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§1. Introduction.

The inverse problem for quantum and acoustic scatterings has been investi-
gated extensively. Little attention, however, seems to have been paid to the
inverse problem for the acoustic scattering. P. Lax and R. Phillips [4, p. 174],
showed that the scattering operator associated with the wave equation in an
exterior domain £ (with 92 smooth and bounded) whose solutions satisfy the
boundary condition of being zero on 02 uniquely determines the obstacle £2°
But in the case of a metric perturbation for the wave equation in R™ it is not
known whether the scattering operator uniquely determines the metric or not.
The purpose of this paper is to give an answer to an inverse problem related
to this problem.

Let g(x) be a C=-Riemannian metric on R™ (n=2) satisfying g(x)=I, (the
unit matrix of degree n) for |x|=7r, where », is a positive number. Consider
the scattering problem for the acoustic equation

(1.1) (03—V.g(x)"\V) u(t, x) =0 in R'XR",

where V="%0,,, -+, 0z,). Let S(s, 0, ) be the scattering kernel for this prob-
lem. For each w, 85", it is well known that S(-, 8, w) is a distribution on
R* (see H. Soga [2], [3]. In what follows we adopt the following convention :
sup sing supp S(-, 8, w)=-—oc0 if singsupp S(-, 8, w)=@. We consider the fol-
lowing

PrROBLEM. Find an inhomogeneous media g(x) from the known
sup sing supp S(+, @, w).

Now let us prepare notations in order to give our answer to this problem.
Let g%(x) be a surface of revolution on R™ with center 0 treated by H. Gluck
and D. Singer in the case that n=2, namely
e(lx|) _,

ik x'x, x =%xq -, xq) € R*\0,

(1.2) ge(x) =1In—
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where ¢ is a smooth even function with support in [—7,, #,], ¢(0)=0, and
E(r)=1—e(r) is positive. Then we see that g?(x) can be represented in polar
coordinates by ‘

ds® = E(r)dr*+r’de®

and g?(x)=I, for |x|=7, Let d. be the deflection function between g7(x) and
I, introduced in [1]. That is

— vz
(1.3) 56(6):65c 4 (ifﬁ?:z)l/z )

dr, 0<c<ry,.

Then J, extends to a smooth odd function with support in [—7#,, #,]. For
0<r,;<r,, wWe set

(1.4) ROz (ry) = {g¥(x) | £(d0./dc)(c)>0 for 0<c<r,,
+(dé./dc)(c)<0 for ri<c<r, and |d0.(ry)| <m/2}.
(1.5) RSO7, = {g2(x)€RO7(0/2) | d.(c) = 0c(ro—c) for 0<c<re/2}.

By definition, RSO;, is contained in ROj, (r,/2). Furthermore, by Theorem 4.3
in [1, p. 212], these sets are non-empty and uncountable.
An answer to the preceding problem in the case that n=2 is contained in

THEOREM 1.1. (i) There exist infinitely many gix)eRO;(r,) with the
same sup sing supp S(-, 0, w) (0 #w).
(ii) Let gi(x)eRSO0z, and g% (x)—1I, is sufficiently small in the C*-topology
(=1, 2). If both g% (x) and g%,(x) have the same sup sing supp S(-, 8, w) (8 #w),
then g¢,(x)=g¢,(x).

follows from a result obtained by H. Soga and the follow-
ing Theorems [.3, and which may be of independent interest. Let g(x)

be a C=-Riemannian metric on R™ with g(x)=I, for |x|=7, which satisfies
the following assumption (G):

(G) For any weS™! and y with y.-wo=—r,,
lim lq(t; =70, 3, @)| = +oo,
where the dot - denotes the ordinary scalar product over R™ S"-! is the

{(n—1)-dimensional unit sphere and where (¢(¢;s, x, &), p(t;s, x, &) denotes the
solution of the Hamilton equation

dg _ p _

(@, P)i=s = (x, §) € R*X(R"\0), seR?,
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where H(x, §)={g(x)"'§-£}**. Forany §, 0=S" ' we set 1,={yER" | y-0=—7}
and let us put
(L7 My(0) = {yem, | im p(t; —ro, 3, @)=0},

(1L.8)  su(6) = sup{lim {g(t; —70, y, ®)-0—1} | yEML(O)}  (if Mu(O)#D),
= —00 (if Mu(0)=2),
(LY Mu6) = {yEMu(0) | lim {qlt; 7o, ¥, @) O—t}=54()} .

Then H. Soga proved the following theorem.
THEOREM 1.2. Let n=2 and w+0. Assume that
(1.10) det 0,q(t; —7,, v, w) # 0,
(1.11) det :p(t; —ro, ¥, @) # 0
for any (t, y)E[~ro, +[ XMu(6). Then
sup sing supp S(-, 4, o) = s,(f).

Concerning the hypotheses of we have the following theorems.

