_{p-1}(p=0,1,2,$ $\cdots$ and
$u_{-1}\equiv 0)$ inductively on $p$ (see Proposition 7). Combining this with the $C^{\infty}$ well
posedness of the flat Cauchy problem in [9-III], we obtain (2). The proof of (1)

is somewhat more complicated, but the essential idea is the same (see Proposi-
tion 6).

REMARK 1. When the hyperbolicity assumption is not satisfied, the situation
becomes quite different from that in the above theorem. Let $P=t\partial_{t}+\sqrt{-1}t\partial_{x}-\rho$ .
Then, the general solution $u(i, x)\in C^{\infty}((O, T)\cross R)$ of $Pu=0$ is given by $u(t, x)=$

$t^{\rho}f(t+\sqrt{-1}x)$ , where $f(z)$ is an arbitrary holomorphic function on {$z\in C$ ;
$0<{\rm Re} z<T\}$ . In this case, it is impossible to characterize the singularities at
$t=0$ of $u(t, x)$ by the notion of asymptotic expansions or asymptotic behaviors
(as $tarrow+0$).

REMARK 2. When $\rho_{i}(x)-\rho_{j}(x)\not\in Z$ ( $x\in R^{n}$ and $1\leqq i\neq j\leqq m$) does not hold,
the asymptotic expansion of $u(t, x)$ (as $tarrow+O$) will be much more complicated.
For example, in the case $P=(t\partial_{t}-t\partial_{x}-t-x)t\partial_{t}$ , the asymptotic expansion of
solutions $u(t, x)\in C^{\infty}((O, T)\cross R)$ of $Pu=0$ has the following form:

$u(t, x)\sim\varphi(x)+\psi(x)Y_{1}(t, x)+(\partial_{x}\psi)(x)Y_{2}(t, x)+o(t^{x+1})$

(as $tarrow+O$), where $\varphi(x)$ , $\psi(x)\in C^{\infty}(R)$ are arbitrary and $Y_{1}(t, x)$ , $Y_{2}(t, x)\in$

$C^{\infty}((O, T)\cross R)$ are functions defined by

$\int\frac{t^{x}-1}{x}-\frac{1}{x+1}(\frac{t^{x+1}-1}{x+1}-t^{x+1}\log r)$
, when $x\neq 0,$ $-1$ ,

$Y_{1}(t, X)=|_{1-\frac{1}{t}+\frac{1}{2}(\log t)^{2}}^{1-t+\log t+t\log t}$

’

$whenwhen$ $x=0x=-1$

,

$Y_{2}(t, x)=\{\begin{array}{ll}\frac{t^{x+1}-1}{x+1} , when x\neq-1,\log t, when x=-1.\end{array}$

The paper is organized as follows. In \S 1 we state our assumptions of
hyperbolicity. In \S 2 we define our asymptotic expansions and give some
elementary properties. From \S 3 to \S 5, we prove Main Theorem above: the
part (1) is proved in \S 4 and the part (2) is proved in \S 5. \S 3 is a preparation
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for the discussion in \S 4. In \S 6 we give some typical examples which illustrate
our assumptions in \S 1. In \S 7 we give some remarks and generalize our results
to some extent.

\S 1. Assumptions of hyperbolicity.

First, we state our assumptions of hyperbolicity imposed on $P$ in this paper.
Let $(t, x)\in[0, T)\cross R^{n}(T>0)$ , let

$P(t, x, \partial_{t}, \partial_{x})=t^{m}\partial_{t}^{m}+P_{1}(t, x, \partial_{x})t^{m-1}\partial_{t}^{m-1}+\cdots+P_{m}(t, x, \partial_{x})$

be a Fuchsian type partial differential operator of order $m(\geqq 1)$ , and let
$a_{j,\alpha}(t, x)\in B^{\infty}([0, T)\cross R^{n})(|\alpha|\leqq j)$ be the coefficients of $P_{j}(t, x, \partial_{x})$ , that is,

$P_{j}(t, x, \partial_{x})=\sum_{|\alpha|\leqq j}a_{j,\alpha}(t, x)\partial_{x}^{a}$ (1.1)

for $1\leqq j\leqq m$ , where $B^{\infty}([0, T)\cross R^{n})$ is the space of all such functions in
$C^{\infty}([0, T)\cross R^{n})$ that every derivative is bounded on $[0, T$ ) $\cross R^{n}$ . Note that the
condition (ii) (in the introduction) implies the following: when $|\alpha|>0,$ $a_{j.\alpha}(0, x)$

$=0$ holds on $R^{n}$ . On hyperbolicity, we assume the following five conditions
$(S- 1)\sim(S- 5)$ for $P$.

(S-1) (Factorizability). There is a positive number $\mu$ such that $a_{j,\alpha}(t, x)$

(when $|\alpha|=]$ ) has the form

$a_{j,\alpha}(t, x)=t^{\mu j}b_{j,\alpha}(t, x)$

for some $b_{j,\alpha}(t, x)\in B^{0}([0, T)\cross R^{n})$ satisfying $(t\partial_{t})^{l}\partial_{x}^{\beta}b_{j,a}(t, x)\in B^{0}([0, T)\cross R^{n})$ for
any $l$ and $\beta$ , where $B^{0}([0, T)\cross R^{n})$ is the space of all bounded continuous func-
tions on $[0, T$ ) $\cross R^{n}$ .

(S-2) (Hyperbolicity). All the roots $\lambda_{i}(t, x, \xi)(1\leqq i\leqq m)$ of the equation in $\lambda$

$\lambda^{m}+\sum_{j=1}^{m}\sum_{|\alpha|=j}b_{j,\alpha}(t, x)\xi^{a}\lambda^{m- j}=0$

are real valued for any $(t, x, \xi)\in[0, T)\cross R^{n}\cross R^{n}$ .
(S-3) (Distinctness). There are a positive constant $c$ and a real quadratic

form $Q(t, \xi)=\Sigma_{i.j=1}^{m}a_{i,j}(t)\xi_{i}\xi_{j}$ satisfying $(i)\sim(iii)$ given below such that the
estimate

$|\lambda_{i}(t, x, \xi)-\lambda_{j}(t, x, \xi)|\geqq cQ(t, \xi)^{1/2}$

holds for any $(t, x, \xi)\in[0, T)\cross R^{n}\cross R^{n}$ and $1\leqq i\neq j\leqq m$ , where $(i)\sim$ (iii) are as
follows: (i) $a_{i,j}(t)\in C^{1}([0, T))$ , (ii) $Q(t, \xi)>0$ for $t>0$ and $\xi\in R^{n}-\{0\}$ , and (iii)
max { $|\partial_{t}$ log $Q(t,$ $\xi)|$ ; $|\xi|=1$ } $=O(1/t)$ (as $tarrow+O$).
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(S-4) (Estimates of principal part). For any $\beta$ , there is a positive constant
$C_{\beta}$ such that the estimates

$| \partial_{x}^{\beta}\sum_{\}\alpha 1=j}b_{j,\alpha}(t, x)\xi^{\alpha}|\leqq C_{\beta}Q(t, \xi)^{J/2}$ ,

$| \partial_{t}\partial_{x}^{\beta}\sum_{\}\alpha|=j}b_{j,\alpha}(t, x)\xi^{\alpha}|\leqq\frac{C_{\beta}Q(t,\xi)^{J/2}}{t}$

hold for any $(t, x, \xi)\in(0, T)\cross R^{n}\cross R^{n}$ and $1\leqq j\leqq m$ .
(S-5) (Estimates of lower order parts). For any $\beta$ , there is a positive

constant $C_{\beta}$ such that the estimate

$| \partial_{x}^{\beta}\sum_{|\alpha|<j}$ a $j,$
$\alpha(t, x)(A\xi)^{\alpha}|\leqq C_{\beta}(1+t^{2\mu}Q(t, \xi))^{(j- 1)/2}$

holds for any $(t, x, \xi)\in[0, T)\cross R^{n}\cross R^{n}$ and $1\leqq j\leqq m$ .

These $(S- 1)\sim(S- 5)$ are our assumptions of hyperbolicity. The meanings of them
will be illustrated by examples in \S 6.

Note that $P$ is nothing but a Fuchsian hyperbOljc operatOr of class $(1, \mu)$ in
the sense of Definition 1.1 in Tahara [9-III] and that the Cauchy problem for
$P$ is $C^{\infty}$ well posed in the sense of Theorem 3.1 in [9-III]. In [9-III] we have
dealt with much more general classes of Fuchsian hyperbolic operators, but here
we will discuss only the case of class $(1, \mu)$ , because it is the most fundamental
and the generalization is not so difficult.

\S 2. Asymptotic series.

Secondly, we define our asymptotic series and present some elementary
properties of them.

Let $U$ be an open subset of $R^{n}$ . For $\phi(t, x)\in C^{\infty}((O, T)\cross U)$ and $\rho(x)\in C^{\infty}(U)$ ,

we denote by
$\phi(t, x)=o(t^{\rho(x)} ; \nabla^{\infty})$ on $U$ (as $tarrow+O$) (2.1)

the following: for any $l$ and $\alpha$ the function $(t\partial_{t})^{l}\partial_{x}^{\alpha}(t^{-\rho(x)}\phi(t, x))$ converges to
zero (as $tarrow+O$), as functions in $x$ , uniformly on any compact subset of $U$ . For
$u(t, x)\in C^{\infty}((O, T)\cross U)$ , $\rho_{i}(x)\in C^{\infty}(U)$ $(1\leqq i\leqq m)$ and $\varphi_{k.h}^{(i)}(x)\in C^{\infty}(U)$ $(1\leqq i\leqq m$ ,
$0\leqq k<\infty$ and $0\leqq h\leqq mk$ ), we define the asymptotic relation

$u(t, x) \sim\sum_{i=1}^{m}\sum_{k=0}^{\infty}mk\sum\varphi_{k.h}^{(i)}(x)t^{\rho_{i}(x)+k}(\log t)^{mk- h}$ on $U$ (as $rarrow+O$) (2.2)
$h=0$

by the following: for any $s>0$ and any compact subset $K$ of $U$ , there is an
integer $N_{0}$ such that for any $N\geqq 1V_{0}$
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$u(t, x)- \sum_{i=1}^{m}\sum_{k=0}^{N}mk\sum\varphi_{k.h}^{(t)}(x)t^{\rho_{i}(x)+k}(\log t)^{mk-h}=o(t^{s} ; \nabla^{\infty})$

$h=0$ (2.3)
on $K$ (as $tarrow+O$)

holds. This is the meaning of our asymptotic expansions.
We now investigate some elementary properties. The following proposition

is clear from the Taylor expansion in $t$ .

PROPOSITION 1. If $a(t, x)\in C^{\infty}([0, T)\cross U)$ , then we have

$a(t, x) \sim\sum_{k=0}^{\infty}\psi_{k}(x)t^{k}$ (2.4)

on $U$ (as $tarrow+O$) for some $\psi_{k}(x)\in C^{\infty}(U)$ in the above sense.
Hence, we may assume that the coefficients $a_{f.a}(t, x)$ of $P$ are expanded

asymptotically into the form (2.4) (as $tarrow+O$). We will often use this fact in
\S \S 4 and 5.

