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Maximal surfaces with conelike singularities

By Osamu KOBAYASHI

(Received Oct. 4, 1983)

A spacelike surface in the 3-dimensional Minkowski space $L^{3}=(R^{3},$ $dx^{2}+dy^{2}$

$-dz^{2})$ is said to be maximal if the mean curvature vanishes identically. Any

spacelike surface in $L^{3}$ can be represented locally as the graph $\{z=u(x, y)\}$ of
a smooth function $u$ with $u_{x}^{2}+u_{y}^{2}<1$ . Then the surface is maximal if $u$ satisfies
the equation:

$(1-u_{x}^{2})u_{yy}+2u_{x}u_{y}u_{xy}+(1-u_{y}^{2})u_{xx}=0$ .

This equation is elliptic when $u_{x}^{2}+u_{y}^{2}<1$ , but the ellipticity degenerates when
$u_{x}^{2}+u_{y}^{2}$ tends to 1. Related to this fact, maximal surfaces often have singulari-
ties which are of different kinds from those appearing in minimal surfaces in
the Euclidean space. For example, consider a surface $S$ in $L^{3}$ defined by

$k=0$ $k=1$
$k=2$

Figure 1.
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where $k$ is a nonnegative integer. Then $S$ is a maximal surface, and the origin
$(x, y, z)=(O, 0,0)$ , which corresponds to the limit $\rhoarrow 0$, is an isolated singularity.
It may be clear that this type of singularities never appear in minimal surfaces.
Among such singularities of maximal surfaces, we shall consider in this paper
especially those singularities that are similar to the above example for $k=0$,

which will be called conelike singularities.

DEFINITION. Let $S$ be a maximal surface in $L^{v}$, and $p=(x_{0}, y_{0}, z_{0})$ be a point
of the closure of $S$ in $L^{3}$ . Then $p$ is called a conelike singularity of $S$ if the
following conditions are satisfied:

(i) In a neighbourhood of $p,$ $S$ is the graph of a smooth function $u$ defined
on $U\backslash (x_{0}, y_{0})$ , where $U$ is a neighbourhood of $(x_{0}, y_{0})$ in the $(x, y)$-plane;

(ii) On $U\backslash (x_{0},$ $y_{0}1$ . $u<z_{0}$ (or $u>z_{0}$). By setting $u(x_{0}, y_{0})=z_{0}$ , $u$ is con-
tinuous on $U$ ;

(iii) lim $(x, y)arrow(x_{0}y_{0})(u_{x}^{2}+u_{y}^{2})=1$ .
It is known that every complete maximal surface in $L^{3}$ is a plane, which is

a great difference from minimal surfaces; there are numerous examples of com-
plete minimal surfaces in the Euclidean 3-space. So, we want to modify the
notion of completeness as follows: Let $S$ be a maximal surface in $L^{3}$, and $\{p_{k}\}$

be the set of all conelike singularities of $S$ . At each $p_{k}$ . we round out $S$ as
shown below.

$\Rightarrow$

Figure 2.

Then we obtain a spacelike surface $S’$ . The maximal surface $S$ will be said to
be complete if $S$ ‘ is complete in the usual sense (cf. the proof of Lemma 2.6).

The purpose of this paper is to show the following:

THEOREM. Let $S$ be a $co$mplete maximal surface in $L^{3}$ with at least one
conelike singularity. Suppose that the Gauss map of $S$ is 1: 1. Then $S$ is con-
gruent to the surface &\tilde fined by $\sqrt{x^{2}+y^{2}}+a\sinh(z/a)=0$ , where $a$ is a nonzero
real constant.

REMARK. Without the assumption on the Gauss map, the result is not true.
An example will be given in \S 1.
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\S 1. Preliminaries.

Let $H$ be a spacelike surface in $L^{3}$ defined by $x^{2}+y^{\underline{y}}-z^{2}=-1,$ $z<0$ . Naru-
rally, $H$ is considered as the target space of the Gauss map for spacelike sur-
faces in $L^{3}$ . $H$ is conformal to the unit disk $\Delta=\{\zeta\in C||\zeta|<1\}$ in the complex
plane. Indeed, the following gives a conformal isomorphism between them:

(1.1) $\Deltaarrow^{\sim}H$ ; $\zeta-\geq(\frac{2{\rm Re}\zeta}{1-|\zeta|^{2}}$, $\frac{2{\rm Im}\zeta}{1-|\zeta|^{2}}$, - $- \frac{1+|\zeta|^{2}}{1-|\zeta|^{2}})$ .