THEOREM 1.3. If gXx) is a surface of revolution on R™ with center 0, the
condition (G) is satisfied with g(x) replaced by gi(x).

THEOREM 1.4. Let n=2 and gix)eRO:(r,). If gix)—1. is sufficiently
small in the C3:-topology, then gi(x) satisfies (1.10) and (1.11) for @, 6 S* (w#8)
and (t, y)E[—ro, +o[ XM (8).

As for the case that n=3, we obtain

THEOREM 1.5. Let n=23. (i) Let g}(x)€ROf(r)). Then for any o, §=S5™*
(w#0) and yeM,(0), there exists t€]—r,, +oo[ such that

det 0,9(t; —7o, ¥, @) =0.

(ii) Let g(x)€RO7(ry). If gi(x)—I, is sufficiently small in the C*-topology, then
(1.10) and (1.11) hold for any w, §=S™ (w+#80) and (¢, y)S[—ry +0[XM,(0).

The following theorem yields the relation between gZ(x) and s,(8).

THEOREM 1.6. Let n=2. (i) There exist infinitely many gXx)=ROZE(ry)
such that gp(x)—I, is sufficiently small uniformly in the C?-topology and g2(x)
has the same s,(0).

(ii) Let g7(x)eRSO;, (=1, 2). If both gi(x) and g7(x) have the same $,(8),
then g2 (x)=g%(x) and the following inversion formulas hold :
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(@) If gl(x)eRSOfF, then

1(ro cdc 2 .
w12 En=(+—| 3(2)«3(1))_1(_C))(Cz_rz)m) (f ro/25r=ry),

1 7o cdc
= (H??Sm/z s®((sO) (=) (e —rE/4)M

1 (ro/2 cde ° )
_—n-_ST S(2)((8(1))‘1(6——7’0))(62-r3)”2) (if 0=r=r,/2).

(b) If gi(x)eRSO;, then

(113)  E() = (1_LST0 cde

s S(2)((8(1))‘1(7’0—6))(62—7’2)”2) (f ro/2=r=ry),

_ (1——1_57‘0 CdC
T Jryle S(Z)((S(1))_1(70“—0))(62—"7’(2)/4>1/2

1 870/2 cdce

) S(2)((3(1))'1(6))(62——7’2)”2> Gf O0=r=r,/2).

Here s(9)=5%,0,0,-.0(cOs, siny, 0, ---, 0), pER?, s¥=ds/dy, s®=d’s/dy? and
(s™) is the inverse function of s.

The rest of this paper is organized as follows. In Section 2 we give some
lemmas and prove Using the results in Section 2, we prove
in Section 3 and we give further properties of s,(8). We shall
prove Theorems [.4 and in Section 4.

The author would like to thank Professor M. Murata for his encouragements
and the referee for some comments.

§2. Proof of Theorem 1.3.
First we introduce some notations. Let n=2. Set
2_(ry) = {(z, ) €R™XS* ' | |z| =r, and z-w<0}.
Let I'¢,(x) be the Christoffel’s symbol associated with a C*-Riemannian metric
g(x) on R™ and put

T, v) = (T uwe, -~ 5T Hus)

for u, v and x=R". Let (g,(; x), v,(t; x)) be the solution of the following
ordinary differential equation (i.e. the geodesic flow for g(x))
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dg dv
(2-1) E’_ =7, d_t - _—'F(Q)<v7 v))

(@, V)|t=o=(x, ®) € R*XS"!,

Hereafter we assume that g(x)=I, for |x|=r, Since g(x) is geodesically
complete, (g,(t; x), v,(t, x)) exists for all teR* Let T(z, ) be the sojourn
time for (z, )2 _(r,) in the ball of radius », with center 0= R™®, that is

2.2) T(z, w) = sup{t>0] |g.(zr;2)| <r, for 0<r<t}.

Then it is easy to see that T'(z, w) is well defined and the value lies in ]0, +co].
For weS*Y, put znl={yer,||y+rw|=r,} and ni={yexn,||y+rw|<r}.
Furthermore, put

(2.3) Ty, o) = —=@ri—|y 1))+ T(Au(y), @),

for yexi, where A,(y)=y+i—C2r{—1y*)'"*w.
We start with the following elementary lemma which is obtained by
elementary calculations and we omit the proof.

LEMMA 2.1. g(x) satisfies (G) if and only if T(z, w) has a finite value for
any (z, @)€2_(r,) and the following equalities hold:

(2.4) For any yer? and t=T*(y, w),
qt; =70, ¥, ®) = Q(AL(), @)+E—T*(y, 0))V(A.(y), ®),
;=1 3, @) = V(Au(y), 0),

where (Q(z, 0), V(z, 0))=(q.(; 2), vo(t; 2) | t=rcz, 0 -

(2.5) For any yeri and teR,
qt; —re ¥, ) = y-+({+r)o,

plt; —7e, ¥, ©) = .

