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§1. Introduction.

Linear prediction problems of weakly stationary processes are well studied
when the processes have second moments [2], [4]. For strictly stationary
processes with first moments, Urbanik introduces a class which “admits a pre-
diction” and proves parallel results [9]. In this paper we consider a class of
processes which have infinite first moments. Process which admits a prediction
is the stationary case of the linear processes that P.Lévy introduced as an
extension of the class of Gaussian processes by imposing the linear regression
property only on regression on the past [5]. Here we study the case where
process X, has a symmetric a-stable, 0<a<1, distribution. This is also an
example of the class of infinitely divisible processes of Maruyama [6] We
prove that when it is completely non-deterministic it has a canonical repre-
sentation

X, = _re—umaw

where M(du) is a stochastic measure such that {M(du), ©<t} has the same in-
formation as {X,; u=<t}. We call M(du) innovations of the process X,. Precise
meanings are explained in the following sections.

One of difficulties in our case lies on how to take innovations out of the
process. Urbanik uses theories of Banach spaces such as theories of Bochner
integral and linear functionals. The linear space spanned by an SaS process,
0<a<l, is only a Fréchet space. We overcome this difficulty under some
additional conditions. In §3, we define a Riemann type integral of functions
with values in this Fréchet space and give a sufficient condition for integrability.
In §4 we give several lemmas. Although they are similar to Urbanik’s lemmas,
technique to prove them is quite different from the Banach space case and more
complicated. We use the integral of § 3 to take innovations out of the processes.
Theorems are stated in §5. Depending on our sufficient condition for integrability,
we get results only in the case 1/2<a<1. If we can improve our condition of
integrability, we may extend the results to the case a«<1/2. This is left for
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further research.

When a=1, our process has a symmetric Cauchy distribution. Still it has
no finite first moment, but the linear space spanned by it is a Banach space.
Then we can use Urbanik’s techniques and get the same results. Of course we
can include the case a=1 in our scheme.

In this paper the words “linear process” are used as a synonym of “process
which admits a prediction”. Problem to determine or characterize the class of
linear processes is still left for further study. But we note that in the case of
SaS processes, 0<a<2, unlike Gaussian case, the class of harmonizable proc-
esses (that is, Fourier transforms of stable random measures) and the class of
linear processes are mutually disjoint, [1], [11]. When processes have second
moments, some investigations of linear processes are made by Hida and}lkeda
[3] including a sufficient condition for N-ple Markov processes to be linear.

The process in the example stated in Remarks of §5 has a simple Markov type
kernel.

§2. Preliminaries.

1. Let 0<a=2. A stochastic process {X;} (—oo<t<c0) is called a sym-
metric a-stable (SaS) process if every finite linear combination YV=3,c;X,,
has an SaS distribution with a characteristic function

2.1) Eexp(GuY) =exp(—ay|ul|®),

where ay IS a nonnegative constant depending on Y. Hereafter we consider
the case 0<a<1 and define ||Y||=ay whenever Y has a characteristic function
(2.1). It is easily seen that for such linear combinations X and Y (i) | X}}=0
if and only if X=0 a.s., (i) |X+Y|[Z[ X[+ Y|, dii) [[eX]=]a]®*|X]| for real
a and moreover (iv) | X+Y|=|X||+ Y] if X and Y are mutually independent
(see [8]). So, this induces a metric and the convergence defined by this metric
is equivalent to the convergence in probability. The space of all such linear
combinations and their limits in probability is denoted by [X,]. Every element
Xe[X,] has an SaS distribution and thus the definition of || X]| is extended to
1X.]. The space [X,] is a Fréchet space with the quasi-norm |X|.

2. Let F(u) be a process with independent increments which is continuous
in probability such that, for u,>u,, F(u,)—F(u,) has an SaS distribution. We

can define stochastic integrals So_o f(u)dF(u) as usual by convergence in prob-
ability. The set of all F-integrable functions is denoted by L(F). It is known

that L(F) is equal to Le(d|F(w))). So_o fw)dF(u) is an SaS random variable
and



Linear prediction problem 35

22) I\ raoara| = S:If(u)l“dl!F(u?'H .

