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Introduction.

This paper is concerned with some properties of the Schrodinger type

oPerator $-\Delta+V(x)$ with nonnegative potential $V(x)\geqq 0$ in $L^{p}=L^{p}(R^{m})(1<p<\infty)$ .
We consider the operator $-\Delta+V(x)$ as a linear accretive operator in $L^{p}$ . The
$\prime n$-accretivity problem for such operators is a natural generalization of the self-
adjointness problem for the special case of $p=2$ .

A linear operator $A$ with domain $D(A)$ and range $R(- 4)$ in $L^{p}$ is said to be
accretive if

(A) ${\rm Re}(Au, |u|^{p-2}u)\geqq 0$ for $u\in D(A)$ .
Here $(f, g)$ denotes the pairing between $f\in L^{p}$ and $g\in L^{q}(p^{-1}+q^{-1}=1)$ , and
$(f, g)$ is linear in $f$ and semilinear in $g$ . It is well known (see $e.g$ . Tanabe
[17], Proposition2.1.5) that condition (A) is equivalent to

(A’) $\Vert(A+\xi)u\Vert\geqq\xi\Vert u\Vert$ for all $u\in D(A)$ and $\xi>0$ .
If in addition $R(A+\xi)=L^{p}$ for some (and hence for every) $\xi>0$ then we say
that $A$ is m-accretive. A nonnegative selfadjoint operator is a typical example
of m-accretive operators in $L^{2}$ .

Now let $u\in C_{0}^{\infty}(R^{m})$ . Then we have, for $p\geqq 2$ ,

${\rm Re}(- \Delta u, |u|^{p- 2}u)\geqq(p-1)\int_{R^{m}}|u(x)|^{p- 4}\sum_{j=1}^{m}[{\rm Re}\frac{\partial u}{\partial x_{f}}\overline{u(x)}]^{2}dx$ .

If $1<p<2$ then the integral on the right-hand side should be replaced by

$(p-1) \lim_{\delta\downarrow 0}\int_{R^{m}}[|u(x)|^{2}+\delta]^{(p- 4)f2}\sum_{j=1}^{m}[{\rm Re}\frac{\partial u}{\partial_{X_{j}}}\overline{u(x)}]^{2}dx$ .

Let $V(x)\in L_{1oc}^{p}(R^{m})$ . Then we have

${\rm Re}(V(x)u, |u|^{p- 2}u)= \int_{R^{m}}V(x)|u(x)|^{p}dx$ .
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Therefore, $-\Delta+V(x)_{t}c$ ( $c$ a constant) is accretive in $L^{p}$ if $V(x)$ is bounded
below. So, we assume throughout this paper that $V(x)$ is nonnegative and
hence $-\Delta+V(x)$ itself is accretive.

The main purpose of this paper is to present sufficient conditions for $-\Delta+V(x)$

to be m-accretive in $L^{p}$ . Here the domain of $-\Delta+V(x)$ is equal to the inter-
section of those of $-\Delta$ and $V(x)$ . The result is a generalization of those in
Everitt-Giertz [3], Sohr [16] and Okazawa [11] to the case of $p\neq 2$ . For
examPle, $-\Delta+i|x\{-2$ is m-accretive in $L^{P}$ if $t>p-1$ . The proof is based on an
abstract perturbation theorem for linear m-accretive operators in a reflexive
Banach space. It should be noted that the result is also regarded as an explicit
characterization of the domain of $[-\Delta+V(x)]_{\max}$ in the sense of Kato [7]. In
this connection we note that the closure of $[-\Delta+V(x)]_{\min}$ is m-accretive in $L^{p}$

because $V(x)\geqq 0$ is in $L_{1oc}^{p}(R^{m})$ . This fact is pointed out by Semenov [15] as
an application of the Kato inequality.

This paper is divided into four sections. The assertions on the m-accretivity of
$-\Delta+V(x)$ are stated in \S 2 (see Theorems 2.1 and 2.5). \S 1 is the preliminaries.
In \S 3 we consider the regularity of solutions of the Schrodinger type equations:

$-\Delta u(x)+V(x)u(x)+\xi u(x)=v(x)$ on $R^{m}$ .

The result is a generalization of that in Sohr [16] to the case of $p\neq 2$ . The
proof depends on the relation of $-\Delta+V(x)$ to its adjoint operator $[-\Delta+V(x)]^{*}$

which will be established in \S 2. In particular, we shall present a criterion for
the equality

$D([- \Delta+V(x)]^{\infty})=\bigcap_{n=1}^{\infty}D([-\Delta+V(x)]^{n})=S(R^{m})$

to hold, where $S(R^{m})$ is the Schwartz space of all rapidly decreasing functions
on $R^{m}$ (see Theorem 3.6 and Corollary 3.7). The result seems to be new even
if $p=2$ . The last \S 4 is concerned with the compactness of the resolvent

$[-\Delta+V(x)+\zeta]^{-1}$ , ${\rm Re}\zeta>0$ ,

under an additional assumption that $V(x)arrow\infty(|x|arrow\infty)$ .

\S 1. Preliminaries.

Let $V(x)\geqq 0$ be a function in $L_{1oc}^{p}(R^{m})(1<p<\infty)$ . Then $S_{p}=-\Delta+V(x)$ is
well defined as a linear accretive operator in $L^{p}=L^{p}(R^{m})$ ; $D(S_{p})$ contains
$C_{0}^{\infty}(R^{m})$ .

Let $A$ be a linear accretive operator defined on a dense linear subspace $D$

of a Banach space. Then $A$ is closable (see Lumer-Phillips [9], Lemma 3.3)
and its closure $\tilde{A}$ is also accretive. If in Particular the closure $\tilde{A}$ is m-accretive,
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then we say that $A$ is essentially m-accretive on $D$ . In this case $\tilde{A}$ is a unique
m-accretive extension of $A$ .