Let R(a) (a=R*') be the rotation of angle @« around 0= R? and put w'=
R(n/2)w for ws S. For z, z=R? define

B(zo, 2) = 2(z-20/ | 20| Dz0—2z  (f 2,#0),
= —z (if z,=0).

In the following lemma sub/superscript e stands for dependence on g?(x).

LEMMA 2.2. Let n=2. Suppose that g(x) is equal to a surface of revolution
g2%x) on R* with center 0. Then Tz, w)<-+co for (z, o)X _(r,), and
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2.6) Tz, 0) = Tz, w)—ZSiocr ‘Z‘Ze (r)dr,

2.7) 0T e(z, ©)/2;2) = R(—08e(c))qe(T (2, )/2; 2),
(2.8) Q%z, ) = B(¢4(T(z, w)/2; 2), 2),

(2.9) V(z, ) = —B(qW(Te(z, 0)/2;2), ),

where c=z-w'.
REMARK 1. The fact corresponding to is described in [1].

REMARK 2. The fact that g%(x) is invariant with respect to linear trans-
formations B(z,, ) and R(a) of R? onto itself concludes and (2.9).

REMARK 3. [2.6) is an important equality in this paper since the pertur-
bation term of Tz, w) from T,(z, w) is written by using only d. in a simple
form,

PrOOF OF LEMMA 2.2. By the same argument in [1, p. 208], we obtain

<—E—(£)—2—)1/2dr

To
Tz, w) = ZS "\,

Ici
Compare this with the case that ¢=0, then
Tdz, @ —Tolz, ) =2 " r(EC)= 10 =) r2dr
cl
holds. By Theorems 4.1 and 4.2 in [1],

dag

(E(r)i—1 = ——72;8:"<c2—r2>-1/2c—dc—<c>dc.

Using Fubini’s Theorem and the evenness of the function

To dae
—zgr ¢ dc dC,

we obtain [2.6). Q.E.D.

in the case that n=2 immediately follows from Lemmas
and It remains to prove the theorem for n=3. To this end we prepare a
lemma. Suppose that n=2 and W is a two dimensional linear subspace of R™.
Then W becomes a two dimensional submanifold of R™. Let iy be the imbed-
ding of W into R™ and 7}g%(x) be the induced metric of g?(x) by 7. Then,
the following lemma holds for C*-Riemannian manifolds (W, i§g%(x)), (R?, g%x))

and (R*, g7(x)).
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LEMMA 2.3. (i) Let [wi, w,] be a basis for W satisfying w; w;=0;;
G, j=1, 2), and A=(w, w;) be the nX2 matrix. Then (R g%x)) is isometrically
imbedded onto (W, 1%85(x)) through the map R*>z—izeW.
(i) The C=-submanifold W of (R™, g%(x)) is totally geodesic: every geodesic for
(W, i%g2(x)) is also a geodesic for (R", g*x)).

PrROOF. (i) clearly holds. It is sufficient for the proof of (ii) to show that
I'(x)(u, u) belongs to W for x and uW. By the definition of I'(x)(u, u) we
find

X

E(lx])

T, w = —(Ge w57 9+ 6L x19)

where G(r)=e(r*'*)/r is a smooth function on [0, +co[ by the assumption for
e. This completes the proof of Q.E.D.

Using Lemmas 2.1~2.3 and the uniqueness of the solution for the ordinary
differential equation, we get the following lemma, which together with Lemmas
2.1~2.3 shows [Theorem 1.3 for n=3.

LEMMA 2.4. Let n=2 and g*(x) be a surface of revolution on R™ with
center 0. Let A=(w;, w,) be an nX2 matrix with w; - w;=0;; for i, j=1, 2. Then
T™ 2z, Aw)<+0 for (z, w) 2P (r,), and

2.10) T™(Az, dw) = T®(z, w),
(2.11) g™t —ro, Ay, Aw) = Ag¥(t; —7y, ¥, ),
(2.12) Pt —ro, Ay, Aw) = ApP(t; —7o, ¥, W),

where weS?, yeni, t=2T*®(y, w). Here the superscript n denotes the depend-
ence on the dimension of R™.

§3. Proof of Theorem 1.6.

Let O,, denote the set of all smooth odd real functions on R with support
in [—7,, vo]. Let 6€0,, n<[0, 2z], and c€R. Put

3.1) As(n) = {ceR | 28(c)=7 (mod 27 2Z)} ,

(3.2) ATi(c) = ZS:"r%f-(r)dr,

3.3) ax(n) =sup{AT;(c) | ceds(n)}  (f As(p)+ D),
= —co (it As()=0).

Let weS*. Define ¢,: R—r, by
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3.4) to(C) = c0t—row.

