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Introduction.

This paper is concerned with some properties of the Schrodinger type
operator —A-+V (x) with nonnegative potential V(x)=0 in L?=L?(R™) (1< p<o0).
We consider the operator —A+V(x) as a linear accretive operator in L?. The
m-accretivity problem for such operators is a natural generalization of the self-
adjointness problem for the special case of p=2,

A linear operator A with domain D(A) and range R(A) in L? is said to be
accretive if

(A) Re(Au, |u|??u)=0 for uw=D(A).

Here (f, g) denotes the pairing between feL? and geL? (p~'+4¢ '=1), and
(f, g) is linear in f and semilinear in g. It is well known (see e.g. Tanabe
[17], Proposition 2.1.5) that condition (A) is equivalent to

(A) [(A+&ul =& ull for all ueD(4) and £>0.

If in addition R(A+&)=L? for some (and hence for every) £>0 then we say
that A is m-accretive. A nonnegative selfadjoint operator is a typical example
of m-accretive operators in L2

Now let u=C%3(R™). Then we have, for p=2,

Re(—Au, |ul p‘zu)z(p—l)gml u(x)|? ,é [Re gx%m]zdx-

If 1<p<2 then the integral on the right-hand side should be replaced by

(p=Dlim{_ Clueo)|+a17-02 3 [Re %{j_u.(x_)]zdx.

Let V(x)e L£(R™). Then we have

Re(V (x)u, |u|p—2u)=SRmV(x>1u(x)wdx.
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Therefore, —A-+-V(x)+c¢ (¢ a constant) is accretive in L? if V(x) is bounded
below. So, we assume throughout this paper that V(x) is nonnegative and
hence —A4-V(x) itself is accretive.

The main purpose of this paper is to present sufficient conditions for —A-+V (x)
to be m-accretive in L?. Here the domain of —A-V(x) is equal to the inter-
section of those of —A and V(x). The result is a generalization of those in
Everitt-Giertz [3], Sohr and Okazawa to the case of p#2. For
example, —A-t|x|~? is m-accretive in L? if t>p—1. The proof is based on an
abstract perturbation theorem for linear m-accretive operators in a reflexive
Banach space. It should be noted that the result is also regarded as an explicit
characterization of the domain of [—A-+V(x)]max in the sense of Kato [7]. In
this connection we note that the closure of [—A~+V(x)1mia is m-accretive in L?
because V{(x)=0 is in LZ2(R™). This fact is pointed out by Semenov as
an application of the Kato inequality.

This paper is divided into four sections. The assertions on the m-accretivity of
—A+V(x) are stated in §2 (see Theorems 2.1 and2.5). §1 is the preliminaries.
In § 3 we consider the regularity of solutions of the Schrédinger type equations :

—Au(x)+V{x)ulx)+Eulx)=v(x) on R™.

The result is a generalization of that in Sohr to the case of p+2. The
proof depends on the relation of —A-+V(x) to its adjoint operator [—A-+V (x)]*
which will be established in §2. In particular, we shall present a criterion for
the equality

D([—A+V(0)I)= [\ D[—A+V(0)])=S{R"

to hold, where S(R™) is the Schwartz space of all rapidly decreasing functions
on R™ (see [[heorem 3.6 and [Corollary 3.7). The result seems to be new even
if p=2. The last §4 is concerned with the compactness of the resolvent

[—A+V(0)+L]1, Rel>0,

under an additional assumption that V(x)—oco (] x|—c0).

§1. Preliminaries.

Let V(x)=0 be a function in LZ(R™) (1<p<). Then S,=—A+V(x) is
well defined as a linear accretive operator in LP?=LP?(R™); D(S,) contains
CH(R™). :

Let A be a linear accretive operator defined on a dense linear subspace D
of a Banach space. Then A is closable (see Lumer-Phillips [9], Lemma 3.3)
and its closure A is also accretive. If in particular the closure A is m-accretive,
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then we say that A is essentially m-accretive on D. In this case A is a unique
m-accretive extension of A.
The following theorem is an L? version of the well known result of Kato

(see e.g. Faris [4], Kuroda or Reed-Simon [12]) and is explicitly stated
in Semenov [15].