It is known that, for f(u), glu)e L*(d||F(u)|), the integrals S:f(u)dF(u) and

Sc_o g(uw)dF(u) are independent if and only if f(u)g(u)=0 a.e. with respect to

d||F(u)|. Let [F]denote the closed linear space spanned by {F(u,)—F(u,) ; 1> u,}.
For every element x<[F], there exists a function f<L(F) such that x=

[ ravdra. Refer to [81, [10]

3. We quote some definitions and properties from Urbanik [9]. We use
convergence in probability instead of mean convergence.

Let {X,} be a strictly stationary process and be continuous in probability.
Let [X,;t<a] be the closed linear subspace of [X,] spanned by {X,;{=a}.
We identify two elements in [X;] which equal a.s.

We say that {X,} is linear or admits a prediction if there is a continuous
linear operator A, from [X,] onto [X;; :{=<0] such that

(i) for every Xe[X,; t=0], A X=X,

(ii) if X is independent of Y for every Y[ X,; t<0], then A4,X=0,

(iii) for every Xe[X,], X—A,X is independent of every Y[ X,; t=0].
Let {T,} be a group of shift operators of {X,}, that is, T, X,=X,,,. We define
A,=T.AT_-.. The operator A, is from [X,] onto [X,;t=<a] and satisfies the
same three properties as above with [X,; {<0] replaced by [X;; t=<a]. For
any semi-closed interval I=(a, b], we define AI)=A,—A,. The following facts
are easily proved:

(2.3) if iNL.#@, then A(J)A(J)=A(JiN]s),

(2.4) if Y, Y, -, Y,e[X,] and I, I,, ---, I, are disjoint intervals,
then A(I,))Y,, AU,)Y,, .-, A(U,)Y , are independent,

(2.5) for every Xe[X,], there exists a limit tlim A, X in probability.

We write this limit in (2.5) as A-.X. When 4,X=X holds for every X<[X,],
we call {X,} deterministic. If lim,.-«A,X=0 for every X<=[X,], then we call
{X;} completely non-deterministic. A strictly stationary linear process {X,} is
decomposed into two independent stationary linear processes, one of which is
deterministic and the other is completely non-deterministic.

§3. Riemann type integral.

The author introduced Riemann type integral of functions with values in a
Fréchet space F with a quasi-norm such that for every y=F and real number
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¢, leyl=lcl?|yl. We quote definitions and theorems from [7]. Proofs are

given in [7].

Let v, be a function of tel=[aqa, b] with values in F.

DEFINITION 3.1. Let 7, d,, K be positive numbers. We say that y, satisfies
Condition C,(9,, K) if |y,—ys;I|ISK|t—s|” whenever £, sel and |{—s|=0,.

Let {I;, 1=:/=n} be a partition of I such that a=a,<a,<---<a,=b, I,=
{a;-y, a;). A pair of {I;} and {t;}, t;=I;, is denoted by S=({I;}, {t;}). The
length of I; is denoted by |I;].

DEFINITION 3.2. We say that y, is Riemann type integrable over I if there
is an element 4 in F with the following property: For each ¢>0, there is 6 >0
such that

izzl'[”y‘f‘g“ <e

whenever S=({[;}, {¢;}) satisfies maxX,<;<.|l;| <8. We call 4 the Riemann type
integral of y, over [ and write

g = S ytdt .
’ I
We have the following theorems.

THEOREM 3.1. If y. satisfies Condition C,(d,, K) for some &,, K and y such
that 1zy>1—a, then y,; is Riemann type integrable over L.