¢ is a so-called impact parameter.
We obtain

PROPOSITION 3.1. Let n=2 and let g¥x) be a surface of revolution on R"
with center 0. Then

(3.5) IM,(0) = {ceR | R(—20,(c)o=0)

and

(3.6) 5,(0) = sup{ZSror Do iy | ez (0)}
. @ ¢ dc W w )

where w, 0 S?, and ¢;' is the inverse map of ¢,.

ProoF. Use Lemmas 2.1 and Q.E.D.

COROLLARY 3.2. Let n=2 and let g%(x) be a surface of revolution on R™
with center 0. Then

3.7 So(0) = 05,(Arc cos w-8),
where w, = S™,

Proor. If n=2, (3.7) follows from [3.5) and [3.6). For the case that n=3,
use Lemma 214. Q.E.D.

For 0<r,<r,, define

3.8 Or(ry) = {560,0 i%(c)>0 for 0<c<r,,

do T
i%(c)<0 for r,<c<r, and |5(r1)l<?}-

We note that O7(r;) is contained in O,, by the definition.

PROPOSITION 3.3. (i) Suppose that 0€O,,. Then a; is symmetric with
respect to n=rm.
(ii) Suppose that 0€Of (r,). Then

(3.9 asm) = =2 Olu, ) e Gf 0=9=2130)D),
= —00 Gf 210(r)|<np=m).

Therefore, dos/dy is a strictly monotone increasing function on [0, 2|0(r,)|] onto
[—70, —71] which satisfies
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1

2(@-‘3—)—1(—0 for ri=c<r,.

(3.10) dc) = dn

(iii) Suppose that 605 (ry). Then

G1) o) = —2] " Oler@de—2] "o Gf 0=9=2136r)1),
= —c0 (if 2|10(ry)| <n=m).

Therefore, das/dy is a strictly monotone increasing function on [0, 2|10(ry)|] onto
[0, r,] which satisfies

_ 1/dos\
(3.12) 3(c) = —5(%-) () for 0=c=r,.

ProoF. For the proof of (i), use the fact that AT; is even and a real
number ¢ belongs to A;(y) if and only if —c belongs to 4;(2xr—7%). Except for
and (3.11), the statements (ii) and (iii) are easily obtained. Let d€O%(r,)
and »<[0, 2z]. Since ranged =[—|d(ry)|, |0(ry)|] and |6(r,)| <=/2,

(3.13) As(n) = 07n/2).

Put

(3.14) ¢y = (0w, (n/2),
(3.15) ¢y = (81rr2) H(1/2).
Then

(3.16) Aas(p) = {ey, ¢},

(3.17) a5(n) = max{ATs(c,), ATs(c.)} .

By integration by parts, we obtain

(3.18) AT 5(co)—AT 5(cy) = 2S:2<5(r)— n/2)dr .
Therefore,
(3.19) a;(n) = ATs(c))  (if 0€0(r1),

= AT s(cy) (if 005, (ry).
Using this, and (3.11) are easily obtained. Q.E.D.

We prepare the following deformation lemmas, whose proof [is straight-
forward and so omitted.
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LEMMA 3.4. Let 6€0f(r,) and 0<28<r,. Set

c4(3) = min{%—?(c) (>0 | p=c=ri—p}.

Suppose that € is a smooth even function with support in [ —(r,—pB), —BIJLE, r1—pB]

which satisfies
(3.20)

and

3.21)

S:s(r)dr =0

smclple(c)[ < ¢}(9).

Set a*(c):Srls(z')dr for ce R'. Then d+4¢* belongs to O (r,) and

(3.22)

0-+e*| fri,mod — 0 | ry.791*

LEMMA 3.5. Let 6€05(ry) and let 0<2B<r,—r;. Set

5@ = min{ 2 (&) (>0) | ri+psesr—p)-

Suppose that & is a smooth even function with support in [—r,,

which satisfies
(3.23)
(3.24)
(3.25)

(3.26)

and

(3.27)

e(c) = e(rotri—c)  for riZc<r,,
e)z0 for nn=c=ri+8,

ec) 0 for i+B=Sc=(rytr)/2,

Sros(r)dr =0,
T

sgp]s(c)l < ¢3(9).

Set e*(c):S:s(z')dz' for ceR. Then 0+¢* belongs to O7 (ry),

(3.28)

and

(3.29)

§:°(5+e*><r>dr = S:°5<r>dr,

0+&*[0,r1 = 0lco.ry1-

—Tl:lU[T],, 70]
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THEOREM 3.6 (H. Gluck and D. Singer [1]). Let n=2 and let kb be a non
negative integer. (i) (Existence) For any positive number y, choose a positive
number r sufficiently small. Then for any 60, which satisfies

max sup|é(c)| <k,
0sjs2k+1 ¢

there exists only one surface of revolution g?(x) on R™ with center 0 such that
max sup|05(g¢(x)—1I.)| <7,
lalsk X

and 0,=0.
(ii) (Uniqueness) Let g7(x) (1=1, 2) be surfaces of revolution on R™ with center
0. Suppose that 0,,=0., Then

ge(x) = gi,(x).