The following theorem is an $L^{p}$ version of the well known result of Kato
[6] (see $e.g$ . Faris [4], Kuroda [8] or Reed-Simon [12]) and is explicitly stated
in Semenov [15].

THEOREM 1.1. Let $V(x)\geqq 0$ be a function in $L_{1oc}^{p}(R^{m})(1<p<\infty)$ . Then
$S_{p}=-\Delta+V(x)$ is essentially m-accretive on $C_{0}^{\infty}(R^{m})$ .

Let $X$ be a reflexive Banach space and $x*$ be its adjoint. Then a linear
accretive operator $A$ with domain dense in $X$ is essentially m-accretive on $D(A)$

if and only if its adjoint $A^{*}$ is accretive in $X^{*}$ . Note that in this case $A^{*}$ is
also m-accretive because $A^{**}=\tilde{A}$ .

COROLLARY 1.2. Let $V(x)\geqq 0$ be a function in $L_{\iota_{oC}^{p}}(R^{m})\cap L_{1oc}^{q}(R^{m}),$ $p^{-1}+q^{-1}$

$=1(1<P<\infty)$ . Let $S_{p}$ be as in Theorem 1.1. Then the adjoint of $S_{q}$ is equal
to $S_{p}$ : $S_{q}^{*}=S_{p}$ .

In particular, $\hat{S}_{2}$ is a nonnegative selfadjoint operator in $L^{2}$ .
PROOF. Let $\phi,$ $\psi\in C_{0}^{\infty}(R^{m})$ . Then we have

$(-\Delta\phi+V(x)\phi, \psi)=(\phi, -\Delta\psi+V(x)\psi)$

and hence $(\tilde{S}_{p}u, \psi)=(u, S_{q}\psi)$ for all $u\in D(\tilde{S}_{p})$ . This implies that $S_{q}^{*}\supset\tilde{S}_{p}$ . But,
$S_{q}^{*}=(\tilde{S}_{q})^{*}$ is also m-accretive in $L^{p}$ . Therefore, we obtain $S_{q}^{*}=\tilde{S}_{p}$ . Q. E. D.

REMARK 1.3. $L_{\iota_{oC}^{p}}(R^{m})\cap L_{1oc}^{q}(R^{m})=L_{1oc}^{r}(R^{m})$ when we set $r= \max\{p, q\}$ .
Let $B$ be a linear m-accretive operator in $L^{p}$ . Then $\{B_{\epsilon}\}$ denotes the Yosida

approximation of $B$ :

$B.=B(1+\epsilon B)^{-1}=\epsilon^{-1}[1-(1+\epsilon B)^{-1}]$ , $\epsilon>0$ .
$B$ is approximated by $\{B_{\epsilon}\}$ in the following sense:

$\Vert Bu$ – $B_{\epsilon}u\Vertarrow 0$ $(\epsilonarrow+0)$ for every $u\in D(B)$ .
Note that $D(B)$ is necessarily dense in $L^{p}$ (see Yosida [18], VIII-\S 4).

LEMMA 1.4. Let $A$ and $B$ be linear m-accretive operators in $L^{p}$ . Let $D$ be
a core of A. Assume that there are nonnegative constants $c$ , $a$ and $b(b\leqq 1)$ such
that for all $u\in D$ ,

(1.1) ${\rm Re}(Au, F(B_{\epsilon}u))\geqq-c\Vert u\Vert^{2}-a\Vert B_{\epsilon}u\Vert\Vert u\Vert-b\Vert B_{\text{\’{e}}}u\Vert^{2}$ ,

where $F(B_{\epsilon}u)=\Vert B_{\epsilon}u\Vert^{2-p}|B_{\text{\’{e}}}u|^{p-2}B_{\epsilon}u,$ $\epsilon>0$ .
If $b<1$ then $A+B$ with $D(A+B)=D(A)\cap D(B)$ is also m-accretive. If $b=1$

then $A+B$ is essentially m-accretive on $D(A+B)$ .
PROOF. It suffices to show that (1.1) holds for all $u\in D(A)$ (see [11],

Theorem 4.2). Let $u\in D(A)$ . Then there is a sequence $\{u_{n}\}$ in $D$ such that
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$u_{n}arrow uandAu_{n}arrow Au(narrow\infty)$ . $B_{\text{\’{e}}}u_{n}arrow B_{\epsilon}u(narrow\infty)$ isaconsequence of the bounded-
ness of B\’e. Therefore, $F(B_{\epsilon}u_{n})arrow F(B_{\text{\’{e}}}u)(narrow\infty)$ follows from the continuity of
the “duality map” $F$ (see Kato [5], Lemma 1.2). Q. E. D.

REMARK 1.5. It is easy to see that $F(B_{\epsilon}u_{n})$ tends to $F(B_{\epsilon}u)$ weakly. Let
$\{F(B_{\epsilon}u_{n_{k}})\}$ be any weakly convergent subsequence of $\{F(B_{\epsilon}u_{n})\}$ . Then
$\Vert f\Vert\leqq\lim_{karrow\infty}\inf\Vert F(B_{\epsilon}u_{n_{k}})\Vert=\Vert B_{\epsilon}u\Vert$ where $f= w-\lim_{karrow\infty}F(B_{\epsilon}u_{n_{k}})$ . On the other hand,

we have $(B_{\epsilon}u_{n}, F(B_{\epsilon}u_{n}))=\Vert B_{\epsilon}u_{n}\Vert^{2}$ and hence $(B_{\epsilon}u, f)=\Vert B_{\text{\’{e}}}u\Vert^{2}$ . So, we obtain
$f=F(B_{\text{\’{e}}}u)$ .