THEOREM 3.2. Under the same conditions as Theorem 3.1, we have the in-
equality

(3.1 |yt = d=c111msuply 4+ Mo TR A,

where p=a-+y—1, A.=27"%/2°—1)+2" and M is any integer bigger than
2111/0,.

COROLLARY 3.3. If |I| is smaller than 08,/2, then

3.2) |, | = 111%sup 3.+ 1 117K AL,

§4. Lemmas.

Let {X,, —co<t<oo} be a completely non-deterministic linear SaS process,
0<a<l. We assume that {X,} satisfies Condition C,(d,, K) for some y>1—a,
9,>0 and K>0.
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LEMMA 4.1. Let ye A, X,] for some a. If y,=T.,y satisfies Condition
C,(0o, C), then
4.1) ITey—AT, | = Clt|
whenever t=0,.
Proor. Since T,y— AT,y is independent of A.(T,y—y), we have
ITey—=AaTey |+ Ac(Ty—I = 1T y—Toyll = Clt|7

whenever |{|<d,. Hence we have for |t]<d,. The left hand side of
is zero when t<0. Note that is the same as

4.1y ly—Ae-cyll = Cl2|7.

LEMMA 4.2. Let ye AJX,] for some a. If T,y satisfies Condition C,(d,, C),
then for any b, ¢ such that |b—c| =0,

4.2) I(A— Ayl = 4C1b—c]7 .

Proor. We may assume b>c. Let b—c=t and T..y=y’. Since |T.x|=
lx] for any x, we have [(Ay—Ady|=[(A;—A)y'll. Since [[(Ty—Ty)y'll=
I(Tw—Twyll, T:y’ also satisfies Condition C,(d,, C). So, without loss of generality,

we may consider [[(A;—A,)y| instead of ||[(A,—A.)y]l. Assume that there exists
0 which satisfies 0<d<4, and

4.3) [(As—Ao)y | > 4CoT.

We will show that this leads to a contradiction.
Let [a/0]=Fk, where [a/d] denotes the largest integer that does not exceed
a/o. Let
u; = (Aasns— Ai)Tey 1=0, -, k—1,

u; = (Aarns—Aw)y, =0, -, k-1,
Vi = U;—uj.
From Condition C,(d,, C) we have
I(Ars— AN Tsy =) = | Tsy—yll = Co".
On the other hand
[(Ars—A)T sy — ) = I(Ars— Ack-0oXToy— )l
+ o HI(As— AN T 5y — )|l
= ve-all+lve-el 4 - 4wl
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Let C;=|v;||/6", then we have
(4.4) Ci+Cot - +Cp-, = C.
Since [|luil—llu:l | = vl =C.d",
(4.5) lusll—Cid" < [uill < [lus|+Cio7.
From stationariness we have |u}|=|us+||. Thus,

luil 2 fudl—Cd" = flugl|—C.0",

2] = llual —Cod" = [luil —Cy0"

Z [luol| —(Ci+C2)d",

and finally

(4.6) luk-1ll = lluoll—(Cit -+ +Ci-1)0" .

Since uj=(A;— A,y by the definition, we have, by [4.3) and [4.4),
4.7 [ue-1ll > 4CO"—(Cy+ -+ +Cy-1)0" = 3Co7 .

Now [[(Ae— ATyl +1(Aw+ns— A Toy | =luel=|us-1| and, from Lemma 4.1,
we get

(408) “Tay—A(kﬂ)aTdJ’n+”A(k+1)5T¢SJ’—AaT5y“ = ”Tay—-AaTay H __<__ Co'.

Hence

4.9) [(Ae—=Aa)Tsyll > 3CO"—=[[(Acx+ns—A)Tspll 2 2Co7 .

We know

(4.10) [(Ae—Ars)y —(Aa—Ara) Toy || = [(Ae— Ara)Tsy—y)l = Co7.
On the other hand, we have, by and [(4.9),

(4.11) [(Aa—Ar)y —(Aa—Ara) Ty || 2 [(Aa—Ara) Toy | —lIly— Arsyll

> 2C6"—Co" = Cor .
This is a contradiction. Thus is proved.