(iii) (Inversion formula) Let g¥(x) be a surface of revolution on R™. Then

2
»

ZSTO Cdae 0<]’<]’0.

E(r) = (1— =\ "2 (e)e =) 2de)

[Theorem 3.6l is a special case of Theorems 4.1 and 4.3 in and we omit the
proof.

PROPOSITION 3.7. Let £ be a positive number and let k be a non negative
integer. Suppose that 605 (r,) and

max sup|d(c)| < k/2.

0<js2k+l ¢
Then there exist infinitely many 0,€05,(ry), =1, 2, --- such that

max sup|dé(c)| < &
0sjs2k+1 ¢

and
0‘51 = 05.

Proor. Use Proposition 3.3, Lemmas 3.4 and 35l Q.E.D.

Proof of (i) in[Theorem 1.6 follows from [Corollary 3.2, (i) in
and [Proposition 3.7. Proof of (ii) in follows from
[Proposition 3.3 and (ii), (iii) in In particular, (1.12) and (1.13)
follows from [3.7), [3.10), [3.12), and (iii) in This completes the
proof of
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§4. Proof of Theorems 1.4 and 1.5.

Let n=2, and let g(x) be a C=-Riemannian metric on R™ with g(x)=I,
for |x|=r, which satisfies (G). Recalling [2.2) and we have

PROPOSITION 4.1. Let wsS™ ™ and y=ni.
(i) If tel—ro —Q@ri—|y1%)"?], then

4.1) 0:9(t; =710, ¥, @) = In,
(4.2) 0. ; —70, 3, @) =0,
(4.3) 0¢q(t; —70, 3, @) = C+7r ) —0'@),
(4.4) 0sp(t; —710, 3, @) = In.

(i) If te[—Q@ri—1y1D', T*(y, ®)], then

lazQ(t;_ro, y; w)_lnl: lax}b(t;_ro; y, CD)I,
[0:9(t; —70, ¥, @)| and |0:p(t; —ro, ¥, ©)—14]

are bounded by
CT(Au(y), )| g7l gllexp{CT(A(¥), w)|g ' |«(llgll-+1},

where C is an absolute constant and |g||=12"*«|0,8 |5+ 028 | .
(i) If t€[T*, w), +o[, then

(4.5)  0:9(t; =70, ¥, @) = 0,9(T*y, ®); —70, ¥, ®)
FE—=T*, @) {1~V (Au(3), @) V(A(3), @)}0:p(T*y, w); —r0o, y, ®),

(4.6)  0:p(t; —ro, ¥, ®) = P(T*(y, ®); —70, ¥, ).

REMARK. If ye=xl, then [4.1), [4.2), [4.3) and [4.4) hold for any t=R.

Proor. Differentiate the integral equation for (¢(t), p(1)=(qt; —r,, x, &),
p<t; —7Vy X, "S)) :

t

@ a®) = v+ VeH(q@), pede,

(4.8) PO = &= VuH(g(e), pe)de,

and apply Lemma 2.1 and Gronwall’s inequality. Then we get the proposition.
Q.E.D.

PROPOSITION 4.2. Let weS"* and yeni\{—rw}. Choose n&S™* such
that y-9<0 and n-0=0. If te[T*(y, w), +oo[, then
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(4.9) 0:q9(t; —7ro, ¥, )
= 0n(Q(Au(y+hn), ©—T*(y+hy, @)V(A(y), )
+U—=T*(y, o) {In—V(Au(y), ©)'V(A(Y), @)} V(A(y+h7), ®)| n-so,

(4.10) 029t ; —ro, ¥, ®o = V(A,(y), 0).

PROOF. Since y+hpenr? for 0<h<2|y x|, (2.4) in yields

(4.11) qT*(y+hn, ©); —r, y+hy, ©) = Q(A(y+hy), ®).
Differentiating with respect to h, we obtain
4.12) 0,9(T*(y+hn, w); —r, y+hy, )y

= 0 {Q(AL(y+h7), w)}
— 0 {T*(y+h7, ©)} X0, g(T*(y+hy, @) ; —r, y+hy, 0).

On the other hand, using [(1.6), (2.4) and |g(T*(y, w); —7s, ¥, ®)| =7, We see

(4.13) 0:9(T*(y, ®); =714, ¥, ®) = p(T*y, 0); =70, 3, ®
= V(A4.(»), w).

Put into (4.12). In view of (4.5) we thus obtain [4.9).