\S 2. The m-accretivity of $-\Delta+V(x)$ .
Let $V(x)>0$ be a function in $L_{1oc}^{p}(R^{m}\backslash \{0\})$ and set

$V_{\epsilon}(x)=V(x)[1+\epsilon V(x)]^{-1}$ , $\epsilon>0$ .
We denote by $B=B_{p}$ the maximal multiplication operator by $V(x)$ :

$Bu(x)=B_{p}u(x)=V(x)u(x)$

for $u\in D(B)=\{u, V(x)u\in L^{p}\}$ . Then $B_{p}$ is m-accretive in $L^{p}$ and the Yosida
approximation of $B_{p}$ is given by

$B_{\epsilon}u(x)=B_{p.\epsilon}u(x)=V_{\epsilon}(x)u(x)$ .
Let $A=A_{p}$ be the minus Laplacian in $L^{p}$ :

Au $(x)=A_{p}u(x)=-\Delta u(x)$ for $u\in D(A)=W^{2,p}(R^{m})$ ,

where $W^{2.p}(R^{m})$ is the usual Sobolev space. Then $A_{p}$ is also m-accretive in
$L^{p}$ (cf. Tanabe [17], Chapter 3, \S 3.1).

We consider the m-accretivity of $A+B=A_{p}+B_{p}=-\Delta+V(x)$ with $D(A+B)$

$=W^{2.p}(R^{m})\cap D(B)$ in $L^{p}=L^{p}(R^{m})$ .
THEOREM 2.1. Let $A$ and $B$ be as above. Assume that $V_{\epsilon}(x)$ is a function

of class $C^{1}(R^{m})$ and there are nonnegative constants $c$, $a$ and $b(b\leqq 4(p-1)^{-1})$ such
that on $R^{m}$

(2.1) grad $V_{\epsilon}(x)|^{2}\leqq cV_{\epsilon}(x)+a[V_{\epsilon}(x)]^{2}+b[V_{\epsilon}(x)]^{3}$ , $\epsilon>0$ .
In the case of $1<p<2$ assume further that $c=0$ .

If $b<4(p-1)^{-1}$ then $A+B=-\Delta+V(x)$ is m-accretive in $L^{p}$ . If $b=4(p-1)^{-1}$

then $A+B$ is essentially m-accretive on $D(A+B)$ .
PROOF. In order to apply Lemma 1.4, we shall show that for all $u\in C_{0}^{\infty}(R^{m})$ ,

(2.2) 4Re(Au, $F(B_{\epsilon}u)$ ) $\geqq-(p-1)(c\Vert u\Vert^{2}+a\Vert B_{\epsilon}u\Vert\Vert u\Vert+b\Vert B_{\epsilon}u\Vert^{2})$ .
Since $|B_{\epsilon}u(x)|^{p-2}B_{\epsilon}u(x)=[V_{\epsilon}(x)]^{p-1}|u(x)|^{p-2}u(x)$ , we have
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(Au, $|B_{\epsilon}u|^{p-2}B_{\epsilon}u$ ) $=- \int_{R^{m}}a(x)|u(x)|^{p- 2}\overline{u(x)}\Delta u(x)dx$ ,

where we set $a(x)=[V_{\epsilon}(x)]^{p-1}$ . Let $p\geqq 2$ . Then it follows from the same
calculation as in \S 5.1 of [10] that

${\rm Re}(Au, |B_{\epsilon}u|^{p- 2}B_{\epsilon}u) \geqq\frac{1}{p}\sum_{j=1}^{m}\int_{R^{m}}\frac{\partial a\partial}{\partial x_{j}\partial x_{j}}|u(x)|^{p}dx$

$+(p-1) \int_{R^{m}}a(x)|u(x)|^{p- 4}\sum_{j=1}^{m}[{\rm Re}\frac{\partial u}{\partial x_{j}}\overline{u(x)}]^{2}dx$ .

The first term on the right-hand side is larger than

$-(p-1) \int_{R^{m}}a(x)|u(x)|^{p-4}\sum_{j=1}^{m}[{\rm Re}\frac{\partial u}{\partial x_{j}}\overline{u(x)}]^{2}dx$

$-4^{-1}(p-1)^{-1} \int_{R^{m}}[a(x)]^{-1}|grada(x)|^{2}|u(x)|^{p}dx$ .

Therefore, we obtain

${\rm Re}(Au, F(B_{\epsilon}u)) \geqq-\frac{\Vert B_{\epsilon}u\Vert^{2-p}}{4(p-1)}\int_{R^{m}}$ lgrad $a(x)|^{2}- \frac{|u(x)|^{p}}{a(x)}dx$ .

This inequality holds even if $1<p<2$ . In fact, we can show that for any $\delta>0$

$-{\rm Re} \int_{R^{m}}a(x)[|u(x)|^{2}+\delta]^{(p-2)/2}\overline{u(x)}\Delta u(x)dx$

$\geqq-4^{-1}(p-1)^{-1}\int_{U}[a(x)]^{-1}|grada(x)|^{2}[|u(x)|^{2}+\delta]^{p/2}dx$ ,

where $U$ is a sufficiently large ball containing the support of $u$ . By a simple
calculation we see from (2.1) that

$(p-1)^{-2}[a(x)]^{-1}|$ grad $a(x)|^{2}\leqq c[V_{\epsilon}(x)]^{p-2}+a[V_{\text{\’{e}}}(x)]^{p-1}+b[V_{\epsilon}(x)]^{p}$ .
Using the H\"older inequality we obtain (2.2) for all $u\in C_{0}^{\infty}(R^{m})$ . Noting that
$C_{0}^{\infty}(R^{m})$ is a core of $A$, the conclusion follows from Lemma 1.4. Q. E. D.

Let $W(x)>0$ be another function in $L_{\iota_{oC}^{p}}(R^{m}\backslash \{0\})$ . We denote by $C$ the
maximal multiplication operator by $W(x)$ . As for the m-accretivity of $A+B+C$
with

$D(A+B+C)=W^{2.p}(R^{m})\cap D(B)\cap D(C)$ ,
we have

COROLLARY 2.2. Let $A,$ $B$ and $C$ be as above. Assume that both $V_{\epsilon}(x)$ and
$W_{\epsilon}(x)$ are functions of class $C^{1}(R^{m})$ satisfying (2.1) with $b<4(p-1)^{-1}$ . Then
$A+B+C=-\Delta+V(x)+W(x)$ is m-accretive in $L^{p}$ .