COROLLARY 4.3. Let yc A X for some a. If T,y satisfies Condition
C;(0,, C), then for J=(b, c¢] such that b<c=a, T,A(])y satisfies Condition
C,(0, 9C).

PrROOF. Let 0<t<d, If t<c—b, then

1T ANy =AY = (Aces—Aps )T 1y —(Ac—Ap) |l
= [(Ac+:— AT Y|+ 1(Ac—Aps e (T sy — )|+ 11(Apse— Aoyl



Linear prediction problem 39

By the first and the third terms are less than 4C|¢|7. The second
term is bounded by ||T,y—y|, which is less than C|t|” from the assumption.

Hence
T A()y—A()yll <9Ct.

In case t=|c—b|, we have
1T ADy—ADy | = 1T AN II+HTAN ] = 8Clt|7
applying for both terms.

LEMMA 4.4. Let 6,>0, K,>0, 1=2y>1—a and g(t) be a continuous function
such that g(0)#0 and | g(t)—g(s)|*<K,|t—s|" whenever |t—s|=0,. For positive
a and K,, let y be an element of A(0, al[X.,], such that {T.y} satisfies Condition
C/(0s, Kp). Let .L be a closed linear subspace of [X.]. If

(4.12) A" 0T ADydt e £
for every pair of intervals I, | in (0, al, then y itself is an element of .L.

If we take .£L={0}, we have

COROLLARY 4.5. Let g(t) and y be as above. If

AD|” g®TA)ydt =0

for every pair of intervals I, JC(0, a], then y=0.

(We note that in case a=1/2, the function g(¢) in the lemma is automatically
constant.)

Proor oF LEMMA 4.4. 1) First we have to check that the integral in the

lemma is well-defined. Let Y(#)=T,A(J)y. By [Corollary 4.3 Y () satisfies Con-
dition C,(d,, 9K;). Hence

lg@®Y ©)—g()Y ()]l = I(g®)—g(sNY )+ g(s)Y B)—=Y (s)]
= 1g®O—g@ 1Y Oll+ g “IY @)=Y ()l
= Kilt—=s[TAWNy I+ 18(s)| 9K |t—s|" = K, |t—s]7,

where K,=K |A(J)y|+9K,;SuUDPscr-a, 01/ 8(s)|%. Now we obtain that g@®)Y(t)
satisfies Condition C,(d,, K;). So, it is Riemann type integrable over any finite
interval by virtue of [Theorem 3.1.

2) We will show that

(4.13) A, ajg'_‘hga)TtA(o, alydt e £
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for every h satisfying 0<h<a. Partition the interval (0, a] into n subintervals
13, 1%, ---, I? of equal length a/n, where n is taken to be so large that a/n is
smaller than f, and a—h. For brevity we write [;=I?. Write I;=(a;, b;] and
define J;=(a;—h, b;+-h]N(0, a]. From the assumption we have

A, al|” g®T AW, alpdt s £.
We write it as the sum of n independent terms:
4.14) A0, a]S g)T. A, alydt = ZA(IJ)S gt)T A, alydt.
Each term is further written as the sum of two terms as follows:
(4.15) A(I,)S T AQ, alydt = A(I,)S gOT A ydt
+AU gOT. AW, alNydt.

Again by the assumption these two terms are elements of .£. We decompose
each term as follows:

@.16) Al )S gOT A ydt = AUJ)S 2T A(J,)ydt

+A(I;)S gOT A ydt

r<llitls(a/n)+h

+A<Ij>§ 2T A ydt .

(a/n)+r<litisa

We denote the terms in the right hand side by (i), (ii) and (iii) in this order.
@.17) A" g0T.A, alnpydt
= A" T, A0, a1yt
AL gOTAQ, aINydt

Denote the first and the second terms in the right hand side by (iv) and (v),
respectively. We have

j_Zf)l((i)Jr(iv)) = z”) A(Ij)gh gOT AQ, alydt
=40, a1 gT.A0, alydt.

