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1. Introduction.

Let y=—1/2. The Hankel transform of order v is given by

o) = { ey dx, yz0

for a function g(x) on [0, o), where J,(f) is the Bessel function of the first
kind of order v. Let

4w ={g ; [N1g)xrdr<ed},
0
and introduce a norm to A® by

gl — 1 . 2v+1
llgll—mgolg(xﬂx dx.

Then the followings are known (cf. [10], [7]):

(i) A® consists of continuous functions on [0, o) vanishing at infinity.

(i) A® is a semisimple regular Banach algebra with the product of point-
wise multiplication, and the maximal ideal space of A® is identified with the
interval [0, co).

Let A(R™ be the Fourier algebra given by A(R™)={g; g LYR")},
IZl=llgllz1crny, where g is the Fourier transform of g, that s,
§(5)=(27r)'”/2Smg(v)e'”ﬂdv, é=R*. Denote by A,(R™) the Fourier transforms

of the radial functions g, gv)=g(|v|) a.e. veR™, in LY(R"). From the well-
known formula g(&)=g(]¢&|) for a radial function g, it follows that A.(R") is
isomorphic and isometric to A® if y=(n—2)/2, n=1, 2, 3, ---.

L. Schwartz showed that the unit sphere S*-! in R™ is not a set of
spectral synthesis for A(R"™), n=3. Reiter proved that, if n=3, then the
singleton {y,}, y,>0 is not a set of spectral synthesis for A.(R"), that is, for
A® y=(n—2)/2. This implies L. Schwartz’s result. For, if §,—»Z in A(R"),
then the Fourier transforms of the means of g; on S®-! converge to the Fourier
transform of the mean of g on S** in A,(R"). A. Schwartz showed that
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Reiter’s result holds good for all v=1/2.

On the other hand, Herz [4] proved that S! is a set of spectral synthesis
for A(R?), which implies that {y,}, ¥.>0is a set of spectral synthesis for A.
Since S° is a set of spectral synthesis for A(R?Y), the set {v,}, y,>0 is a set of
spectral synthesis for A¢Y®,

For y,=0, Reiter proved that, for every n=1, the set {0} is a set of
spectral synthesis for A.(R™), that is, for A®, v=(n—2)/2.

The purpose of this paper is to show the following:

THEOREM. If —1/2=Zv<1/2 and v,>0, then {y,} is a set of spectral syn-
thesis for A®. The set {0} is a set of spectral synthesis for A® for every
v=—1/2.

Related results will be found in Igari and Uno [5], Cazzaniga and Meaney
[1], and Wolfenstetter [12]. They are concerned with spectral synthesis for
the algebra of absolutely convergent Jacobi polynomial series.

2. A lemma.
First we will prove a lemma.

LEMMA. Let v>—1 and let m be the least integer exceeding v+3/2. Let f
be an infinitely differentiable function with compact support contained in [—K, K.
Then

(1700 umwdu = € E K supl £,
0 Jj=0 0sy
where C is a constant depending only on v.

PROOF. Let
[isatusnan = (747 Y1760 1umdu

:Il+12'

Since |J,()| =Ct for 0=<t<1, we have

u2v+1du

I, = S;/KIS:{f(ym(yu)y”“u‘”dy

/K(CK
= CSO SO | F L (yw) y*idy utidu
= C(2y+1)—2§251f(y)],

Here and below, the letter C means positive constants depending only on v, and
it may be different in each occasion.
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Next we will estimate I,. By the formula (d/tdt)*[#*],(t)]=t"""],-a(f) (cf.
[2, 7.2.8(52)]), we have

flu) = u-z<v+m>5:yf(y)<33—y>m{(yu)”+m]y+m(yu)}dy

Noting the fact (d/ydy)™ 7/ {(yu)**™ [, +m(yu)} | y=0=0, =1, 2, --«, m, and repeating
integration by parts, we have
d ; d \m—1
m,,-2(v+m) o v+m
f = (=pmurserm [ L () Ol oW e mdy
and thus we have

nsf 5l
1/K

By a simple calculation, we have
d d \m-1 m )
e A — -2l £
5Ga) f0)1= ey mifop)

where every c; is a constant depending only on j. Thus we have

<ydy) f(y) ‘ (3" ™| Jam(30) | dy u=m=0dy .

m . oo K
1,20 E supl Fo)D |7 [T 95 o  Lam(om | dy wm e sidu
Jj=1 0sy 1/KJ)0
Let

I el Lt dy e

1/KJo

=Pl el = S

Then we have
o K .
RIE CSl/KSo YRyt dy wmm Py
= C{(j+2v+2)5} K.
By the inequality |J,+n(t)|=Ct""/® for t=1, we have

Sg_, S CS SK yi~m+v+1(yu)—ll2dy WML,
1/KJ1/u

I

K
S S u—m+u+(l/2)du yj—m+v+1dy
1y

i

C
C{im—v—(3/2))j} K.
Thus we have

I, < C 3 (S1;--Ssy) sup| £9(3)] < C 3 K7 sup| f9()],
Jj=1 0=y Jj=1 0sy
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and therefore the proof is complete.

3. Proof of Theorem.

Let I be a closed ideal in A®” and let Z(I)={y<[0, ) ; f(y)=0 for all
fel}. [Theorem is an immediate consequence of the following proposition.