PROPOSITION 2. For any $\rho_{i}(x)\in C^{\infty}(U)$ $(1\leqq t\leqq m)$ and any $\varphi 1_{h}^{i)}(x)\in C^{\infty}(U)$

( $1\leqq t\leqq m,$ $0\leqq k<\infty$ and $0\leqq h\leqq mk$), there exists a function $u(t, x)\in C^{\infty}((O, T)\cross U)$

such that the following asymptotic relation holds:

$u(t, x) \sim\sum_{i=1}^{m}\sum_{k=0}^{\infty}mk\Sigma\varphi 4_{h}^{t)}(x)t^{\rho_{i}(x)+k}(\log t)^{mk-h}$

$h=0$

on $U$ (as $tarrow+O$).

PROOF. To obtain this, we have only to construct a function $u_{i}(t, x)\in$

$C^{\infty}((O, T)\cross U)$ such that

$u_{i}(t, x) \sim\sum_{k=0}^{\infty}mk\sum\varphi_{k,h}^{(i)}(x)t^{\rho_{i}(x)+k}(\log t)^{mk- h}$ (2.5)
$h=0$

on $U$ (as $tarrow+O$). Since (2.5) is equivalent to

$w_{i}(t, x) \sim\sum_{k=0}^{\infty}mk\sum\varphi_{k,h}^{(t)}(x)t^{k}(\log t)^{mk-h}$ (2.6)
$h=0$

under the relation $u_{i}(t, x)=t^{\rho_{i}(x)}w_{i}(t, x)$ , we may construct $w_{t}(t, x)\in C^{\infty}((O, T)\cross U)$

such that (2.6) holds on $U$ (as $tarrow+O$). Let $K_{0}\subset K_{1}\subset K_{2}\subset\cdots$ be a sequence of
compact subsets of $U$ such that $\bigcup_{k=0}^{\infty}K_{k}=U$ holds, and put

$M_{k}= \sum_{|\alpha|\leqq k}$

$mk\Sigma$ sup $|\partial_{x}^{a}\varphi_{k,h}^{(i)}(x)|$

$h=0x\in K_{k}$

for any $k$ . Choose a sequence $\{a_{k} ; 0\leqq k<\infty\}$ of positive numbers such that the
following conditions are satisfied: (i) $1\leqq a_{0}<a_{1}<a_{2}<\cdots$ , (ii) $a_{k}arrow+\infty$ (as
$karrow+\infty)$ , (iii) $a_{k}>e^{mk}$ for any $k$ , and (iv) the inequality

$2(M_{k})^{1/k}< \frac{\sqrt{a_{k}}}{|\log a_{k}|^{m}}$
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holds for any $k$ sufficiently large. Let $\theta(t)\in C^{\infty}(R)$ such that $\theta(t)=1$ for $t\leqq 1/2$

and $\theta(t)=0$ for $t\geqq 1$ . Then, $w_{i}(t, x)$ is given by

$w_{i}(i, x)= \sum_{k=0}^{\infty}mk\Sigma\varphi 1_{h}^{i)}’(x)\theta(a_{k}t)t^{k}(\log t)^{mk-h}$ . (2.7)
$h=0$

Since the right hand side of (2.7) is a locally finite sum on $(0, T)\cross U,$ $w_{i}(t, x)$ is
well defined and satisPes $w_{i}(t, x)\in C^{\infty}((O, T)\cross U)$ . Further, by using $(i)\sim(iv)$ we
can easily see the following: $w_{i}(t, x)$ dePned by (2.7) satisPes the asymptotic
relation (2.6). Hence, we obtain Proposition 2. Q.E.D.

PROPOSITION 3. Assume that $\rho_{i}(x)-\rho_{j}(x)\not\in Z$ holds for any $x\in U$ and
$1\leqq i\neq j\leqq m$ . Then, if $\varphi_{k.h}^{(i)}(x)\in C^{\infty}(U)$ ( $1\leqq i\leqq m,$ $0\leqq k<\infty$ and $0\leqq h\leqq mk$) satisfy

$o\sim\sum_{i\Leftarrow 1}^{m}\sum_{k\Leftarrow 0}^{\infty}mk\Sigma\varphi_{k.h}^{(i)}(x)t^{\rho_{i}(x)+k}(\log t)^{mk-h}$ (2.8)
$h=0$

on $U$ (as $tarrow+O$), we have $\varphi_{k.h}^{(i)}(x)=0$ on $U$ for any $i,$ $k$ and $h$ .
PROOF. Take any $x_{0}\in U$ and fix it. Put $\rho_{i}=\rho_{i}(x_{0})$ and $a_{k.h}^{(i)}=\varphi_{k.h}^{(t)}(x_{0})$ .

Then, $\rho_{i}\in C(1\leqq i\leqq m)$ and $a_{k,h}^{(i)}\in C$ ( $1\leqq i\leqq m,$ $0\leqq k<\infty$ and $0\leqq h\leqq mk$) satisfy

$0 \sim\sum_{i=1}^{m}\Sigma^{\infty}mk\Sigma a_{k.h}^{(i)}t^{\rho_{i}+k}(\log t)^{mk-h}$ (2.9)
$k=0h=0$

(as $tarrow+O$) in the same sense as in (2.8). Therefore, to obtain Proposition 3 it
is sufficient to prove that (2.9) implies $a_{k.h}^{(i)}=0$ for any $i,$ $k$ and $h$ . We show this
hereafter. Put $X(t)=t^{\rho_{i}+k}(\log t)^{mk-h}$ and $Y(t)=t^{\rho_{j}+p}(\log t)^{mp-q}$ for $(i, k, h)\neq$

$(j, p, q)$ . Then, $X(t)$ and $Y(t)$ satisfy the following: (i) if ${\rm Re}\rho_{i}+k\neq{\rm Re}\rho_{j}+p$

or if $mk-h\neq mp-q$ , then either $(X/Y)(t)=o(1;\nabla^{\infty})$ (as $tarrow+O$) or $(Y/X)(t)=$

$0(1;\nabla^{\infty})$ (as $tarrow+O$) holds, and (ii) if ${\rm Re}\rho_{i}+k={\rm Re}\rho_{j}+p,$ $mk-h=mp-q$ and
$i\neq j$ , then $(X/Y)(t)=t^{\sqrt{-1}\sigma}$ holds for some $\sigma\in R-\{0\}$ . In fact, (i) is clear and
(ii) is verified by the condition $\rho_{i}-\rho_{j}\not\in Z$ . Therefore, by placing $t^{\rho_{i}+k}(\log t)^{mk-h}$

( $1\leqq i\leqq m,$ $0\leqq k<\infty$ and $0\leqq h\leqq mk$ ) in order of the degeneracy at $t=0$ , we can
obtain $X_{i.j}(t)\in C^{\infty}((0, T))(0\leqq i<\infty$ and $j\in I_{i}$ , where $I_{i}(\neq\emptyset)$ is a finite index set
depending on i) such that the following conditions are satisfied: (iii) $\{X_{i.j}(t) ; i, j\}$

$=\{t^{\rho_{i}+k}(\log t)^{mk-h} ; i, k, h\}$ holds, (iv) $(X_{i+1,j}/X_{i.k})(t)=o(1;\nabla^{\infty})$ (as $tarrow+O$) holds
for any $i,$ $j\in I_{i+1}$ and $k\in I_{i}$ , and (v) if $j,$ $k\in I_{i}$ and $j\neq k$ , then $(X_{i,j}/X_{l.k})(t)$

$=t^{\sqrt{}\overline{-1}\sigma}$ holds for some $\sigma\in R-\{0\}$ . Consequently, (2.9) is expressed in the form

$0 \sim\sum_{i=0}^{\infty}\sum_{j\in I_{i}}b_{i.j}X_{i.j}(t)$ (2.10)

(as $tarrow+O$) for some $b_{i,j}\in C$ such that $\{b_{i.j} ; i, j\}=\{a_{k.h}^{(i)} ; i, k, h\}$ holds. More-
over, we may understand that (2.10) means the following: for any $N$ and any
$k\in I_{N}$
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$(( \sum_{i=0}^{N}\sum_{j\in I_{i}}b_{i.j}X_{i.j})/X_{N,k})(t)=o(1;\nabla^{\infty})$

(as $tarrow+O$) holds. Therefore, by Lemma 1 given below and by the standard
method we can easily obtain $b_{i,j}=0$ for any $i$ and $j$ . Hence, we also obtain
$a_{k,h}^{(t)}=0$ for any $i,$ $k$ and $h$ . Thus, to complete the proof we have only to show
the following lemma.

LEMMA 1. Let $l\in N,$ $\sigma(i)\in R(1\leqq i\leqq l)$ and assume that $\sigma(i)\neq\sigma(j)$ holds for
$1\leqq i\neq j\leqq l$ . Then, if $c_{i}\in C(1\leqq i\leqq l)$ satisfy

$\sum_{i=1}^{l}c_{i}t^{\sqrt{}\overline{- 1}\sigma(i)}=o(1;\nabla^{\infty})$ (2.11)

(as $tarrow+O$), we have $c_{i}=0$ for any $i$ .
The proof of this lemma is as follows. Applying $(t\partial_{t})^{k}$ to (2.11), we obtain

$\sum_{i=1}^{l}(’-1\sigma(i))^{k}c_{i}t^{\vee\overline{-1}\sigma(i)}arrow 0$ (2.12)

(as $tarrow+O$) for any $k$ . Since $\sigma(i)\neq\sigma(j)$ holds for $1\leqq i\neq j\leqq l$ , it follows from (2.12)

that $c_{i}t^{\sqrt{}\overline{-1}\sigma(i)}arrow 0$ (as $tarrow+O$) for any $i$ . Hence, we obtain $c_{i}=0$ for any $i$ .
Q. E. D.

By Proposition 3, we can conclude the following: when $\rho_{i}(x)-\rho_{j}(x)\not\in Z$

holds for any $x\in U$ and $1\leqq i\neq j\leqq m$ , the coefficients $\varphi_{k.h}^{(i)}(x)$ of the asymptotic
relation (2.2) are uniquely determined by $u(t, x)$ .

\S 3. A priori estimates.

Thirdly, we give a priori estimates of the degree of singularities at $t=0$ for
solutions of (S) in $C^{\infty}((O, T)\cross R^{n})$ .

PROPOSITION 4. Assume that $P$ satisfies $(S- 1)\sim(S- 5)$ . Then, there is a positive
number $s_{1}$ such that any solution $u(t, x)\in C^{\infty}((O, T)\cross R^{n})$ of (S) satisfies the
estimate

$u(t, x)=o(t^{-s_{1}} ; \nabla^{\infty})$ (3.1)

on $R^{n}$ (as $tarrow+O$).

We prove this by the same $L^{2}$-argument as in Proposition 5.1 of Tahara
[9-I] or in Lemma 1 of [9-IV]. To do so, we note the following lemma.

LEMMA 2. For any solution $u(t, x)\in C^{\infty}((O, T)\cross R^{n})$ of (S) and any compact
subset $K$ of $R^{n}$ , there exis $ts$ a solution $w(i, x)\in C^{\infty}((O, T),$ $H^{\infty}(R^{n}))$ of (S) such
that $w(t, x)=u(t, x)$ holds on $(0, T)\cross K$, where $H^{\infty}(R^{n})$ is the Sobolev space on $R^{n}$ .