Hereafter, through this identification, we regard $\Delta$ as the target space of the
Gauss map.

PROPOSITION 1.1 ([2]). Let $S$ be a maximal surface in $L^{8}$ and $D(\subset\Delta)$ the
image of the Gauss map of S. Assume that the Gauss map is 1: 1. Then there
exists a holomorphic function $f$ defined on $D$ with no zeros in $D$ such that $S$ is
represented as

(1.2) $\psi(\zeta)={\rm Re}\int(\frac{1}{2}f(\zeta)(1+\zeta^{2}),$ $\frac{\sqrt{-1}}{2}- f(\zeta)(1-\zeta^{2}),$ $-f(\zeta)\zeta)d\zeta$ , $\zeta\in D$ .

(To simplify notation, we denote $\int^{\zeta}F(\omega)d\omega$ simply by $\downarrow F(\zeta)d\zeta.$ ) Moreover the

Gauss map is then the’ inverse of $\psi$ : $Darrow S$.
REMARK. A surface given by (1.2) for a holomorphic function $f$ is always

a maximal surface, but the expression (1.2) sometimes represents a maximal
surface whose Gauss map is not injective. For example, $f(\zeta)=1/(2\zeta^{2}-1)(\zeta^{2}-1)$

on $D=\Delta\backslash \{\pm 1/\nwarrow\Gamma 2\}$ is the case (see Figure 3).

Figure 3.
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Next, we consider how the formula (1.2) changes by a transformation of $L^{3}$ .
Let $\Phi$ : $L^{3}arrow L^{3}$ be an isometry of $L^{3}$ with $\Phi(0)=0$ . Such $\Phi’ s$ form a group
denoted by $0(2,1)$ . $O(2,1)$ is a Lie group with four connected components.
Let $O_{0}(2,1)$ be the identity component of $0(2,1)$ . Then, $\Phi\in O_{0}(2,1)$ if and only
if $\Phi$ is orientation preserving and $\Phi(H)=H$. Thus, using the identiPcation (1. 1),
$\Phi\in O_{0}(2,1)$ induces a linear fractional transformation $\Phi_{\Delta}$ of $\Delta$ :

(1.3) $\Phi_{\Delta}(\zeta)=\epsilon\frac{\zeta-\omega}{1-\overline{\omega}\zeta}$

for some $\epsilon$ and $\omega$ with $|\epsilon|=1$ and $|\omega|<1$ . Conversely, given a linear trans-
formation $\Phi_{\Delta}$ defined by (1.3), we get the isometry $\Phi$ of $L^{3}$ by

(1.4) $\Phi=(\begin{array}{lll}\cos(\alpha\perp|\theta) -\sin(\alpha+\theta) 0\sin(\alpha\frac{|}{|}\theta) \cos(\alpha+\theta) 00 0 1\end{array})(\begin{array}{lllll}\cosh \rho 0 \sinh \rho 0 1 0 \sinh \rho 0 \cosh \rho\end{array})(\begin{array}{lll}\cos\alpha \sin\alpha 0-\sin\alpha \cos\alpha 00 0 1\end{array})$ ,

where $\alpha=\arg_{\vee}^{-}-,$ $\theta=\arg\omega$ and $\rho=\log(1-|\omega|)$–log $(1+|\omega|)$ .

PROPOSITION 1.2. Let $S$ be a maximal surface given by (1.2), and $\Phi\in O_{0}(2,1)$ .
Then, the maximal surface $\Phi(S)$ is represented as

(1.5) $\tilde{\psi}(\zeta)={\rm Re}\int(\backslash a_{2}\frac{\sqrt{-1}}{2}f(\zeta)(1-\zeta^{2}),$ $-f(\zeta)\zeta)d\zeta$ , $\zeta\in\tilde{D}$ ,

where $D=\Phi_{\Delta}(D)$ , and

(1.6) $f( \zeta)=\frac{\epsilon^{2}(1-|\omega|^{2})^{2}}{(\epsilon+\overline{\omega}\xi)^{4}}f(\frac{\epsilon\omega+\zeta}{\epsilon+\overline{\omega}\zeta})$ .