THEOREM 1.1. Let V(x)=0 be a function in LE(R™) (1<p<o0). Then
S,=—A+V(x) is essentially m-accretive on CH(R™).

Let X be a reflexive Banach space and X* be its adjoint. Then a linear
accretive operator A with domain dense in X is essentially m-accretive on D(A)
if and only if its adjoint A* is accretive in X*. Note that in this case A* is
also m-accretive because A**=4,

COROLLARY 1.2. Let V(x)=0 be a function in LEZ(R™NLE(R™), p~*+q*
=1 (1<p<o0). Let S, be as in Theorem 1.1. Then the adjoint of S, is equal
to §,:5%=§,.

In particular, S, is a nonnegative selfadjoint operator in L2

PrOOF. Let ¢, ¢=CF(R™). Then we have

(—A¢+V(x)p, P)=(¢, —AP+V (x)¢)

and hence (S,u, ¢)=(u, Sep) for all ucD(S,). This implies that S¥>S,. But,
S¥=(8)* is also m-accretive in L?. Therefore, we obtain S}=5,. Q.E.D.

REMARK 1.3. LZ&(R™NLL(R™)=L].(R™) when we set r=max{p, q}.
Let B be a linear m-accretive operator in L?, Then {B,.} denotes the Yosida
approximation of B :

B.=B(l+eB)'=¢-'[1—(14-¢B)™], e>0.
B is approximated by {B} in the following sense:
I|Bu—B.u|—0 (e—40) for every u<=D(B).
Note that D(B) is necessarily dense in L? (see Yosida [18], VIII-§4).

LEMMA 1.4, Let A and B be linear m-accretive operators in L?. Let D be
a core of A. Assume that there are nonnegative constants ¢, a and b (b=1) such
that for all usD,

(LD Re(Au, F(Bau)z—clull>—alBeul|ull—bliB.ul?*,

where F(B.u)=|B.ul||*?|B.u|?*Bu, ¢>0.

If b<1 then A+B with D(A+B)=D(A)ND(B) is also m-accretive. If b=1
then A+ B is essentially m-accretive on D(A-+B).

Proor. It suffices to show that holds for all usD(A) (see [11],
Theorem 4.2). Let usD(A). Then there is a sequence {u,} in D such that
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u,—u and Au,—Au (n—o0). B.u,—B.u (n—o0) is a consequence of the bounded-
ness of B.. Therefore, F(B.u,)—F(B.u) (n—o) follows from the continuity of
the “duality map” F (see Kato [5], Lemma 1.2). Q.E.D.

REMARK 1.5. It is easy to see that F(B,u,) tends to F(B.,u) weakly. Let
{F(Beun,)} be any weakly convergent subsequence of {F(B.u,)}. Then
HfllélhglianF(Beunk)ll=HBsul| where fzvz-limF(Beunk). On the other hand,

we have (B.u,, F(Bauy,)=|B.u,||* and hence (B.u, f)=|B.ul®. So, we obtain
f=F(B.u).

§2. The m-accretivity of —A-+V(x).
Let V(x)>0 be a function in LZ.(R™\{0}) and set
Ve (x)=V(x)[14+eV(x)]?, e>0.
We denote by B=B, the maximal multiplication operator by V(x):
Bu(x)=B,u(x)=V(x)u(x)
for ue D(B)={u, V(x)ue L?}. Then B, is m-accretive in L? and the Yosida
approximation of B, is given by
B.u(x)=DB,, u(x)=V (x)u(x).
Let A=A, be the minus Laplacian in L?:
Au(x)=Apu(x)=—Au(x) for ueD(A)=W2?(R™),

where W#?(R™) is the usual Sobolev space. Then A, is also m-accretive in
L? (cf. Tanabe [17], Chapter 3, §3.1).