From the definition of I; and J;, it is easily seen that A(I;)T,A(J;)y=0 for
[t]| >(a/n)+h. So, (iii)=0. Also AT, A0, a]\J;)=0 for |¢|<h. Thus (iv)=0.
Then we see (v)e.L. These considerations show that
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h n
AW, 1| g®T.AQ, alydt = Y,— 3 4| gOT AJydt
-h j=1 RItISII ji+h

where Y, is some element of .£. We will show that

4.18) Jz";l A(Ij)g g)T A(J)ydt —> 0  as n—oo,

h<|tl§\ljl+h.

from which follows. We have

5 4u) gOT AUyt =

[ 3 AU )gOT AUyt

rZItIS(a/n)+h r<itis(a/n)+h  j=1

From 1), the integrand A(J,)gt)T A(J;)y satisfies Condition C,(d,, K5) where
Ks = K AUyl + sup 18(s)[*9K, = K¥

where

(4.19) K = K, AQ, alyll+ _sup 18(s)|"9K,.

Therefore 27, AU)gt)T,A(J,)y satisfies Condition C,(d,, nK¥). Using the esti-
mation formula [3.2) of an integral over a small interval, we have

S 3 AU gt T A(J,)ydt

a<itisa/n+h  j=1

< 2{(a/n)*sup|g®AQ, alT y[|+a*"n*~“*PK{A,,}.
terl

This tends to 0 as n—oo. This shows [4.18).

3) Let
s = 5" (A0, A1gWT.AO, aly—g®AQ, aly)dt.
Since ye A0, a]J[X.], A0, a]ly=y. Hence |
1
ah) = 5" {A©, algOTy—gO)y}dt

If we show 4(h)—0 as h—0, we obtain that g(0)y is an element of £ as the limit
of %E—ShhA(O, alg)T,ydt in L. Let 0<h=d,/2. Going back to the definition
of the integral, partition [—#A, A] into 2n subintervals of equal length and let

1 2h 2n
(4.20) Y= on o 1_221 LAQ©, algt)T:,y—g0)y]

where ¢; is taken from the i-th subinterval. Our J(h) is the limit of Y2 as
n—oco. Let M be such that 2h/M<d,/2. If n and m are bigger than M, then,
from
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(4.20) IYE=¥hI = () Y 12515700 21200720 7-11) 3.2
< (Qh)YM-@*r-Dx const

= |0,|TM-@*7-1 X const

where K} is given by [4.19). This shows that the convergence of Y2 to J(h)
is uniform in A. We have

2n

@.22)  |Yil = @n)

{(g(t)—g(O) AW, alT.3—gO)A®, a1T:,y—)}

i=1

[

n

= 2n) 2 {18t)—gO1*1yI+18O)*I AQ, ¢T3}

< @n)* S K611+ 20) Kl 1:17]
= @) TKlylI+180) K1 3 [l

Since each t; is a point in I;, we have

(4.23) B 1817 < 20(h/ny+@h /Y + - +(h/n)].

Hence
1Y = @n)~*(Killy ]|+ 18(0) | “K2)2(h/n) [1+24 -+ +n]
= 27 (K|l y |+ 1g0) [ “K) AT (n+n®)/ne*7.
Therefore, |Y2|| tends to zero as A—0 for fixed n. Given ¢>0, choose n, such

that [|J(h)—Y7 |<e/2 for all small A>0. Then choose 4, such that [[Y7 [<e/2
whenever h=<h,. Now, for any h<h,,

(4.24)

[ S 1IR)=Y 51 +1Y 7l <e.
This completes the proof of the lemma.

Let xe[X,]. If {T.x} satisfies Condition C,(d,, K) for some J, and K, we
say that x belongs to (C,).

