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Introduction.

Throughout this paper G always denotes a finite group, and a G-manifold
means a smooth manifold with smooth G-action. Two n-dimensional closed G-
manifolds M and N are G-cobordant, if there exists an (n-+1)-dimensional
compact G-manifold L with dL=M+N, where + denotes the disjoint union.
Such a manifold L is called a G-cobordism between M and N. If L admits a
nonzero G-vector field which is inward normal on M and outward normal on
N, then, following Reinhart [7], M and N are called Reinhart G-cobordant, and
L a Reinhart G-cobordism between M and N. The aim of this paper is to
obtain a necessary and sufficient condition for the existence of a Reinhart G-
cobordism between two given G-cobordant closed G-manifolds.

Given a G-manifold M and a subgroup H of G, M# denotes the H-fixed
point set of M and M=¥ denotes the union of those components of M# on
which H is the minimal isotropy subgroup. If V is a representation of H
containing no direct summand of trivial representation, M ¥:"’ denotes the union
of those components of M=# for which the normal representation is isomorphic
to V. Then we will obtain

THEOREM 0.1. Let M and N be two G-cobordant closed G-manifolds of
dimension n. Suppose that n is even and G is of odd order, or that G is of order
2. Then there exists a Reinhart G-cobordism between them if and only if
XM EY=YNH) for any pair (H, V) of a subgroup H of G and a represen-
tation V of H, where X( ) denotes the Euler characteristic.

In case H is normal in G, and V is invariant under conjugation, a G-vector
bundle E—X over a G-manifold X is of type (H, V) if for any x=X, the
isotropy subgroup G, at x is H, and the fibre E, over x is isomorphic to V
as representations of H. Let E,—X, and E,—X, be G-vector bundles of type
(H, V) over k-dimensional closed G-manifolds X, and X, They are called
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Reinhart G-cobordant, if there exists a G-vector bundle F—Y of type (H, V)
over a (k+1)-dimensional compact G-manifold Y such that (i) Y is a Reinhart
G-cobordism between X, and X,, and (ii) F|X, and F|X, are isomorphic as G-
vector bundles to E, and FE,, respectively.

Given a G-manifold M with M‘#'"> nonempty, let K be the subgroup of G
whose action keeps M ¥-") invariant. We see that HC KCN(H), the normalizer
of H in G, and that K is determined only by (H, V) and independent of M.
So we denote K by Gy, We note that if a (real) representation of an odd
order group contains no direct summand of trivial representation, then it has a
complex structure, and hence it is even dimensional. If G is of odd order and
dim M ¥V’ =1, then H is the only isotropy subgroup on M ‘““-"’, and the normal
bundle y(M H V)MV is a G gy -vector bundle of type (H, V).

THEOREM 0.2. Let M and N be two G-cobordant closed G-manifolds of odd
dimension. Suppose that G is of odd order. Then there exists a Reinhart G-cobor-
dism between them if and only if for any pair (H, V) for which dim(M+N ).V
=1, the normal bundles y(ME V)MV gnd y(NHV)>NHY) qre Reinhart
G u,v)-cobordant as G g, v)-vector bundles of type (H, V). ‘

If G is abelian and of odd order, we will show that the above condition for
the normal bundles always follows. Thus we will obtain

COROLLARY 0.3, Let M and N be two G-cobordant closed G-manifolds of odd

dimension. If G is abelian and of odd order, then there exists a Reinhart G-
cobordism between them.

REMARK. When G is of order 2, Stong already showed
in case either n is even, or n=I1, or M and N have no isolated fixed point.
When G is an abelian group of odd order, there is a study of Heithecker [2]
on oriented Reinhart G-cobordism. There is also a notion of controllable cutting
and pasting (SKK-equivalence) of G-manifolds. This notion is closely related to
Reinhart G-cobordism. See Heithecker and Prevot [4, 5, 6] for this notion
and related results.

This paper will proceed as follows. In §1 we will give a characterization
of Reinhart G-cobordism in terms of the Euler characteristic. In §2 we will
introduce G-surgery and G-connected sum as technical preliminaries. In §3 and
§4 we will show that a G-cobordism satisfying certain conditions may be
altered to a Reinhart G-cobordism by G-surgery and G-connected sum. In §5
we will prove the results mentioned above.
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§1. Vector fields.