PROOF. Define a surface $\tilde{S}$ in $L^{3}$ by

(1.7) $\tilde{\psi}(\zeta)={\rm Re}!(\frac{1}{2}\frac{d\zeta}{d\zeta}f(\zeta)(1+\zeta^{2}),$ $\frac{\sqrt{-1}}{2}-\frac{d\zeta}{d\zeta}f(\zeta)(1-\zeta^{2}),$ $- \frac{d\zeta}{d\zeta}f(\zeta)\zeta)d\zeta$ , $\zeta\in D$ ,

where $\tilde{\zeta}=\Phi_{\Delta}(\zeta)=\epsilon\frac{\zeta-\omega}{1-\overline{\omega}\zeta}$ . Then, if $\tilde{g}$ and $\tilde{h}$ denote the first and second funda-

mental forms of $\tilde{S}$ respectively, a direct calculation yields that

$\tilde{g}=\frac{1}{4}|\frac{d\zeta}{d\zeta}f|^{2}|1-|\zeta|^{2}|^{2}|d\zeta|^{2}=\frac{1}{4}|f|^{2}|1-|\zeta|^{2}|^{2}=g$

and

$\tilde{h}={\rm Re}((\frac{d\zeta}{d\zeta})\cdot(f\frac{d\zeta}{d\zeta})d\zeta^{2})={\rm Re}(fd\zeta^{2})=h$ ,

where $g$ and $h$ are the first and second fundamental forms of $S$ respectively.
Hence, by the fundamental theorem of surfaces, $S$ and $\tilde{S}$ are congruent. Using
the variable $\zeta,$ $(1.7)$ is written as
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(1.8) $\tilde{\psi}(\tilde{\zeta})={\rm Re}\int(\frac{1}{2}(\frac{d\zeta}{d\tilde{\zeta}})^{2}f(\zeta)(1+\tilde{\zeta}^{2}),$ $\frac{\sqrt{-1}}{2}(\frac{d\zeta}{d\tilde{\zeta}})^{2}f(\zeta)(1-\zeta^{2}),$ $-( \frac{d\zeta}{d\tilde{\zeta}})^{2}f(\zeta)\tilde{\zeta})d\tilde{\zeta}$ ,

$\zeta\in\tilde{D}$ .
From this expression, we can regard $\zeta$ as the Gauss map of $\tilde{S}$ . Since $\zeta=\Phi_{\Delta}(\zeta)$ ,

we see easily that $\tilde{S}=\Phi(S)$ . Now the assertion follows immediately. $\square$

\S 2. Proof of Theorem.

Let $S$ be a maximal surface satisfying the assumption of Theorem, and
$p=(x_{0}, y_{0}, z_{0})$ a conelike singularity of $S$ . By the definition of the conelike
singularity, we have a continuous function $u(x, y)$ dePned on a neighbourhood
$U$ of $(x_{0}, y_{0})$ such that

(a) around $p,$ $S$ is the graph of $u|U\backslash (x_{0}, y_{0})$ ;
(b) $u(x_{0}, y_{0})=z_{0}$ and $u(x, y)<z_{0}$ for $(x, y)\in U\backslash (x_{0}, y_{0})$ ;
(c) $\lim_{(x,y)arrow(x_{0},y_{0})}(u_{x}^{2}+u_{y}^{2})=1$ .

From (a), the normal vector of $S$ is given by

$- \frac{1}{\sqrt{1-u_{x}^{2}-u_{y}^{2}}}(u_{x}, u_{y}, 1)$ .

Hence by $(1, 1)$ , $\zeta:Sarrow\Delta$ denoting the Gauss map, we get

(2.1) $| \zeta|^{2}=\frac{1-\sqrt{1-u_{x}^{2}-u_{y}^{2}}}{1+\sqrt{1-u_{x}^{2}-u_{y}^{2}}}$ .