We consider the m-accretivity of A+B=A,+B,=—A-+V(x) with D(A-+B)
=W?>?(R™)N\D(B) in L?=L?(R™).

THEOREM 2.1. Let A and B be as above. Assume that V. (x) is a function
of class C*(R™) and there are nonnegative constants ¢, a and b (b<4(p—1)-*) such
that on R™
@2.1) [grad V. (x)|2=cV (x)+a[V(x)124b[V(x)]?, e>0.

In the case of 1<p<2 assume further that c¢=0.

If b<4(p—1)"* then A+B=—A+V(x) is m-accretive in L. If b=4(p—1)"
then A+ B is essentially m-accretive on D(A+ B).

PROOF. In order to apply Lemma 1.4, we shall show that for all u=CZ(R™),
(2.2) 4Re(Au, F(Bu)z—(p—D(clull*+al Beulllul|+blB.ul? .

Since |B.u(x)|?2Bu(x)=[V.(x)1?"*|u(x)|?%u(x), we have
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(Au, [Baulr=*Bay=—_ a(x)lu(m|?-umAux)ds,

where we set a(x)=[V.(x)]?"*. Let p=2. Then it follows from the same
calculation as in §5.1 of [10] that

" 1o Oa 0
Re(Au, | Bau|7* Bz 3, Snm'ax,. 5y, 100 7
- m au _ 2
+p=Df e@luol 3 [Re S 0T [ dr.
The first term on the right-hand side is larger than
4 m au —_—2
—(p——l)Lma(,c)xu(x)]p b3 [Re T u(x)] dx

—47p=17{ | La(e)) I grada(x)|*|utx) | 7dx

Therefore, we obtain

lu(x)|?
a(x)

This inequality holds even if 1<p<2. In fact, we can show that for any 6>0.

dx .

Re(Au, FBa)z— 'y o= lgrada(o)l®

—Re| _ a(lu()|*+3]@- ulmAu(x)dx

2—4’1(15—1)‘15[][0(96)]“‘ |grada(x) [*[|u(x)[*+017"%dx,

where U is a sufficiently large ball containing the support of . By a simple
calculation we see from that

(p—D2[a(x)] | grada(x) [*Sc[V(x)]?2+alV ()12 +b[V (x)]7.

Using the Holder inequality we obtain for all u=C%(R™). Noting that
C%(R™) is a core of A, the conclusion follows from Q.E.D.
Let W(x)>0 be another function in LZ(R™\{0}). We denote by C the
maximal multiplication operator by W(x). As for the m-accretivity of A-+B+C
with
D(A+B+C)=W*?(R™)ND(B)ND(C),
we have

COROLLARY 2.2. Let A, B and C be as above. Assume that both V. (x) and
W(x) are functions of class C*R™) satisfying (2.1) with b<4(p—1)"t. Then
A+B+C=—A+V(x)+W(x) is m-accretive in L*.

In fact, we have with A and B replaced by A+ B and C, respectively.

Next, let V(x)>0 be a continuous function on R™\ {0} ; namely, V(x)c
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L2 (R™\ {0}) for every p (1<p<o0). Set
2.3) be(p)=min {4(p—1), 4(p—1)"%} (1<p<e0).
Then we have

COROLLARY 2.3. Let A, and B, be as in Theorem 2.1. If b<by(p) in (2.1)
then

@.4) Apt+B,=(A+B)*  (p~+g7=1).

ProoF. Noting that p—1=(¢g—1)"?, we see from [Theorem 2.1 (with ¢=0
except the case of p=2) that A,+B, and A,+ B, are m-accretive in L? and
L%, respectively. For uW?*?(R™) and veW*%R™) we have

((Apt+ By, Ju, v)=(u, (Agt+Bgv).
Going to the limit ¢—-+0, we obtain
((Ap+Bp)u, U):(u; (Aq+Bq)v)

for all ue D(A,+B,) and ve D(A,+B,). The rest part is the same as in the
proof of Q.E.D.

REMARK 2.4. The maximum of b,(p) is attained at p=2 (the selfadjoint
case).