Next we shall prove (4.10). Since |y—hw!|=7,,
(4.14) G(T*(y, 0); =70, 3, @), D(T*Y, 0); =10, ¥, @)
= (¢(T*(y, w)+h; —ro y—ho, ©), p(T*Y, ©)+h; =1, y—ho, v)).
Therefore,
(4.15) 0 {g(T*(y, w)+h; —r, y—hw, ®©)} |4y =0.
On the other hand,

(4.16) 0, {g(T*(y, )+ h; —r, y—ho, 0)}
= 0,9(T*(y, )+ h; —ry y—hw, ©)—0,9(T*(y, w)+h;—r, y—ho, o)o.

Then we obtain (4.10) by (4.15) and (4.16). Q.E.D.

We now compute the following quantities:

4.17) 3n{Q(Aw(y+hn), O)} [ hasos
(4.18) 0 {V(Au(y+hn), ®)} | hato,
(4.19) an{T*(y+h77, O)} | nato-

LEMMA 4.3. Let n=2, w€S" and yeri\{—rw}. Put p=—(sgny w')w"
Then
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(4.20) ah{Q(Aw(y+h77); o)} | hto = —ac{Q(Aw<5w(c))y w)} |c=y'wngny ‘o',
(4.21) On{V(Au(y+hn), )} | pare = —0.{V(Au(te(c)), @)} c=y.0r58n Yy 0",
(4.22) O {T*(y+hn, )} | hoso = —0AT*(tu(c), W)} ]e=y.wrsgny w*.

PrROOF. Put c=y-w*—hsgny-w*. Then y+hy is equal to ¢,(c). Therefore,
is easily shown. Q.E.D.

From now until after the completion of the proof of we
assume that n=2 and g(x)=g%x) is a surface of revolution on R? with center
0. For simplicity, we write g, ¢’ for ., dd./dc, respectively. Suppose that |¢] <7,
and put z=A,(tu(c)). Then A,(te(c))=—F*—c®)" w+cw* and ¢%(To(z, w)/2;2)
=cw*. We note —B(R(a)w', w)=RQ2a)w for wS* and a=R. Using Lemma
2.2, we obtain that

(4.23) Q(ALltu(c)), @) = B(cR(—0(¢c))w*, —(r*—c*)"*w+cwt),
(4.24) V(Aultu(c), @) = R(—20(c))w,

(4.25) T*(to(c), @) = (r2—c*)"*—AT5(c).

Differentiating these, we obtain that

(4.26) %(T*(zw(c), W) = —c(r§—c*)*+2c0’(c] .

4.27) L (V(Aulealo), @) = 25/ (R~ 25N,

(4.28) L (QAuleale)), @)

= 2{c(ri—c*) "2 R(—d(c))w* - w—(r2— )%’ (c)w- R(0(c))w
+w- R(d(c))w+cd’(c)w- R(0(c))w*} R(—d(c))w*
+26"(e){—(r§—c*)'"*R(—0(c))w* - 0+ cR(—d(c))w- w} R(—d(c))w
—c(ri—c®) " Yw—w*.
Put u=w-R(0(¢c))w and v=w"' - R(0(c))w. Let w=S! and let yezi\{—rw}. Put
c=y-w*. Then, 0<|c|<r, By
(4.29) 0, {Q(A(y+h7), @)} | 5-so
= {2,(0)%u v)-H(u v)+|c|(ri—c) Vo
+{2:(c)(u v)-(u v)—1}y,
(4.30) {In»—=V(Au(3), ©)'V(Au(D), @)}0,{V(Au(y+h7), @)} | naso
= {20’(c)(sgn ¢)(R(—23(c))( n— ' w)w*) - w}w
F{—20"(cNR(—20(c)H)U n—w'@)0*)- 0}y,
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(4.31) V(Au(3), w) = {R(—20(c))w- 0} w+{—sgnc R(—2d(c))w-w'} 7,
(4.32) 0u{T*(y+hn, @)} |noro = || {(F§—c?)22=28'(0)},

where 2.(c) and 2,(c) are 2x2 matrices satisfying

(4.33) 2:(¢) = —2]c|d(c),

(4.34) 2102 = 21(c)a = sgn ¢ (rg—cH)V?{25°(c)— (r§—c*) %},
(4.35) Q1(€)ee = =2 | {(ri—c?) 2 =0"(0)},

(4.36) 2:(€)11 = 2{1—=(r§—c*)"*0"(c)},

(4.37) 2:(0)12 = 25(C)e = c{(r§—c?)1*—25(c)},

(4.38) 25(¢)es = 20’ (c)(r§—cB)M2.

The preceding calculation leads to the following proposition.