PROPOSITION 1.1. Let L be a compact connected manifold with boundary
O0L=M+N, the disjoint union of closed manifolds M and N. Then L admits a
nonzero vector field which is inward normal on M and outward normal on N if
and only if X(L)=X(M)=X(N).

For the proof see “Proof of Theorem (1)” in Reinhart [7]. By the similar
way to Komiya [3] we may generalize this proposition to an equivariant version :

PROPOSITION 1.2. Let L be a compact G-manifold with dL=M+N, the
disjoint union of closed G-manifolds M and N, and G be a finite group. Then
L admits a nonzero G-vector field which is inward normal on M and outward
normal on N if and only if for any pair (H, V) of a subgroup H of G and a
representation V of H, every component A of LV satisfies X(A)=X(ANM)
=X(AF\N ). (Here we make the convention X(@)=0.)

This proposition characterizes a Reinhart G-cobordism in terms of the Euler
characteristic.

§ 2. G-surgéry and G-connected sum.

Let H be a subgroup of G, and V a representation of H containing no direct
summand of trivial representation. Let L be a G-manifold with dim L7 >0,
and dim L#"4+-1=pF,-+k,, where %k, and k, are positive integers. Consider the
G-manifold GX g D(VPR*1) X S(R*2) where R* is the k-dimensional trivial rep-
resentation, and D( ) and S( ) denote the closed unit disc and the unit
sphere, respectively. If there is a smooth G-embedding

¢: GXgDVBR*)XS(R*) —> L,

then we obtain a G-manifold L, from the disjoint union of L—¢(G X zD(VOR*Y)
X S(R*2)) and GXypS(VPR*1)X D(R*2) by gluing the corresponding boundaries
by ¢, where D°( ) denotes the open unit disc. L, is called a G-manifold
obtained from L by G-surgery of type (H, V, ky, k;). We see the following :

(1) Let K be a subgroup of G, and U a representation of K. If K is not
conjugate to a subgroup of H, or if K=H and GL%XVNGL‘®- V=@, then the
above G-surgery does not affect L5V j e, LED=[ KD,

(2) Restricting the G-surgery to the H-fixed point set, we see that L{#"
is obtained from L‘#:¥’ by deleting X(G x.v,/H) copies of D°(R*1)XS(R*?) and
attaching as many copies of S(R*1)x D(R*z). Thus, if dim L‘¥-¥’ is even,

L) =X LHED)+(=1)* 12U vy /[ H) -

3) If LXU is connected and dim VE+4k,=2, then LKV is also connected.
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Next let us introduce the G-connected sum. Let L and M be G-manifolds
of dimension n, and H an isotropy subgroup occurring on both L and M. Let
V be a representation of H containing no direct summand of trivial represen-
tation such that both L* ") and M ‘#:"? are not empty. Then there are smooth
G-embeddings ¢: GXyzpD(VPR*)—-L and ¢: GXxzD(VPR*)—M, where k=
dim LV =dim M ‘#-">, We obtain a G-manifold from the disjoint union of
L—¢(GX gD’ (VDR*?)) and M—(GX g D(VDR*)) by identifying ¢([g, x]) with
¢(Lg, x]) for geG and x=S(VPR*). The G-manifold is called a G-connected
sum of L and M of type (H, V).

Let RP(VEBR**') be the quotient space of S(VE@PR**!) by the antipodal
involution. RP(VER**') inherits a structure of an n-dimensional H-manifold,
and we see that RP(VPR**HYE=RP(R**) if H is of odd order, and that
RP(VPHR*HYHE=RP(V)+RP(R**) if H is of order 2. Let L, be a G-connected
sum of L and GXzRP(VEPHR ') of type (H, V). We then see the following :

(4) If G is of odd order and a pair (X, U) is as in (1), then the above G-
connected sum does not affect LX-D j e, LED=[KD,

(5) Restricting the G-connected sum to the H-fixed point set, we see that
if G is of odd order then L{#'"’ is a (nonequivariant) connected sum of L7
and each of %G y.y,/H) copies of RP(R**'). Thus, further if k=dim LV’

is even,
X(Léy’ V>)=x(L (H’V))_X(G(H, V)/H) .

In case G is of order 2 we may also see the corresponding assertion.

§3. Construction of Reinhart G-cobordisms (1).

In this section G is always of odd order. Given a compact G-manifold L,
denote by I(L) a complete set of representatives of conjugacy classes of isotropy
subgroups on L. For any Hel(L), denote by Ryx(L) the set of representations
of H such that

(i) LY is not empty for any Ve Ry(L),

(ii) if A is a component of L=#, then A is contained in GL‘*'¥’ for some

VeRy(L),

(iii) GL*Y for all VeRy(L) are disjoint from each other.