PROOF. Let $L$ be a compact subset of $R^{n}$ such that
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$\{x\in R^{n}$ ; $\min_{y\in K}|x-y|\leqq\frac{\lambda_{\max}T^{\mu}}{\mu}\}\subset L$ ,

where $\mu$ is the positive number in (S-1), $\lambda_{\max}=\max\{|\lambda_{i}(t, x, \xi)|$ ; $(t, x)\in[0, T)\cross R^{n}$ ,
$|\xi|=1,1\leqq i\leqq m\}$ , and $\lambda_{i}(t, x, \xi)(1\leqq i\leqq m)$ are the same as in (S-2). Let $\varphi(x)$ be
a $C^{\infty}$ function with compact support such that $\varphi(x)=1$ in a neighborhood of $L$ ,

and put $g(t, x)=P(t, x, \partial_{l}, \partial_{x})(\varphi(x)u(t, x))$ . Then, $g(t, x)$ satisfies $g(t, x)=0$ on
$(0, T)\cross L$ and $g(t, x)\in C^{\infty}((O, T),$ $H^{\infty}(R^{n}))$ . Therefore, we can find a solution
$v(t, x)\in C^{\infty}((O, T),$ $H^{\infty}(R^{n}))$ of the equation

$\{\begin{array}{l}P(t, x, \partial_{t}, \partial_{x})v(t, x)=g(t, x),\partial_{t}^{i}v(t, x)|_{l=T_{0}}=0 (0\leqq i\leqq m-1)\end{array}$

(where $0<T_{0}<T$ ) such that $v(t, x)=0$ on $(0, T)\cross K$, because $P(t, x, \partial_{t}, \partial_{x})$ is a
regularly hyperbolic operator on $(\epsilon, T)\cross R^{n}$ for any $\epsilon>0$ . Hence, by putting
$w(t, x)=\varphi(x)u(t, x)-v(t, x)$ we obtain a desired solution in Lemma 2. Q. E. D.

In consequence of Lemma 2, we have only to show that (3.1) is valid for
any solution $u(t, x)$ of (S) in $C^{\infty}((O, T),$ $H^{\infty}(R^{n}))$ . Further, by using Sobolev’s
lemma (for example, Theorem 2.8 in Mizohata [4]) we can reduce the problem
to the $L^{2}$-version (3.2) given below. Therefore, to obtain Proposition 4 it is
sufficient to prove the following proposition.

PROPOSITION 5. Assume that $P$ satisfies $(S- 1)\sim(S- 5)$ . Then, there is a Positive
number $s_{2}$ such that any solution $u(t, x)(=u(t))\in C^{\infty}((O, T),$ $H^{\infty}(R^{n}))$ of (S) satisfies
the estimate

$\Vert(t\partial_{t})^{l}\partial_{x}^{a}u(t)\Vert=o(t^{-\_{2}})$ ( $3.2\rangle$

(as $tarrow+O$) for any 1 and $\alpha$ , where $\Vert\cdot\Vert$ is the $L^{2}$-norm on $R^{n}$ and $\phi(t)=o(t^{-s})$ (as
$tarrow+O)$ means that $t^{s}\phi(t)$ converges to zero (as $tarrow+O$).

PROOF. First, we transform (S) into a symmetric first-order system of
pseudo-differential equations. Let $u(t, x)(=u(t))\in C^{\infty}((O, T),$ $H^{\infty}(R^{n}))$ be a solution
of (S), let $\rho(t)\in C^{\infty}(R)$ such that $\rho(t)=0$ for $t\leqq 1,0\leqq\rho(t)\leqq 1$ for $1\leqq t\leqq 2$ and $\rho(t)=1$

for $t\geqq 2$ , let $\Theta(t)$ be the pseudo-differential operator dePned by the symbol

$e(t, \xi)=\rho(4-Q(t, \xi)^{1/2})+Q(t, \xi)^{1/2}\rho(Q(t, \xi)^{1/2})$

(where $Q(t,$ $\xi)$ is the quadratic form in (S-3)) in Proposition 2.6 of Tahara [9-II],

let $\vec{u}(t)={}^{t}(u_{1}(t), \cdots , u_{m}(t))$ be the m-column vector defined by

$u_{j}(t)=(\sqrt{-1})^{m- j}(1+t^{\mu}\Theta(t))^{m- j}t^{j-1}\partial i^{-1}u(t)$ , $j=1,$ $\cdots$ , $m$

(where $\mu$ is the positive number in (S-1)), and let $\Lambda$ be the pseudo-differential
operator defined by the symbol $\Lambda(\xi)=(1+|\xi|^{2})^{1/2}$ . Then, we have

LEMMA 3. There are $m\cross m$ matrices $N(t),$ $M(t),$ $R(t)$ and $2m\cross 2m$ matrices
$A(t)$ , $B(t)$ of Pseudo-differential operatOrs such that the following conditions are
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satisfied: (i) (S) is transformed into

$t\partial_{t}U(t)+A(t)U(t)-t^{\mu}B(t)U(t)=0$ , $0<t<T$ (3.3)

under the relations $U(t)={}^{t}(U_{1}(t), U_{2}(t)),$ $U_{1}(t)=N(t)\vec{u}(t),$ $U_{2}(t)=\Theta(t)^{-1}\vec{u}(t)$ and $\vec{u}(t)$

$=M(t)U_{1}(t)+R(i)U_{2}(t)$ , (ii) $N(t),$ $M(t),$ $R(t),$ $A(t)$ and $B(t)\Lambda^{-1}$ are Pseudo-differential
operatOrs of order $0$ with a parameter $t(0\leqq t<T)$ in the sense of Tahara [9-II,

\S 1], and (iii) there is a $p_{0\Omega}tive$ constant $b$ such that $|{\rm Re}(B(t)v, v)|\leqq b\Vert v\Vert^{2}$ holds
for any $v\in H^{\infty}(R^{n})$ and $0\leqq t<T$ , where $(, )$ is the inner product in $L^{2}(R^{n})$ .

In fact, this is verified as follows. By the same calculation as in the proof
of Theorem 6.1 (with $\sigma=1$ ) in Tahara [9-II] or in the proof of Proposition 2.1
(with $a=1$ ) in [9-III], we can transform (S) into a first-order system of the
form

$t\partial_{t}\vec{u}(t)+K(t)\vec{u}(i)-\sqrt{-1}t^{\mu}H(t)\Theta(t)a(t)=0$ ,

where $K(t)$ is a suitable $m\cross m$ matrix of pseudo-differential operators of order $0$,
$H(t)$ is the matrix given by

$H(t)=[01.01]$

and $h_{j}(t)$ is the pseudo-differential operator defined by the symbol

$h_{j}(t, x, \xi)=\sum_{|\alpha|=j}b_{j.a}(t, x)\xi^{\alpha}\Theta(t, \xi)^{-j}$

(where $b_{j.\alpha}(t,$ $x)$ are the same as in (S-1)). Since the symbol $H(t, x, \xi)$ of $H(t)$

satisfies the conditions $(I- 1)\sim(I- 4)$ in \S 3 of [9-II], by Theorem 3.1 in [9-II] we
can find $mXm$ matrices $N(t),$ $M(t),$ $D(t),$ $L(t),$ $T(t),$ $R(t)$ and $S(t)$ such that the
following conditions are satisfied: (iv) $N(t),$ $tN_{t}’(t),$ $M(t),$ $tM_{t}’(t),$ $D(t),$ $tD_{t}’(t),$ $L(t)$ ,
$T(t),$ $R(t)$ and $S(t)$ are pseudo-differential operators of order $0$ with a parameter
$t(0\leqq t<T)$ in the sense of [9-II], (v) $N(t)H(t)\Theta(t)=D(t)\Theta(t)N(t)+L(t)$ , (vi)
$D(t)\Theta(t)-(D(t)\Theta(t))^{*}=S(t)$ (where $(D(t)\Theta(t))^{*}$ is the formal adjoint operator of
$D(t)\Theta(t))$ , (vii) $M(t)N(t)=I-R(t)\Theta(t)^{-1}$ , and (viii) $N(t)M(t)=I-T(t)\Theta(t)^{-1}$ . Hence,
by the same calculation as in the proof of Lemma 2 in Tahara [9-IV] we can
easily obtain this lemma. Therefore, we may omit the details.

Next, we estimate the solution $U(t)$ of (3.3).

LEMMA 4. Put $a= \sup\{\Vert A(t)\Vert ; 0\leqq t<T\}$ (where $\Vert A(t)\Vert$ is the oPerator norm
of $A(t)$ in $L^{2}(R^{n}))$ and define the sequence $\{a_{k} ; 0\leqq k<\infty\}$ by $a_{0}=a,$ $a_{k}=a_{k-1}+(1/2)^{k}$

$(k\geqq 1)$ . Then, any solution $U(t)\in C^{\infty}((O, T),$ $H^{\infty}(R^{n}))$ of (3.3) satisfies the estimate
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$\Vert\Lambda^{k}U(t)\Vert=O(t^{-a_{k}})$ (3.4)

\langle as $tarrow+O$) for any $k\geqq 0$ , where $\phi(t)=O(t^{-a})$ (as $tarrow+O$) means that $|t^{a}\phi(t)|\leqq M$

holds for some $M>0$ .
This is verified by induction on $k$ . For $t>0$, we have

$-t \frac{d}{dt}\Vert U(t)\Vert^{2}=2{\rm Re}(-t\frac{dU(t)}{dt},$ $U(t))$

$=2{\rm Re}(A(t)U(t), U(t))-2t^{\mu}{\rm Re}(B(t)U(t), U(t))$ .
Since $|{\rm Re}(AU, U)|\leqq a\Vert U\Vert^{2}$ and $|{\rm Re}(BU, U)|\leqq b\Vert U\Vert^{2}$ , we have

$-t \frac{d}{dt}\Vert U(t)\Vert-a\Vert U(t)\Vert-bt^{\mu}\Vert U(t)\Vert\leqq 0$ (3.5)

Therefore, multiplying (3.5) by $t^{a-1}\exp((b/\mu)t^{\mu})$ and integrating from $t$ to $T_{0}$

(where $0<t<T_{0}<T$ ) we have

$t^{a} \Vert U(i)\Vert\exp(\frac{b}{\mu}t^{\mu})\leqq T_{0}^{a}\Vert U(T_{0})\Vert\exp(\frac{b}{\mu}T_{\dot{0}}^{u})$ .

Hence, we obtain $t^{a}\Vert U(t)\Vert=O(1)$ (as $tarrow+O$), that is, $\Vert U(t)\Vert=O(t^{-a})$ (as $iarrow+O$).