In fact, we have (2.2) with $A$ and $B$ replaced by $A+B$ and $C$, respectively.
Next, let $V(x)>0$ be a continuous function on $R^{m}\backslash \{0\}$ ; namely, $V(x)\in$
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$L_{1oc}^{p}(R^{m}\backslash \{0\})$ for every $p(1<p<\infty)$ . Set

(2.3) $b_{0}(p)= \min\{4(p-1), 4(p-1)^{-1}\}$ $(1<P<\infty)$ .
Then we have

COROLLARY 2.3. Let $A_{p}$ and $B_{p}$ be as in Theorem 2.1. If $b<b_{0}(p)$ in (2.1)

then
(2.4) $A_{p}+B_{p}=(A_{q}+B_{q})^{*}$ $(p^{-1}+q^{-1}=1)$ .

PROOF. NotIng that $p-1=(q-1)^{-1}$ , we see from Theorem 2.1 (with $c=0$

except the case of $p=2$) that $A_{p}+B_{p}$ and $A_{q}+B_{q}$ are m-accretive in $L^{p}$ and
$L^{q}$, respectively. For $u\in W^{2.p}(R^{m})$ and $v\in W^{2.q}(R^{m})$ we have

$((A_{p}+B_{p.\text{\’{e}}})u, v)=(u, (A_{q}+B_{q,\epsilon})v)$ .
Going to the limit $\epsilonarrow+0$ , we obtain

$((A_{p}+B_{p})u, v)=(u, (A_{q}+B_{q})v)$

for all $u\in D(A_{p}+B_{p})$ and $v\in D(A_{q}+B_{q})$ . The rest part is the same as in the
proof of Corollary 1.2. Q. E. D.

REMARK 2.4. The maximum of $b_{0}(p)$ is attained at $p=2$ (the selfadjoint
case).

THEOREM 2.5. Let $A$ and $B$ be as in Theorem 2.1. Assume instead of (2.1)

that $V(x)\geqq 0$ is of class $C^{1}(R^{m})$ and

(2.5) $|gradV(x)|^{2}\leqq a[V(x)+c_{1}]^{2}+b[V(x)+c_{2}]^{3}$ on $R^{m}$ ,

where $c_{1},$ $c_{2}$ , $a$ and $b(b\leqq 4(p-1)^{-1})$ are nonnegative constants. Then the conclusion
of Theorem 2.1 holds. If in particular $b<4(p-1)^{-1}$ then $C_{0}^{\infty}(R^{m})$ is a core of
$A+B$ .

PROOF. It suffices to show that $A+(B+1)$ (or its closure) is m-accretive.
So, we may assume that $V(x)\geqq 1$ . In fact, $V(x)$ in (2.5) can be replaced by
$V(x)+1$ . Noting this, we obtain (2.1) with $c=0$ :

$|gradV_{\epsilon}(x)|^{2}=|$ grad $V(x)|^{2}[1+\epsilon V(x)]^{-4}$

$\leqq b[V_{\text{\’{e}}}(x)]^{3}+[a(c_{1}+1)^{2}+b(c_{2}+1)^{3}][V_{\epsilon}(x)]^{2}$ .
It remains to show that $[(A+B)|C_{0}^{\infty}(R^{m})]^{\sim}=A+B$ . But, since $V(x)\geqq 0$ is a

function in $L_{1oc}^{p}(R^{m})$ , this follows from Theorem 1.1. Q. E. D.

EXAMPLE 2.6. (i) Let $V(x)=\exp(|x|^{k}),$ $k\geqq 1$ . Then for any $\delta>0$ we have

$|gradV(x)|^{2}=k^{2}|x|^{2(k-1)}[V(x)]^{2}$

$\leqq k\delta^{-(k-1)}[V(x)]^{2}+2k(k-1)\delta[V(x)]^{3}$ .
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(ii) Let $W(x)=|x|^{-l}(1>2)$ . Then $W_{\text{\’{e}}}(x)=(|x|^{l}+\epsilon)^{-1}$ and for any $\delta>0$ we
have

$|gradW_{\epsilon}(x)|^{2}\leqq l^{2}|x|^{l-2}[W_{\epsilon}(x)]^{3}$

$\leqq l(l-2)\delta^{-2/(l-2)}[W_{\epsilon}(x)]^{2}+2l\delta[W_{\epsilon}(x)]^{3}$ .
Thus, we see from Corollary 2.2 that $-\Delta+c_{1}\exp(|x|^{k})+c_{2}|x|^{-l}$ is m-accre-

tive in $L^{p}(k\geqq 1, l>2)$ , where $c_{1},$
$c_{2}\geqq 0$ are constants.

EXAMPLE 2.7. Let $V(x)=\beta|x|^{-2}$ , where $\beta\geqq p-1$ is a constant. Then
$|gradV_{\epsilon}(x)|^{2}\leqq 4\beta^{-1}[V_{\epsilon}(x)]^{s}$ (cf. [11], Example 6.6). So, we have

${\rm Re}(Au, F(B_{\epsilon}u))\geqq-(p-1)\beta^{-1}\Vert B_{\epsilon}u\Vert^{2}$ for $u\in W^{2,p}(R^{m})$ .
Therefore, $A+B=-\Delta+\beta|x|^{-2}$ $(\beta>p-1)$ is m-accretive in $L^{p}$ and
$-\Delta+(p-1)|x|^{-2}$ is essentially m-accretive on $D(A+B)$ .