LEMMA 4.6. Assume a>1/2. For any x<(C,),
Swe“Ttxdt

1s well-defined for any number a.

PROOF. Suppose {T.x} satisfies Condition C,(0,, K). We may assume §,<1.
Fix t,. For t and s such that ¢, s=¢, and |t—s|<d,, we have

le"t—e?|* = e 1% (1—8p) " [t—s|*
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by an easy calculation. Since T,x satisfies Condition C,(do, K), y:=e"'Tx,
t=t,, satisfies Condition C; (0, K;,), where K, =e "1*(1—0,)"*|x|+e *** and

N
Y’=min(y, ). Hence we see that g e 'T,xdt is well-defined for finite ¢ and N.

a

Now we show that we can define Swe“Ttxdt. Using [3.1), for M>2/d,, 0<s=1
and any n, we see that

n+s
(4.25) 1§57 9ude]| = Mr=e _sup Iyl M-0K, Ay = e

te[n, n+s]

where A=M"*|x|+M-°?A,,((1—-0,)"*||x]|+1). Note that A does not depend on
n nor s. For any N, and N,>N,, we write N,=N,+£k-+s (k is an integer and
0<s<1). Then

azo [y s [f a0 s ]

§_ (e N1a+e—(N1+1)a+ +e—(N1+k)a)A

< e M2 A(l—e ) !

N
Therefore, for any &>0, there exists N, such that for N,>N,>N,, ]&vzytdt”

1
<e. This shows that S y.dt has a limit as N—oco. We define S e 'T,xdt as
this limit.

With all above preparations, now we get for our processes the results which
are parallel to Urbanik’s ([9], Theorems 4.1 and 4.2).

From now on let R, be the family of all bounded intervals of the form

(a, b], R4 be the ring of all finite unions of elements of R, and R be the
family of all bounded Borel subsets of the real line.

LEMMA 4.7. Assume a>1/2. Suppose that the process {X,} is nontrivial.
(i) The stochastic interval function M,, defined on R, by the formula

(4.27) My(a, b]) = Aa, b]Sje“Tchdt

can be extended to an [ X,]-valued measure on R. (ii) The class of Mynull sets
coincides with the class of Lebesgue null sets. (iii) Moreover, for any interval
I R, the equation

(4.28) [(Mo(J) 5 J€ Ro, JCIT = AUDLX,]

holds and for E€ R, fe L(M,)

(4.29) A(l)SEﬂu)Mo(du) - SEnlf(u)Mo(du) .
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Proor. The stochastic interval function M, is well-defined by Lemma 4.6.
Then, as we see in the following, (i), (ii) and {4.29) are proved in the same

way as in [9].
Since
(4.30) Ate, 5| e Xudt = 0
for any ¢=<a, we can also write
(4.31) My(a, b] = Ata, 61| e~ T. Xoat

for any ¢=<a. This shows that, for disjoint intervals J,, [, R, with J,\U/J,€ R,,
we have

(4-32) Mo(f1U]2> = Mo(]x)+M0(f2> .

Moreover, if I, I,, ---, I, are disjoint intervals in R,, then M,(,), -+, MyI,)
are independent. Since A, is a continuous mapping onto [ X;; 7=a] and A(a, b]
=A,— A, limepeMo(a, c]=Mya, b]. Then stochastic interval function M, on
R, is extended to the ring R4 if we define M\l ;)=27:1M,(;) for disjoint
intervals I,, ---, I, in R,. When I, I,, --- € R4 are disjoint and \Ji,[;E Ry,

< oo,

=[G = [ G 19

This shows that >332, M,(I;) converges in probability and >3, M, ;)=M,(\ 71l ;).
Hence M, is countably additive on R,. When I,, I,, - € R4 are disjoint and
2 I;= R, there is an interval I, R, such that \ U3, [;C1,. Then |27, M|
SIM,(ll. So, we know that >3.,M(I;) converges and M, can be extended
uniquely to a stochastic measure on R.
Since, for intervals I and J in R,,

S IMID] =

> M)

(4.33) ADM(]) = MIN]), T M) = e My(I+1),
we have from the uniqueness of the extension
(4.34) ADM(E) = MINE), T M(E)=e'M(E+t)
for Ie ®,, E€ R. From (3.31)

[Mo(E)| = IIT:My(E)| = e** || Mo(E+1)]| .