This implies that (3.4) is valid for $k=0$ . Suppose that $l\geqq 1$ and that (3.4) is
valid for $k=0,1,$ $\cdots$ , $l-1$ . Then, (3.4) for $k=l$ is obtained in the following
way. Note that $\Lambda^{t}U(t)$ satisfies

$t \frac{d}{dt}\Lambda^{l}U(t)+A(t)\Lambda^{l}U(t)-t^{\mu}(B(t)+lB_{1}(t))\Lambda^{l}U(t)$

$=- \sum_{j=1}^{\iota}(\begin{array}{l}lj\end{array})A_{j}(t)\Lambda^{l- j}U(t)+r^{\mu}\sum_{j=2}^{l}(\begin{array}{l}lj\end{array})B_{j}(t)\Lambda^{l- j+1}U(t)$ ,

where $A_{1}=[\Lambda, A]$ , $A_{j}=[\Lambda, A_{j-1}]$ $(j\geqq 2)$ , $B_{1}=[\Lambda, B\Lambda^{-1}]$ and $B_{j}=[\Lambda, B_{j-1}]$

$(j\geqq 2)$ under the notation [X, $Y$]$=XY-YX$. Since $a_{l}>a$ , by the same argument
as in (3.5) we have

$-t \frac{d}{dt}\Vert\Lambda^{l}U(t)\Vert-a_{l}\Vert\Lambda^{l}U(t)\Vert-b_{l}t^{\mu}\Vert\Lambda^{l}U(t)\Vert\leqq\overline{\delta_{=0}}^{c_{k}}l1\Vert\Lambda^{k}U(t)\Vert$ (3.6)

for some $b_{\iota}>0$ and $c_{k}>0$ . Therefore, multiplying both sides of (3.6) by
$t^{a_{l^{-1}}}\exp((b_{t}/\mu)t^{\mu})$ and integrating from $t$ to $T_{0}$ we obtain

$t^{a_{l}} \Vert\Lambda^{l}U(t)\Vert\exp(\frac{b_{l}}{\mu}r^{\mu})\leqq T_{0}^{a_{l}}\Vert\Lambda^{l}U(T_{0})\Vert\exp(\frac{b_{l}}{\mu}T\theta)$

$+\iota-1$

(3.7)

$k=0$

Since $a_{l}>a_{k}$ for $k=0,1,$ $\cdots$ , $l-1$ and since (3.4) is valid for $k=0,1,$ $\cdots$ , $l-1$ ,
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the integral terms in the right hand side of (3.7) are convergent as $tarrow+O$ .
Therefore, by (3.7) we obtain $t^{a_{l}}\Vert\Lambda^{l}U(t)\Vert=O(1)$ (as $tarrow+O$), that is, $\Vert\Lambda^{l}U(t)\Vert=$

$O(t^{-a_{l}})$ (as $tarrow+O$). This implies that (3.4) is also valid for $k=l$ . Thus, Lemma 4
is proved.

Now, let us prove the estimates in Proposition 5. Let $u(t, x)(=u(t))\in$

$C^{\infty}((O, T),$ $H^{\infty}(R^{n}))$ be a solution of (S). Then, by Lemmas 3 and 4 we have the
estimate $\Vert(t\partial_{t})^{l}\partial_{x}^{\alpha}u(t)\Vert=o(t^{-a-1})$ (as $tarrow+O$) for $1=0,1,$ $\cdots$ , $m-1$ and $\alpha$ . Since
$u(t, x)$ is a solution of (S), by operating $(t\partial_{t})^{k}\partial_{x}^{\alpha}$ on (S) we have

$(t \partial_{t})^{m+k}\partial_{x}^{\alpha}u(t, x)=\sum_{j+|\beta|\leqq m+k+\}\alpha|}c_{j,\beta}(t, x)(t\partial_{t})^{j}\partial_{x}^{\beta}u(t, x)$

$f<m+k$

for some $c_{J.\beta}(t, x)\in B^{\infty}([0, T)\cross R^{n})$ . Therefore, by induction on $k$ and $\alpha$ we can
easily see that $\Vert(t\partial_{t})^{m+k}\partial_{x}^{a}u(t)\Vert=o(t^{-a-1})$ (as $tarrow+O$) holds for any $k\geqq 0$ and $\alpha$ .
This immediately leads us to Proposition 5. Q. E. D.

Thus, Proposition 4 is also proved. In general, $P$ is said to have the
tempered growth condition (as $tarrow+O$), if $P$ satisfies the following: for any
solution $u(t, x)\in C^{\infty}((O, T)\cross R^{n})$ of $Pu=0$ and for any compact subset $K$ of $R^{n}$ ,

there is a positive number $s$ such that $u(t, x)=o(t^{-S} ; \nabla^{\infty})$ on $K$ (as $tarrow+O$).

Hence, by Proposition 4 we can conclude that our Fuchsian hyperbolic operator
$P$ has the tempered growth condition (as $tarrow+O$).

\S 4. Asymptotic expansions.

Fourthly, we establish the following theorem.

THEOREM 1. Assume that $P$ satisfies $(S- 1)\sim(S- 5)$ . In addition, assume that
$\rho_{i}(x)-\rho_{i}(x)\not\in Z$ holds for any $x\in R^{n}$ and $1\leqq i\neq j\leqq m$ . Then, any solution $u(t, x)$

$\in C^{\infty}((O, T)\cross R^{n})$ of (S) can be expanded asymptotically into the form

$u(t, x) \sim\sum_{i=1}^{m}(\varphi_{i}(x)t^{\rho_{i}(x)}+\sum_{k=1}^{\infty}\sum_{h=0}^{\pi\iota k}\varphi_{k.h}^{(i)}(x)t^{\rho_{i}(x)+k}(\log t)^{mk- h})$ (4.1)

on $R^{n}$ (as $tarrow+O$) for some $\varphi_{i}(x),$ $\varphi_{k.h}^{(i)}(x)\in C^{\infty}(R^{n})$ . Further, such coefficients
$\varphi_{i}(x),$ $\varphi_{k.h}^{(i)}(x)$ are uniquely determined by $u(t, x)$ . If $\varphi_{i}(x)=0$ on $R^{n}$ for any $i$ ,

then we have $\varphi_{k.h}^{(i)}(x)=0$ on $R^{n}$ for any $i,$ $k$ and $h$ .
Recall that the local uniqueness of the coefficients $\varphi_{i}(x),$ $\varphi_{k,h}^{(t)}(x)$ of the

asymptotic expansion (4.1) is already proved in Proposition 3. Therefore, to
obtain the first half of Theorem 1 it is sufficient to show the following: for
any $x_{0}\in R^{n}$ , there is an open neighborhood $U$ of $x_{0}$ such that $u(t, x)$ is expanded
asymptotically into the form (4.1) on $U$ (as $tarrow+O$) for some $\varphi_{i}(x),$ $\varphi_{k,h}^{(i)}(x)\in C^{\infty}(U)$ .

Take any $x_{0}\in R^{n}$ and fix it. Let $\lambda(x)=\rho_{i}(x)+k$ and $\sigma(x)=\rho_{j}(x)+l$ for
$(i, k)\neq(j, 1)$ . Then, one of the following three conditions holds: ${\rm Re}\lambda(x_{0})>{\rm Re}\sigma(x_{0})$ ,
${\rm Re}\lambda(x_{0})={\rm Re}\sigma(x_{0})$ and ${\rm Re}\lambda(x_{0})<{\rm Re}\sigma(x_{0})$ . Therefore, by placing $\rho_{i}(x)+k(1\leqq i\leqq m$
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and $0\leqq k<\infty$ ) in order of the value of ${\rm Re}\rho_{i}(x_{0})+k$ , we can obtain $\lambda_{j,l}(x)\in C^{\infty}(R^{n})$

( $1\leqq j<\infty$ and $l\in I_{j}$ , where $I_{j}(\neq\emptyset)$ is a finite index set depending on j) such
that the following conditions are satisfied: (i) $\{\lambda_{j,l}(x) ; j, l\}=\{\rho_{i}(x)+k ; i, k\}$

holds, (ii) ${\rm Re}\lambda_{j.l}(x_{0})={\rm Re}\lambda_{j,k}(x_{0})$ for any $j$ and $l,$ $k\in I_{j}$ , and (iii) ${\rm Re}\lambda_{j.l}(x_{0})<$

${\rm Re}\lambda_{j+1,k}(x_{0})$ for any $j$ , $l\in I_{j}$ and $k\in I_{j+1}$ . Consequently, we also obtain the
following: (iv) $\lambda_{j,l}(x)+1$ is expressed in the form $\lambda_{j,l}(x)+1=\lambda_{p.k}(x)$ for some $p$

$(\geqq j+1)$ and $k\in I_{p}$ , and (v) there is a positive integer $p_{0}$ such that {$\lambda_{j,l}(x)+1$ ;
$l\in I_{j}\}=\{\lambda_{j+p_{0},k}(x) ; k\in I_{j+p_{0}}\}$ holds for any $j$ sufficiently large. Hence, we can
choose a common open neighborhood $U$ of $x_{0}$ and a sequence $\{m_{j} ; 0\leqq j<\infty\}$ of
real numbers so that the following inequalities hold:

$|_{l\in I_{j}}m_{j+1} \sup_{x\in U}^{m_{0}}({\rm Re}\lambda_{j,l}(x))<m_{j}<\inf_{x\in U}({\rm Re}\lambda_{j+1.k}(x))<\inf_{x\in U,l\in I_{1}}({\rm Re}\lambda_{1,l}(x))<m_{j}+1$ $(]\geqq 1)$ , $(4..3)(4.2)(44)$

$(J\geqq 0)$ .

Hereafter, we fix {$\lambda_{j.l}(x)$ ; $1\leqq j<\infty$ and $l\in I_{j}$}, the open neighborhood $U$ of $x_{0}$

and the sequence $\{m_{j} ; 0\leqq j<\infty\}$ above. For $\lambda_{j.l}(x)=\rho_{i}(x)+k$ , we denote
$K(\lambda_{j.l})=k$ . Then, we can obtain the following proposition.

PROPOSITION 6. Let { $\lambda_{j,l}(x)$ ; $1\leqq j<\infty$ and $l\in I_{j}$} and $U$ be as above. Then,
any solution $u(t, x)\in C^{\infty}((O, T)\cross R^{n})$ of (S) can be expanded asymptotically into the
form

$u(t, x) \sim\sum_{j\Rightarrow 1}^{\infty}\sum_{l\in I_{j}}\varphi_{j,l}(x)t^{\text{\‘{A}}_{j,l^{(x)}}}K(\lambda_{j,l)=0}$

$+ \sum_{j=1}^{\infty}$

$\sum_{l\in I_{j}}$

$h=0$

$mK(\lambda_{j.l})\Sigma\varphi_{j,l}^{h}(x)t^{\lambda_{j.l}(x)}(\log t)^{mK(\lambda_{j.l)-h}}$

(4.5)

$K(\lambda_{j.l})\neq 0$

on $U$ (as $tarrow+O$) for some $\varphi_{j,l}(x),$ $\varphi_{j.l}^{h}(x)\in C^{\infty}(U)$ . Further, if $\varphi_{j,l}(x)=0$ on $U$

for any $j$ and 1, then we have $\varphi_{j,l}^{h}(x)=0$ on $U$ for any $j,$ $1$ and $h$ .
This immediately leads us to Theorem 1. So, from now on we confine

ourselves to proving Proposition 6. Here, we prepare some lemmas which are
necessary to the proof of Proposition 6.

LEMMA 5. Let $\rho(x)\in C^{\infty}(U),$ $A,$ $B\in R$ and $f(t, x)\in C^{\infty}((O, T)\cross U)$ . Assume
that $f(t, x)=o(t^{A} ; \nabla^{\infty})$ on $U$ (as $tarrow+O$). In addition, assume that $B<A<{\rm Re}\rho(x)$

holds for any $x\in U$ , or that ${\rm Re}\rho(x)<B<A$ holds for any $x\in U$ . Then, there
exists a solution $ti(t, x)\in C^{\infty}((O, T)\cross U)$ of the equation $(t\partial_{t}-\rho(x))\tilde{u}(t, x)=f(t, x)$

which satisfies \^u $(t, x)=o(t^{B} ; \nabla^{\infty})$ on $U$ (as $tarrow+O$).
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PROOF. When $B<A<{\rm Re}\rho(x)$ holds for any $x\in U,\tilde{u}(t, x)$ is given by

$a(t, x)=-t^{\rho}(x) \int_{t}^{T_{0}}\tau^{-\rho}(x)-1f(\tau, x)d\tau$

(where $0<T_{0}<T$ ). When ${\rm Re}\rho(x)<B<A$ holds for any $x\in U,\tilde{u}(t, x)$ is given by

\^u $(t, x)=t^{\rho(x)} \int_{0}^{t}\tau^{-\rho(x)- 1}f(\tau, x)d\tau$ .