PROPOSITION 4.4. Let n=2 and g%x) be a surface of revolution on R* with
center 0. Suppose that weS* and yeni\{—rw}. Put p=—(sgny-w')w*. Then
the matrix representation for 0,9(t; —r, v, @) with the basis [w, p] of R* is
equal to K(t;c, 0)|c=y.0t, where K(t;c, w), t=T*(y, ) and |c|<r,, is a 2X2
matrix satisfying

(4.39) K¢, 0, = R(—20))w-w,
(4.40)  K(t;c, )2z = 2:(c)(u v)-Y(u v)+|c|(rf—c?)"2
— e[ (R(—28(¢))w- @){(r§—c*)~/*—20"(c)}
+2{t+AT5(c)—(ri—c*)'"*}0'(c)(sgn ) {R(—28(c)) n—w'w)w*} - @,
(4.41) K(t;c, w)y = —sgne R(—20(¢))w-w*,
(4.42) K(;c, @) = 2:(c)(u v)-Hu v)—1
+lc|sgne (R(—20(¢))w-w*){(ri—c*)~22—208"(c)}
—2{t4+AT s(c)—(ri—c®)?} 0’ () { R(—20(c))I n—0'w)w*} - @* .

From this proposition we have immediately

PROPOSITION 4.5. Let n=2 and gix) be a surface of revolution on R? with
center 0. Suppose that wsS* and yer’\{—rw}. If te[T*y, w), +[, then

(4.43) detd.q(t; —7o, ¥, ®)
= —200—T*(y, 0)0'(y - w*)+det0,9(T*(y, w); —7,, ¥, ®).

PrOOF. By [Proposition 4.4, we see that detd,q(t; —7,, y, @)=a(t—T*(y, w))+b
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for some a, b€ R. From this b=detd.q¢(T*(y, w); —r,, ¥, w), and a direct com-
putation shows a=—20"(y w"). Q.E.D.

Now we can give the proof of

PROOF OF THEOREM 1.4. Suppose that yex?. By Lemma 2.2,
(4.44) T(Au(y), ©) < 2r¢(|0e]ot1).

We note that if g?(x)—I, is sufficiently small in the C*-topology, then |gZ| is
arbitrarily small. Therefore, we see by [Proposition 4.1 that (1.10) holds and
(1.11) holds for t&[—r,, +co[. Corollary 3.2 and the proof of Proposition 3.3
show that if y=M,(0), then yex? and §)(y-w*)<0. Consequently,
4.5 shows that (1.10) holds for any yeM,(8) and te[T*(y, w), +oo[. This
completes the proof of Q.E.D.

The rest of this section is devoted to the proof of Let n=3,
weS* ! and yer, with 0<|y+rw|. Put o*(y)=(y+r.w)/|y+r.w|, then w'(y)
is perpendicular to w and belongs to S*-'. Choose %,, -, §,-.€R"™ such that
[w, @*(¥), 91, ~**, Pr-2] becomes an orthonormal basis of R*. Fix 1=/=n—-2
and put p=7;. Let P be the orthogonal projection of R"” onto the orthogonal
complement (L[w, @*(y), p])* of the linear hull L[w, 0'(y), 7] of o, w'(y),
and put

(4.45) R ¥(x) = (x-w)o+{R(h)"(x-w*(y) x-7)-(1 0)}o*(y)
+{R(h) x-w*(y) x-9)-%0 1)} p+Px

for heR and x<R". Since ‘R YR¢Y=I,, gX(x) is invariant with respect to
R¢¥. Therefore,

(4.46) R (gt ; 3) = g6t Ml g.6r=RL Y12, B V01
for any t=R. Using R$Yw—=w, we see that

(4.47) 9u(t; RY¥(y)) = R%Y(qu(t; ).

Since y=—rw+|y+rolo(y),

(4.48) R Y(y) = —rw+|y+rwl {(cos h)o*(y)-+(sin h)p}
and 9,(R% ¥(y))=|y-+r.w| {(—sin A)w*(y)+(cos A)n}. Hence,
(4.49) (R YN oo = |y+r00] 7.

On the other hand, the equation

(4.50) gt ; —ro, RY¥(y), 0) = R ¥(q(t; —7o, ¥, ®)
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is easily shown by [4.47). Since q(t; —r,, ¥, @€ Llo, 0*(3)], 9it; —7r, ¥, @7
=0 and Pq(t; —vr,, ¥, ®)=0., We obtain that
(4.51) Ry ¥(qt; =70, 3, ®))

=(qt; =70, ¥, 0)-@)+(qt; —71o, ¥, ®)-0*(y){(cos o' (y)+(sin h)7},
(4.52) 0r{R% ¥ (q(t; —70, @, Y}

= (g(t; =70, ¥, 0)-@*(¥){(—sin hw*(y)+(cos h)n} .
As h—0, we obtain that
(4.53) On{RY¥(qt; =70, 3, O} 4o = (@t —70, 3, @) 0*(9))7.
Differentiate and use [4.49) and [(4.53). Then we obtain

09t —70, 3, @) = | y-+rew|~Hqlt; =70, ¥, ®)-0*(¥)7.
Therefore, L[7,, ---, §n-2] reduces 0,q9(t; —7, ¥y, ®): R*—>R™ and the matrix

representation of 0.q(t; —7o, ¥, @)1y, n,-n With the basis [#;, -+, ga-.] of
L[7y, -+, Nr-2] is given by
(4.59) |y+rew] qlt; —7o, ¥, @)@ (Y ns.