Hence M,(E)=0 implies My(E-+t)=0. That means that the class of all |M,]-
null sets is translation invariant. So, it coincides with the class of Lebesgue
null sets. When f(u) is a simple function, the first equation of is equal to
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(4.35) AN M) = | faMidu).

For general f(u), we can find a sequence of simple functions f,(u) that con-
verges to f(u) in L%(d|M,|), where d|M,(u)| is the measure such that
[l d1Mo1=1Mi(a, bI1. Thus [@29] is proved.

Now we prove [4.28). Let

(4.36) Lo=1{x: 2e(C), Ale, b]re“tTtxdte[MO]}.
Here [M,] denotes the closed linear space spanned by M), I R,. Then .L,
is a subspace of [X;]. For h=0, we have

(4.37) Ala, b]gme“TtThX.)dt — ¢ A(a, b]Serhe‘”Tthdt
= e"M(a, b] € [M,].

So, for every h=0, T,X,&.L,. Then every x&[X,;t=<0]N(C,) belongs to .L,.
It is clear that for any /€ R,,

M) 5 JE R, JTIE R T AUDLXL].

We show the converse. Without loss of generality we prove in the case I=
(0, a]. For any y=(C,)NA(0, a][X,], with I, Je R, and contained in (0, a], let

(4.38) Z(, J) = e AD\ e T T o A()ydt

Because of T_A(Nyel[X:;t=0IN(C,), T-A(J)y belongs to .L,. That means
Z(I, he[M,]. Since A, ¢1T;A(J)=0 for t=a,

2, J) = A e Tu o Ayl

=AD" T A(Dyds

e [MyU) : UeR, and UC(0, a]].
By Lemma 4.4, we know ye[M,U):Ue R,, UC(0, a]], that is,
(4.39) [Mo()) 5 J€ R, JC(O, a1l D A, al[X,INC,) .

By and Lemma 4.2, for any number b and an interval J<(0, a],
A(NX»=(C)). This means that, AQ, a]J[X,IN(C,) is dense in A(0, a][X,].
Thus we have

(4.40) [Mo(]) 5 JE Ro, JC(0, a]] D A0, al[X,].
This completes the proof of Lemma 4.7
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§5. Theorems.

THEOREM 5.1. Let X, be a stationary linear completely nondeterministic
SaS(1/2<a<1) process such that Condition C,(0o, K) is satisfied for some positive
0o, K and y>1—a. There exists an [X,]-valued {T.}-homogeneous stochastic
measure M such that for any interval 1€ R,

(6.1) LM(]) ; Je R, JTI]= AIDLX.].
PROOF. Suppose {X,;} be nontrivial. First we show that there is y, in

A0, 11LX,1N(C,) such that
(5.2) A0, 1]51_th yodt £ 0.

It is clear that A(0, 1]J[X,IJN(C,) is not empty. For example, let x=X;—A,X;.
Since X, is nontrivial and completely nondeterministic, x#0 and x< A(0, 1]1[ X, 1.

We know x&(C,) by orollary 4.3, Choose a nonzero element y of
A0, 11LX, IN(C,)). If

A0, 1]5’_1%,4( Tydt =0

for every Je ®, with JC(0, 17, then,
(5.3) A(I)SlthA(])ydt =0 for every I R, with Ic(0, 1],

and by implies y=0, a contradiction. Thus, there exists J,& R,
with J,c(0, 17, which satisfies

A0, ljgl_thA( Jydt = 0.