In any case, details are verified by direct calculations. Q. E. D.

LEMMA 6. Let $A,$ $B\in R$ and $f(t, x)\in C^{\infty}((O, T)\cross U)$ , let $\rho_{1}(x),$ $\cdots$ , $\rho_{m}(x)$ be
the characteristic expOnents of $P$, and let $C(\lambda, x)$ be the indicial Polynomial associ-
ated with P. Assume that $f(t, x)=o(t^{A} ; \nabla^{\infty})$ on $U$ (as $tarrow+O$). In ad&tion, for
any $i(1\leqq i\leqq m)$ we assume that $B<A<{\rm Re}\rho_{i}(x)$ holds for any $x\in U$ , or that
${\rm Re}\rho_{i}(x)<B<A$ holds for any $x\in U$ . Then, we have the following results. (1)

There exists a solution \^u $(t, x)\in C^{\infty}((O, T)\cross U)$ of the equation $C(t\partial_{t}, x)i?(t, x)=$

$f(t, x)$ which satisfies $a(t, x)=o(t^{B} ; \nabla^{\infty})$ on $U$ (as $tarrow+0$). (2) Any solution
$u(t, x)\in C^{\infty}((O, T)\cross U)$ of the equation $C(t\partial_{t}, x)u(t, x)=f(t, x)$ is expressed in the
form

$u(t, x)= \sum_{j=1}^{\infty}\sum_{l\in I_{j}}\varphi_{j,l}(x)t^{\lambda_{j.l}(x)}+o(t^{B}$ ;
$K(\lambda_{j.l)=0} \nabla^{\infty})$

(4.6)

on $U$ (as $tarrow+O$) for some $\varphi_{j.l}(x)\in C^{\infty}(U)$ .
PROOF. Note that $C(t\partial_{t}, x)$ is decomposed into

$C(t\partial_{t}, x)=(t\partial_{t}-\rho_{1}(x))(t\partial_{t}-\rho_{2}(x))\cdots(t\partial_{t}-\rho_{m}(x))$ .

Therefore, applying Lemma 5 m-times we obtain (1). The proof of (2) is as
follows. Let $\tilde{u}(t, x)$ be the solution obtained in (1) and $v(t, x)=u(t, x)-\tilde{u}(t, x)$ .
Then, $v(t, x)$ satisfies $C(t\partial_{t}, x)v(t, x)=0$ . Since $\rho_{i}(x)\neq\rho_{j}(x)$ holds for any $x\in U$

and $1\leqq i\neq j\leqq m$ , we have

$v(t, x)= \sum_{i=1}^{m}\varphi_{i}(x)t^{\rho_{i}(x)}$

for some $\varphi_{i}(x)\in C^{\infty}(U)$ . This immediately leads us to (4.6), because $u(t, x)=$

$v(t, x)+\tilde{u}(t, x)$ and { $\lambda_{j,l}(x)$ ; $1\leqq j<\infty,$ $l\in I_{j}$ and $K(\lambda_{j.l})=0$} $=\{\rho_{i}(x) ; 1\leqq i\leqq m\}$

hold. Q. E. D.

LEMMA 7. Let $u(t, x),$ $f(t, x)\in C^{\infty}((O, T)\cross U)$ and let $\{m_{j} ; 0\leqq j<\infty\}$ be the
sequence chosen in $(4.2)\sim(4.4)$ . Assume that $u(t, x)$ and $f(t, x)$ satisfy the equation
$C(t\partial_{t}, x)u(t, x)=f(t, x)$ . Then, we have the following results. (1) If $f(t, x)=$

$o(t^{m_{0}-a} ; \nabla^{\infty})$ on $U$ (as $tarrow+O$) for some $a>0$ , then we have $u(t, x)=o(t^{m_{0}-b} ; \nabla^{\infty})$

on $U$ (as $tarrow+O$) for any $b>a$ . (2) If $f(t, x)=o(t^{m_{1}+\epsilon} ; \nabla^{\infty})$ on $U$ (as $tarrow+O$) for
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some $\epsilon>0$ , then we have

$u(t, x)= \sum_{l\in I_{1}}\varphi_{1,l}(x)t^{\lambda_{1.l}(x)}+o(t^{m_{1}} ; \nabla^{\infty})$

on $U$ (as $tarrow+O$) for some $\varphi_{1,l}(x)\in C^{\infty}(U)$ . (3) If $u(t, x)=o(t^{m_{p-1}} ; \nabla^{\infty})$ on $U$ (as
$tarrow+O)$ for some $p(\geqq 2)$ and if $f(t, x)$ has the form

$f(t, x)=$
$\sum_{l\in I_{p}}$

$mK(\lambda_{p.l})\Sigma\psi_{p,l}^{h}(x)t^{\lambda_{p.l}(x)}(\log t)^{mK(\lambda_{p.l)- h}}+o(t^{m_{p}+\epsilon} ; \nabla^{\infty})$ (4.7)
$h=0$

$K(\lambda_{p.l)\neq 0}$

on $U$ (as $tarrow+O$) for some $\psi_{p,l}^{h}(x)\in C^{\infty}(U)$ and some $\epsilon>0$ , then we have

$u(t, x)= \sum_{l\in I_{p}}\varphi_{p.l}(x)t^{\lambda_{p.l}(x)}$

$K(\lambda_{p.l)=0}$

$+$ $\Sigma$

$mK(\lambda_{p,l})\Sigma\varphi_{p.l}^{h}(x)t^{\lambda_{p.l}(x)}(\log t)^{mK(\lambda_{p.l})-h}+o(t^{m_{p}} ; \nabla^{\infty})$

(4.8)

$K(\lambda_{p.l})\neq 0l\in I_{p}$

$h=0$

on $U$ (as $tarrow+O$) for some $\varphi_{p.l}(x),$ $\varphi_{p.l}^{h}(x)\in C^{\infty}(U)$ . (4) In (3), the coefficients
{ $\varphi_{p,l}^{h}(x)$ ; $l\in I_{p}$ , $K(\lambda_{p,l})\neq 0$ and $0\leqq h\leqq mK(\lambda_{p,l})$ } are uniquely determined by
$t\psi_{p.l}^{h}(x);l\in I_{p}$ , $K(\lambda_{p.l})\neq 0$ and $0\leqq h\leqq mK(\lambda_{p,l})$ } and are characterized as the
unique solution of the equation

$C(t \partial_{t}, x)(\sum_{h=0}^{mK(\lambda_{p.l}}\varphi_{p,l}^{h}(x)t^{\lambda_{p.t^{(x)}}}(\log t)^{mK(\lambda_{p,l})- h}))$

$= \sum_{h=0}^{mK(\lambda_{p,l}}\psi_{p.l}^{h}(x)t^{\lambda_{p.l}(x)}(\log i)^{mKt\lambda_{p.l})-h})$

(4.9)

for any $l\in I_{p}$ such that $K(\lambda_{p,l})\neq 0$ .
PROOF. The proof of (1) is as follows. By (2) of Lemma 6, $u(t, x)$ is

expressed in the form

$u(t, x)= \sum_{j\Rightarrow 1}^{\infty}\sum_{l\in I_{f}}\varphi_{j,l}(x)t^{\lambda_{j.l}(x)}+o(t^{m_{0}- b} ;K(\lambda_{j.l})=0 \nabla^{\infty})$

on $U$ (as $tarrow+O$) for some $\varphi_{j,l}(x)\in C^{\infty}(U)$ . Hence, we obtain $u(t, x)=o(t^{m_{0}-b} ; \nabla^{\infty})$

on $U$ (as $tarrow+O$), because by (4.2) we have $\varphi(x)t^{\lambda_{j.l}(x)}=o(t^{m_{0}- b} ; \nabla^{\infty})$ on $U$ (as
$tarrow+O)$ for any $j\geqq 1,$ $l\in I_{j}$ and $\varphi(x)\in C^{\infty}(U)$ . Thus, (1) is proved. Since by (4.3)

we also have $\varphi(x)t^{\lambda_{j.l}(x)}=o(t^{m_{1}} ; \nabla^{\infty})$ on $U$ (as $tarrow+O$) for any $j\geqq 2,$ $l\in I_{j}$ and
$\varphi(x)\in C^{\infty}(U),$ (2) may be proved in the same way as (1). The proof of (3) is as
follows. Divide $f(t, x)$ (in (4.7)) into the following:

$f(t, x)=$
$\sum_{l\in I_{p}}$

$g_{l}(t, x)+h(t, x)$ ,

$K(\lambda_{p}l)\neq 0$
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$g_{l}(t, x)= \sum_{h\Rightarrow 0}^{mK(\lambda_{p,l}}\psi_{p,l}^{h}(x)t^{\lambda_{p.l}(x)}(\log t)^{mK(\lambda_{p,l)-\hslash}})$

where $\psi_{p,l}^{h}(x)\in C^{\infty}(U)$ are the same as in (4.7) and $h(t, x)=o(t^{m_{p}+\epsilon} ; \nabla^{\infty})$ on $U$ (as
$tarrow+O)$ . Note that $C(\lambda_{p,l}(x), x)\neq 0$ holds on $U$ for any $\lambda_{p.l}(x)$ such that $K(\lambda_{p.l})$

$\neq 0$ , because $\rho_{i}(x)-\rho_{j}(x)\not\in Z$ holds for any $x\in U$ and $1\leqq i\neq j\leqq m$ . Therefore,
by an easy calculation we can determine the coefficients $\varphi_{p}^{h}l(x)\in C^{\infty}(U)$

$(0\leqq h\leqq mK(\lambda_{p,l}))$ of

$w_{l}(t, x)= \sum_{h=0}^{mK(\lambda_{p,l}}\varphi_{p,l}^{h}(x)t^{\lambda_{p.l}(x)}(\log t)^{mK(\lambda_{p,l})- h})$

(where $l\in I_{p}$ and $K(\lambda_{p,l})\neq 0$) so that $w_{l}(t, x)$ becomes a solution of (4.9), that is,
$C(t\partial_{t}, x)w_{l}(t, x)=g_{l}(t, x)$ . On the other hand, since $h(t, x)=o(t^{m_{p}+\epsilon} ; \nabla^{\infty})$ on $U$

(as $tarrow+O$), by (1) of Lemma 6 we can find a function $\tilde{u}(t, x)\in C^{\infty}((O, T)\cross U)$

which satisfies $C(t\partial_{t}, x)\tilde{u}(t, x)=h(t, x)$ and $\tilde{u}(t, x)=o(t^{m_{p}} ; \nabla^{\infty})$ on $U$ (as $tarrow+O$).

Consequently, $u(t, x)$ is expressed in the form

$u(t, x)= \sum_{j=1}^{\infty}\sum_{\iota\in I_{j}}\varphi_{j.l}(x)t^{\lambda_{j.l}(x)}K(\lambda_{j,l)=0}+ \sum_{l\in I_{p}} w_{l}(t, x)+o(t^{m_{p}} ; \nabla^{\infty})$

(4.10)

$K(\lambda_{p}l)\neq 0$

on $U$ (as $tarrow+O$) for some $\varphi_{j,l}(x)\in C^{\infty}(U)$ . Since $u(t, x)=o(t^{m_{p-1}} ; \nabla^{\infty})$ on $U$ (as
$tarrow+O)$ , we have $\varphi_{j,l}(x)=0$ on $U$ for any $j\leqq p-1$ and $l\in I_{j}$ . Therefore, (4.10)

immediately leads us to (4.8), because $\varphi(x)t^{\lambda_{j.l}(x)}=o(t^{m_{p}} ; \nabla^{\infty})$ on $U$ (as $tarrow+O$)

for any $j\geqq p+1$ , $l\in I_{j}$ and $\varphi(x)\in C^{\infty}(U)$ . Thus, we obtain (3). Moreover, by
the same argument as in the proof of Proposition 3 we can prove that the
coefficients $\varphi_{p,l}(x),$ $\varphi_{p.l}^{h}(x)$ of (4.8) are uniquely determined by $u(t, x)$ . Therefore,
(4) is clear from the discussion of (3). Q. E. D.