REMARK 2.8. Let $A$ and $B$ be as in Theorem 2.1 or 2.5. Then it follows
from (2.2) that for all $u\in D(A)$ ,

$\Vert B_{\epsilon}u\Vert\leqq(1-b_{1})^{-1}\Vert(A+B_{\epsilon})u\Vert+K\Vert u\Vert$ ,

where $K=a_{1}(1-b_{1})^{-1}+[c_{1}(1-b_{1})^{-1}]^{1/2}$ and we have set $b_{1}=(p-1)b/4<1$ and so
on (see [11], Lemma 1.1). Going to the limit $\epsilonarrow+0$ , we have

$\Vert Bu\Vert\leqq(1-b_{1})^{-1}\Vert(A+B)u\Vert+K\Vert u\Vert$ , $u\in D(A+B)$ ,
and hence

(2.6) lAu $\Vert\leqq[(1-b_{1})^{-1}+1]\Vert(A+B)u\Vert+K\Vert u\Vert$ , $u\in D(A+B)$ .
These inequalities represent the separation property of $A+B$ (see $e$ . $g$ . Evans-
Zettl [2], Everitt-Giertz [3]).

\S 3. The invariant sets for the resolvents.

Let $N$ be the set of all positive integers. In this section we shall use the
multi-index notation:

$\alpha=(\alpha_{1}, \alpha_{2}, \cdots , \alpha_{m})$ with $| \alpha|=\sum_{j=1}^{m}\alpha_{j}$ , $\alpha_{j}\in N\cup\{0\}$ ;

$D^{\alpha}u$ denotes a mixed partial derivative of $u$ ;

$D^{\alpha}u=D_{1}^{\alpha_{1}}D_{2}^{\alpha_{2}}\cdots D_{m}^{\alpha m}u$ , $D_{J^{j}}^{a}u=\partial^{\alpha_{j}}u/\partial x_{J^{j}}^{\alpha}(1\leqq j\leqq m)$ .

Let $W^{k.p}(R^{m})$ be the usual Sobolev space. Let $A_{p}$ and $B_{p}$ be as in Theo-
rem 2.1:

$A_{p}+B_{p}=-\Delta+V(x)$ with $D(A_{p}+B_{p})=W^{2.p}(R^{m})\cap D(B_{p})$ .
Then, under some additional assumption, it is expected that $W^{k.p}(R^{m})$ is mapped
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into $W^{k+2.p}(R^{m})$ by $(A_{p}+B_{p}+\xi)^{-1},$ $\xi>0$ . More precisely, we have

PROPOSITION 3.1. Let $k\in N$ and $V(x)\geqq 0$ be a function of class $C^{k}(R^{m})$ .
Assume that there exist constants $c_{1},$

$c_{2}\geqq 0$ such that for all $\alpha$ with $|\alpha|\leqq k$ ,

(3.1) $|D^{\alpha}V(x)|\leqq c_{1}+c_{2}V(x)$ on $R^{m}$ .
Set $u=(A_{p}+B_{p}+\xi)^{-1}v$ for $v\in W^{k.p}(R^{m})$ and $\xi>0$ . Then we have

(3.2) $u\in W^{k+2.p}(R^{m})$ , $D^{\alpha}u\in D(B_{p})(|\alpha|\leqq k)$ .
PROOF. It follows from (3.1) with $|\alpha|=1$ that (2.5) with $b=0$ is satisfied.

So, we see from Theorem 2.5 and Corollary 2.3 that $A_{p}+B_{p}$ is m-accretive in
$L^{p}$ for all $p(1<p<\infty)$ and (2.4) holds.

Now we show that the assertion is true for $k=1$ . To this end, it suffices
to show that $\partial u/\partial x_{j}\in D(A_{p}+B_{p})(1\leqq j\leqq m)$ if $v\in W^{1,p}(R^{m})$ . Since $u\in D(B_{p})$ ,

it follows from (3.1) with $|\alpha|=1$ that $(\partial V/\partial x_{j})u\in L^{p}$ . Consequently, we have

$( \frac{\partial u}{\partial x_{j}},$ $- \Delta\phi+V(x)\phi+\xi\phi)=(\frac{\partial v\partial V}{\partial x_{j}\partial x_{j}}u,$ $\phi)$ , $\phi\in C_{0}^{\infty}(R^{m})$ .

Noting that $C_{0}^{\infty}(R^{m})$ is a core of $A_{q}+B_{q}(p^{-1}+q^{-1}=1)$ , we see that for all
$\phi\in D(A_{q}+B_{q})$ ,

$( \frac{\partial u}{\partial x_{j}},$ $(A_{q}+B_{q}+ \xi)\phi)=(\frac{\partial v\partial V}{\partial x_{j}\partial x_{j}}u,$ $\phi)$ .

This implies that $\partial u/\partial x_{j}\in D(A_{p}+B_{p})$ (see (2.4)).

Next, suppose that the assertion is true for all $\alpha$ with $|\alpha|\leqq k-1$ . It then
follows that

$u\in W^{k+1.p}(R^{m})$ , $D^{\beta}u\in D(B_{p})(|\beta|\leqq k-1)$

because $v\in W^{k-1.p}(R^{m})$ . Let $|\alpha|=k$ . Then we have

$(D^{\alpha}u, V(x)\phi)=(-1)^{|\alpha|}(V(x)u, D^{\alpha}\phi)-(w, \phi)$ , $\phi\in C_{0}^{\infty}(R^{m})$ ,

where $w(x)=fl<a(\begin{array}{l}\alpha\beta\end{array})D^{\alpha-\beta}V(x)\cdot D^{\beta}u(x)$ . By virtue of (3.1) we see that $D^{a-\beta}V(x)$

$D^{\beta}u\in L^{p}$ and hence so is $w$ , too. So, we obtain

$(D^{\alpha}u, -\Delta\phi+V(x)\phi+\xi\phi)=(D^{\alpha}v-w, \phi)$ , $\phi\in C_{0}^{\infty}(R^{m})$ .
In the same way as in the case of $k=1$ we can conclude that $D^{\alpha}u\in D(A_{p}+B_{p})$

for $|\alpha|=k$ . Q. E. D.
It follows from (3.2) that for $u=(A_{p}+B_{p}+\xi)^{-1}v$ ,

\langle 3.3) $D^{\alpha}[V(x)u]= \sum_{\beta\leq a}(\begin{array}{l}\alpha\beta\end{array})D^{a-\beta}V(x)\cdot D^{\beta}u$ $(|\alpha|\leqq k)$ .