LEMMA 2.1. The image $D(\subset\Delta)$ of the Gauss map of $S$ contains $\{\zeta\in\Delta||\zeta|>\delta\}$

for some $\delta<1$ .
PROOF. Take a small $r_{0}>0$ such that $\{(x-x_{0})^{2}+(y-y_{0})^{2}\leqq r_{0}^{2}\}\subset U$ . For $r\leqq r_{0}$ ,

set $C_{r}=\{(x, y, u(x, y))|(x-x_{0})^{2}+(y-y_{0})^{2}=r^{2}\}$ and $A_{r}=\{(x, y, u(x, y))|0<(x-x_{0})^{2}$

$+(y-y_{0})^{2}<r^{2}\}$ . Both $C_{r}$ and $A_{r}$ are contained in $S$ . Let $\tilde{C}_{r}(\subset\Delta)$ be the Gauss-
ian image of $C_{r}$ . Since the Gauss map of $S$ is 1: 1, $\tilde{C}_{r}$ is a simple closed curve
in $\Delta$ . $\tilde{A}_{r_{0}}$ denotes the outer part of $C_{r_{0}}$ in $\Delta$ . By (c) and (2.1), it is obvious
that the Gaussian image of $A_{r_{0}}$ is contained in $\tilde{A}_{r_{0}}$ . Suppose that there is a
point $\zeta_{0}\in\tilde{A}_{r_{0}}$ which is not in the Gaussian image of $A_{r_{0}}$ . Then, $\zeta_{0}$ lies in the
outer part of $\tilde{C}_{r_{0}}$ , and hence $\zeta_{0}$ must lie in the outer part of $C_{r}$ for any $r$ with
$0<r\leqq r_{0}$ . But, from (c) and (2.1), we have $\tilde{c}_{\epsilon}\subset\{|\zeta|>|\zeta_{0}|\}$ for sufficiently small
$\epsilon>0$ . This is a contradiction, and thus $\tilde{A}_{r_{0}}$ coincides with the Gaussian image
of $A_{r_{0}}$ , which shows the assertion. $\square$

By Proposition 1.1, there is a holomorphic function $f$ defined on $D$ which has
no zeros in $D$ , and $S$ is given by (1.2) using $f$ . By the above argument, we see

(2.2) $\lim_{1\zeta Iarrow 1}\psi(\zeta)=p$ .
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So, we need to observe the behavior of $f$ near $\partial\Delta=\{|\zeta|=1\}$ .
LEMMA 2.2. $f$ has a holomorphic extension to a neighbourhood of $\partial\Delta$ in $C$ ,

and then $f(\zeta)\zeta^{2}$ is real on $\partial\Delta$ . Moreover, $f$ has no zeros on $\partial\Delta$ .
PROOF. From (1.2) and (2.2), we have

(2.3) $\lim_{1\zeta \mathfrak{l}arrow 1}({\rm Re}\int f(\zeta)\zeta d\zeta)=-z_{0}$ .

Hence, by the reflection principle, ${\rm Re} \int f(\zeta)\zeta d\zeta$ has a harmonic extension to a

neighbourhood of $\partial\Delta$ . Therefore, $f$ also has a holomorphic extension. Put
$\zeta=e^{\rho+i\theta}$ , where $\rho$ and $\theta$ are real parameters, and we have

${\rm Re} \int f(\zeta)\zeta d\zeta={\rm Re}\int f(\zeta)\zeta^{2}d(\log\zeta)$

$= \int({\rm Re} f(\zeta)\zeta^{2})d\rho-\int({\rm Im} f(\zeta)\zeta^{2})d\theta$ .