LEMMA 8. Let $u(t, x)\in C^{\infty}((O, T)\cross U)$ and let $R(t, x, \partial_{t}, \partial_{x})$ be a linear
differential operat0r of order $m$ with coefficients in $C^{\infty}([0, T)\cross U)$ . Then, we have
the following results. (1) If $u(t, x)=o(t^{m_{p}} ; \nabla^{\infty})$ on $U$ (as $tarrow+O$), then we have
$tR(t, x, t\partial_{t}, \partial_{x})u(t, x)=o(t^{m_{p+1^{+\epsilon}}} ; \nabla^{\infty})$ on $U$ (as $tarrow+O$) for some $\epsilon>0$ . (2) If
$u(t, x)$ has the form

$u(t, x)= \sum_{q\in I_{p}}mK(\lambda_{p,q}\Sigma\varphi_{pq}^{h}(x)t^{\lambda_{p,q^{(x)}}}(\log t)^{mK(\lambda_{p,q}})- h)$

$h=0$

for some $p(\geqq 1)$ and $\varphi_{p,q}^{h}(x)\in C^{\infty}(U)$ , then we have

$tR(t, x, t \partial_{t}, \partial_{x})u(t, x)\sim\sum_{j=p+1}^{\infty}$ $\sum_{l\in I_{j}}\sum_{h=0}^{mK(\lambda_{j.l})}\psi_{j,l}^{h}(x)t^{\lambda_{j.l}(x)}(\log t)^{mKt\lambda_{j,l})-h}$

$K(\lambda_{j.l})\neq 0$

on $U$ (as $tarrow+O$) for some $\psi_{j.l}^{\hslash}(x)\in C^{\infty}(U)$ .
PROOF. (1) is clear from (4.4). (2) is verified by Proposition 1 and the

following facts: (i) $\lambda_{p,q}(x)+k$ (where $k\in N$) is expressed in the form $\lambda_{p,q}(x)+k$
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$=\lambda_{j,l}(x)$ for some $j(\geqq p+k)$ and $l\in I_{j}$ , and (ii) when $\lambda_{p,q}(x)+k=\lambda_{f,l}(x)$ , we have
$K(\lambda_{p,q})+k=K(\lambda_{j,l})$ and therefore $mK(\lambda_{p,q})+m\leqq mK(\lambda_{j.l})$ . Q. E. D.

Thus, preparations are completed. Now, let us return to Proposition 6.
Note that by the condition (ii) in the introduction we can decompose $P$ into the
following two parts

$P(t, x, \partial_{t}, \partial_{x})=c(r\partial_{t}, x)-tR(t, x, t\partial_{t}, \partial_{x})$ , (4.11)

where $C(\lambda, x)$ is the indicial polynomial associated with $P$ and $R(t, x, \partial_{t}, \partial_{x})$ is a
suitable linear differential operator of order $m$ with coefficients in $C^{\infty}([0, T)\cross R^{n})$ .
Consequently, the equation (S) is expressed in the form

$C(t\partial_{t}, x)u(t, x)=tR(t, x, t\partial_{t}, \partial_{x})u(t, x)$ .

For simplicity, we denote $tR(t, x, t\partial_{t}, \partial_{x})u(t, x)$ by $t\mathcal{R}[u](t, x)$ . Then, by using
the results in Lemmas 7 and 8 we can give a proof of Proposition 6 as follows.

PROOF OF PROPOSITION 6. Let $u(t, x)\in C^{\infty}((O, T)\cross R^{n})$ be a SOlutiOn of (S)

and let us consider the equation

$C(t\partial_{t}, x)u(t, x)=t\mathcal{R}[u](t, x)$ (4.12)

on $(0, T)\cross U$ . Note that by Proposition 4 we have $u(t, x)=o(t^{m_{0}-N} ; \nabla^{\infty})$ on $U$

(as $tarrow+O$) for some $N\in N$ sufficiently large, and that this implies that $t\mathcal{R}[u](t, x)$

$=o(t^{m_{0}- a_{1}} ; \nabla^{\infty})$ on $U$ (as $tarrow+O$) for any $a_{1}>N-1$ . Therefore, applying (1) of
Lemma 7 to (4.12) we obtain $u(t, x)=o(t^{m_{0}-b_{1}} ; \nabla^{\infty})$ on $U$ (as $tarrow+O$) for any
$b_{1}>N-1$ . This also implies that $t\mathcal{R}[u](t, x)=o(t^{m_{0}-a_{2}} ; \nabla^{\infty})$ on $U$ (as $tarrow+O$) for
any $a_{2}>N-2$ . Again, aPplying (1) of Lemma 7 to (4.12) we obtain $u(t, x)$

$=o(t^{m_{0}-b_{2}} ; \nabla^{\infty})$ on $U$ (as $tarrow+O$) for any $b_{2}>N-2$ . Repeating the same argument
N-times, we can obtain $u(t, x)=o(t^{m_{0}-b} ; \nabla^{\infty})$ on $U$ (as $tarrow+O$) for any $b>0$ , and
hence we can also obtain $t\mathcal{R}[u](t, x)=o(t^{m_{1}+\epsilon} ; \nabla^{\infty})$ on $U$ (as $tarrow+O$) for some
$\epsilon>0$ . Therefore, by (2) of Lemma 7, $u(t, x)$ is expressed in the form

$u(t, x)= \sum_{l\in I_{1}}\varphi_{1,l}(x)t^{\lambda_{1.l}(x)}+o(t^{m_{1}} ; \nabla^{\infty})$ (4.13)

on $U$ (as $tarrow+O$) for some $\varphi_{1,l}(x)\in C^{\infty}(U)$ . Thus, we have obtained the first
terms of the asymptotic series in (4.5).

Now, let us determine all the terms of the asymptotic series in (4.5). To
do so, it is sufficient to find functions $w_{j}(t, x)\in C^{\infty}((O, T)\cross U)(j\geqq 1)$ of the form

$w_{j}(t, x)= \sum_{l\in I_{j}}\varphi_{j,l}(x)t^{\lambda_{j,l}(x)}K(\lambda_{j,l})=0$

$+$ $\sum$

$mK( \lambda_{j,l})\sum\varphi_{j.l}^{h}(x)t^{\lambda_{j.l}(x)}(\log t)^{mK(\lambda_{j.l})-h}$

(4.14)

$l\in I_{j}$ $h=0$

$K(\lambda_{j,l})\neq 0$
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(where $\varphi_{j.l}(x),$ $\varphi_{j.l}^{h}(x)\in C^{\infty}(U)$ ) such that the following conditions are satisfied:

$u(t, x)- \sum_{j=1}^{k}w_{j}(t, x)=o(t^{m_{k}} ; \nabla^{\infty})$ , (4.15)

$C(t \partial_{t}, x)(\sum_{j=1}^{k}w_{j}(t, x))=t\mathcal{R}[\sum_{j=1}^{k-1}w_{j}](t, x)+o(t^{m_{k}} ; \nabla^{\infty})$ (4.16)

on $U$ (as $tarrow+O$) for any $k\geqq 1$ . Put

$w_{1}(t, x)= \sum_{l\in l_{1}}\varphi_{1.l}(x)t^{\lambda_{1.l}(x)}$ ,

where $\varphi_{1.l}(x)\in C^{\infty}(U)$ are the same as in (4.13). Then, (4.15) and (4.16) are
valid for $k=1$ . Suppose that $p\geqq 2$ and that we have already obtained $w_{1}(t, x)$ ,

, $u_{p-1}(t, x)\in C^{\infty}((O, T)\cross U)$ of the form (4.14) such that (4.15) and (4.16) are
valid for $k=1,$ $\cdots$ , $p-1$ . Then, we can find $w_{p}(t, x)$ in the following way. Put
$u_{p}(t, x)=u(t, x)-\Sigma_{j=1}^{p-1}w_{j}(t, x)$ . Then, $u_{p}(t, x)$ satisfies $u_{p}(t, x)=o(t^{m_{p-1}} ; \nabla^{\infty})$ on
$U$ (as $tarrow+O$). Therefore, by (1) of Lemma 8 we obtain $t\mathcal{R}[u_{p}](t, x)=o(t^{m_{p}+\text{\’{e}}} ; \nabla^{\infty})$

on $U$ (as $tarrow+O$) for some $\epsilon>0$ . On the other hand, by (4.12) we have

$C(t \partial_{t}, x)u_{p}(t, x)=-C(t\partial_{t}, x)(\sum_{j=1}^{p-1}w_{j}(t, x))+t\mathcal{R}[\sum_{j=1}^{p-2}w_{j}](t, x)$

$+t\mathcal{R}[w_{p-1}](t, x)+f\mathcal{R}[u_{p}](t, x)$ .
Hence, by (4.15) for $k=p-1$ and by (2) of Lemma 8 we can obtain the following
equatlon

$C(t\partial_{t}, x)u_{p}(t, x)=$
$\sum_{l\in I_{p}}$

$mK( \lambda_{p.l})\sum\psi_{p,l}^{h}(x)t^{j_{p.l}(x)}(\log t)^{mK(\lambda_{p,l})-h}$

$h=0$ (4.17)
$K$ ( $\lambda$

P. $l$
) $\neq 0$

$+o(t^{m_{p}+\epsilon} ; \nabla^{\infty})$ ,

where $\psi_{p.l}^{\hslash}(x)\in C^{\infty}(U)$ are known functions determined by $w_{1}(t, x)$ , – , $w_{p-1}(t, x)$ .
Consequently, by (3) of Lemma 7, $u_{p}(t, x)$ is expressed in the form $u_{p}(t, x)$

$=w_{p}(t, x)+o(t^{m_{p}} ; \nabla^{\infty})$ on $U$ (as $tarrow+O$) for some
$w_{p}(t, x)=$

$\sum_{l\in I_{p}}$

$\varphi_{p,l}(x)t^{\lambda_{p.l}(x)}$

$K(\lambda_{p.l})=0$

$+$
$\sum_{l\in I_{p}}$

$mK( \lambda_{p.l})\sum\varphi_{p,l}^{h}(x)t^{\lambda_{p,l}(x)}(\log t)^{mK(\lambda_{p.l})-h}$

,
(4.18)

$h=0$

$K(\lambda_{p}l)\neq 0$

where $\varphi_{p,l}(x),$ $\varphi_{p.l}^{h}(x)\in C^{\infty}(U)$ . Thus, we have obtained $t^{f}p(t, x)\in C^{\infty}((O, T)\cross U)$

of the form (4.14) such that (4.15) and (4.16) are also valid for $k=P$ . Repeating
the same argument as above, we can obtain all the terms $w_{j}(t, x)\in C^{\infty}((O, T)\cross U)$

$(j\geqq 1)$ of the form (4.14) such that
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$u(t, x) \sim\sum_{j=1}^{\infty}w_{j}(t, x)$

on $U$ (as $tarrow+O$). This immediately leads us to (4.5). Thus, we have proved
the first half of Proposition 6. Further, by (4) of Lemma 7 we have the
following: if $w_{j}(i, x)=0$ on $(0, T)\cross U$ for $j=1,$ $\cdots$ , $p-1$ , then in (4.17) we
have $\psi_{p.l}^{h}(x)=0$ on $U$ for any 1 and $h$ , and therefore in (4.18) we also have
$\varphi_{p.l}^{h}(x)=0$ on $U$ for any $l$ and $h$ . Therefore, the latter half of Proposition 6 is
clear. Q. E. D.