Let $b_{0}(p)$ be the function which was used in Corollary 2.3. Writing
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$-\mathfrak{r}^{\alpha}=x_{1}^{\alpha_{1}}x_{2}^{\alpha_{2}}\cdots x_{m}^{a_{m}}$ for a multi-index $\alpha$ , we have

PROPOSITION 3.2. Let $V(x)\geqq 0$ be a function of class $C^{1}(R^{m})$ satisfying (2.5)

with $b<b_{0}(p)$ . Assume that there is a constant $M>0$ such that

(3.4) $V(x)\geqq M|x|$ for sufficiently large $x$ .

If $v\in L^{p}$ and $x^{\alpha}v(x)\in L^{p}$ then we have

$x^{\alpha}(A_{p}+B_{p}+\xi)^{-1}v(x)\in D(A_{p}+B_{p})$ for $\xi>0$ .

PROOF. By assumption we see from Theorem 2.5 and Corollary 2.3 that
$A_{p}+B_{p}=(A_{q}+B_{q})^{*}$ is m-accretive for all $p$ and $q,$ $p^{-1}+q^{-1}=1(1<p<\infty)$ .

Set $u=(A_{p}+B_{p}+\xi)^{-1}\iota’$ . Then we have formally

(3.5) $(x^{\alpha}u, \Delta\phi)=(\Delta u, x^{\alpha}\phi)-(u, \phi\Delta x^{\alpha})$

$-2 \sum_{j=1}^{m}(u,$ $\frac{\partial_{X^{a}}\partial\phi}{\partial x_{j}\partial x_{j}})$ , $\phi\in C_{0}^{\infty}(R^{m})$ .

Now let $|\alpha|=1,$ $i.e.,$ $x^{\alpha}=x_{i}$ for some $i$ . Then we see from (3.4) that $u\in D(B_{p})$

implies $x_{i}u(x)\in L^{p}(1\leqq i\leqq m)$ and hence (3.5) makes sense for $|\alpha|=1$ . So, we
obtain

$(x_{t}u, - \Delta\phi+V(x)\phi+\xi\phi)=(x_{i}v, \phi)-2(\frac{\partial u}{\partial x_{i}},$ $\phi)$ .

In the same way as in the proof of Proposition 3.1 we can conclude that $x_{i}u(x)$

$\in D(A_{p}+B_{p})(1\leqq i\leqq m)$ .
Next, suppose that the assertion is true for all $\alpha$ with $|\alpha|\leqq k-1$ . Since

$v\in L^{p}$ and $x^{a}v(x)\in L^{p}(|\alpha|=k)$ , it follows that $x^{\beta}v(x)\in L^{p}$ and hence $x^{\beta}u(x)$

$\in D(A_{p}+B_{p})$ for all $\beta$ with $|\beta|\leqq k-1$ . Consequently, $(\partial x^{a}/\partial x_{j})u(x)$ and $u(x)\Delta x^{\alpha}$

belong to $W^{2.p}(R^{m})$ for $|\alpha|=k$ . Furthermore, by virtue of (3.4) we see that
$x^{\beta}u(x)\in D(B_{p})(|\beta|\leqq k-1)$ implies $x^{\alpha}u(x)\in L^{p}(|\alpha|=k)$ . Therefore, (3.5) makes
sense for $|\alpha|=k$ and we obtain $x^{\alpha}u(x)\in D(A_{p}+B_{p})$ . Q. E. D.

EXAMPLE 3.3. Let $m=1$ and $V(x)=\cosh x$ on $R$ . Then $|V^{(n)}(x)|\leqq V(x)$

$(n\in N)$ and $V(x)\geqq\sqrt{2}|x|$ on $R$ .
REMARK 3.4. Let $V(x)=|x|^{2}$ . Then $|gradV(x)|^{2}\leqq 4[V(x)+1]^{2}$. Set

$u=(A_{p}+B_{p}+\xi)^{-1}v$ for $v\in D(B_{p})$ and $\xi>0$ . Then Proposition 3.2 implies that
$B_{p}u\in D(A_{p}+B_{p})$ .

Propositions 3.1 and 3.2 are unified as follows.

PROPOSITION 3.5. Let $k\in N$ and $V(x)\geqq 0$ be a function of class $C^{k}(R^{m})$

satisfying (3.1) and (3.4). Assume that

$x^{a}D^{\beta}v(x)\in L^{p}$ for all $\alpha,$
$\beta$ with $|\alpha+\beta|\leqq k$ .

Setting $u=(A_{p}+B_{p}+\xi)^{-1}v$, we have
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$x^{a}D^{\beta}u(x)\in D(A_{p}+B_{p})$ for all $\alpha,$
$\beta$ with $|\alpha+\beta|\leqq k$ .

PROOF. (3.1) implies that $A_{p}+B_{p}$ is m-accretive in $L^{p}$ for all $P(1<p<\infty)$ .
If $k=1$ then the assertion is reduced to the preceding Propositions.

Suppose that the assertion is true for $k-1$ :

(3.6) $x^{\alpha}D^{\gamma}u(x)\in D(A_{p}+B_{p})$ for all $\alpha,$ $\gamma$ with $|\alpha+\gamma|\leqq k-1$ .
Since $v\in W^{k.p}(R^{m})$ and $x^{\alpha}v(x)\in L^{p}(|\alpha|=k)$ , it follows from Propositions 3.1
and 3.2 that $D^{\beta}u\in D(A_{p}+B_{p})(|\beta|\leqq k)$ and $x^{a}u(x)\in D(A_{p}+B_{p})(|\alpha|=k)$ , re-
spectively. Furthermore, in view of (3.3) we have

(3.7) $[- \Delta+V(x)+\xi]D^{\beta}u(x)=D^{\beta}v(x)-\sum_{\gamma<\beta}(\begin{array}{l}\beta\gamma\end{array})D^{\beta-\gamma}V(x)\cdot D^{\gamma}u(x)$ .