THEOREM 2.5. Let A and B be as in Theorem 2.1. Assume instead of (2.1)
that V(x)=0 is of class C*(R™) and

(2.5) lgradV(x)|*=alV(x)+c. I +b[V(x)+¢c,]* on R™,

where ¢y, ¢5, a and b (b=4(p—1)") are nonnegative constants. Then the conclusion
of Theorem 2.1 holds. If in particular b<4(p—1)"! then CH(R™) is a core of
A+-B.

PRroOF. It suffices to show that A+ (B-+1) (or its closure) is m-accretive.
So, we may assume that V(x)=1. In fact, V(x) in can be replaced by
V(x)+1. Noting this, we obtain with ¢=0:

|gradV (x)|*=|gradV (x)|*[14¢eV (x)]*

=0V (x) P+ Lales+1)*+blc,+D* 1LV o(x)]%.

It remains to show that [(A-+B)|C3(R™)]"=A+B. But, since V(x)=0 isa
function in L2(R™), this follows from [Theorem 1l.1. Q.E.D.

ExAMPLE 2.6. (i) Let V(x)=exp(|x|*), £=1. Then for any ¢>0 we have
[grad V(x)|?=k?| x|V [V(x)]?
SkoF ULV (x)1*+2k(E—1)a[V (x)]2.
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(i) Let W(x)=|x|"* ({>2). Then W x)=(|x|'+e)"! and for any >0 we
have
|grad W (x)|? =0 x|V [We(x)]°

SIU—=2)07¥ B IW () 1P+206IW(x)]° .
Thus, we see from that —A+c,exp(|x|*)+c,| x|~ is m-accre-

tive in L? (k=1, [>2), where ¢,, ¢,=0 are constants.

EXAMPLE 2.7. Let V(x)=pB|x|% where S=p—1 is a constant. Then
lgradV.(x)|2<4B7'[V.(x)]® (cf. [11], Example 6.6). So, we have

Re(Au, {Bau)z—(p—DB 7 |Bul®  for usW=?(R™).

Therefore, A+B=—A+B|x|* (B>p—1) is m-accretive in L? and
—A-+(p—1)|x|? is essentially m-accretive on D(A-+ B).

REMARK 2.8. Let A and B be as in or 2.5. Then it follows
from that for all ue D(A),

I Beu| =(1—b1) M I(A+Bul+Kllul,

where K=a,(1—b,)"*+[c,(1—b,)~*]*% and we have set b,=(p—1)b/4<1 and so
on (see [11], Lemma 1.1). Going to the limit e—--0, we have

[Bul=(1—b) " [(A+Bull+Klul, ueD(A+B),
and hence

(2.6) [Aul| =[A—b)*+1]I(A+Bul+Klul, usD(A+B).

These inequalities represent the separation property of A--B (see e.g. Evans-
Zettl [2], Everitt-Giertz [3]).

§3. The invariant sets for the resolvents.

Let IV be the set of all positive integers. In this section we shall use the
multi-index notation :

m
a=(ay, O =+, An) with |a|= Z‘,l aj, a;=NU{0};
=
D“y denotes a mixed partial derivative of u:
D*u=D{:D$z--- Dgmu, Dgiu=0%u/ox3 (1=7<m).

Let W* ?(R™) be the usual Sobolev space. Let A, and B, be as in Theo-
rem 2.1:
Ay+B,=—A+V(x) with D(A,+B)=W*2(R™ND(B,).

Then, under some additional assumption, it is expected that W ?(R™) is mapped
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into W#*=?2(R™) by (A,+B,+&)7%, §>0. More precisely, we have
PROPOSITION 3.1. Let keN and V(x)=0 be a function of class C*(R™).

Assume that there exist constants cy, ¢;=0 such that for all a with |a|=k,

3.1 | DV (x)| =citc.V (%) on R™,

Set u=(Ap+Bp+8&~v for veW®?(R™) and £>0. Then we have

(3.2) usWk=?2(R™),  D*usD(B,) (|la|=k).