This, together with (2.3), shows that ${\rm Im} f(\zeta)\zeta^{2}=0$ for $\zeta\in\partial\Delta$ . That is, $f(\zeta)\zeta^{2}$ is

real on $\partial\Delta$ . By the property (b) of conelike singularity, ${\rm Re}( \int f(\zeta)\zeta d\zeta)>-z_{0}$ for

any $\zeta\in D$ with $|\zeta|=1$ . Hence, $f(\zeta)\zeta\backslash$’ the derivative of $\int f(\zeta)\zeta d\zeta$, cannot vanish

at each $\zeta\in\partial\Delta$ . Therefore, $f$ has no zeros on $\partial\Delta$ . $\square$

By the above lemma, it is easy to see that in a neighbourhood of $\partial\Delta,$ $\zeta^{2}f(\zeta)$

can be expanded as

(2.4) $\zeta^{2}f(\zeta)=\cdots+a\zeta^{-1}+b+\overline{a}\zeta+\cdots$ ,

where $b$ is a nonzero real.

LEMMA 2.3. In (2.4), $b^{2}>|a|^{2}$ .
PROOF. First, recall the formulas:

$a= \frac{1}{2\pi i}\int_{|\zeta|=1}\zeta^{2}f(\zeta)d\zeta$ and $b= \frac{1}{2\pi i}\int_{|\zeta|=1}\zeta f(\zeta)d\zeta$ .

By Lemma 2.2, $\zeta^{2}f(\zeta)$ is real on $\partial\Delta$ , and may be assumed to be positive on $\partial\Delta$ .
Hence, putting $F(\theta)=(e^{2t\theta}f(e^{i\theta})/2\pi)^{1/2}$, we have

$a= \int_{0}^{2_{i}\tau}e^{i\theta}F(\theta)^{2}d\theta$ and $b= \int_{0}^{2\pi}F(\theta)^{2}d\theta$ .

Therefore, by the Schwarz inequality,

$|a|^{2}=| \int_{0}^{2\pi}(e^{i\theta}F(\theta))F(\theta)d\theta|^{2}\leqq\int_{0}^{2\pi}|e^{l\theta}F(\theta)|^{2}d\theta\cdot\int_{0}^{2\pi}F(\theta)^{2}d\theta$

$=( \int_{0}^{2\pi}F(\theta)^{2}d\theta)^{2}=b^{2}$ .



Maximal surfaces 615

Since $F(\theta)$ is real valued and positive, the strict inequality holds. $\square$

Next, we make use of an isometry of $L^{3}$ to simplify the function $f$. Remark
that Lemmas 2.1, 2.2 and hence 2.3 are valid for $\tilde{D},$ $f$ in Proposition 1.2.

LEMMA 2.4. There is a $\Phi\in O_{0}(2,1)$ such that $\int_{1\xi_{|=1}}f(\zeta)d\zeta=0$ , where $P$ is the

function defined by (1.6).

PROOF. If $a=0$ in (2.4), then obviously $\int_{|\zeta|=1}fd\zeta=0$ , hence $\Phi=identity$ is the

desired isometry. So we assume $a\neq 0$ . Consider a quadratic equation $\lambda^{2}-2b\lambda$

$+|a|^{2}=0$ . By Lemma 2.3, the discriminant $b^{2}-|a|^{2}$ is positive. Hence, we
have two distinct real roots $\lambda_{+}$ and $\lambda_{-}$ . Since $\lambda_{+}\cdot\lambda_{-}=|a|^{2}$ and $\lambda_{+}\neq\lambda_{-},$ $\lambda_{+}$ or $\lambda_{-}$ ,
say $\lambda_{-}$ , satisfies the inequality $|\lambda_{-}|<|a|$ . We put $\omega=\lambda_{-}/\overline{a}$ . Namely, $\omega$ satisfies

(2.5) $a\overline{\omega}^{2}-2b\overline{\omega}+\overline{a}=0$

and

(2.6) $|\omega|<1$ .

It follows from (2.4) that the left hand side of (2.5) is exactly the coefficients
of $\zeta^{-1}$ in the Laurent expansion of $(1-\overline{\omega}\zeta)^{2}f(\zeta)$ . Therefore

(2.7) $\int_{|\zeta|=1}(1-\overline{\omega}\zeta)^{2}f(\zeta)d\zeta=0$ .