Thus, the proof of Theorem 1 is completed. Note that the hyperbolicity is
not used explicitly in the discussion of this section. Therefore, Theorem 1 is
also valid for any operator $P$ which satisfies the following two conditions: (i)
$P$ is decomposed into the form (4.11), and (ii) $P$ has the tempered growth
condition (as $tarrow+O$). However, it seems to the author that such operators are
closely related to Fuchsian hyperbolic operators in a suitable sense. For example,
we can easily see the following: if $P=t\partial_{t}+\alpha t^{m}\partial_{x}+\beta$ (where $m\in Z$ and $\alpha,$ $\beta\in C$)

has the tempered growth condition (as $tarrow+O$), then we have $m\geqq 1$ and $\alpha\in R$ .

\S 5. Completion of the proof of Main Theorem.

Fifthly, we complete the proof of Main Theorem in the introduction. Since
the part (1) of Main Theorem is already proved in Theorem 1, to obtain Main
Theorem it is sufficient to show the following result.

THEOREM 2. Assume that $P$ satisfies $(S- 1)\sim(S- 5)$ . In addition, assume that
$\rho_{i}(x)-\rho_{j}(x)\not\in Z$ holds for any $x\in R^{n}$ and $1\leqq i\neq j\leqq m$ . Then, for any $\varphi_{1}(x),$ $\cdots$

$\varphi_{m}(x)\in C^{\infty}(R^{n})$ we can find a solution $u(t, x)\in C^{\infty}((O, T)\cross R^{n})$ of (S) and coefficients
$\varphi_{k.h}^{(i)}(x)\in C^{\infty}(R^{n})$ ( $1\leqq i\leqq m,$ $1\leqq k<\infty$ and $0\leqq h\leqq mk$ ) such that the following asymp-
totic relation holds:

$u(t, x) \sim\sum_{i=1}^{m}(\varphi_{i}(x)t^{\rho_{i}(x)}+\sum_{k=1}^{\infty}\sum_{h=0}^{mk}\varphi_{k,h}^{(t)}(x)t^{\rho_{t^{(x)+k}}}(\log t)^{mk-h})$ (5.1)

on $R^{n}$ (as $tarrow+O$). Further, such a solution $u(t, x)$ and coefficients $\varphi t_{h}^{i)}(x)$ are
uniquely determined by $\varphi_{1}(x),$ $\cdots$ , $\varphi_{m}(x)$ .

Before the proof of Theorem 2, we prepare two propositions: the one
asserts the existence of formal solutions of (S) and the other asserts the $C^{\infty}$

well posedness of the flat Cauchy problem for $P$.
PROPOSITION 7. Assume that $\rho_{i}(x)-\rho_{j}(x)\not\in Z$ holds for any $x\in R^{n}$ and

$1\leqq i\neq J\leqq m$ . Then, for any $\varphi_{1}(x),$ $\cdots$ , $\varphi_{m}(x)\in C^{\infty}(R^{n})$ we can determine the coeffi-
ctents $\varphi\ell_{h}^{i)}(x)\in C^{\infty}(R^{n})$ ( $1\leqq i\leqq m,$ $1\leqq k<\infty$ and $0\leqq h\leqq mk$ ) of the formal sum

\^u $(t, x)= \sum_{i=1}^{m}(\varphi_{i}(x)t^{\rho_{i}(x)}+\sum_{k=1}^{\infty}\sum_{h=0}^{mk}\varphi_{k.h}^{(i)}(x)t^{\rho_{i}(x)+k}(\log t)^{mk- h})$
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so that \^u(t, x) becomes a formal solution of (S) in the following sense: for any
$s>0$ and any compact subset $K$ of $R^{n}$ , there is an integer $N_{0}$ such that for any
$N\geqq N_{0}$

$P(t, x, \partial_{t}, \partial_{x})(\sum_{i\Leftarrow 1}^{m}(\varphi_{i}(x)t^{\rho_{i}(x)}+\sum_{k=1}^{N}\sum_{h=0}^{mk}\varphi_{k,h}^{(i)}(x)t^{\rho_{i}(x)+k}(\log t)^{mk- h}))$

(5.2)
$=o(t^{s} ; \nabla^{\infty})$ on $K$ (as $tarrow+O$).

PROOF. To obtain this, we have only to discuss a formal solution $\hat{u}_{i}(t, x)$ of
the form

$\text{\^{u}}_{i}(t, x)=\varphi_{i}(x)t^{\rho_{i}(x)}+\sum_{k=1}^{\infty}mk\Sigma\varphi@_{h}^{i)}(x)t^{\rho_{t^{(x)+k}}}(\log t)^{mk-h}$ (5.3)
$h=0$

corresponding to $\rho_{i}(x)$ and $\varphi_{i}(x)$ only. Recall that $P$ is decomposed in (4.11) into
the form

$P(t, x, \partial_{t}, \partial_{x})=C(t\partial_{t}, x)-tR(t, x, t\partial_{t}, \partial_{x})$

for some linear differential operator $R(t, x, \partial_{t}, \partial_{x})$ of order $m$ with coefficients
in $C^{\infty}([0, T)\cross R^{n})$ . Therefore, to obtain a formal solution $\hat{u}_{i}(t, x)$ of the form
(5.3), it is sufficient to show that we can determine the coefficients $\varphi_{k.h}^{(i)}(x)\in C^{\infty}(R^{n})$

$(0\leqq h\leqq mk)$ of

$w_{k}(t, x)= \sum_{h=0}\varphi_{k.h}^{(i)}(x)t^{\rho_{i}(x)+k}(\log t)^{mk- h}mk$

(where $k\geqq 0$ and $\varphi_{0.0}^{(i)}(x)=\varphi_{i}(x)$ ) so that the following conditions are satisfied:

$C(t \partial_{t}, x)(\sum_{j=0}^{k}w_{j}(t, x))=tR(t, x, t\partial_{t}, \partial_{x})(\sum_{j=0}^{k-1}w_{j}(t, x))+o(t^{\rho_{i}(x)+k} ; \nabla^{\infty})$ (5.4)

on $R^{n}$ (as $tarrow+O$) for any $k\geqq 0$ . Note that $C(\rho_{\ell}(x), x)=0$ holds on $R^{n}$ and that

$C(t\partial_{t}, x)(\varphi_{i}(x)t^{\rho_{i}(x)})=C(\rho_{i}(x), x)\varphi_{i}(x)t^{\rho_{t^{(x)}}}=0$

holds on $(0, T)\cross R^{n}$ for any $\varphi_{i}(x)\in C^{\infty}(R^{n})$ . Therefore, we can take the coeffi-
cient $\varphi_{0,0}^{(i)}(x)(=\varphi_{i}(x))\in C^{\infty}(R^{n})$ of $w_{0}(t, x)$ arbitrarily. Suppose that $p\geqq 1$ and
that the coefficients $\varphi_{k,h}^{(i)}(x)\in C^{\infty}(R^{n})$ ($0\leqq k\leqq p-1$ and $0\leqq h\leqq mk$ ) of $w_{0}(t, x),$ $\cdots$

$w_{p- 1}(t, x)$ are already determined so that (5.4) is valid for $k=0,$ $\cdots$ , $p-1$ . Then,
by an easy calculation we can transform (5.4) for $k=p$ into the form

$C(t \partial_{t}, x)w_{p}(t, x)=\sum_{h=0}\psi_{p.h}^{(i)}(x)t^{\rho_{i}(x)+p}(\log t)^{mp- h}+o(t^{\rho_{i}(x)+p} ;mp \nabla^{\infty})$ (5.5)

on $R^{n}$ (as $tarrow+O$) for some known functions $\psi_{p.h}^{(i)}(x)\in C^{\infty}(R^{n})$ . Since $C(\rho_{i}(x)+p, x)$

$\neq 0$ holds on $R^{n}$ , by (5.5) we can uniquely determine the coefficients $\varphi_{p.h}^{(i)}(x)\in C^{\infty}(R^{n})$

$(0\leqq h\leqq mp)$ of $u_{p}$
) $(t, x)$ . Thus, by induction on $k$ we can obtain all the coefficients

$\varphi_{k.h}^{(i)}(x)\in C^{\infty}(R^{n})$ ($0\leqq k<\infty$ and $0\leqq h\leqq mk$ ) of $w_{k}(t, x)(k\geqq 0)$ such that (5.4) is
valid for any $k\geqq 0$ . Hence, we obtain a formal solution $\hat{u}_{i}(t, x)$ of the form
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(5.3) by

$\hat{u}_{i}(t, x)=\sum_{k=0}^{\infty}w_{k}(t, x)$

for any $\varphi_{0.0}^{(i)}(x)(=\varphi_{i}(x))\in C^{\infty}(R^{n})$ . Q. E. D.

PROPOSITION 8. Assume that $P$ satisfies $(S- 1)\sim(S- 5)$ . Then, for any $g(t, x)$

$\in C^{\infty}((O, T)\cross R^{n})$ such that $g(t, x)\sim O$ on $R^{n}$ (as $tarrow+O$), there exists a unique
solution $v(t, x)\in C^{\infty}((O, T)\cross R^{n})$ of $P(t, x, \partial_{t}, \partial_{x})v(t, x)=g(t, x)$ which satisfies
$v(t, x)\sim O$ on $R^{n}$ (as $tarrow+O$).

PROOF. Note that the following two conditions on $u(t, x)\in C^{\infty}((O, T)\cross R^{n})$

are equivalent to each other: (i) $u(t, x)\sim O$ on $R^{n}$ (as $tarrow+O$), and (ii) $u(t, x)$

$\in C^{\infty}([0, T)\cross R^{n})$ and $(\partial_{t}^{l}u)(0, x)=0$ on $R^{n}$ for any $l\geqq 0$ . Therefore, Proposition 8
is an easy consequence of Theorem 3.1 in Tahara [9-III] and its proof.

Q. E. D.
Now, let us give a proof of Theorem 2 by using the above propositions.
PROOF OF THEOREM 2. The proof of the first half is as follows. Let

$\varphi_{1}(x),$ $\cdots$ , $\varphi_{m}(x)\in C^{\infty}(R^{n})$ and let \^u(t, x) be the formal solution of (S) constructed
in Proposition 7 corresponding to $\varphi_{1}(x),$ $\cdots$ , $\varphi_{m}(x)$ . Then, by Proposition 2 we
can find $w(t, x)\in C^{\infty}((O, T)\cross R^{n})$ such that $w$ ( $t,$ x)\sim \^u(t, x) on $R^{n}$ (as $tarrow+O$).

Put $g(t, x)=P(t, x, \partial_{t}, \partial_{x})w(t, x)\in C^{\infty}((O, T)\cross R^{n})$ . Then, we have $g(t, x)\sim O$ on
$R^{n}$ (as $tarrow+O$), because P\^u(t, $x$ ) $\sim O$ on $R^{n}$ (as $tarrow+O$) in the sense of (5.2).