In the case that n=2, we note that w*(y)=(sgn y-wt)w* for v S, yez N{—rw}.
Therefore, we can easily rewrite as below. Let weS!, yer,\{—rw},
and [w,, w,, -+, w,] be an orthonormal basis of R®. Then, for 3<7<n,

(4.55) 0:9™(t; —7o, (W1 W2)Y, (W We)@)W;
= (sgny-w)| y+r,w| Ng®(E; —ry, ¥, )0 w;.

Now, we compute the quantity detd, g™ (t; —r,, ¥, ®) for = S™!, yeni\{—rw},
and te[T*™(y, w), +oo[.

PROPOSITION 4.6. Let n=3, weS*' and yeri N{—rw}. Let A=(w, w,) be
an nX2 matrix with w;-w;=0;; for i, j=1, 2. If te[T**(y, w), +o[, then

(4.56) detd.q™(t; —r,, Ay, Aw)
= |y+rw| ="t —10, ¥, ) (sgny-wHw*)"
Xdetdq®(t; —r0, ¥, @).

PROOF. Put p=—(sgny-w')w*, then y-9<0, w-7=0, and y=S'. By [Lemmal
2.3 and [Proposition 4.2,

(4.57) 0:9™(t; =1, Ay, 2W)An = 20,9®(t; —7,, ¥, ©)7,
(4.58) 0.4t ; —7o, Ay, A0)Aw = 20,q®(; —7,, ¥, ®)O.
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Here we have used the fact T*™(y, 2w)=T**(y, w) by Therefore,
we obtain [4.56) by [4.55), [(4.57), and [4.58). Q.E.D.

PROPOSITION 4.7. Let n=3, weS*?! and yeri\{—rw}. If

(4.59) 0<d(ly-wt]) <2z,
then there exists a t€]—r,, +oo[ such that
(4.60) detd,q™(t; —7o, Ay, nw) =0,
where A=(w, w,), w; w;=0;; and w;sR"™ (i=1, 2).
Proor. We note that
(4.61) q®t; —re ¥, @) (sgny -0 )w* | =—ry = |y-0*| > 0.
Furthermore, we see that

lim q(Z)(t; —%0 ¥, w).(sgny.wl)wJ_ = —co,

T—+oo

By (2.4) in Lemma 2.7], it is sufficient for the proof of this fact to show that
V(A,(9), w)-(sgn y-w*)w*<0. Put y=¢,(c) (0<|c|<r,). Using [4.24), we obtain
the left hand side of the preceding inequality is equal to

—2(sgnc){R(w/2—(sgnc)d(|c|))w-w} X {R(—(sgnc)d(|c]))w-w} .

Since 0<d(|c|)<=m/2, we see that (sgnc){R(x/2—(sgnc)d(|c|))}w-@ and
R(—(sgnc¢)d(|c|))w-w are positive. Therefore the preceding inequality is valid
and there exists a T €]—7r,, +oo[ such that

(4.62) QB ; —7e, ¥, w)-(sgn y-wt)wt <0 for t € [T, +oof.

Hence there exists a t]~—r,, +oo[ such that

(4.63) q®@; —ro, ¥, ©)-(sgny-oHwt = 0.
Therefore, the preceding statement is obtained by in¥Proposition 4.6.
Q.E.D.
PROPOSITION 4.8. Let weS* and yezi\{—rw}. If
(4'64) Q(Z)(f; —7%o Vs w)'(SgnJ"wl)wl ] t=T*®@ (y,w) > 0:
(4.65) —2-17 < §(|y-w*]) < 0,

then for any te[T*®(y, w), +oof
(4.66) q®(t; —r,, y, w)-(sgny-wtw* > 0.

Proor. Use Lemmas and Then the proposition is elementarily
shown. Q.E.D.
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PROOF OF (i) IN THEOREM 1.5. Since 2-*z>d(c)>0 for 0<c<r, Proposi-
tions 4.6 and 4.7 imply (i). Q.E.D.

PROOF OF (ii) IN THEOREM 1.5. Since g%(x)—I, and g3(x)—1, are sufficient-
ly small in the C3-topology we obtain that

q®; —70, ¥, @) (SgNY -0 O | o @y, 0y > 0

for weS?! and yeri {—rw}. Since —2-'7<d(c)<0 for 0<c<r,,
4.8 shows that ¢®(t; —7,, ¥, w)-(sgn y-w")w* >0 for any t=T*®(y, ). There-
fore, [Proposition 4.6 and [Theorem 1.4 show that

det0,9™(t; —ro, ¥, @) >0

for t=T*™(y, w) and yeﬂw(ﬁ) (w#8). For —r,<t=T*™(y, w), we can use
(i) and (ii) in [Proposition 4.1 Q.E.D.
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