PROPOSITION. Let v=—1/2 and let I be a closed ideal in A such that Z(I)
={yo}, ¥o=0. If y,>0, then I={fcA®; fP(y,)=0, j=0,1, 2, ---, M} for
some M<y-+1/2. If v,=0, then I={fA®; f(0)=0}.

PROOF. Let I be a closed ideal in A® such that Z(I)={y,}, y,=0, and let
¢ be a continuous linear functional on A® such that ¢(f)=0 for all fel. Let
PD(—o0, 0) be the test function space on (—oo, o) with usual topology. For
fED(—o0, ), put fp(y)=f(y), y=0 and fy(y)=f(—y), y=0. Then, by the
inversion formula of the Hankel transform and we have that fp» and
fv are in A®. We define @.(f)=¢(fp)+¢(fr) and @_(f)=¢(fp)—@(fn) for
feD(—oo, ). By we have

l%(f)lé||¢|l(!|fpl!+||fzvll)§C||¢II§JK’ sup | f9()l,
J=0  —oo{y<oo

where K is a positive number such that supp fC[—K, K], and m is the least
integer exceeding v+3/2. Thus @. are continuous linear functionals on
P(—o0, o) with order not exceeding m. Since A® is semisimple and regular,
the ideal I contains the ideal of functions in A’ which vanish on a neighbor-
hood of y, (cf. [6, Chapter VIII, 5.7]). This implies that the supports of @,
are the singleton {y,}. Thus @, have the forms

Vo

m R m .
0.= Zajof, O-= 3078
= j=

where aj are constants, and 0,, is the Dirac measure with mass at {y,} (cf.
[8, 6.25]).

Now we will show that a3=0 for j exceeding v+1/2 if y,>0. Let v, p>—1
and put

21 v+ p+2)
[" (v-{—l)s“””‘“’

8s,u(x) = (82— x%)" g0, (%),

where Xp,5(x) is the characteristic function of [0, s). Then |2, .|=1 and

. 2v+y+1[’ 1
2rs) = ZE I o) 13, 853,

Let ¢(y) be a function in 9(—oco, o) such that ¢(y)=1 on a neighborhood of y,
and supp ¢C (0, ). Then ¢g;,, is in D(—oo, 00) and |D.(gds. )| S 16(gds, )| <
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@lllgll. On the other hand, by the formula (d/dt)t*],(at))=—at"*],+,(at) and
the asymptotic formula

2\1/2
I = () cos (t—vr/2—m/8)+ 0 (t—00),

we have 0§ (¢&s, ,)=0(s/-@*+/D-#+D) (s—00) and

lim Sup|5§fg(qg‘s’#)ls—(j—(v+1/2)-(p+1)} >0
$—00

for j=0, 1, 2, ---. This implies that lim sup,..|?.(¢ggs, ,)| =00 if aj+0 for some
J>Ww+1/2)4-(p+1). Since pg>—1 is arbitrary, we have af=0 for j>v+41/2.

Next we will show that a3=0 for ;>0 if y,=0. First we note that @.
have the forms

0, = ; ag0§*® and 0. = ; Q7108281 .

Let ¢,(y) be an even function in 9(—oco, co) such that gy(y)=1 for ye[—1, 1]
and ¢o(y)=0 for y&(—2,2). Put g(y)=(sy/2)qs(sy/2). Then we have [(gs)el
=0(1) as s—oo by [Lemmal Let g,, be the function g, , with g=0. Then
[D4(qods,0)|=0(1) and | @ _(q,8,,)| =0(1) as s—co. On the other hand, it follows
from the power series expansion of the Bessel function that

(=@ (v+1) sk
22k \ [ (y+put2) ~ 7
(=) 2k—1)!T" (v+1) k-1
2201 =) (v p+1) )

This implies that |@.(g.8s.)|—00 (s—o0) if afh#0 for some k£>0, and
| D _(gs8s.0)| =00 (s—00) if az-;#0 for some £>0. Thus we have a3=0 for 7>0,
and therefore we have that ¢(fp) is of the form

¢(fp) = (P(/)—D(f))/2

3% (qo80) =

5(()Zk_l)(QSgs,0) -

N i
jglaﬁ;/g(f), N=v+1/72  (y,>0),

aodo(f) (y0=0)

for fedD(—oo, 0). A. Schwartz showed that if f is in A®, then f has p
continuous derivatives and |f™(y)|=C|fl, »r=0,1, 2, ---, p, where p is the

greatest integer not exceeding v-+1/2. From this and the fact that {fr; f<
P(—o0, o)} is dense in A, it follows that ¢ is of the form

ﬁ e3P, NSvrl/2  (3,>0),
adolf)  (3=0)

o(f) =
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for feA®. We define N(¢)=max{s; a;#0}. Let L, be the space of con-
tinuous linear functionals ¢ on A® such that ¢(f)=0 for all fel. Put M=
max{N(¢); s= L,}. Then we note that M=0 for y,=0 and 0=M=v+1/2 for
¥0>0. Let f be in I and let ¢, be a functional in L; such that M=N(g,).
For he A®, we have

0= gsrh = B {5 (] )ais 5P P00).

=
Since there exist functions A, A® such that h{P(y))=0ms, &, m=0,1, 2, ---, M,
we have Z£k<2>a,-f”‘“(yo):0 for £=0,1,2, .-, M. Thus f*®(y,)=0 for

£=0,1, 2, .-, M. This implies that I={f€A®; f*(y,)=0, k=0, 1, 2, ---, M}
since I is a space of fe A® such that ¢(f)=0 for all = L;. Therefore the
proof is complete.
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