ProOF. It follows from with |a|=1 that with b=0 is satisfied.
So, we see from and that A,-+ B, is m-accretive in
L? for all p (1<p<co) and holds.

Now we show that the assertion is true for 2=1. To this end, it suffices
to show that ou/dx;=D(A,+B,) 1=j<m) if veW"?(R™). Since ucD(B,),
it follows from [3.1) with |a|=1 that (0V/dx,)us L?. Consequently, we have

ov oV , ¢>, GeCI(R™).

( g;‘j, —A¢+V(x)¢—l—§¢):(—éx—j—-~ax—ju

Noting that CH(R™) is a core of A,+B, (p~*+¢'=1), we see that for all
d=D(A+ By,

(e e+ Brr81g) =(52— 5. 6).

This implies that ou/dx,=D(A,+ B,) (see [2.4).
Next, suppose that the assertion is true for all @« with |a|=k—1. It then
follows that
usWket2(R™), DfueD(B,) (|Bl=k—1)

because veW*--?(R™). Let |a|=~k. Then we have
Du, V(x)g)=(—1)'*""(V(x)u, D*¢)—(w, @),  p=CTR™),
where w(x)=ﬂ§a(2)D“"BV(x)-Dﬁu(x). By virtue of we see that D"‘j@V(x)
-D3u= L? and hence so is w, too. So, we obtain
(D*u, —A¢+V(x)p+Ep)=(Dv—w, @), psCTR™).

In the same way as in the case of =1 we can conclude that D*u=sD(A,+B,)
for |a|==k. Q.E.D.
It follows from that for u=(A,+B,+&) ",
(3.3) DIV(ul=3 (5)D**V () -DPu  (alZh).
Bsa ‘8

Let b,(p) be the function which was used in Writing
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x*=x%1xg2 - x2m for a multi-index a, we have

PROPOSITION 3.2. Let V(x)=0 be a function of class C*'(R™) satisfying (2.5)
with b<by(p). Assume that there is a constant M >0 such that

3.4 V(x)=M| x| for sufficiently large x.
If veL? and x“v(x)e L? then we have
x*(Ap+B,+8Ww(x)eD(A,+B,)  for £>0.

PrROOF. By assumption we see from [Theorem 25 and that
Ap+Bp=(A,+Bp* is m-accretive for all p and g, p~'+¢ =1 (1< p<o0).
Set u=(Ap+Bp-+&~'v. Then we have formally

3.5) (xu, A@)=(Au, x*¢)—u, pAx*)

m 0x* 0¢ o D
235 (u 5 55),  $=CRR™.

Now let |a|=1, i.e., x*=x,; for some ;. Then we see from (3.4) that u= D(B,)
implies x;u(x)e L? (1=</<m) and hence makes sense for |a]=1. So, we
obtain

(v, —AgHV(p+p)=(rm, )—2(2L, ).

In the same way as in the proof of [Proposition 3.1 we can conclude that x;u(x)
eD(Ap+B,) (1=i<m).

Next, suppose that the assertion is true for all @« with |a|<k—1. Since
vel? and xw(x)eL? (la|=k), it follows that x®v(x)e L? and hence xfu(x)
e€D(A,+B,) for all B with |f|<k—1. Consequently, (0x*/0x,)u(x) and u(x)Ax*
belong to W*?(R™) for |a|=k. Furthermore, by virtue of (3.4) we see that
xPu(x)eD(B,) (|l =k—1) implies x*u(x)s L? (|a|=F). Therefore, makes
sense for |a|=F and we obtain x“u(x)s D(Ap+ By). Q.E.D.

ExaMPLE 3.3. Let m=1 and V(x)=coshx on R. Then |V™(x)|=V(x)
(neN) and V(x)=+/2 |x| on R.

REMARK 3.4. Let V(x)=|x|2% Then |gradV(x)|*s4[V(x)+1]%. Set
u=(Ap+Bp+8& for veD(B,) and £>0. Then [Proposition 3.2 implies that
ByueD(A,+By,).