Let R(L)={(H, V)|[HeI(L), VeRy(L)}.

THEOREM 3.1. Suppose that G is of odd order. Let M and N be two G-
cobordant closed G-manifolds of dimension n. Then there exists a Reinhart G-
cobordism between them if and only if

(1) XMEIYN=YNHEWY for any (H, Ve RIM+N), and

(i) when dimV=n—1, y(M F") and v(N “**") are Reinhart G g, v,-cobordant

as Gy, vy-vector bundles of type (H, V).
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For a proof of the theorem we need two lemmas.

LEMMA 3.2. Suppose that G is of odd order. Let M and N be two G-
cobordant closed G-manifolds of dimension n, and L a G-cobordism between them.
For some (H, V)eR(L) with dimV #n-+1, n, n—1, suppose that

(1) X(MEVY=Y(N H) and

(ii) ALY is a multiple of X Gy vy/H).

Then we may alter L to obtain a G-cobordism L between M and N such that

(@) R(L)=R(L), N

(b) LV §s connected, and X( L V)=Y(M HV)=X(N‘HV) and

(c) given (K, U)eR(L), if K is not conjugate to a subgroup of H, or if

H=K and GLEONGLE =@, then [EVD=[E&ED,

Proor. Let k=dim L“""’, Then k=3 by the assumption. Doing G-
surgery on L of type (H, V, &, 1), we obtain a G-cobordism L, such that

(i) R(LJ)=R(L),

(ii) L{#Y is connected, and

(iii) LEV=L%ED for such (K, Uy R(L) as in (c).

If £ is odd, then 2X(L{HV)=X@L{¥"). Since LHV=MHEV L NHT)
we see X(LEN=X(ME)=UNFHE"), Thus L, is a desired G-cobordism.

If k£ is even, then X(M - 7)=X(N ¥ V)=0, and hence we must make X(L{# ")
zero. From the assumption of the lemma and (2) in §2, X(L{¥") is also a
multiple of UG vy/H), say X(L{EV)=pX(G . v,/H). If p=0, L, is a desired
G-cobordism. Let k+1=Fk,+ k&, where 2, =2 and k,=1 are integers such that
b, is even if »p>0, or %, is odd if p<0. If |p| is even, then the argument in
§ 2 ensures that we obtain a desired G-cobordism by doing |p|/2 times G-
sugeries on L, of type (H, V, ky, k). If |p| is odd, let L, be a G-connected
sum of L, and GXyzRP(VPR**). Then X(L{¥") is an even multiple of
XGa,vy/H), and we obtain a desired G-cobordism by doing G-surgeries on L,
as above. ; Q.E.D.

LEMMA 3.3. Suppose that G is of odd order. Let M and N be two G-
cobordant closed G-manifolds, and L a G-cobordism between them. For some
(H, V)eR(L), suppose that

(i) H is the only isotropy subgroup on L™V and

(ii) v(MEY) and v(NH-V) are Reinhart G g, y,-cobordant as G g vy-vector

bundles of type (H, V).
Then we may alter L to obtain a G-cobordism L between M and N such that

(@) R(D)=R(L),

(b) XA=UANM)=XANN) for any component A of L®V, and

(¢) as (¢c) in Lemma 3.2.
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PrROOF. Let E—X be a Gy, vy-vector bundle of type (H, V) which is a
Reinhart Gz y,-cobordism between y»(M#:7’) and »(N‘Z:¥’). Here we may
assume that X has no component without boundary. Since X admits a nonzero
vector field which is inward normal on M and outward normal on N, then by
[Proposition 1.]| or [Proposition 1.2| we see that X(A)=X(ANM)=X(ANN) for any
component A of X. Let Dy(M“:¥), Dy(N‘#:V’) and DE denote the associated
disc bundles. There are smooth G-embeddings '