Here, we see from (3.1) and (3.6) that

$D^{\beta-\gamma}V(x)\cdot[x^{\alpha}D^{\gamma}u(x)]\in L^{p}$ $(|\alpha+\gamma|\leqq k-1)$ .
Denoting by $w(x)$ the right-hand side of (3.7), we have $w\in L^{p}$ and $x^{a}w(x)\in L^{p}$ .
Applying Proposition 3.2 to the equation $[-\Delta+V(x)+\xi]D^{\beta}u=w$ , we obtain

$x^{a}D^{\beta}u(x)\in D(A_{p}+B_{p})$ $(|\alpha+\beta|\leqq k, |\alpha|\geqq 1, |\beta|\geqq 1)$ .
Q. E. D.

Let $S(R^{m})$ be the Schwartz space of all rapidly decreasing functions on $R^{m}$ :
$S(R^{m})=$ {$f\in C^{\infty}(R^{m})$ ; $\sup_{x}[\langle x\rangle^{k}|D^{\alpha}f(x)|]<\infty$ for all $k,$ $\alpha$},

where $\langle x\rangle=(1+|x|^{2})^{1/2},$ $k\in N\cup\{0\}$ .
Setting $D((A_{p}+B_{p})^{\infty})= \bigcap_{n=1}^{\infty}D((A_{p}+B_{p})^{n})$ , we have

THEOREM 3.6. Let $V(x)\geqq 0$ be a function of class $C^{\infty}(R^{m})$ satisfying (3.4).

Assume that (3.1) is satisfied for all $\alpha$ (so that $A_{p}+B_{p}=-\Delta+V(x)$ is m-accretive
in $L^{p}$). Let $n\in N$. Then $u\in D((A_{p}+B_{p})^{n})$ implies that

(3.8) $x^{\alpha}D^{\beta}u(x)\in L^{p}$ for all $\alpha,$ $\beta$ with $|\alpha+\beta|\leqq n$ .
In particular, $D((A_{p}+B_{p})^{\infty})\subset S(R^{m})$ .

The proof will be given after

COROLLARY 3.7. $LetV(x)beafunctionasinTheorem3.6$ . Then D $((A_{p}+B_{p})^{\infty})$

$=S(R^{m})$ if and only if $V(x)f(x)\in S(R^{m})$ for every $f\in S(R^{m})$ . In this case
$(A_{p}+B_{p}+\zeta)^{-1}S(R^{m})=S(R^{m})$ , ${\rm Re}\zeta>0$ .

PROOF OF THEOREM 3.6. (3.8) for $n=1$ is obvious. Suppose that (3.8) is
true. Let $u\in D((A_{p}+B_{p})^{n+1})$ . Then, since $(A_{p}+B_{p}+1)u=v\in D((A_{p}+B_{p})^{n})$ ,
we have (3.8) with $u$ replaced by $v$ . Therefore, it follows from Proposition 3.5
that
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$x^{\alpha}D^{\beta}u(x)\in D(A_{p}+B_{p})$ for all $\alpha,$ $\beta$ with $|\alpha+\beta|\leqq n$ .
Thus, we can obtain (3.8) with $n$ replaced by $n+1$ .

Next, let $u\in D((A_{p}+B_{p})^{\infty})$ . Then we see that (3.8) is true for all $n\in N$

and hence
$x^{\alpha}D^{\beta}u(x)\in W^{k,p}(R^{m})$ for all $\alpha,$

$\beta$ , and $k\in N$ .
Therefore, it follows from the Sobolev imbedding theorem (see $e.g$ . Adams [1])

that $u\in C^{\infty}(R^{m})$ and

$sup\{|x^{\alpha}D^{\beta}u(x)| ; x\in R^{m}\}<\infty$ for $all\alpha,$ $\beta$ .
Thus, we obtain the desired inclusion. Q. E. D.

REMARK 3.8. Corollary 3.7 does not apply to $V(x)=\cosh x$ (see Example 3.3).
$In^{v}fact,$ $2(e^{x}+e^{-x})^{-1}\in S(R)$ .

\S 4. The compactness of the resolvents.

Let $V(x)\geqq 0$ be a function of class $C^{1}(R^{m})$ satisfying (2.5) with $b<4(p-1)^{-1}$ :

$|gradV(x)|^{2}\leqq b[V(x)+c]^{3}$ on $R^{m}$ .
Then $A+B=-\Delta+V(x)$ with $D(A+B)=W^{2.p}(R^{m})\cap D(B)$ is m-accretive in $L^{p}=$

$L^{p}(R^{m})$ (see Theorem 2.5). Consequently, $A+B+\zeta$ is invertible for every $\zeta$

with ${\rm Re}\zeta>0$ and $(A+B+\zeta)^{-1}$ is a bounded linear operator on $L^{p}$

THEOREM 4.1. Let $A+B=-\Delta+V(x)$ be the linear m-accretive operator
obtained in Theorem 2.5. Assume further that

$V(x)arrow\infty$ $(|x|arrow\infty)$ .

Then the resolvent $(A+B+\zeta)^{-1}$ is compact for ${\rm Re}\zeta>0$ and hence $A+B$ has discrete
spectrum consisting entirely of eigenvalues with finite multiplicities.