Therefore, by Proposition 8 we obtain $v(t, x)\in C^{\infty}((O, T)\cross R^{n})$ such that
$P(t, x, \partial_{t}, \partial_{x})v(t, x)=g(t, x)$ and $v(t, x)\sim O$ on $R^{n}$ (as $tarrow+O$). Hence, by putting
$u(t, x)=w(t, x)-v(t, x)$ we obtain a solution $u(t, x)\in C^{\infty}((O, T)\cross R^{n})$ of (S) which
satisfies $u$ ( $t,$ x)\sim \^u(t, x) on $R^{n}$ (as $tarrow+O$). This implies (5.1). Thus, the first
half of Theorem 2 is proved. The proof of the latter half of Theorem 2 is as
follows. Assume that a solution $u(t, x)\in C^{\infty}((O, T)\cross R^{n})$ of (S) and functions
$\varphi_{k.h}^{(t)}(x)\in C^{\infty}(R^{n})$ ( $1\leqq i\leqq m,$ $1\leqq k<\infty$ and $0\leqq h\leqq mk$ ) satisfy the following asymptotic
relation

$u(t, x) \sim\sum_{i=1}^{m}\sum_{k=1}^{\infty}mk\Sigma\varphi_{k,h}^{(i)}(x)t^{\rho_{i}(x)+k}(\log t)^{mk- h}$ (5.6)
$h=0$

on $R^{n}$ (as $tarrow+O$). Then, by the last part of Theorem 1 we have $\varphi_{k.h}^{(i)}(x)=0$ on
$R^{n}$ for any $i,$ $k$ and $h$ . This implies that $u(t, x)\sim O$ on $R^{n}$ (as $tarrow+O$). There-
fore, by the uniqueness part of Proposition 8 we also have $u(t, x)=0$ on
$(0, T)\cross R^{n}$ . Thus, we have proved the following: if $u(t, x)$ is a solution of (S),

then (5.6) implies $u(t, x)=0$ on $(0, T)\cross R^{n}$ and $\varphi_{k.h}^{(i)}(x)=0$ on $R^{n}$ for any $i,$ $k$

and $h$ . This immediately leads us to the latter half of Theorem 2. Q. E. D.
By Theorem 1 (in \S 4) and Theorem 2 (in this section), we obtain Main

Theorem in the introduction. Thus, the proof of Main Theorem is completed
at last.
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\S 6. Examples.

Sixthly, we give some typical examples to which we can apply our results.

EXAMPLE 1. Let $P_{1}$ be the Euler-Poisson-Darboux operator of the form

$P_{1}= \partial_{t}^{2}-\Delta+\frac{\alpha}{t}\partial_{t}$ ,

where $(t, x)\in[0, T)\cross R^{n},$ $\Delta=\partial_{x_{1}}^{2}+\cdots+\partial_{x_{n}}^{2}$ and $\alpha\in C$ . Then, $t^{2}P_{1}$ satisfies our
conditions with $\mu=1$ and $Q=\xi_{1}^{2}+\cdots+\xi_{n}^{2}$ , and the characteristic exponents are
given by $\lambda=0,1-\alpha$ . Note that by the change of variable $t^{2}arrow t$ we can transform
$t^{2}P_{1}$ into the form $\tilde{P}_{1}=4t^{2}\partial_{t}^{2}-t\Delta+2(1+\alpha)t\partial_{t}$ , and that $\tilde{P}_{1}$ also satisfies our conditions
with $\mu=1/2$ and $Q=\xi_{1}^{2}+\cdots+\xi_{n}^{2}$ . Therefore, we can obtain the following: if
$\alpha\neq\pm 1,$ $\pm 3_{f}\pm 5,$ $\cdots$ , then any solution $u(t, x)\in C^{\infty}((O, T)\cross R^{n})$ of $P_{1}u=0$ is
characterized by the asymptotic expansion (as $tarrow+O$) of the form

$u(t, x) \sim\sum_{k=0}^{\infty}\frac{\Gamma(\frac{1+\alpha}{2})\Delta^{k}\varphi_{1}(x)}{2^{2k}\Gamma(k+1)\Gamma(k+\frac{1+\alpha}{2})}t^{2k}$

$+ \sum_{k=0}^{\infty}\frac{\Gamma(\frac{3-\alpha}{2})\Delta^{k}\varphi_{2}(x)}{2^{2k}\Gamma(k+1)\Gamma(k+\frac{3-\alpha}{2})}t^{2k+1-a}$ .

EXAMPLE 2. Let $P_{2}$ be of the form

$P_{2}=t^{2}\partial_{t}^{2}-t^{k}\partial_{x}^{2}+t^{l}a(t, x)\partial_{x}+b(t, x)t\partial_{t}+c(t, x)$ ,

where $(t, x)\in[0, T)\cross R,$ $k$ and $l$ are positive integers such that $l\geqq k/2$ , and
$a(t, x),$ $b(t, x),$ $c(t, x)\in B^{\infty}([0, T)\cross R)$ . Then, $P_{2}$ satisPes our conditions with
$\mu=k/2$ and $Q=\xi^{2}$ , and the characteristic exponents $\rho_{\pm}(x)$ are $given_{\wedge}by$

$\rho_{\pm}(x)=\frac{b(0,x)-1}{2}\pm\frac{\sqrt{(b(0,x)-1)^{2}-4c(0,x)}}{2}$ .

Therefore, if $\rho_{+}(x)-\rho_{-}(x)\not\in Z$ holds for any $x\in R$ , then any solution $:u(t, x)$

$\in C^{\infty}((O, T)\cross R)$ of $P_{2}u=0$ is characterized by the asymptotic expansion (as $tarrow+0$)

of the form
$u(t, x) \sim\sum_{\pm}(\varphi_{\pm}(x)t^{\rho\pm(x)}+ )$ .

EXAMPLE 3. Let $P_{3}$ be of the form

$P_{3}=R(t, x, t\partial_{t}, t^{\kappa}\partial_{x})$ ,

$t^{\kappa}\partial_{x}=(r^{\kappa_{1}}\partial_{x_{1}}, \cdots t^{\kappa_{n}}\partial_{x_{n}})$ ,
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where $(t, x)\in[0, T)\cross R^{n},$ $\kappa_{i}(1\leqq i\leqq n)$ are positive integers, and $R(t, x, \partial_{t}, \partial_{x})$ is
a regularly hyperbolic operator (for example, see Mizohata [4]) with coefficients
in $B^{\infty}([0, T)\cross R^{n})$ . Then, $P_{3}$ satisfies our conditions with $\mu=\min\{\kappa_{i} ; 1\leqq i\leqq n\}$

and $Q=\xi_{1}^{2(\kappa_{1}-\mu)}+\cdots+\xi_{n}^{2(\kappa_{n}-\mu)}$ , and the indicial polynomial is given by $C(\lambda, x)$

$=R(O, x, \lambda, 0)$ . Therefore, we can apply our results to the equation $P_{8}u=0$ in
$C^{\infty}((O, T)\cross R^{n})$ . See Tahara [10].

\S 7. Supplementary remarks.

Lastly, we give some remarks. Throughout our whole discussions before,
we have assumed that the coefficients of $P$ belong to $B^{\infty}([0, T)\cross R^{n})$ or
$C^{\infty}([0, T)\cross R^{n})$ . However, this condition is too restricted from the view point
of asymptotic analysis. Here, we give a wider condition and generalize our
results to some extent.

Let $P(t, x, \partial_{t}, \partial_{x})$ be a Fuchsian type partial differential operator of order $m$

and let $a_{j.\alpha}(t, x)$ ( $1\leqq j\leqq m$ and $|\alpha|\leqq j$ ) be the coefficients of $P$ in (1.1). Instead
of the condition $a_{j.\alpha}(t, x)\in B^{\infty}([0, T)\cross R^{n})$ , we assume the following two condi-
tions on $a_{j.\alpha}(t, x)$ for any $j$ and $\alpha$ :

(T-1) $a_{j.\alpha}(t, x)\in B^{0}([0, T)\cross R^{n})\cap C^{\infty}((0, T)\cross R^{n})$ and $(t\partial_{t})^{l}\partial_{x}^{\beta}a_{j.\alpha}(t, x)\in$

$B^{0}([0, T)\cross R^{n})$ for any 1 and $\beta$ .
(T-2) There is a positive integer $N$ (independent of $j$ and $\alpha$) such that

$a_{j,a}(t, x)$ is expanded asymptotically into the form

$a_{j.\alpha}(t, x) \sim\sum_{k=0}^{\infty}a_{j.a}^{(k)}(x)t^{k/N}$

on $R^{n}$ (as $tarrow+O$) for some $a_{j.\alpha}^{(k)}(x)\in C^{\infty}(R^{n})$ .
Then, under $(S- 1)\sim(S- 5)$ we can obtain Propositions 4 and 8 also in this case.

In fact, to obtain these results we do not necessarily need the condition $a_{j.\alpha}(t, x)$

$\in B^{\infty}([0, T)\cross R^{n})$ but we need only the condition (T-1). Therefore, carrying out
the change of variables $t^{1/N}arrow t$ and $xarrow x$ , and applying the same argument as
developed in the previous sections, we obtain the following theorem.

THEOREM 3. Assume that $P$ satisfies (T-1), (T-2) and $(S- 1)\sim(S- 5)$ . In addi-
tion, assume that $\rho_{i}(x)-\rho_{j}(x)\not\in Z/N=\{k/N;k\in Z\}$ holds for any $x\in R^{n}$ and
$1\leqq i\neq j\leqq m$ . Then, we have the following results.

(1) Any solution $u(t, x)\in C^{\infty}((C, T)\cross R^{n})$ of (S) can be expanded asymptOtjcally
into the form

$u(t, x) \sim\sum_{i=1}^{m}(\varphi_{i}(x)t^{\rho_{i}(x)}+\sum_{k=1}^{\infty}\sum_{h=0}^{mk}\varphi_{k.h}^{(i)}(x)t^{\rho_{i}(x)+k\prime N}(\log t)^{mk-h})$ $(**)$

on $R^{n}$ (as $tarrow+O$) for some $\varphi_{i}(x),$ $\varphi_{k,h}^{(t)}(x)\in C^{\infty}(R^{n})$ . Further, such coefficients
$\varphi_{i}(x),$ $\varphi_{k.h}^{(t)}(x)$ are uniquely determined by $u(t, x)$ .
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(2) Conversely, for any $\varphi_{1}(x),$ $\cdots$ , $\varphi_{m}(x)\in C^{\infty}(R^{n})$ we can find a solution
$u(t, x)\in C^{\infty}((O, T)\cross R^{n})$ of (S) and coefficients $\varphi_{k.h}^{(t)}(x)\in C^{\infty}(R^{n})(1\leqq i\leqq m,$ $1\leqq k<\infty$

and $0\leqq h\leqq mk$) such that the asymptotic relation $(**)$ in (1) holds. Further, such a
solution $u(t, x)$ and coefficients $\varphi_{k.h}^{(i)}(x)$ are uniquely determined by $\varphi_{1}(x),$ $\cdots$ , $\varphi_{m}(x)$ .

Note that the functions $t^{q},$ $t^{q}a(t, x),$ $a(t^{q}, x),$ $\cdots$ satisfy (T-1) and (T-2), if $q$

is a positive rational number and $a(t, x)\in B^{\infty}([0, T)\cross R^{n})$ . Therefore, we can
apply Theorem 3 to the operator $P_{2}$ (in Example 2) when $k$ and $l$ are positive
rational numbers, and also to the operator $P_{3}$ (in Example 3) when $\kappa_{i}(1\leqq i\leqq n)$

are positive rational numbers.
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