©: GX gy DUMIY) —> ML, and
&1 GX gy DVN HP) —> NCL

onto G-invariant tubular neighborhoods of GM*:"? and GN‘¥:V’ in M and N,
respectively. Let L; be a G-manifold obtained from the disjoint union of L and
G Xgy.vyDE by identifying Im¢ with GXgy p(DEIM®P) and Im¢ with
GXeg.py(DEIN¥-P),  Let L, be a G-manifold obtained from the disjoint
union of MXx[0, 1], NX[0, 1] and GXgy,.,,DE by identifying Im¢x {1} with
G X6 py(DEIM ™) and Im¢@x {1} with GXg ., (DE|N®-7)., We then see
that 0L,=M-+N-+Y and Y=0L,. So let L; be a G-manifold obtained from the
disjoint union of L, and L, by identifying 0L, with Y. For L, we see that

(i) R(Ly)=R(L),

(ii) O0Ls=M+N,

Gii) LEV=X+Z, where Z is a closed manifold, and

(iv) LEU=[LED for such (K, U)e R(L) as in (c).
Indeed Z is diffeomorphic to a manifold obtained from the disjoint union of
LEY and X by identifying oL‘#" with 0X. From the assumption of the
lemma H is the only isotropy subgroup on Z. Thus GZ is a G-invariant
submanifold of L,. Let T be a G-invariant open tubular neighborhood of GZ
in Ly, and let L,=L,—T. Then 0L, =M+N+S, where S is a sphere bundle
over GZ. Let L; bea G-manifold obtained by sewing L, along S by antipodal
involution on every fibre. This sewing yields no new fixed point since G is of
odd order, and we see L{¥-V’=X. L, is a desired G-cobordism. Q.E.D.

We are now in a position to prove

PrROOF OF THEOREM 3.1. Let L be a G-cobordism between closed G-mani-
folds M and N of dimension n. First suppose that L is Reinhart. Then (i)
holds from [Proposition 1.2 When dimV=n—1, i.e., dim L*¥ " =2 all the
isotropy subgroups on L‘?:¥) are H, since G is of odd order and L has no
isolated fixed point. Thus y(L‘#:-V) gives a Reinhart Gz, y,-cobordism between
y(MEY) and y(NH-P), Hence (ii) holds.

Conversely, suppose that (i) and (ii) hold. We alter L to a Reinhart G-
cobordism. This is done separately in the cases in which » is even or odd.
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[I] The case when n is even. Since G is of odd order, dim L‘¥-"’ js odd
for any (H, V)eR(L). For (H, V) with dim L*¥-"’=1 we do G-surgery on L
of type (H, V, 1, 1) to obtain a G-cobordism L, such that any component A of
L{#V) js either a circle or a curve joining points of M and N, and hence
XA)=UANM)=X(ANN). For (H, V) with k=dim L{#V’=3 we do G-surgery
on L, of type (H,V, k,1) to obtain a G-cobordism L, such that LV is
connected and that if dim L{¥ D=1 then L&V =L{&.V Since 2X(L{E")
=X(@L{¥ V) and OL{H V) =MHEV 4 NHEV Y ([HIN=Y(ME-V)=Y(NHV), Thus
[Proposition 1.2 implies that L, is Reinhart.

[II] The case when n is odd. In this case dim L‘Z:" is even for any
(H, V)eR(L). If dim L*¥-"’=0, we cut off from L an open disc about each
point of L‘?:¥ and sew L by antipodal involution along each sphere resulting
as boundary. By this way we may remove all the isolated fixed points from L,
and obtain a G-cobordism L, such that dim L{¥-¥’=2 for any (H, V)€ R(L,).
For any component A of L{#V, ANM and ANN have Euler characteristic
zero since they are odd dimensional and closed. Thus we must make the Euler
characteristic of A zero. Let

R(Lo)={(Hy, V1), (Hs, V), -+, (Ha, Va)}

be ordered in such a way that if H; is conjugate to a subgroup of H; then
7=<i. In virtue of [Lemma 3.2 and Lemma 3.3 we may inductively alter L, to
obtain G-cobordisms L; (1=:/<a) such that

(i) R(L)=R(Ly),

(ii) X(A)=0 for any component A of L{¥iV?, 1<7<i, and

(i) L{#»VP=L,HrV for any j with 1<5<:.

Then L. is a desired Reinhart G-cobordism.

The induction step proceeds as follows. Suppose that we have obtained
L;.,. Consider L;##¥? as a G, v,y-manifold. Then H; is a principal iso-
tropy subgroup on it. For any subgroup K with H;<K<Gw, v,y We see
(L HeV9)%)=0, This implies that X(L;%&"?) is a multiple of X(G(x,.v,/Hi).
Thus, if dim L,%#V?>4, i.e.,, dimV;#n+1, n, n—1, then L, is obtained by
and if dim L;%+"9=2 1i.e.,, dimV;=n—1, then L; is obtained by
Lemma 3.3 Q.E.D.