PROOF. It suffices by the resolvent equation to show that $(A+B+1)^{-1}$ is
compact. Set

$U=\{v\in L^{p} ; \Vert v\Vert\leqq 1\}$ .
We shall show that $(A+B+1)^{-1}U$ is relatively compact in $L^{p}$ . Let $v\in U$ and
set $u=(A+B+1)^{-1}v$ . Then $u\in W^{2.p}(R^{m})$ and $\Vert u\Vert\leqq\Vert v\Vert\leqq 1$ . Moreover, it follows
from an estimate for the Laplacian that

$\Vert u\Vert_{1.p}\leqq c_{0}(\Vert Au\Vert+\Vert u\Vert)$ ,

where $\Vert u\Vert_{1,p}$ is the norm of $W^{1,p}(R^{m})$ (see Schechter [14], Theorem 3.1 of
Chapter 3, Lemma 2.1 of Chapter 11). So, we see from (2.6) that

$\Vert u\Vert_{1.p}\leqq c_{1}\Vert(A+B)u\Vert+(c_{2}+c_{0})\Vert u\Vert\leqq c_{0}+2c_{1}+c_{2}$ .
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Thus, $(A+B+1)^{-1}U$ is bounded in $W^{1.p}(R^{m})$ . It follows from the Rellich com-
pactness theorem (see Adams [1]) that for any $R>0,$ $(A+B+1)^{-1}U$ is relatively
compact in $L^{p}(\Omega_{R})$ , where

$\Omega_{R}=\{x\in R^{m} ; |x|\leqq R\}$ .
Now let $\{v_{n}\}$ be an arbitrary sequence in $U$ and set $u_{n}=(A+B+1)^{-1}v_{n}$ .

Then by a diagonal method, we can find a subsequence of $\{u_{n}\}$ which converges
in $L^{p}(\Omega_{R})$ for any $R>0$ . We denote this subsequence again by $\{u_{n}\}$ . By the
way, we note that

$\int_{R^{m}}V(x)|u_{n}(x)|^{p}dx\leqq{\rm Re}((A+B)u_{n}, |u_{n}|^{p-2}u_{n})$

$\leqq\Vert(A+B)u_{n}\Vert\Vert u_{n}||^{p-1}\leqq 2$ .
By assumption, for any $\epsilon>0$ there is $R=R(\epsilon)>0$ such that

$V(x)\geqq 2(2^{p}+1)\epsilon^{-1}$ for $|x|\geqq R$ .
So, we have

$\int_{|x|\geqq R}|u_{n}(x)|^{p}dx\leqq(2^{p}+1)^{-1}\frac{\epsilon}{2}\int_{|x|\geqq R}V(x)|u_{n}(x)|^{p}dx$

$<(2^{p}+1)^{-1}\epsilon$ .
Since $\{u_{n}\}$ is a Cauchy sequence in $L^{p}(\Omega_{R})$ , there is a positive integer $n_{0}=n_{0}(\epsilon)$

such that for $n,$ $m\geqq n_{0}$ ,

$\int_{|x|\leqq R}|u_{n}(x)-u_{m}(x)|^{p}dx<(2^{p}+1)^{-1}\epsilon$ .

Therefore, we obtain for $n,$ $m\geqq n_{0}$ ,

$\Vert u_{n}-u_{m}\Vert^{p}=(\int_{|x|\leqq R}+\int_{|x|\geq R})|u_{n}(x)-u_{m}(x)|^{p}dx$

$<(2^{p}+1)^{-1} \epsilon+2^{p-1}\int_{|x|\geq R}(|u_{n}(x)|^{p}+|u_{m}(x)|^{p})dx$

$<[(2^{p}+1)^{-1}+2^{p}(2^{p}+1)^{-1}]\epsilon=\epsilon$ ,

$i.e.,$ $\{u_{n}\}$ is a Cauchy sequence in $L^{p}$ . Q. E. D.
In the case of $p=2$ the assertion of Theorem 4.1 holds under the simplest

assumption on $V(x)$ (see Reed-Simon [13], Theorem XIII.67).

In view of Theorem 3.6 we obtain

COROLLARY 4.2. Let $V(x)\geqq 0$ be a function of class $C^{\infty}(R^{m})$ satisfying (3.4):

$V(x)\geqq M|x|$ for sufficiently large $x$ .

Assume that (3.1) is satisfied for all $\alpha$ :

$|D^{a}V(x)|\leqq c_{1}+c_{2}V(x)$ on $R^{m}$ .
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Then the eigenfunctions of $A_{p}+B_{p}=-\Delta+V(x)$ belong to $S(R^{m})$ and hence the
spectrum of $A_{p}+B_{p}$ is independent of $p$ .

The following example is well known.

EXAMPLE 4.3. Let $m=1$ and $V(x)=x^{2}$ on $R$ . Then

$(A_{p}+B_{p})u(x)=-u’’(x)+x^{2}u(x)$ .
The eigenvalues of $A_{p}+B_{p}$ and the associated eigenfunctions are given by

$\lambda_{n}=2n+1$ , $\psi_{n}(x)=e^{-x^{2}/2}H_{n}(x)$ $(n=0,1, 2, )$ ,

where $H_{n}(x)$ is the Hermite polynomial.
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Added in proof. After this paper was accepted for publication, the writer
noticed that an estimate in Example 2.7 is partially improved as follows. Let
$A=-\Delta$ and $B=\beta|x|^{-2}(\beta>0)$ . Then for all $u\in W^{2.p}(R^{m})$ we have

${\rm Re}$ (Au, $F(B_{\epsilon}u)$ ) $\geqq-2(p-1)(2p-m)p^{-1}\beta^{-1}\Vert B_{\text{\’{e}}}u\Vert^{2}$ .

This makes sense when $p<2m/3$ . If in particular $p<m/2$ then we see that
$\beta^{-1}B=|x|^{-2}$ is relatively bounded with respect to $A=-\Delta$ : for $u\in D(A)\subset D(B)$ ,

$\beta^{-1}\Vert Bu\Vert\leqq 2^{-1}p(p-1)^{-1}(m-2p)^{-1}\Vert Au\Vert$

(cf. [11], Theorem 6.8).
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