Propositions B.1 and 3.2 are unified as follows.

PROPOSITION 3.5. Let k€N and V(x)=0 be a function of class C*(R™)
satisfying and (3.4). Assume that

x*DBy(x)e L?  for all a, B with |a+-BI=Zk.
Setting u=(A,+ Bp-+&)~'v, we have
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x*DPu(x)eD(A,+B,)  for all a, B with |a+pl=k.

Proor. [3.I) implies that A,-+ B, is m-accretive in L? for all p (1< p<o0).
If k=1 then the assertion is reduced to the preceding Propositions.
Suppose that the assertion is true for 2—1:

(3.6 x*D'u(x)e D(Ap+Bj) for all @, v with |a+t7|=k—1.

Since veW*?(R™) and x%v(x)e L? (|a|=Fk), it follows from Propositions
and B2 that DfucD(A,+B,) (|f1<k) and x®u(x)ED(A,+B,) (la|=Fk), re-
spectively. Furthermore, in view of (3.3) we have

3.7) [—A+V(x)+E1DPu(x)=Dv(x)— % (ﬂ)Dﬁ”TV(x)-DTu(x) .

T<B\T
Here, we see from and that
DE-TV(x)-[x2D"u(x)]s L? (latr|=k—1).

Denoting by w(x) the right-hand side of [3.7), we have we L? and x*w(x)s L?.
Applying [Proposition 3.2 to the equation [—A+V (x)+&]1Dfu=w, we obtain

x*DPu(x)€D(A,+B,)  (la+B|=Zk, |21, |B1Z1).
Q.E.D.
Let S(R™) be the Schwartz space of all rapidly decreasing functions on R™:

S(R™M)={feC~(R™) ; Sgp[<x>le“f(x)]]<00 for all %, a} ,
where {x>=1+]|x|%*? keNU{0}.
Setting D((Ap+B,)*)= fjl D((A,+B,)™), we have

THEOREM 3.6. Let V(x)=0 be a function of class C*(R™) satisfying (3.4).
Assume that (3.1) is satisfied for all a (so that Ay~ Bp,=—A+V(x) is m-accretive
in L?), Let neN. Then usD(Ap+Bp)™) implies that

3.8) x*DPu(x)eL?  for all @, B with |a+B|<n.

In particular, D((A,+Bp)*)CS(R™).
The proof will be given after

COROLLARY 3.7. Let V(x) be a function as in Theorem 3.6. Then D((Ap+ Bp)™)
=S(R™) if and only if V(x)f(x)S(R™) for every fSR™). In this case

(Ap+Bp+0'S(RM=S(R™),  Re{>0.
PROOF OF THEOREM 3.6. for n=1 is obvious. Suppose that is
true. Let usD((Ap,+Bp)"*"). Then, since (A,+By+1u=veD((A,+B,)"),

we have with u replaced by v. Therefore, it follows from [Proposition 3.5
that
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x*DPu(x)eD(Ap,+B,)  for all @, B with |a-+B|<n.

Thus, we can obtain with n replaced by n--1.
Next, let uD((Ap+B,)°). Then we see that is true for all neN
and hence

x*DPu(x)eW*r »(R™) for all @, B, and k<N.

Therefore, it follows from the Sobolev imbedding theorem (see e.g. Adams [1])
that = C°(R™) and

sup{|x?DPfu(x)| ; x€R™ <co  for all «a, 8.
Thus, we obtain the desired inclusion. Q.E.D.

REMARK 3.8. does not apply to V(x)=coshx (see Example 3.3).
In¥fact, 2(e®+e~%)'eS(R).

§4. The compactness of the resolvents.
Let V(x)=0 be a function of class CY(R™) satisfying [2.5) with b<4(p—1)"*:
|grad V(x) |2:=b[V(x)+c]® on R™,

Then A4+ B=—A+V(x) with D(A+B)=W?>?(R™ND(B) is m-accretive in L?=
L?(R™) (see [Theorem 2.5). Consequently, A--B--{ is invertible for every {
with Re{>0 and (A+B-+{)~! is a bounded linear operator on L?