Let y,=A(J,)y. This satisfies and belongs to (C,) by [Corollary 4.3 Let

us define

(5.4) M(a, b] = Ala, b]S Toyodt.

b

a-
This is a stochastic interval function on R, taking values in [X;]. Using this
M, we can prove the theorem in the same way as in [9]. Like in the case of
M is extended to a stochastic measure M on R. Moreover, from
the definition, T, M(I)=M(+t) for I R,. It holds also for € ®. That means
M is T,-homogeneous. Since

(5.5) AWM = MUN]) for all I, Je R,,
we have

(5.6) M) 5 JeR, JoIlc ADIX.].
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To prove the converse inclusion, we show
(5.7) : LM(]) ; Je R, JTITID[M(]) ; JE R, JCI],

where M, is the stochastic measure defined by [4.27). By [4.28), will com-
plete the proof of [5.I). It follows from [(4.28), and the facts in §2, 2)
that there exists g L(M,) such that g is M,-integrable over any finite interval
and

(5.8) M(E) = SEg(u)Mo(du)

for all E€ . Since M is T,-homogeneous, the class of M-null sets is transla-
tion invariant. It is the class of Lebesgue null sets. Hence the class of M-null
sets equals the class of M,-null sets. From we get

.9) [, fooMidw = §_fagwidu)

for all sets E€® and simple functions f. If we take a sequence of simple
functions {f .} such that |f,(u)|=|g(u)] ! and limy.ef(u)=gu)* My-a.e., then
we have

MyI) = lim | fa(g(wMydn) € M) 5 J€ R, JETT.

This shows [5.7). Thus the theorem is proved.

Now we get a canonical representation theorem for linear completely non-
deterministic SaS (1/2<a<1) processes.

THEOREM 5.2. Let X, be a nontrivial linear completely nondeterministic SaS
(1/2<a<l) process satisfying Condition C,(0,, K) for some positive d,, K and
y>1—a. Then there exist an [ X;]-valued nontrivial T,-homogeneous stochastic
measure M and a function f<L(M) such that

(5.10) [IM()); JER,, JC(—oo, t]] =[Xy; ust]
and
(5.11) X, = S‘ Flt—u)M(du) .

PRrROOF. By there exists an [X,]-valued T,-homogeneous
stochastic measure M satisfying condition [5.10). Thus there is a function fe&

L(M) such that XO:S(i f(—u)M(du). Using translation operator {T,}, we have

(5.12) X, =T,X, = g” Flt—w)M(du) .
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REMARKS. The converse of is as follows: Suppose that M
is a nontrivial T,-homogeneous SaS stochastic measure. Let feL(M) and
Ff(u)=0 for u<0 and define a process X; by [5.1I). Assume that it satisfies
(5.10). We have [X,]=[M]. So, each element x<[X,] has a representation

x={" gM(du) where g=L(M). Let

(5.13) Ayx = S" 2(uw)Mdu) .

This linear operator A, transforms [X,] onto [X,;<0] and satisfies conditions
(i), (ii), (iii) of §2, 3). And we get

(5.14) Ax = g;g(u)M(du) .

It follows that lim;.-.A4,x=0. Thus X, is a completely nondeterministic
stationary SaS linear process.
For example, let M be a homogeneous SaS (0<a<1) motion. Let

(5.15) X, = St e WM .

X, is a stationary SaS process. [X,]C[M] holds. Define the operator 4, in
the same way as in [5.13). Then

A X, = SO

e~ wdMu)  (t=0)
= e“‘Si e“dM(u) = e7*X, € [X,;t=0].

Thus A, is a linear operator from [X,] onto [X,;¢t<0] satisfying (i), (i), (iii)
of §2, 3). By easy calculation we see that X, satisfies Condition C,(d,, K) for
some positive d, and K. So y=a in this example. Hence, if y=a>1—a (i.e.
a>1/2) we can prove for this process. Therefore we know the repre-
sentation is canonical for a>1/2.
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