Now, let $\Phi_{\Delta}(\zeta)=(\zeta-\omega)/(1-\overline{\omega}\zeta)$ , and $\Phi$ be as defined by (1.4). Then, from (1.6),

we have

(2.8) $f( \zeta)=(\frac{d\zeta}{d\zeta})^{2}f(\zeta)=\frac{d\zeta}{d\zeta}\frac{(1-\overline{\omega}\zeta)^{2}}{1-|\omega|^{2}}f(\zeta)$ ,

where $\zeta=\Phi_{\Delta}(\zeta)$ . Hence by (2.7) and (2.8), we get

$\int_{l=1}|f(\zeta)d\zeta=\int_{|^{\gamma_{1}}=1}\frac{(1-\overline{\omega}\zeta)^{2}}{1-|\omega|^{2}}f(\zeta)d\zeta$

$=1- \frac{1}{|\omega|}2-\int_{|(|=1}(1-\overline{\omega}\zeta)^{2}f(\zeta)d\zeta=0$ .

By the above lemma and Proposition 1.2, we may assume without loss of
generality that

(2.9) $\int_{|\zeta|\subset 1}f(\zeta)d\zeta=0$ .

From (2.2), $S$ has only one conelike singularity. Hence, by the completeness
of $S$ , it is easy to see that $S$ must be represented globally as the graph of a
lunction $u(x, y)$ defined on $R^{2}\backslash (x_{0}, y_{0})$ . That is, $S$ is homeomorphic to $S^{1}\cross R$,
hence, so is $D$ . Thus, (2.9) implies that the following is a well-defined holomor-
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phic function on $D\cup\partial\Delta$ :

(2.10) $F$ : $D\cup\partial\Deltaarrow C$ ; $\zeta-\int_{1}^{(}f(\omega)d\omega$ .

LEMMA 2.5. The image $\gamma$ of $\partial\Delta$ by $F$ is a regular simple closed curve in $C$ .
PROOF. Put $\gamma(\theta)=F(e^{i\theta})$ , and we have $\frac{d}{d\theta}\gamma(\theta)=if(e^{i\theta})e^{t\theta}$ . By Lemma 2.2,

$f(e^{i\theta})e^{2i\theta}$ is real, hence, the Frenet frame of $\gamma$ is given by $e_{1}(\theta)=ie^{-i\theta}$ ,
$e_{2}(\theta)=-e^{-i\theta}$ . Then the curvature $\kappa$ of $\gamma$ is easily computed and $\kappa(\theta)=$

$-1/|f(e^{i\theta})|<0$ . On the other hand, the rotation index of $\gamma$ is $(1/2 \pi)\int_{0}^{2\pi}\kappa(\theta\rangle$

$| \frac{d}{d\theta}\gamma(\theta)|d\theta=-1$ . Therefore, $\gamma$ is a regular simple closed curve. $\square$

LEMMA 2.6. Let $c$ : $[0,1]arrow C$ be a smooth curve such that $c(O)\in\gamma$ and $c(t)$

lies in the outer region of $\gamma$ in $C$ for $t>0$ . Then, along $c$ , the inverse function
of $F$ can be defined.

PROOF. From the proof of Lemma 2.5, $F$ is invertible in a neighbourhood
of $\partial\Delta$ , and an inward normal vector of $\partial\Delta$ is carried to an outward normal vector
of $\gamma$ by $dF$. Hence, for a sufficiently small $t>0$, $F^{-1}$ can be defined along
$c|[0, t)$ . If $F^{-1}$ is defined on $c|[0, t_{0}]$ , then $\zeta_{0}=F^{-1}(c(t_{0}))\in D$ and $f(\zeta_{0})\neq 0$ .
Therefore, by the inverse function theorem, $F^{-1}$ can be extended to $c|[0, t_{0}+\epsilon$)

for a sufficiently small $\epsilon>0$ . Hence, $T=\{t\in[0,1]|F^{-1}$ can be defined along
$c|[0, t]\}$ is a nonempty open set in $[0,1]$ .

Next, suppose that $F^{-1}$ is defined on $c|[0, t_{1}$ ). From (1.2), the first funda-

mental form of $S$ is $\frac{1}{4}|f|^{2}|1-|\zeta|^{2}|^{2}|d\zeta|^{2}$ . That is, $S$ is isometric to $(D,$ $\frac{1}{4}|f|^{z}$

$|1-|\zeta|^{2}|^{2}|d\zeta|^{2})$ . Let $d$ be the distance function defined by the Riemannian metric.