THEOREM 4.1. Let A+B=—A+V(x) be the linear m-accretive operator
obtained in Theorem 2.5. Assume further that

V(x)»co  (|x][—00).

Then the resolvent (A+B-+{)~! is compact for Re{>0 and hence A--B has discrete
spectrum consisting entively of eigenvalues with finite multiplicities.
Proor. It suffices by the resolvent equation to show that (A+B+1)' is
compact. Set
U={el?;|v|=1}.

We shall show that (A+B-+1)"1U is relatively compact in L?. Let velU and
set u=(A+B+1)"'w. Then ueW??(R™) and ||u||=|v|=1. Moreover, it follows
from an estimate for the Laplacian that

el p=coll Aul+llul),

where |ull;, is the norm of W*?(R™) (see Schechter [14], Theorem 3.1 of
Chapter 3, Lemma 2.1 of Chapter 11). So, we see from [2.6) that

s, p=cill(A+ Bull+(cotcollull Sco+2¢,4-c: .
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Thus, (A+B-+1)"U is bounded in W*?(R™). It follows from the Rellich com-
pactness theorem (see Adams [1]) that for any R>0, (A+B+1)-U is relatively
compact in L?(£2g), where

Qr={xeR™; |x|=R}.

Now let {v,} be an arbitrary sequence in U and set u,=(A+B-+1)"'v,.
Then by a diagonal method, we can find a subsequence of {u,} which converges
in L?(Qz) for any R>0. We denote this subsequence again by {u,}. By the
way, we note that

[ gnV () 1a) | dx <Re((A+ Bty 1] #-*ur)
S(A+Bun|lus|?'=2.
By assumption, for any ¢>0 there is R=R(¢)>0 such that

Vix)=22P-+1)e? for |x|=R.
So, we have

SIIIZRI un(x) | de§(2p+1)_l_;-SI$[2RV(x) l un(x) | pdx

<(@2P+1)le.
Since {u,} is a Cauchy sequence in L?(2z), there is a positive integer n,=n,(¢)

such that for n, m=n,,

[ Jus—un@)rde< @+,

Therefore, we obtain for n, m=n,,

Hu"—umllp:(§|x1gR+S|x1;R> lua(x)—un(x)|Pdx

<@+D7e+207] (a7 ()| 2)dx

<[@P4+1)'4-27@274-1)""]e=¢,

i.e., {u,} is a Cauchy sequence in L?. Q.E.D.
In the case of p=2 the assertion of holds under the simplest
assumption on V(x) (see Reed-Simon [13], Theorem XIIL67).
In view of we obtain

COROLLARY 4.2. Let V(x)=0 be a function of class C*(R™) satisfying (3.4) :
Vix)Z=M| x| for sufficiently large x .
Assume that (3.1) is satisfied for all «:
1DV {x)| =c¢i+c.V(x) on R™,
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Then the eigenfunctions of Ap+Bp=—A+V(x) belong to S(R™) and hence the
spectrum of Ap-+Bp is independent of p.
The following example is well known.

ExXAMPLE 4.3. Let m=1 and V(x)=x% on R. Then
(ApFBpu(x)=—u"(x)+xu(x).
The eigenvalues of A,+ B, and the associated eigenfunctions are given by
A=2n-+1, $olx)=e*2H,(x)  (n=0, 1,2, -,

where H,(x) is the Hermite polynomial.
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Added in proof. After this paper was accepted for publication, the writer
noticed that an estimate in Example 2.7 is partially improved as follows. Let
A=—A and B=S|x|"? (8>0). Then for all ucW??(R™) we have

Re(Au, F(B.u)=Z—2(p—1)2p—m)p~' B | B.u|®.

This makes sense when p<2m/3. If in particular p<m/2 then we see that
B 'B=|x|"* is relatively bounded with respect to A=—A: for ue D(A)CD(B),

B Bull =27 p(p—1)"*(m—2p) | Au|
(cf. [11], Theorem 6.8).
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