§4. Construction of Reinhart G-cobordisms (2).

In this section we consider the case when G is of order 2, In this case a
representation V of G containing no direct summand of trivial representation
is determined by its dimension. So, for a G-manifold M we denote M‘¥’ by
M@ ® where k=dimV.
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PROPOSITION 4.1. Let M and N be two G-cobordant closed G-manifolds of
dimension n. Suppose that G is of order 2 and that n is odd and greater than 1.
Then there exists a Reinhart G-cobordism between M and N, if and only if
MG EY=Y(NC:®) for any kb (0<k<n).

This proposition will be proved by a similar way to the proof of
3.1. The following two lemmas are needed.

LEMMA 4.2. Let M and N be two G-cobordant closed G-manifolds of dimen-
sion n, and L a G-cobordism between them. Suppose that G is of order 2 and
that n is odd. For some integer k (0<k=<n—2), suppose that X(MC ®P)=Y(N©C ®),
Then L is altered to a G-cobordism L such that

@ L@» is connected, and A(LC»)=A(M©C P)=ANC »), and

(b) for any m+k, Lem=[6miL A where A is a closed manifold with

X(A)=0, in fact, A is the empty set or an odd dimensiona! real projective
space.

PROOF. Similar to the proof of except the point that
RPVPR" *¥+2¢=RP(V)+RP(R" **?) gsince G is of order 2. If dimL©“#®
=n—*k+1 is even and X(L ®) is odd, one needs to do connected sum of L
and RP(VER™ *+1), This yields the new component RP(V) of the fixed point
set. RP(V) is odd dimensional, since n is odd. Q.E.D.

LEMMA 4.3. Let M and N be two G-cobordant closed G-manifolds of dimen-
sion n=3, and G be of order 2. Any G-cobordism L between M and N is altered
to a G-cobordism L such that

(@) each component of LG =Y pas Fuler characteristic zero, and

(b) LCEmx[©m except for m=1, n—1.

Proor. By Stong [8; Theorem 3.1 and Corollary] we see that two normal
bundles y(M© *-1) and y(N‘® V) are Reinhart G-cobordant. Thus the proof
proceeds as the proof of except that new fixed point set arises when
one sews L, along S by antipodal involution. This new fixed point set is of
dimension 7, and does not affect L©.m-b gince n=3. Q.E.D.

PROOF OF PROPOSITION 4.1. The “only if” part is easy from [Proposition 1.2
To prove the “if” part, let L be a G-cobordism between M and N. As in
the proof of [Theorem 3.1, we may remove the isolated fixed points from L and
alter L™ to a disjoint union of circles and curves joining points of M and N.
Then we obtain a G-cobordism L, such that

() WA=UANM)=XANN)

for any component A of L{®*® with k=n+1, n. Applying to L,,
we obtain L, such that the equation (*) holds for any component A of L{&#®
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with k=n+1, n, n—1. Applying also repeatedly to L, we obtain
L; such that the equation (x) holds for any component A of L. By G-surgery
of type ({1}, {0}, n+1, 1) we make L,=L§"® connected, where {1} is the
identity subgroup of G and {0} is the O-dimensional representation. We want
to make the Euler characteristic of L, vanish, since XL ,NM)=XL,NN)=0.
Since 0=XL .NM)=XULSNM) mod2, X(L$)=X(LSN\M) is even. Also since
X(L)=XLY mod2, X(L,) is even. Thus, as in the proof of we
may make the Euler characteristic of L, vanish, and the resulting manifold
is a Reinhart G-cobordism between M and N. Q.E.D.

§5. Proofs of Theorem 0.1, Theorem 0.2, and Corollary 0.3.

Let M and N be two G-cobordant closed G-manifolds of dimension n. If a
representation of an odd order group does not contain a direct summand of
trivial representation, it is even dimensional. Thus, if »n is even, (ii) of
is vacuously valid. So, if n is even and G is of odd order,
follows from [Theorem 3.1. If G is of order 2, follows
from [Proposition 4.1 and Stong [8; Theorem 4.4].