Then, for $s_{1},$ $s_{2}\in[0, t_{1}$ ),

$d( \zeta_{1}, \zeta_{2})\leqq\int_{\zeta_{1}}^{(}2\frac{1}{2}|f||1-|\zeta|^{2}||d\zeta|$

$\leqq\frac{1}{2}\int_{\zeta_{1}}^{C_{2}}|fd\zeta|=\frac{1}{2}L(c|[s_{1}, s_{2}])$ ,

where $\zeta_{i}=F^{-1}(c(s_{t})),$ $i=1,2$ , and $L(c|[s_{1}, s_{2}])$ is the Euclidean length of $c|[s_{1}, s_{2}]$

in $C$ . Hence, for any sequence $\{s_{n}\}\subset[0, t_{1}$ ) with $\lim s_{n}=t_{1}$ , $\{F^{-1}(c(s_{n}))\}$ is a
Cauchy sequence of $(D, d)$ . On the other hand, there is a $\delta>0$ such that
$|F^{-1}(c(s))|<1-\delta$ for any $s$ sufficiently close to $t_{1}$ because $c(t_{1})\not\in\gamma$ and $F(\partial\Delta)=\gamma$ .
That is, $F^{-1}(c(s_{n}))$ keeps away from the conelike singularity for large $n$ . Hence,
by the completeness of $S$ , $\{F^{-1}(c(s_{n}))\}$ converges to some $\zeta_{1}$ in $D$ , which shows
that $F^{-1}$ can be extended to $c|[0, t_{1}]$ . Thus $T$ is closed, hence $T=[0,1]$ . $\square$

LEMMA 2.7. There is a $\zeta_{0}\in\Delta$ such that $D=\Delta\backslash (\zeta_{0}$ }, and $f$ is meromorphic
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on $\Delta$ .
PROOF. Let $D_{\gamma}$ be the outer part of $\gamma$ in $C$ . From Lemmas 2.5 and 2.6,

$F^{-1}$ is a well-dePned holomorphic function on $D_{\gamma}$ . Since $F^{-1}(D_{\gamma})\subset D\subset\Delta,$ $\infty$ is a
removable singularity of $F^{-1}$ . Set $\zeta_{0}=F^{-1}(\infty)\in\Delta$ . Then it is easy to see that
$D_{\gamma}\cup\{\infty\}$ and $\Delta$ are biholomorphic. Hence, $F$ has a meromorphic extension to $\Delta$

with a pole at $\zeta_{0}$ . Consequently, $D=\Delta\backslash \{\zeta_{0}\}$ , and $f$ is meromorphic on $\Delta$ . $\square$

It follows from Lemmas 2.2, 2.7 and the argument principle that $f$ has a
pole of order 2 at $\zeta_{0}$ . Moreover by the reflection principle, $f$ has a meromorphic
extension to $C\cup t\infty$ } and satisfies $f(\zeta)=\zeta^{-4}\overline{f(1/\overline{\zeta})}$. Hence, $f$ has a zero of order
4 at $\infty$ and poles of order 2 at $\zeta_{0}$ and $1/\zeta_{0}$ . Therefore, $f$ must be of the form;

(2.11) $f(\zeta)=a/(1-\zeta/\zeta_{0})^{2}(\overline{\zeta}_{0}\zeta-1)^{2}$ for some nonzero constant $a$ , if $\zeta_{0}\neq 0$ ; or

(2.12) $f(\zeta)=a\zeta^{-2}$ for some nonzero real constant $a$ , if $\zeta_{0}=0$ .

However, in the case of (2.11), a direct calculation shows $\int_{|\zeta_{}=1}f(\zeta)d\zeta\neq 0$ , which

contradicts (2.9). Hence, $\zeta_{0}=0$ , and $f(\zeta)=a\zeta^{-2},$ $a\in R\backslash \{0\}$ . Then by Proposition
1.1, it is immediately seen that our maximal surface $S$ is just the maximal sur-
face defined by $\sqrt{x^{2}+y^{2}}+a\sinh(z/a)=0$ , which completes the proof of Theorem.
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