If n is odd, then for any (H, V)eR(M-+N), M¥#" and N*Y are odd
dimensional and closed. Thus the Euler characteristics of them are zero, and
hence (i) of holds. So [Theorem 0.2 also follows from [Theorem 3.1

follows from and the following lemma :

LEMMA 5.1. Let G be an abelian group of odd order, and E—X a G-vector
bundle of type (H, V) over a closed G-manifold X of dimension 1. Then E—X
1S Reinhart G-cobordant to zero as a G-vector bundle of type (H, V).

For a proof of the lemma we first give some remarks. Let G be an
abelian group of odd order, V' a representation of a subgroup H of G containing
no direct summand of trivial representation. Since H is of odd order, V has a
structure of a complex representation. Since G is abelian, the H-action on V
extends to a G-action on V. So we may consider V as a complex representation
of G. Let E—X be a G-vector bundle of type (H, V). From the above remark
we may consider E—X as a complex G-vector bundle. From now on we fix
complex structures of V and E—X. Let {V;|j=J(H)} be a complete set of
nontrivial, nonisomorphic complex irreducible representations of H, and let
V=@jesarV}. The H-equivariant complex linear homomorphisms from V; to
every fibre of E form a complex n;,-dimensional G-vector bundle Hom#(V;, E)
over X. Let XXV, be a complex G-vector bundle (with diagonal G-action)
over X. We obtain a canonical homomorphism

¢, (XxV)®RHom#(V,, E) —> E
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such that
Djcrand; + Djeran((X X V)QcHom#(V,, E)) — E

is an isomorphism of complex G-vector bundles. Since H acts trivially on
Hom#(V,, E), we obtain a complex vector bundle Hom¥#(V,, E)/G over X/G.
If X is 1l-dimensional and closed, then so is X/G, and Hom#(V;, E)/G is iso-
morphic to a product bundle X/GXCm" since BU(n;) is l-connected. Thus
Hom#(V;, E) is isomorphic to XXC", and we see that E is isomorphic to a
product bundle XXV.

ProOF OF LEMMA 5.1. X admits a free G/H-action. Let f: X/G—B(G/H)
be a classifying map for its G/H-action. X/G is a disjoint union of circles:
X/G=Cy+Cy+ --- +C,. Denote by f; the restriction of f to each C;. Since
the fundamental group =,(B(G/H))=G/H is of odd order, then there is [g;]
en,(B(G/H)) such that 2[g;1=[f:] in n,(B(G/H)). Let M; be a Mdobius band
with oM;=C; and the axis D;=circle. Since 2[g;]=[f;], there is a map
F;: M;—B(G/H) such that F;|C;=f; and F;|D;,=g,. Pulling back a universal
G/H-space by the map F,+ - +F,: M+ --- +M,—B(G/H), we obtain a 2-
dimensional compact G-manifold Y such that (1) 0Y=X, (2) H is the only
isotropy subgroup on Y, (3) Y admits a nonzero G-vector field pointing inward
on dY =X (since M; admits a nonzero vector field pointing inward on dM;=C,).
Then Y XV is a Reinhart G-cobordism between FE and zero, since E is iso-
morphic to XX V. Q.E.D.

References

[1] J. Heithecker, Aquivariantes kontrolliertes Schneiden und Kleben, Math. Ann.,
217 (1975), 17-28.

[2] J. Heithecker, Aquivarianter Bordismus mit Vektorfeld, Math. Ann., 234 (1978),
1-8.

[3] K. Komiya, A necessary and sufficient condition for the existence of non-singular
G-vector fields on G-manifolds, Osaka J. Math., 13 (1976), 537-546.

[4] K. Prevot, Modifications of controllable cutting and pasting, Houston J. Math., 6
(1980), 565-575.

[5] K. Prevot, Cutting and pasting Zp,-manifolds, Canad. Math. Bull., 25 (1982), 13-
28.

[6] K. Prevot, Cutting and pasting involutions, Rocky Mountain J. Math., 12 (1982),
233-240.

[7] B.L.Reinhart, Cobordism and the Euler number, Topology, 2 (1963), 173-177.

[8] R.E.Stong, Tangential cobordism, Math. Ann., 216 (1975), 181-196.

Katsuhiro Komiva

Department of Mathematics
Yamaguchi University
Yamaguchi 753

Japan



	Introduction.
	THEOREM 0.1. ...
	THEOREM 0.2. ...

	\S 1. Vector fields.
	\S 2. G-surgery and G-connected ...
	\S 3. Construction of ...
	THEOREM 3.1. ...

	\S 4. Construction of ...
	\S 5. Proofs of Theorem ...
	References

